扩展卡尔曼滤波雷达目标在线跟踪轨迹算法

扩展卡尔曼滤波雷达目标在线跟踪轨迹算法
扩展卡尔曼滤波雷达目标在线跟踪轨迹算法

基于扩展卡尔曼滤波的雷达目标在线跟踪轨迹的算法摘要:目标跟踪是指根据传感器(如雷达等)所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。目标跟踪理论在军、民用领域都有重要的应用价值。在军用领域,目标跟踪是情报搜集、战场监视、火力控制、态势估计和威胁评估的基础;在民用领域,目标跟踪被广泛应用于空中交通管制,目标导航以及机器人的道路规划等行业。本文利用差分方程模型计算目标点的速度与加速度,基于卡尔曼滤波算法建立扩展型卡尔曼滤波算法的目标跟踪模型。

0 引言

目前,对机动目标的跟踪滤波与预测算法主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、与滤波、简化的卡尔曼滤波和卡尔曼滤波。线性自回归滤波完全忽视了状态噪声对估值的影响;两点外推滤波利用最后一个数据点和最后两个数据点分别确定目标位置与目标速度,因此,之前所测的数据点并不能起到预测作用;维纳滤波不适合机动目标的瞬间变化过程,从而在一定程度上限制了它的应用范围;与滤波是两种简单并且易于工程实现的常增益滤波方法,最大优点在于其增益矩阵可以离线计算,而且在每次滤波循环中可节约大约70%的计算量;卡尔曼滤波与预测执行的是均方根误差最小准则,并且通过协方差矩阵可以很方便的对估计精度进行度量,目前应用较多而且误差相对较小的目标跟踪算法是卡尔曼滤波算法。但基本的卡尔曼滤波算法在跟踪机动目标时存在不足:当系

统达到稳态时,其预测协方差很小,使得滤波器的增益也趋于极小值,此时若目标发生机动,系统残差增大,预测的协方差和滤波器的增益不能随残差随时改变,系统将不能保证对突变状态的跟踪能力。

1用扩展卡尔曼滤波算法预测机动目标轨迹

首先由目标初始准确的状态对下一状态进行预测,得到下一状态的预测值,同时由计算所得的对应于初始状态的协方差得到下一状态的协方差预测值;接着由雷达观测误差、状态向量及所得协方差预测值可以得到卡尔曼增益值,进而最终得到下一状态的最优估算值,同时更新对应的协方差。至此,第一轮目标轨迹预测已完成,同理,进行下一轮的目标轨迹预测。模型的具体方程如下:本时刻系统的状态向量由上一时刻系统的最优预测状态向量求得,初始状态需要知道目标的状态向量。这里通过差分方程数学模型计算出目标在三个坐标上速度变化情况:

其中、、表示所测数据第i时刻速度沿着方向三个的速度分量值。

然后使用卡尔曼滤波预测目标的运动轨迹,假定离散时间控制系统状态方程和观测方程为:

式中是k时刻的非线性实值状态向量,是k时刻的系统量测向量,表示系统状态噪声,表示系统测量噪声,A和B为状态向量,H为非线性函数。

由公式4和公式5构成的系统状态方程和测量方程均为线性方程,其过程噪声都为高斯白噪声,可用标准卡尔曼滤波算法进行滤波。

扩展的卡尔曼滤波基本方程为:

基于系统的上一状态预测出现在状态的公式:

接着由上一状态的协方差预测出现在状态的协方差:

由现在状态的预测值得到最优化估算值的方程为:

其中为卡尔曼增益,

上式中为雷达观测误差矩阵。

最后由协方差的预测值和当前卡尔曼增益得到对应于最优化估算值的协方差,其方程为:

上式中为单位矩阵。

2.实验结果分析

以下所用的机动目标及雷达数据取自第十一届全国研究生数学建模竞赛,结果经Matlab进行数据拟合而得,分别是基于直角坐标系由两个雷达同时对同一个目标的观测所得的航迹图,每个图都同时描出了分别在X、Y、Z轴上使用了卡尔曼滤波和未使用卡尔曼滤波的情况下的航迹图:

本所给的量测数据,经过小波阈值去噪,数据压缩合并、坐标系转换后,通过建立差分方程模型、扩展卡尔曼滤波算法计算出的目标机动的轨迹与未使用卡尔曼滤波所得的运动轨迹明显有差别。通过扩展的卡尔曼滤波算法跟踪目标的运动轨迹其模型的收敛性较好,将此模型用于被动目标的定位系统,仿真结果令人满意,验证了此算法的正确性。

3.总结

为了利用卡尔曼滤波算法的优点(线性、无偏、误差方差最小),本文将非线性过程结合当前的状态估计线性模型,然后用卡尔曼滤波算法解决突变系统的滤波问题,通过扩展的卡尔曼滤波算法预测存在机动情况下目标的运动轨迹,并且经过以上实验结果证明是可行的。

参考文献

[1]邓自立. 卡尔曼滤波与维纳滤波:现代时间序列分析方法[M]. 哈尔滨工业大学出版社, 2001.

[2]Grewal M S, Andrews A P. Kalman filtering: theory and practice using MATLAB[M]. John Wiley & Sons, 2011.

[3]Kalman filtering: theory and application[M]. IEEE,1960.

[4]Frühwirth R. Application of Kalman filtering to track and vertex fitting[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,Detectors and Associated Equipment, 1987, 262(2): 444-450.

[5]Davis M H,Khotanzad A,Flamig D P,et al. A physics-based coordinate transformation for 3-D image matching[J]. Medical Imaging, IEEE Transactions on, 1997,16(3): 317-328.

基于卡尔曼滤波器的雷达目标跟踪(完整资料).doc

此文档下载后即可编辑 随机数字信号处理期末大作业(报告) 基于卡尔曼滤波器的雷达目标跟踪 Radar target tracking based on Kalman filter 学院(系):创新实验学院 专业:信息与通信工程 学生姓名:李润顺 学号:21424011 任课教师:殷福亮 完成日期:2015年7月14日

大连理工大学Dalian University of Technology

摘要 雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。 关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB 仿真 - 1 -

1 引言 1.1 研究背景及意义 雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。 鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、β α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪理论中占据了主导地位。

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

扩展卡尔曼滤波雷达目标在线跟踪轨迹算法

基于扩展卡尔曼滤波的雷达目标在线跟踪轨迹的算法摘要:目标跟踪是指根据传感器(如雷达等)所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。目标跟踪理论在军、民用领域都有重要的应用价值。在军用领域,目标跟踪是情报搜集、战场监视、火力控制、态势估计和威胁评估的基础;在民用领域,目标跟踪被广泛应用于空中交通管制,目标导航以及机器人的道路规划等行业。本文利用差分方程模型计算目标点的速度与加速度,基于卡尔曼滤波算法建立扩展型卡尔曼滤波算法的目标跟踪模型。 0 引言 目前,对机动目标的跟踪滤波与预测算法主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、与滤波、简化的卡尔曼滤波和卡尔曼滤波。线性自回归滤波完全忽视了状态噪声对估值的影响;两点外推滤波利用最后一个数据点和最后两个数据点分别确定目标位置与目标速度,因此,之前所测的数据点并不能起到预测作用;维纳滤波不适合机动目标的瞬间变化过程,从而在一定程度上限制了它的应用范围;与滤波是两种简单并且易于工程实现的常增益滤波方法,最大优点在于其增益矩阵可以离线计算,而且在每次滤波循环中可节约大约70%的计算量;卡尔曼滤波与预测执行的是均方根误差最小准则,并且通过协方差矩阵可以很方便的对估计精度进行度量,目前应用较多而且误差相对较小的目标跟踪算法是卡尔曼滤波算法。但基本的卡尔曼滤波算法在跟踪机动目标时存在不足:当系

统达到稳态时,其预测协方差很小,使得滤波器的增益也趋于极小值,此时若目标发生机动,系统残差增大,预测的协方差和滤波器的增益不能随残差随时改变,系统将不能保证对突变状态的跟踪能力。 1用扩展卡尔曼滤波算法预测机动目标轨迹 首先由目标初始准确的状态对下一状态进行预测,得到下一状态的预测值,同时由计算所得的对应于初始状态的协方差得到下一状态的协方差预测值;接着由雷达观测误差、状态向量及所得协方差预测值可以得到卡尔曼增益值,进而最终得到下一状态的最优估算值,同时更新对应的协方差。至此,第一轮目标轨迹预测已完成,同理,进行下一轮的目标轨迹预测。模型的具体方程如下:本时刻系统的状态向量由上一时刻系统的最优预测状态向量求得,初始状态需要知道目标的状态向量。这里通过差分方程数学模型计算出目标在三个坐标上速度变化情况: 其中、、表示所测数据第i时刻速度沿着方向三个的速度分量值。 然后使用卡尔曼滤波预测目标的运动轨迹,假定离散时间控制系统状态方程和观测方程为: 式中是k时刻的非线性实值状态向量,是k时刻的系统量测向量,表示系统状态噪声,表示系统测量噪声,A和B为状态向量,H为非线性函数。 由公式4和公式5构成的系统状态方程和测量方程均为线性方程,其过程噪声都为高斯白噪声,可用标准卡尔曼滤波算法进行滤波。

基于卡尔曼滤波器的雷达目标跟踪

随机数字信号处理期末大作业(报告) 基于卡尔曼滤波器的雷达目标跟踪 Radar target tracking based on Kalman filter 学院(系):创新实验学院 专业:信息与通信工程 学生姓名:李润顺 学号:21424011 任课教师:殷福亮 完成日期:2015年7月14日 大连理工大学 Dalian University of Technology

摘要 雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。 关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB仿真

1 引言 1.1 研究背景及意义 雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。 鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳 α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪滤波、加权最小二乘滤波、β 理论中占据了主导地位。 雷达跟踪需要处理的信息种类多种多样。除了目标的位置信息外,一般还要对目标运动速度进行估计,个别领域中的雷达还要对目标运动姿态进行跟踪。雷达跟踪的收敛速度、滤波精度和跟踪稳定度等是评估雷达跟踪性能的重要参数。因此提高雷达跟踪的精度、收敛速度和稳定度也就一直是改善雷达跟踪性能的重点。随着科技的发展,各类目标的运动性能和材质特征有了大幅度的改善和改变,这就要求雷达跟踪能力要适应目标特性的这种变化。在不断提高雷达跟踪性能的前提下,降低雷达跟踪系统的成本也是现代雷达必须考虑的问题。特别是在民用领域中由于雷达造价不能过高,对目标跟踪进行快收敛性、高精度和高稳定性的改良在硬件上是受到一些制约的,因此雷达跟踪算法的研究就越来越引起学者们的关注。通过跟踪算法的改进来提高雷达的跟踪性能还有相当大的挖掘潜力。考虑到雷达设备的造价,民用雷达的跟踪系统首要的方法就是对于雷达的跟踪算法进行开发。

雷达机动目标跟踪技术研究精编

雷达机动目标跟踪技术 研究精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

1 绪论 课题背景及目的 目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标量测数据对目标状态进行精确的估计[1]。它是军事和民用领域中一个基本问题,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。在国防领域,目标跟踪可用于反弹道导弹的防御、空防预警、战场区域监视、精确制导和低空突防等。在民用领域,则用于航空和地面交通管制、机器人的道路规划和障碍躲避、无人驾驶车的跟踪行驶、电子医学等。作为科学技术发展的一个方面,目标跟踪问题可以追溯到第二次世界大战的前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。之后,许多科学家和工程师一直努力于该项课题的研究,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。 运动目标的机动会使跟踪系统的性能恶化,对机动目标进行跟踪是人们多年来一直关注的问题。随着现代航空航天技术的飞速发展,机动目标在空间飞行的速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,因此,提高对这类目标的跟踪性能便成为越来越重要的问题,迫切需要研究更为优越的跟踪滤波方法。机动目标的跟踪研究,已成为当今电子战的研

究热点之一。今天,精密跟踪雷达不仅广泛应用于各类武器控制和各类实验靶场,而且还广泛应用于各种空间探测、跟踪和识别领域,以及最先进的武器控制系统。 跟踪模型和匹配滤波是机动目标跟踪的两个关键部分,机动目标的精确跟踪在过去和现在都是一个难题,最根本原因在于跟踪滤波采用的目标动力学模型和机动目标实际动力学模型不匹配,导致跟踪滤波器发散,跟踪性能严重下降。本文将机动目标作为研究对象,从目标的运动建模和匹配滤波算法入手,提出或修正跟踪算法,从而实现对机动目标的精确跟踪。 机动目标跟踪技术及其发展状况 目标机动是指运动当中的目标,其运动方式在不断地发生变化,从一种形式变化为另一种形式,目标的运动可能从匀速到变速,也可能送直线到转弯,它的运动方式并不会从一而终。通俗地说,就是“目标速度的大小和方向发生变化”。 一般情况下,机动目标跟踪方法概括来讲可以分为以下两类:具有机动检测的跟踪算法和无需机动检测的自适应跟踪算法。机动目标的跟踪需要综合运用统计决策、滤波算法以及其它的数学方法,将传感器所接受到的信号数据进行处理,得到目标的位置、速度、加速度等估计信息。图给出了机动目标跟踪的基本原理图。

目标跟踪算法的研究毕业论文

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (4) 1.1课题研究背景和意义 (4) 1.2国外研究现状 (5) 1.3本文的具体结构安排 (7) 第二章运动目标检测 (8) 2.1检测算法及概述 (8) 2.1.1连续帧间差分法 (9) 2.1.2背景去除法 (11) 2.1.3光流法 (13) 第三章运动目标跟踪方法 (16) 3.1引言 (16) 3.2运动目标跟踪方法 (16) 3.2.1基于特征匹配的跟踪方法 (16) 3.2.2基于区域匹配的跟踪方法 (17) 3.2.3基于模型匹配的跟踪方法 (18) 3.3运动目标搜索算法 (18) 3.3.1绝对平衡搜索法 (18) 3.4绝对平衡搜索法实验结果 (19) 3.4.1归一化互相关搜索法 (21)

3.5归一化互相关搜索法实验结果及分析 (22) 第四章模板更新与轨迹预测 (26) 4.1模板更新简述及策略 (26) 4.2轨迹预测 (28) 4.2.1线性预测 (29) 4.2.2平方预测器 (30) 4.3实验结果及分析: (31) 致 (36) 参考文献 (37) 毕业设计小结 (38)

摘要 图像序列目标跟踪是计算机视觉中的经典问题,它是指在一组图像序列中,根据所需目标模型,实时确定图像中目标所在位置的过程。它最初吸引了军方的关注,逐渐被应用于电视制导炸弹、火控系统等军用备中。序列图像运动目标跟踪是通过对传感器拍摄到的图像序列进行分析,计算出目标在每帧图像上的位置。它是计算机视觉系统的核心,是一项融合了图像处理、模式识别、人工只能和自动控制等领域先进成果的高技术课题,在航天、监控、生物医学和机器人技术等多种领域都有广泛应用。因此,非常有必要研究运动目标的跟踪。 本论文就图像的单目标跟踪问题,本文重点研究了帧间差分法和背景去除法等目标检测方法,研究了模板相关匹配跟踪算法主要是:最小均方误差函数(MES),最小平均绝对差值函数(MAD)和最大匹配像素统计(MPC)的跟踪算法。在跟踪过程中,由于跟踪设备与目标的相对运动, 视野中的目标可能出现大小、形状、姿态等变化, 加上外界环境中的各种干扰, 所要跟踪的目标和目标所在的场景都发生了变化, 有可能丢失跟踪目标。为了保证跟踪的稳定性和正确性, 需要对模板图像进行自适应更新。由于目标运动有一定得规律,可以采取轨迹预测以提高跟踪精度,本文采用了线性预测法。 对比分析了相关匹配算法的跟踪精度和跟踪速度;对比不采用模板更新和模板跟新的跟踪进度和差别,实验表明,跟踪算法加上轨迹预测及模板跟新在很大程度上提高了跟踪帧数,提高了跟踪精度,具有一定的抗噪声性能。

多目标跟踪雷达

多目标跟踪雷达 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

多目标跟踪雷达 路口存在检测方案 采用多维式扫描雷达天线和先进DSP跟踪算法,对路口单方面向最少四车道、最多八车道的车辆进行精准的存在检测或感应检测,同时还能提供精准的单车及时测度、车辆位置信息以及停止线的车流量、平均速度和占有率等交通刘统计数据。路段多功能检测,能对横向四车道八车道、纵向160米范围的大视域内车辆进行实时检测。跟踪区域内所有车辆的行为轨迹、真实量化还原路况状态,提供精准的单车即时时速度、车辆位置、车型信息,同时提供精准的断面的车流量平均车速和占有率等交通流统计数据,以及对区域内多种异常事件及时报警,为交通诱导系统和交通事件检测系统提供数据支撑,

随着城市车辆快速增长,路口的管理压力越来越大,配套的信号控制系统、交通诱导、交通仿真系统等对数据的要求也越来越高。而路口车辆存在信息是实现高效、稳定信号控制的基本要求,也是现阶段国内外主流交通信号控制系统应用最为成熟的数据模型之一。因此,交叉路口的车辆存在信息就显的尤为重要。 城市路口车辆存在检测系统通过建立覆盖路口特定位置的采集点位,配备前端感知检测,实时吧存在信息传送之信号机控制及系统,对路口信号配时,优化提供支撑。同时,公安交通管理部门可以根据车流量历史统计数据、分析路口车辆运行规律,针对性制定控制管理策略。 需求说明: 城市路口存在检测系统,主要完成路口停车线、或特定断面的车辆存在信息采集,可以及时掌握路口特定位置车流量状态,为信号机控制、交通诱导等系统提供数据支撑。 1、在城市重要路口设立和完善的存在检测点、检测各方的车流量信息。 2、建立城市的数据传输、应用接口模块。实现无缝对接信号机控制系统。 3、用户可以通过实时数据库、以及客户端管理进行查看每个路口车辆存在信息、车流量、占有率等,可以连续24时实时检测。 4、具备数据存储功能。可以作为路口管理的数据支撑。 系统说明:

雷达跟踪算法论文目标跟踪算法论文

雷达跟踪算法论文目标跟踪算法论文 雷达多目标跟踪算法 摘要:文章简述了雷达多目标跟踪系统中状态估计和航迹数据关联两大问题的研究现状并对主流算法进行分析对比。状态估计问题主要分析了线性滤波及非线性滤波的主流算法。数据关联问题主要分贝叶斯类和最大似然概率类进了行讨论分析。 关键词:雷达;目标跟踪;卡尔曼滤波;数据关联 1引言 将数学算法引入到雷达系统,已经有百年历史,雷达数据处理方法始于高斯将最小二乘算法应用于神谷星的轨道预测,随后R.A.Fisher的极大似然估计法、N.Wiener的维纳滤波法都曾给雷达数据处理带来巨大变革,而由Kalman滤波逐步完善而来的卡尔曼滤波估计理论已经在雷达数据处理中占有非常重要的地位。雷达目标跟踪算法主要有状态估计、航迹点迹处理两个部分。 2状态估计 状态估计是对目标过去的运动状态进行平滑、对目标现在运动状态进行滤波以及对目标未来的运动状态进行预测的方法。 2.1线性滤波算法 在所有的线性形式的滤波器中,线性均方估计滤波器是最优的。线性均方误差准则下的滤波器包括:维纳滤波器和卡尔曼滤波器,稳态条件下两者是一致的,但卡尔曼滤波器适用于有限观测间隔的非平稳问题,它是适合于计算机计算的递推算法。[1]表1列出详细对比。

2.2 非线性滤波 无源探测系统不能测距,欲获得目标状态良好估计需用到非线性滤波方法,包括扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)及粒子滤波(PF)[2]。表二列出了详细对比分析。 由以上对比可知,速度上,EKF具有明显优势,但当系统的非线性强度增大导致线性化误差增大时,EKF的估计精度下降,甚至发散;精度上UKF和PF性能相似,但就计算量而言PF远远超过UKF[3]。综上,在一般的非线性高斯环境中宜采用UKF,在更复杂的非高斯环境中,PF将具有更广泛的应用前景。 3 多目标跟踪 多目标跟踪的基本方法,可以分为极大似然类数据关联算法和贝叶斯类数据互联算法。极大似然类数据关联算法包括人工标图法、航迹分叉法、联合极大似然算法、0-1整数规划法、广义相关法等。贝叶斯类互联算法包括最近邻域法、概率数据互联算法、联合数据互联算法、最优贝叶斯算法、多假设方法等[4]。 3.1 极大似然类多目标数据关联算法 在极大似然类数据关联算法中,目前主要应用的是航迹分叉法、两盒极大似然算法、0-1整数规划法和广义相关法这四种算法。表三就这几种线性关联算法进行对比分析。 通过实验,在测量杂波环境相同的条件下,航迹分叉法的计算耗时最长,计算量最大,这是由于它无区别地分配有效测量,不处理同

雷达机动目标跟踪技术研究

1 绪论 1.1 课题背景及目的 目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标量测数据对目标状态进行精确的估计[1]。它是军事和民用领域中一个基本问题,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。在国防领域,目标跟踪可用于反弹道导弹的防御、空防预警、战场区域监视、精确制导和低空突防等。在民用领域,则用于航空和地面交通管制、机器人的道路规划和障碍躲避、无人驾驶车的跟踪行驶、电子医学等。作为科学技术发展的一个方面,目标跟踪问题可以追溯到第二次世界大战的前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。之后,许多科学家和工程师一直努力于该项课题的研究,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。 运动目标的机动会使跟踪系统的性能恶化,对机动目标进行跟踪是人们多年来一直关注的问题。随着现代航空航天技术的飞速发展,机动目标在空间飞行的速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,因此,提高对这类目标的跟踪性能便成为越来越重要的问题,迫切需要研究更为优越的跟踪滤波方法。机动目标的跟踪研究,已成为当今电子战的研究热点之一。今天,精密跟踪雷达不仅广泛应用于各类武器控制和各类实验靶场,而且还广泛应用于各种空间探测、跟踪和识别领域,以及最先进的武器控制系统。 跟踪模型和匹配滤波是机动目标跟踪的两个关键部分,机动目标的精确跟踪在过去和现在都是一个难题,最根本原因在于跟踪滤波采用的目标动力学模型和机动目标实际动力学模型不匹配,导致跟踪滤波器发散,跟踪性能严重下降。本文将机动目标作为研究对象,从目标的运动建模和匹配滤波算法入手,提出或修正跟踪算法,从而实现对机动目标的精确跟踪。 1.2 机动目标跟踪技术及其发展状况 目标机动是指运动当中的目标,其运动方式在不断地发生变化,从一种形式变化为另一种形式,目标的运动可能从匀速到变速,也可能送直线到转弯,它的运动方式并不

目标跟踪的研究背景意义方法及现状

目标跟踪的研究背景意义方法及现状

目录 ? 1.课题背景与研究意义? 2.国内外研究现状 ? 3.存在的问题 ? 4.总结,发展与展望 ? 5.参考文献

1课题背景与研究意义 ?运动目标的跟踪就是在视频图像的每一幅图像中确定出我们感兴趣的运动目标的位置,并把不同帧中同一目标对应起来。 ?智能视频监控(IVS: Intelligent Video Surveillance)是计算机视觉领域近几年来发展较快,研究较多的一个应用方向。它能够利用计算机视觉技术对采集到的视频信号进行处理、分析和理解,并以此为基础对视频监控系统进行控制,从而使视频监控系统具备更好的智能性和鲁棒性。智能视频监控系统主要涉及到图像处理、计算机视觉、模式识别、人工智能等方面的科学知识,它的用途非常广泛,在民用和军事领域中都有着极大的应用前景。

2.国内外研究现状 视频目标跟踪算法 基于对比度分析基于匹配核方法运动检测其它方法 特征匹配贝叶斯 跟踪 Mean shift方法 光流法

基于对比度分析的方法 ?算法思想:基于对比度分析的目标跟踪算法利用目标与背景在对比度上的差异来提取、识别和跟踪目标。 ?分类:边缘跟踪,型心跟踪,质心跟踪。 ?优缺点:不适合复杂背景中的目标跟踪,但在空中背景下的目标跟踪中非常有效。

基于特征匹配的目标跟踪算法 ?算法思想:基于匹配的目标跟踪算法需要提取目标的特征,并在每一帧中寻找该特征。寻找的过程就是特征匹配过 程。 ?目标跟踪中用到的特征主要有几何形状、子空间特征、外形轮廓和特征点等。其中,特征点是匹配算法中常用的特征。特征点的提取算法很多,如Kanade Lucas Tomasi (KLT)算法、Harris 算法、SIFT 算法以及SURF 算法等。?优缺点:特征点一般是稀疏的,携带的信息较少,可以通过集成前几帧的信息进行补偿。目标在运动过程中,其特征(如姿态、几何形状、灰度或颜色分布等)也随之变化。 目标特征的变化具有随机性,这种随机变化可以采用统计数学的方法来描述。直方图是图像处理中天然的统计量,因此彩色和边缘方向直方图在跟踪算法中被广泛采用。

目标跟踪算法的研究

目标跟踪算法的研究 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录

摘要 图像序列目标跟踪是计算机视觉中的经典问题,它是指在一组图像序列中,根据所需目标模型,实时确定图像中目标所在位置的过程。它最初吸引了军方的关注,逐渐被应用于电视制导炸弹、火控系统等军用备中。序列图像运动目标跟踪是通过对传感器拍摄到的图像序列进行分析,计算出目标在每帧图像上的位置。它是计算机视觉系统的核心,是一项融合了图像处理、模式识别、人工只能和自动控制等领域先进成果的高技术课题,在航天、监控、生物医学和机器人技术等多种领域都有广泛应用。因此,非常有必要研究运动目标的跟踪。 本论文就图像的单目标跟踪问题,本文重点研究了帧间差分法和背景去除法等目标检测方法,研究了模板相关匹配跟踪算法主要是:最小均方误差函数(MES),最小平均绝对差值函数(MAD)和最大匹配像素统计(MPC)的跟踪算法。在跟踪过程中,由于跟踪设备与目标的相对运动, 视野中的目标可能出现大小、形状、姿态等变化, 加上外界环境中的各种干扰, 所要跟踪的目标和目标所在的场景都发生了变化, 有可能丢失跟踪目标。为了保证跟踪的稳定性和正确性, 需要对模板图像进行自适应更新。由于目标运动有一定得规律,可以采取轨迹预测以提高跟踪精度,本文采用了线性预测法。 对比分析了相关匹配算法的跟踪精度和跟踪速度;对比不采用模板更新和模板跟新的跟踪进度和差别,实验表明,跟踪算法加上轨迹预测及模板跟新在很大程度上提高了跟踪帧数,提高了跟踪精度,具有一定的抗噪声性能。

关键词:目标跟踪,目标检测,轨迹预测,模板更新

行人检测与目标跟踪算法研究

基于opencv中光流法的运动 行人目标跟踪与检测 一、课题研究背景及方法 行人检测具有极其广泛的应用:智能辅助驾驶,智能监控,行人分析以及智能机器人等领域。从2005年以来行人检测进入了一个快速的发展阶段,但是也存在很多问题还有待解决,个人觉得主要还是在性能和速度方面还不能达到一个权衡。 早期以静态图像处理中的分割、边缘提取、运动检测等方法为主。例如 (1)以Gavrila为代表的全局模板方法:基于轮廓的分层匹配算法,构造了将近2500个轮廓模板对行人进行匹配, 从而识别出行人。为了解决模板数量众多而引起的速度下降问题,采用了由粗到细的分层搜索策略以加快搜索速度。另外,匹配的时候通过计算模板与待检测窗口的距离变换来度量两者之间的相似性。 (2)以Broggi为代表的局部模板方法:利用不同大小的二值图像模板来对人头和肩部进行建模,通过将输入图像的边缘图像与该二值模板进行比较从而识别行人,该方法被用到意大利Parma大学开发的ARGO智能车中。 (3)以Lipton为代表的光流检测方法:计算运动区域内的残余光流; (4)以Heisele为代表的运动检测方法:提取行人腿部运动特征;

(5)以Wohler为代表的神经网络方法:构建一个自适应时间延迟神经网络来判断是否是人体的运动图片序列; 以上方法,存在速度慢、检测率低、误报率高的特点。 二、行人检测的研究现状 (1)基于背景建模的方法:分割出前景,提取其中的运动目标,然后进一步提取特征,分类判别;在存在下雨、下雪、刮风、树叶晃动、灯光忽明忽暗等场合,该方法的鲁棒性不高,抗干扰能力较差。且背景建模方法的模型过于复杂,对参数较为敏感。 (2)基于统计学习的方法:根据大量训练样本构建行人检测分类器。提取的特征一般有目标的灰度、边缘、纹理、形状、梯度直方图等信息,分类器包括神经网络、SVM,adaboost等。该方法存在以下难点:(a)行人的姿态、服饰各不相同; (b)提取的特征在特征空间中的分布不够紧凑; (c)分类器的性能受训练样本的影响较大; (d)离线训练时的负样本无法涵盖所有真实应用场景的情况; 尽管基于统计学习的行人检测方法存在着诸多的缺点,但依然有很多人将注意力集中于此。 行人检测国外研究情况: 法国研究人员Dalal在2005的CVPR发表的HOG+SVM的行人检测算法(Histograms of Oriented Gradients for Human Detection, Navneet Dalel,Bill Triggs, CVPR2005)。

相关文档
最新文档