基于残差加权的Taylor级数展开TDOA无线定位算法

基于残差加权的Taylor级数展开TDOA无线定位算法
基于残差加权的Taylor级数展开TDOA无线定位算法

空间插值算法汇总

空间插值算法: 1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。 4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类型。多元回

26TDOA定位的Chan算法MATLAB源代码

TDOA定位的Chan算法MATLAB源代码Chan算法是解决TDOA定位的经典算法,被众多的论文所引用。 function [POS_ref,POS1,POS2,POS3,POS4] = TDOA_chan(R,Pbs,Q) %% TDOA定位定位Chan算法 % GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→https://www.360docs.net/doc/6a7814935.html,/greensim %********************************************************* % CHAN算法,假设移动台与各基站位置较近,需进行三四WLS计算 % 输入参数: % R(N-1×1): TDOA测量值 % Pbs(N×2): 基站的坐标,第一列为X,第二列为Y;参考基站坐标位于第一行% 输出参数: % POS_ref(2X1):第一次WLS的估计结果,作为参考作最终定位结果的判决% POS1(2X1) :定位结果1 % POS2(2X1) :定位结果2 % POS3(2X1) :定位结果3 % POS4(2X1) :定位结果4 %这段程序用于自己产生算法输入参数,用于算法测试 % delta = 10; %TDOA测量误差的标准差,用于产生Q矩阵 % M=4; %参考基站外的基站数量 % Xb = 20;Yb = 100; %参考的基站坐标 % X = zeros(M,2); % a = 2*pi/M; % for i=1:M %生成其他基站的坐标 % X(i,1) = 400*cos(a*(i-1)); % X(i,2) = 400*sin(a*(i-1)); % end % Xreal = -150;Yreal = 200;%移动台真实坐标 % %产生TDOA测量结果 % Rb = sqrt((Xreal - Xb)^2+(Yreal - Yb)^2);%移动台到基站的真实距离 % N = normrnd(0,delta,1,M);%产生TDOA测量误差 % Kb = Xb^2+Yb^2; % R = zeros(M,1); % for i=1:M %产生TDOA测量值 % R(i) = -Rb+sqrt((Xreal - X(i,1))^2+(Yreal - X(i,2))^2)+N(i); % end % Q = (0.5*eye(M)+0.5*ones(M))*(delta^2); % Pbs = [Xb Yb;X]; % N = 5; % [POS_ref POS1 POS2 POS3 POS4] = TDOA_chan(R,Pbs,Q) N = size(Pbs,1);

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

反距离加权插值方法研究

倒数距离加权插值,又称“反距离加权平均”或“Shepard 方法”。 设有n 个点,平面坐标为),(i i y x ,垂直高度为i z ,n i ,,2,1 =,倒数距离加权插值的插值函数为 ????????? ===≠=∑∑==时 当时 当n i y x y x z n i y x y x d d z y x f i i i i i n j p j n j p j j ,,2,1,),(),(,,2,1,),(),(1 ),(11 。 其中,22)()(j j j y y x x d -+-= 是),(y x 点到),(j j y x 点的水平距离,n j ,,2,1 =。 p 是一个大于0的常数,称为加权幂指数。 容易看出,z ∑∑=== n j p j n j p j j d d z 1 11 是 n z z z ,,,21 的加权平均。 ),(y x f 是用分段表达式表达的,看起来不连续,实际上,它是处处连续的。 ),(lim y x f i i y y x x →→∑∑==→→=n j p j n j p j j y y x x d d z i i 111lim p n p i p i p i p p n n p i i p i i p i i p d d d d d d d z d z d z d z d z i 11111lim 111111111 0++++++++++++=+-++--→ p n p i p i p i p i p i p p i p n p i n p i p i i i p i p i i p p i d d d d d d d d d d d z d d z z d d z d d z i ++++++++++++=+-++--→ 1 111 1111101lim ),(i i i y x f z == ,

空间插值算法-反距离加权法

Show Inverse Distance Weighted Interpolation One of the most commonly used techniques for interpolation of scatter points is inverse distance weighted (IDW) interpolation. Inverse distance weighted methods are based on the assumption that the interpolating surface should be influenced most by the nearby points and less by the more distant points. The interpolating surface is a weighted average of the scatter points and the weight assigned to each scatter point diminishes as the distance from the interpolation point to the scatter point increases. Several options are available for inverse distance weighted interpolation. The options are selected using the Inverse Distance Weighted Interpolation Options dialog. This dialog is accessed through the Options button next to the Inverse distance weighted item in the 2D Interpolation Options dialog. SMS uses Shepard's Method for IDW: Shepard's Method The simplest form of inverse distance weighted interpolation is sometimes called "Shepard's method" (Shepard 1968). The equation used is as follows: where n is the number of scatter points in the set, fi are the prescribed function values at the scatter points (e.g. the data set values), and wi are the weight functions assigned to each scatter point. The classical form of the weight function is: where p is an arbitrary positive real number called the power parameter (typically, p=2) and hi is the distance from the scatter point to the interpolation point or where (x,y) are the coordinates of the interpolation point and (xi,yi) are the coordinates of each scatter point. The weight function varies from a value of unity at the scatter point to a value approaching zero as the distance from the scatter point increases. The weight functions are normalized so that the weights sum to unity.

差分演进算法TDOA定位

摘要 无线定位服务是一种有着广阔市场前景的移动增值业务,基本原理是利用现有蜂窝网络,通过对各种位置特征参数,包括到达时间(TOA)、到达时间差(TDOA)、到达方向(DOA)的测量和估计,来实现移动用户的定位。本论文对无线通信网络中基于TDOA的无线定位技术进行了研究。 本文分析了国内外相关研究现状,给出了移动台定位的几种基本方法,并给出了TDOA定位的双曲线数学模型,分析了基于TDOA定位的Chan算法、遗传算法(GA)和差分演进算法(DE),并对其进行了计算机仿真。仿真结果表明,三种算法各有优缺点:Chan算法定位精度较低但运算速度很快,GA算法和DE算法定位精度高但收敛时间较长。 在上述研究的基础上,本论文提出了三种新的定位算法:基于TDOA的Chan-GA算法、Chan-DE算法和Chan-IDE算法。并在相同的仿真环境下进行比较,仿真结果表明,在保证种群数量的情况下,所提的算法性能稳定,能找到逼近全局最优点的解,相对于Chan算法精度更高,相对于以前的算法在保证收敛性能的前提下有更快的收敛速度。 关键词:移动台定位;到达时间差;遗传算法;差分演进算法;免疫算法

ABSTRACT Cellular wireless location service is a new mobile value-added service with a good market future. Its basic principle is to implement mobile user location through estimating characteristic parameters relative to position, including time-of-arrival (TOA), time-difference-of-arrival (TDOA), direction-of-arrival (DOA), etc. This thesis aims at the research of wireless location technology based on time-related measurements in Wireless Communication System. The thesis analyzes the domestic and foreign correlation research of present situation, and gives several essential methods of mobile location. After that, the mathematical model of TDOA hyperbolic equations is established, three location algorithms based on time-difference-of-arrival (TDOA), Chan, genetic algorithm and Differential Evolution are analyzed, and have been carried on the simulation to them. The simulation results show that all the algorithms have the advantages and disadvantages.The Chan algorithm has bad location accuracy and very quick operating speed. To the contrary, the genetic algorithm and Differential Evolution have a high accuracy and a fast convergence time. Based on the above investigation, three new location algorithms called Chan-GA algorithm, Chan-DE algorithm and Chan-IDE algorithm based on TDOA measurements are put forward. Carrying on the computer simulation to them under the same environment, the simulation results show that if the population size is big enough, the algorithm is robust and can find the coordinates. It has a higher accuracy than Chan algorithms and a faster convergence time than genetic algorithm. Key words: Mobile location; TDOA; Genetic algorithm; Differential Evolution; Immune algorithm

反距离权重插值法

通过反距离权重插值法进行各观测站点的风速数据的空间插值,生成风速在空间上连续的表面数据,从而得到2005年4月份平均风速和4月份上旬极大风速的等值线本研究所用到的数据除了遥感数据外,还收集了许多图件资料。 这些图件资料主要来源于延庆县水务局和延庆县气象局,包括2004年延庆县(1: 10000)土地利用现状图(电子版)、延庆县土壤类型图(1: 12万)、降水等值线分布图(1: 12万)、延庆县地貌类型图(1: 12万)以及北京市土地沙化普查图等。 由于相关图件均是纸质图件,因此,论文首先根据研究区地表景观特征,以北京市1: 50000地形图为参考图,在图像处理软件ERDAS环境下对以上各图件资料进行配准,将图形数据所建立的投影系和以下待处理的遥感数据的投影系统统一,均为高斯一克吕格投影,以便在地理信息系统中进行空间分析。 其次,利用地理信息系统软件ArcGIS 9.0进行矢量化,建立土壤、降水、地貌等基础数据的数据库,数据格式为GRID格式。最后,利用GIS的制图功能,生成延庆风沙区土壤类型和土地沙化等专题图。景观生态分类既是景观结构与功能研究的基础,又是景观格局分析和优化的前提。 由于景观生态学发展过程中对景观类型认识角度的差异,建立各异的景观分类系统,目前还没有得到统一。景观分类系统的制定现在主要是在土地利用分类系统的基础上发展起来的,考虑研究区内部的实际生态系统水热配置状况,植被类型及物质、能量变化形式的差异,按一定的原则进行不同类型景观的划分。 分类系统的建立可以全面反映一定区域景观的空间分异和组织关联,揭示空间结构与生态功能特征,以此作为景观生态评价和管理的基础,卫星遥感信息源的选择鉴于研究区域面积大,变化明显等特征,各景观类型状态和变化数据的获取需要大量的工作,但是历史时期数据或大规模、高频率的数据调查已不可能实现,需要新的途径来解决上述问题。 遥感技术的发展为大规模空间数据获取及历史资料的重现提供了极大的方便,因此景观类型数据获得可以通过提取遥感数据信息实现。遥感数据的选择,可以根据研究对象的空间尺度和指标,选用不同的遥感数据源。

TDOA定位的Chan算法MATLAB源代码

TDOA定位的Chan算法MATLAB源代码。 function [POS_ref,POS1,POS2,POS3,POS4] = TDOA_chan(R,Pbs,Q) %********************************************************* % CHAN算法,假设移动台与各基站位置较近,需进行三四WLS计算 % 输入参数: % R(N-1×1): TDOA测量值 % Pbs(N×2): 基站的坐标,第一列为X,第二列为Y;参考基站坐标位于第一行% 输出参数: % POS_ref(2X1):第一次WLS的估计结果,作为参考作最终定位结果的判决 % POS1(2X1) :定位结果1 % POS2(2X1) :定位结果2 % POS3(2X1) :定位结果3 % POS4(2X1) :定位结果4 %这段程序用于自己产生算法输入参数,用于算法测试 % delta = 10; %TDOA测量误差的标准差,用于产生Q矩阵 % M=4; %参考基站外的基站数量 % Xb = 20;Yb = 100; %参考的基站坐标 % X = zeros(M,2);%M行2列0 % a = 2*pi/M; % for i=1:M %生成其他基站的坐标 % X(i,1) = 400*cos(a*(i-1)); % X(i,2) = 400*sin(a*(i-1)); % end % Xreal = -150;Yreal = 200;%移动台真实坐标 % %产生TDOA测量结果 % Rb = sqrt((Xreal - Xb)^2+(Yreal - Yb)^2);%移动台到基站的真实距离 % N = normrnd(0,delta,1,M);%产生TDOA测量误差正态分布均值0 标准差delta 返回一个N数组,下标为1 到M % Kb = Xb^2+Yb^2; % R = zeros(M,1); % for i=1:M %产生TDOA测量值 % R(i) = -Rb+sqrt((Xreal - X(i,1))^2+(Yreal - X(i,2))^2)+N(i); % end % Q = (0.5*eye(M)+0.5*ones(M))*(delta^2); % Pbs = [Xb Yb;X];%矩阵 % N = 5; % [POS_ref POS1 POS2 POS3 POS4] = TDOA_chan(R,Pbs,Q) N = size(Pbs,1);%维度 K = zeros(1,N); K = Pbs(:,1).^2 + Pbs(:,2).^2; ha = 0.5*(R.^2-K(2:N)+K(1)) Ga = -[Pbs(2:N,1)-Pbs(1,1) Pbs(2:N,2)-Pbs(1,2) R]

Surfer---九种插值方法

Surfer---九种插值方法 Inverse Distance to a Power--反距离加权插值法 Kriging--克里金插值法) Minimum Curvature--最小曲率 Modified Shepard's Method--改进谢别德法 Natural Neighbor--自然邻点插值法 Nearest Neighbor--最近邻点插值法 Polynomial Regression--多元回归法 Radial Basis Function--径向基函数法 Triangulation with Linear Interpolation--线性插值三角网法 Moving Average--移动平均法 Local Polynomial--局部多项式法 1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。 4、多元回归法多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类型。多元回归实际上不是插值器,因为它并不试图预测未知的Z 值。它实际上是一个趋势面分析作图程序。使用多元回归法时要涉及到曲面定义和指定XY的最高方次设置,曲面定义是选择采用的数据的多项式类型,这些类型分别是简单平面、双线性鞍、二次曲面、三次曲面和用户定义的多项式。参数设置是指定多项式方程中X 和Y 组元的最高方次。 5、径向基本函数法径向基本函数法是多个数据插值方法的组合。根据适应你的数据和生成

第三章有限元法基础通常将有限元法分为两大类变分法和加权余量法

第三章 有限元法基础 通常将有限元法分为两大类:变分法和加权余量法。两种方法的出发点不同,但最后都归结为:①离散化:用若干个子区域(即单元)代替整个连续区域,②算子解析方程,即偏微分方程转化为代数方程组:区域的物理性质可以用节点上有限个自由度来描述,再应用离散系统分析方法将其汇集在一起。 §3-1 算子方程及变分原理 3.1.1 算子的概念 (1)静电场中,泊松方程 ρ?ε-=??? 可以写为 ρ?=L ,其中??-?=εL 称为算子。 (2)稳态磁场中,双旋度方程 J A =??? ?μ 1 J LA =? (3)时变场中,波动方程 J H H 2??=-????νννk J H ??=?νL 3.1.2 泛函 1、泛函的概念 泛函是函数空间H 中,函数到数的映像,如 ()()[]x y I x I = 也可以说泛函是函数的函数,函数空间中的某一函数()x y 有一个I 值与之对应,变量I 就是D 空间的函数()x y 的泛函。 例如 求()x y 所表示的曲线长度及所围面积。 曲线长度 ()[]? ?? ? ??+=2 1 2 1x x dx dx dy x y I

曲线所围面积 ()[]()?=2 1 x x dx x y x y I 不同的()x y ,有不同的I 与之对应,不同的 图3-1 求曲线长度及所围面积 ()[]x y I 构成了函数空间H 。 2、泛函连续 若对于()x y 的微小改变,有泛函()[]x y I 的微小改变与之对应,就称泛函是连续的。 3、线性泛函 若泛函满足 ()[]()[]x y cI x cy I = c 为常数 或 ()()[]()[]()[]x y I x y I x y x y I 2121+=+ 则称其为线性泛函。 4、函数的变分y δ 泛函()[]x y I 的宗量()x y 的变分y δ是()x y 的微小增量 ()()x y x y y 1-=δ 5、泛函的变分I δ 对于宗量()x y 的变分y δ,泛函的增量为 ()[]()[]()[]()[]y ,x y o y ,x y L I I I x y I y x y I I δδδδδδ+=+++=-+=? 32 式中,()[]y x y L δ,是对y δ的线性泛函,是I ?的主要部分,称为一阶(或一次)变分 ()[]y x y L I δδ,= ()[]y x y o δ,是误差项。 y δ与dy 的区别: 当自变量x 的增量1x x x -=?充分小时,可用dx 来表示,dx 称为x 的微分。相应地,函数y 的增量 ()()()()x o x x A x y x x y y ?+?=-?+=? 当x ?充分小时,可用dy 来表示,dy 称为y 的微分,dy 是x 的变化引起的微分,

各种插值方法比较

空间插值可以有很多种分类方法,插值种类也难以举尽。在网上看到这篇文章,觉得虽然作者没能进行分类,但算法本身介绍地还是不错的。 在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括: Inverse Distance to a Power(反距离加权插值法) Kriging(克里金插值法) Minimum Curvature(最小曲率) Modified Shepard's Method(改进谢别德法) Natural Neighbor(自然邻点插值法) Nearest Neighbor(最近邻点插值法) Polynomial Regression(多元回归法) Radial Basis Function(径向基函数法) Triangulation with Linear Interpolation(线性插值三角网法) Moving Average(移动平均法) Local Polynomial(局部多项式法) 下面简单说明不同算法的特点。 1、距离倒数乘方法 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。 4、多元回归法 多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋

常见插值方法及其介绍

常见插值方法及其介绍 Inverse Distance to a Power(反距离加权 插值法)”、 “Kriging(克里金插值法)”、 “Minimum Curvature(最小曲率)”、 “Modified Shepard's Method(改进谢别德法)”、 “Natural Neighbor(自然邻点插值法)”、 “Nearest Neighbor(最近邻点插值法)”、 “Polynomial Regression(多元回归法)”、 “Radial Basis Function(径向基函数法)”、 “Triangulation with Linear Interpolation(线性插值三角网法)”、 “Moving Average(移动平均法)”、 “Local Polynomial(局部多项式法)” 1、距离倒数乘方法 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数 控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被 给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。 计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距 离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个 观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点

被给予一 个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。 距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可 以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的 权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数 据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。 克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最 小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的 曲面。 使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛 标准。 4、多元回归法 多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类 型。多元回归实际上不是插值器,因为它并不试图预测未知的Z 值。它实际上是一个趋势面分析作

TDOA算法

TDOA定位的Chan算法Matlab源码 (2009-07-26 12:47:49) 标签: 杂谈 TDOA定位的Chan算法Matlab源码 function [POS_ref,POS1,POS2,POS3,POS4] = TDOA_chan(R,Pbs,Q) %% TDOA定位定位Chan算法 % GreenSim团队原创作品,转载请注明 % Email:greensim@https://www.360docs.net/doc/6a7814935.html, % GreenSim团队主页:https://www.360docs.net/doc/6a7814935.html,/greensim % [color=red]欢迎访问GreenSim——算法仿真团队 →[url=https://www.360docs.net/doc/6a7814935.html,/greensim]https://www.360docs.net/doc/6a7814935.html,/gree nsim[/url][/color] %********************************************************* % CHAN算法,假设移动台与各基站位置较近,需进行三四WLS计算 % 输入参数: % R(N-1×1): TDOA测量值 % Pbs(N×2): 基站的坐标,第一列为X,第二列为Y;参考基站坐标位于第一行

% 输出参数: % POS_ref(2X1):第一次WLS的估计结果,作为参考作最终定位结果的判决 % POS1(2X1) :定位结果1 % POS2(2X1) :定位结果2 % POS3(2X1) :定位结果3 % POS4(2X1) :定位结果4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% %这段程序用于自己产生算法输入参数,用于算法测试 % delta = 10; %TDOA测量误差的标准差,用于产生Q矩阵 % M=4; %参考基站外的基站数量 % Xb = 20;Yb = 100; %参考的基站坐标 % X = zeros(M,2); % a = 2*pi/M; % for i=1:M %生成其他基站的坐标 % X(i,1) = 400*cos(a*(i-1)); % X(i,2) = 400*sin(a*(i-1)); % end % Xreal = -150;Yreal = 200;%移动台真实坐标 % %产生TDOA测量结果 % Rb = sqrt((Xreal - Xb)^2+(Yreal - Yb)^2);%移动台到基站的真实

反距离加权法

反距离加权插值 来源:互联网 反距离权(IDW Inverse Distance Weighted)插值法是基于相近相似的原理:即两个物体离得近,它们的性质就越相似,反之,离得越远则相似性越小。它以插值点与样本点间的距离为权重进行加权平均,离插值点越近的样本点赋予的权重越大。 反距离加权插值法的一般公式如下: 其中,为处的预测值; N 为预测计算过程中要使用的预测点周围样点的数量;为预测计算过程中使用的各样点的权重, 该值随着样点与预测点之间距离的增加而减少;是在处获得的测量值。确定权重的计算公式为: 其中,P 为指数值; 是预测点与各已知样点之间的距离。 样点在预测点值的计算过程中所占权重的大小受参数p 的影响;也就是说,随着采样点与预测值之间距离的增加,标准样点对预测点影响的权重按指数规律减少。在预测过程中,各样点值对预测点值作用的权重大小是成比例的,这些权重值的总和为1。 在ArcGIS9.0 中利用反距离加权工具进行空间插值的基本步骤为: 1. 在ArcMap中加载地统计数据点图层。 2. 单击Geostatistical Analyst模块的下拉箭头点击Geostatistical Wizard命令,弹出图1所示界面;

图1 输入数据和方法选择对话框 参数说明: (1) Dataset1 1)Input:选择进行内插的实验数据。 2) Attribute: 选择进行内插的实验数据的属性。 (2)Validation 1) Input:选择进行内插的检验数据。 2) Attribute: 选择进行内插的检验数据的属性。 (3) Method:选择数据的内插方法。 为了保证内插的精度,在此选择检验数据。为了能够将表面精确地描绘出来,需保证训练数据集中有足够的样本。若训练数据集中数据太少或含有异常值,会造成模型参数错误及输出结果变形。 3. 选择Inverse Distance Weighting ,然后单击Next, 弹出图2所示界面参数设置: (1) Power:即公式中的p参数值。 (2) Symbol:设置上图中点符号的大小。 (3) Preview type 1) Neighbors:预览预测点的效果图。 2) Surface: 预览反距离内插表面生成的效果图。 (4) Method 1) Neighbors to:在搜索半径内使用预测点最大的个数。 2) Include at least:在搜索半径内使用预测点最小的个数。 3) Shape:区域扇区形状的选择。

最新TDOA 定位算法研究

__________________________________________________ TDOA定位算法研究 院(系):专业: 学号:指导教师: 年月日毕业设计(论文)

__________________________________________________ 题目基于TDOA的 定位算法研究 专业 学号 学生 指导教师 答辩日期

__________________________________________________ 摘要 无线传感器网络可以看成是由数据获取网络、数据分布网络和控制管理中心三部分组成的。其主要组成部分是集成有传感器、数据处理单元和通信模块的节点, 各节点通过协议自组成一个分布式网络, 再将采集来的数据通过优化后经无线电波传输给信息处理中心。因此,其最重要的核心部位是节点传感器,应用的范围是面对广大使用用户和各种科技创新范围,其功能的关键所在是为用户提供可靠的、准确的、实时的研究数据。那么,定位技术作为将这个“核心”和“关键”连接的纽带,它的重要性不言而喻。 本文首先通过调查无线传感器网络的发展历程,然后再研究其能够实现的各种功能,结合国内外在其各个领域像组网方式等的研究现状,通过分析,在分析的过程当中选择研究方向,最后通过选择,在定位算法上得到了突破口,然后研究的后续内容得以展开。其次介绍了无线传感器的基础概念,分析其各个基本单元在其组成的网络当中的主要实现的功能,然后在其测距算法的类别中,介绍了三种经典算法理论,并同时与非测距算法对比,得出非测距算法的优越性,分析和研究目前已有的三种应用算法,最后整理出算法的改进方法。 通过对于TDOA定位查恩算法、TDOA定位最小二乘法算法以及TDOA定位最小二乘法加权算法来进行研究,按照提高精度的思路,最终在三种算法基础上尝试一种优化算法即进行质心处理的算法。然后用仿真软件matlab软件进行组网和仿真,并且最终通过matlab进行仿真并且得到成功的验证。然后大量的实验数据证明,通过质心加权处理的TDOA定位算法可以在实际中得到应用。 关键词:无线传感器网络;chan算法;TDOA;质心加权;锚节点

相关文档
最新文档