共晶相图及其合金凝固

共晶相图及其合金凝固
共晶相图及其合金凝固

7.3.2 共晶相图及其合金凝固

1.共晶相图

组成共晶相图的两组元,在液态可无限互溶,而固态只能部分互溶,甚至完全不溶。两组元的混合使合金的熔点比各组元低,因此,液相线从两端纯组元向中间凹下,两条液相线的交点所对应的温度称为共晶温度。在该温度下,液相通过共晶凝固同时结晶出两个固相,这样两相的混合物称为共晶组织或共晶体。

图7.6 Pb-Sn 相图

图7.6所示的Pb-Sn相图是一个典型的二元共晶相图。具有该类相图的合金还有Al-Si,

Ph-Sb,Ph-Sn,Ag-Cu等。共晶合金在铸造工业中是非常重要的,其原因在于它有一些特殊的性质:①比纯组元熔点低,简化了熔化和铸造的操作;②共晶合金比纯金属有更好的流动性,其在凝固之中防止了阻碍液体流动的枝晶形成,从而改善铸造性能;③恒温转变(无凝固温度范围)减少了铸造缺陷,例如偏聚和缩孔;④共晶凝固可获得多种形态的显微组织,尤其是规则排列的层状或杆状共晶组织可能成为优异性能的原位复合材料(in-situ composite)。

根据相律,在二元系中,三相共存时,自由度为零,共晶转变是恒温转变,故是一条水平线。图中MF和NG线分别为α固溶体和β固溶体的饱和溶解度曲线,它们分别表示α和β固溶体的溶解度随温度降低而减少的变化。

在图7.6中,相平衡线把相图划分为3个单相区:L,α,β;3个两相区:L+α,L+β,α+β;而L相区在共晶线上部的中间,α相区和β相区分别位于共晶线的两端。

2.共晶合全的平衡凝固及其组织

现以Ph-Sn合金为例,分别讨论各种典型成分合金的平衡凝固及其显微组织。

图7.7w(Sn)=10%Pb-Sn合金平衡凝固示意图

a. w(Sn)<19%的合金

图7.7为w(Sn)=10%的Pb-Sn合金平衡凝固过程示意图。所有成分位于M和F点之间的合金,平衡凝固过程却与上述合金相似,凝固至室温后的平衡组织均为β+αII,只是两相的相对量不同而已。而成分位于N和G点之间的合金,平衡凝固过程与上述合金基本相似,但凝固后的平衡组织为β+αII。

b. 共晶合金。

w(sn)=61.9%的合金为共晶合金(见图7.6)。该合金从液态缓冷至183℃时,液相LE同时结晶出α和β两种固溶体,这一过程在恒温下进行,直至凝固结束。

继续冷却时,共晶体中α和β相将各自沿MF和NG溶解度曲线变化而改变其固溶度,从α和β中分别析出βII和αII。由于共晶体中析出的次生相常与共

晶体中同类相结合在一起,所以在显微镜下难以分别出来。

c.亚共晶合金

在图7.6中,成分位于M,E两点之间的合金称为亚共晶合金,因为它的成分低于共晶成分而只有部分液相可结晶成共晶体。室温组织通常可写为α初+(α+β)+βII,甚至可写为α初+(α+β)。

d.过共晶合金

成分位于E,N两点之间的合金称为过共晶合金。其平衡凝固过程及平

衡组织与亚共晶合金相似,只是初生相为β固溶体而不是α固溶体。室温时的组织为β初+(α+β)。

3.共晶合金的非平衡凝固

a.伪共晶

在平衡凝固条件下,只有共晶成分的合金才能得到全部的共晶组织。然而在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。

若当合金中两组元熔点相近时,伪共晶区一般呈对称分布;若合金中两组元熔点相差很大时,伪共晶区将偏向高熔点组元一侧,一般认为其原因是,由于共晶中两组成相的成分与液态合金不同,它们的形核和生长都需要两组元的扩散,而以低熔点为基的组成相与液态合金成分差别较小,则通过扩散而能达到该组成相的成分就较容易,其结晶速度较大。所以,在共晶点偏于低熔点相时,为了满足两组成相形成对扩散的要求,伪共晶区的位置必须偏向高熔点相一侧。

b.非平衡共晶组织

某些合金在平衡凝固条件下获得单相固溶体,在快冷时可能出现少量的非平衡共晶体,非平衡共晶组织的出现将严重影响材料的性能,应该消除之。这种非平衡共晶组织在热力学上是不稳定的,我们可在稍低于共晶温度下进行扩散退火来消除非平衡共晶组织和固熔体的枝晶偏析,得到均匀单相α固溶体组织。由于非平衡共晶体数量较少,通常共晶体中的α相依附于初生α相生长,将共晶体中另一相β推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特征消失,这种两相分离的共晶体称为离异共晶。

金属与合金的晶体结构

第二章金属与合金的晶体结构 第一节纯金属的晶体结构 一、晶体结构的基本知识 1、晶体与非晶体 晶体——原子规则排列的集合体 非晶体——原子无规则堆积的集合体 晶体特征:固定的熔点,各向异性 2、晶格与晶胞 晶格:把晶体中原子看成几何点,用假象的直线连接后得到的三维格架晶胞:晶格中能全面反映原子排列规律的最小几何单元 3、晶面与晶向晶格常数:晶胞的棱边长度 晶面:晶格中各方位的原子面 晶向:任意两个原子连线所指的方向 第二节纯金属的实际晶体结构 α-Fe [100] E=135000N/mm2 [111] E=290000 N/mm2 实际测定 E=210000 N/mm2 一、多晶体结构 单晶体:各部分位向完全一致的晶体(各向异性)多晶体:许多位向不同的单晶体的聚合体(各向同性)晶粒:多晶体中外形不规则的小晶体晶界:晶粒之间的界面 二、晶体缺陷 1、点缺陷——空位和间隙原子 点缺陷→导致晶格畸变→强度↑,硬度↑ 空位和间隙原子都处于运动和变化之中,是原子扩散主 要方式之一。温度↑,空位↑ 2、线缺陷——位错 位错——整排原子有规律错排位错密度ρ=L / V (cm-2)

增加或减小,可以提高强度 3、面缺陷——晶界、亚晶界晶界处:晶格畸变→强度高 原子能量高→熔点低,易腐蚀,原子扩散快 晶粒细→晶界面积大→强度高 亚晶界:晶粒内小位向差(1-2°)的晶块(亚晶粒亚结构)边界 第三节合金的晶体结构合金的基本概念 合金:由两种或两种以上金属,或金属与非金属组成,具有金属性质的物质。 组元:组成合金的基本物质。 相:结构相同,成分相近,与其它部分有界面分开的部分 单相合金:固态下由一个固相组成的合金 多相合金:固态下由两个以上固相组成的合金 组织:相的聚合体。 ( 单相组织,多相组织,) 二、合金的相结构 合金相结构——固溶体和金属化合物。 1、固溶体 固溶体:一种元素的原子溶入另一种元素中形成的合金相。溶剂——保持原晶体结构的元素溶质——失去原晶体结构的元素 有限固溶体:溶解度有一定限度——有限互溶 无限固溶体:溶解度无一定限度——无限互溶(晶体结构相同原子直径相近)固溶体分类: 置换固溶体:溶质原子占据溶剂晶格的某些结点 间隙固溶体:溶质原子处于溶剂晶格的间隙中 固溶强化——溶质溶入固溶体,导致晶格畸变,引起强度和硬度升高 (仍保持良好的塑性和韧性) 2、金属化合物 特征: ?有金属性质 ?晶体结构不同于任何组元 ?成分可用分子式表示Fe3C 性能:硬,脆,熔点高 弥散强化(第二相强化): 当金属化合物以细小颗粒均布于固溶体上, 可使合金的强度↑↑,硬度↑↑,耐磨性↑↑ 调整合金性能的途径: ?改善固溶体溶解度 ?改变化合物形状、数量、大小、分布

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

二元合金的相结构与结晶 - 答案

第三章 二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指 组成合金最基本的、独立的物质 。 3.固溶体的定义是 在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成 置换 固溶体。C 、N 则形成 间隙 固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要 差 些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是 由一定成分的恶液相同时结晶出成分一定的两个固相 ,其反应式为 L →a+β 8.匀晶反应的特征是 ,其反应式为 9.共析反应的特征是 ,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为 有限固溶体 和 无限固溶体 11.合金的相结构有 固溶体 和 金属化合物 两种,前者具有较高的 塑性变形 性能,适合于做 基体 相;后者有较高的 高硬度 性能,适合于做 增强 相 12.看图4—1,请写出反应式和相区: ABC 包晶反应 B A C L γα?+ ;DEF 共晶反应 F D C L βγ+? ;GHI 共析反应 I G H βαγ+? ; ① L +α ;② γα+ ;③βα+ ;④ βγ+ ;⑤ L +γ ;⑥ β+L ; 13.相的定义是 ,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型 相同,而间隙相的晶体结构与 溶剂组元晶体结构 不同。 15.根据图4—2填出: 水平线反应式 E C D βαγ+? ;有限固溶体 βα、 、 无限固溶体 γ 。 液相线 ,固相线 , 固溶线 CF 、 EG

铁碳合金相图详解

第三章 铁碳合金相图 非合金钢[(GB /T 13304-91),将钢分为非合金钢、低合金钢和合金钢三大类]和铸铁是应用极其广泛的重要金属材料,都是以铁为基主要由铁和碳组成的铁碳合金。了解铁碳合金成分与组织、性能的关系,有助于我们更好地研究和使用钢铁材料。本章将着重讨论铁碳相图及其应用方面的一些问题。 铁与碳可以形成一系列化合物:C Fe 3、C Fe 2、FeC 等。C Fe 3的含碳量为 6.69%,铁碳合金含碳量超过 6.69%,脆性很大,没有实用价值,所以本章讨论的铁碳相图,实际是Fe -C Fe 3相图。相图的两个组元是Fe 和C Fe 3。 3.1 Fe -C Fe 3系合金的组元与基本相 3.l.l 组元 ⑴纯铁 Fe 是过渡族元素,1个大气压下的熔点为1538℃,20℃时的密度为2/m kg 3107.87?。纯铁在不同的温度区间有不同的晶体结构(同素异构转变),即: δ-Fe (体心) γ-Fe (面心) α-Fe (体心) 工业纯铁的力学性能大致如下:抗拉强度b σ=180~230MPa ,屈服强度2.0σ=100~170MPa ,伸长率=δ30~50%,硬度为50~80HBS 。 可见,纯铁强度低,硬度低,塑性好,很少做结构材料,由于有高的磁导率,主要作为电工材料用于各种铁芯。 ⑵C Fe 3 C Fe 3是铁和碳形成的间隙化合物,晶体结构十分复杂,通常称渗碳体,可用符号Cm 表示。C Fe 3具有很高的硬度但很脆,硬度约为950~1050HV ,抗拉强度 b σ=30MPa ,伸长率0=δ。 3.1.2 基本相 Fe -C Fe 3相图中除了高温时存在的液相L ,和化合物相C Fe 3外,还有碳溶于铁形成的几种间隙固溶体相: ⑴高温铁素体 碳溶于δ-Fe 的间隙固溶体,体心立方晶格,用符号δ表示。 ⑵铁素体 碳溶于α-Fe 的间隙固溶体,体心立方晶格,用符号α或F 表示。F 中碳的固溶度极小,室温时约为0.0008%,600℃时约为0.0057%,在727℃时溶碳量最大,约为0.0218%,但也不大,在后续的计算中,如果无特殊要求可忽略不计。力学性能与工业纯铁相当。 ⑶奥氏体 碳溶于γ-Fe 的间隙固溶体,面心立方晶格,用符号γ或A 表示。奥氏体中碳的固溶度较大,在1148℃时最大达2.11%。奥氏体强度较低,硬度不高,易于塑性变形。 3.2 Fe -C Fe 3相图 3.2.1 Fe -C Fe 3相图中各点的温度、含碳量及含义

合金的晶体结构与结晶过程

第八节合金的晶体结构与结晶过程 一、基本概念 ●组成合金最基本的、独立的物质称为组元。 ●由两种或两种以上的组元按不同比例配制而成的一系列不同化学成分的所有合金,称为合金系。 ●相是指在一个合金系统中具有相同的物理性能和化学性能,并与该系统的其余部分以界面分开的部分。 ●组织是指用金相观察方法,在金属及其合金内部看到的涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。 二、合金的晶体结构 根据合金中各组元之间的相互作用,合金中的晶体结构可分为固溶体、金属化合物及机械混合物三种类型。 (一)固溶体 ●合金在固态下一种组元的晶格内溶解了另一种原子而形成的晶体相,称为固溶体。 根据溶质原子在溶剂晶格中所占位置的不同,可将固溶体分为置换固溶体和间隙固溶体。 1.置换固溶体 ●溶质原子代替一部分溶剂原子,占据溶剂晶格的部分结点位置时,所形成的晶体相,称为置换固溶体。 按溶质溶解度的不同,置换固溶体又可分为有限固溶体和无限固溶体。 a) 置换固溶体 b) 间隙固溶体 图1-32 固溶体的类型 2.间隙固溶体 ●溶质原子在溶剂晶格中不占据溶剂晶格的结点位置,而是嵌入溶剂晶格的各结点之间的间隙内时,所形成的晶体相,称为间隙固溶体。 无论是置换固溶体,还是间隙固溶体,异类原子的插入都将使固溶体晶格发生畸变,增加位错运动的阻力,使固溶体的强度、硬度提高。这种通过溶入溶质原子形成固溶体,使合

金强度、硬度升高的现象称为固溶强化。固溶强化是强化金属材料的重要途径之一。 a)间隙固溶体 b)置换固溶体(大溶质原子) c)固溶体(小溶质原子) 图1-33 形成固溶体时产生的晶格畸变 (二)金属化合物 ●金属化合物是指合金中各组元之间发生相互作用而形成的具有金属特性的一种新相。 金属化合物具有与其构成组元晶格截然不同的特殊晶格,熔点高,硬而脆。 (三)机械混合物 ●由两相或两相以上组成的多相组织,称为机械混合物。 在机械混合物中各组成相仍保持着它原有晶格的类型和性能,而整个机械混合物的性能则介于各组成相的性能之间,并与各组成相的性能以及相的数量、形状、大小和分布状况等密切相关。 三、合金结晶过程 合金的结晶过程与纯金属一样,也是晶核形成和晶核长大两个过程。同时结晶时也需要一定的过冷度,结晶后形成由多晶体。合金的结晶过程中具有如下特点: (1)纯金属的结晶是在恒温下进行,只有一个结晶温度。而绝大多数合金是在一个温度范围内进行结晶的,一般结晶的开始温度与终止温度是不相同,一般有两个结晶温度。 (2)合金在结晶过程中,在局部范围内相的化学成分(即浓度)有差异,当结晶终止后,整个晶体的平均化学成分与原合金的化学成分相同。 (3)合金结晶后一般有三种情况:第一种情况是形成单相固溶体;第二种情况是形成单相金属化合物或同时结晶出两相机械混合物(如共晶体);第三种情况是结晶开始时形成单相固溶体,剩余液体又同时结晶出两相机械混合物(如共晶体)。 四、合金结晶冷却曲线 合金结晶过程比纯金属复杂得多,但其结晶过程仍可用结晶冷却曲线来描述。一般合金的结晶冷却曲线有以下三种形式:

纯金属与合金的晶体结构

淮安信息职业技术学院教案首页 一、章节:第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构第二节纯金属的实际晶体结构第三节合金的晶体结构 二、教学目的:使学生了解纯金属与合金的晶体结构,晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 三、教学方法: 讲授法。 四、教学重点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 五、教学难点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 六、使用教具: 挂图。 七、课后作业: P17:1、2、6。 八、课后小结:

第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构 一、晶体结构的基本知识 1.晶体与非晶体 晶体内部的原子按一定几何形状作有规则地重复排列,如金钢石、石墨及固态金属与合金。而非晶体内部的原子无规律地规律地堆积在一起,如沥青、玻璃、松香等。 晶体具有固定的熔点和各向异性的特征,而非晶体没有固定的熔点,且各向同性。 2.晶体管格与晶胞 为便于分析晶体中原子排列规律,可将原子近似地看成一个点,并用假想的线条将各原子中心连接起来,便形成一个空间格子。 晶格——抽象的、用于描述原子在晶体中的规则排列方式的空间几何图形。结点——晶格中直线的交点。 晶胞——晶格是由一些最基本的几何单元周期重复排列而成的,这种最基本的几何单元称为晶胞。

晶胞大小和形状可用晶胞的三条棱长a、b、c(单位,1A=108cm)和棱边夹角来描述,其中a、b、c称为晶格常数。 各种晶体由于其晶格类型和晶格常数不同,故呈现出不同的物理、化学及力学性能。 二、常见的晶格类型 1.体心立方晶格 体心立方晶格的晶胞为一立方体,立方体的八个顶角各排列着一个原子,立方体的中心有一个原子。其晶格常数a=b=c。属于这种晶格类型的金属有α铁、铬、钨、钼、钒等。 2.面心立方晶格 面心立方晶格的晶胞也是一个立方体,立方体的八个顶角和六个面的中心各排列一个原子。属于这种晶格类型的金属有γ铁、铝、铜墙铁壁、镍、金、银等。 3.密排六方晶格 密排六方晶格的晶胞是一个六方柱体,柱体的十二个顶角和上、下中心各排列着一个原子,在上、下面之间还有三个原子。属于这种晶格类型的金属有镁、锌、铍等、α-Ti。 晶格类型不同,原子排列的致密度也不同。体心立方晶格的致

7第七章合金与相图

第七章二元合金的相结构与结晶 (一)填空题 1 合金的定义是 2.合金中的组元是指。 3.固溶体的定义是 4.Cr、V在γ-Fe中将形成固溶体。C、N则形成固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的组元。 7.共晶反应的特征是,其反应式为 8.匀晶反应的特征是,其反应式为 9.共析反应的特征是,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为,按原子溶入量可以分为和11.合金的相结构有和两种,前者具有较高的性能,适合于做相;后者有较高的性能,适合于做相 12.看图4—1,请写出反应式和相区: ABC ;DEF ;GHI ; ①;②;③;④;⑤;⑥; 13.相的定义是,组织的定义是 14.间隙固溶体的晶体结构与相同,而间隙相的晶体结构与不同。 15.根据图4—2填出: 水平线反应式;有限固溶体、无限固溶体。 液相线,固相线,固溶线、 16.接近共晶成分的合金,其性能较好;但要进行压力加工的合金常选用的合金。17.共晶组织的一般形态是。 18.固溶体合金,在铸造条件下,容易产生_______ 偏析,用__________ 方法处理可以消除。 19.AL-CuAL2共晶属于_ _ 型共晶,AL-Si共晶属于__型共晶,Pb-Sn共晶属于_ _型共晶。 20.固溶体合金凝固时有效分配系数ke的定义 是_ _。当凝固速率无限缓慢时,ke趋于_ _;当凝固速率很大时,则ke趋于__ 。 21.K0<1的固溶体合金非平衡凝固的过程中,K0越小,成分偏析越____ , 提纯效果越_____;而K0>1的固溶体合金非平衡凝固的过程中,K0越大,成分偏析越____ , 提纯效果越_____。 22.固溶体合金_____ 凝固时成分最均匀,液相完全混合时固溶体成分偏析(宏观偏析)最___ ,液相完全无混合时固溶体成分偏析最____ ,液相部分混合时固溶体成分偏析_________。 (二)判断题 1.共晶反应和共析反应的反应相和产物都是相同的。( ) 2.铸造合金常选用共晶或接近共晶成分的合金,要进行塑性变形的合金常选用具有单相( ) 固溶体成分的合金。( ) 3.合金的强度与硬度不仅取决于相图类型,还与组织的细密程度有较密切的关。( ) 4.置换固溶体可能形成无限固溶体,间隙固溶体只可能是有限固溶体。( ) 5.合金中的固溶体一般说塑性较好,而金属化合物的硬度较高。( ) 6.共晶反应和共析反应都是在一定浓度和温度下进行的。( )

(完整版)铁碳合金相图(一)

理论课教案

2、纯铁的同素异构转变 (1)金属的晶格 体心立方晶格面心立方晶格密排六方晶格 (2)纯铁的同素异构转变 同素异构转变的概论: 金属在固态下,随温度的改变有一种晶格转变为另一晶格的现象称为同素异构转变。 具有同素异构转变的金属有:铁、钻、钛、锡、锰等。 引导学生 分析寸铁 的冷却过 程 纯铁的冷却曲线

1394 C S — Fe 体心立方晶格 Y — Fe 面心立方晶格 3、铁碳合金的基本组织与性能 (1) 铁素体: 概念:碳溶解在a -Fe 中形成的间隙固溶体称为铁素体。 符号:F 体心立方晶格 存在温度区间:室温 912C 溶解能力:溶解度很小,在7270C 时,碳在a -Fe 中的最大 溶碳量为0.0218%,随温度的降低逐渐减小。 性能:由于铁素体的含碳量低,所以铁素体的性能与纯铁相 似。即有良好的塑性和韧性,强度和硬较低。 (2) 奥氏体: 概念:碳溶解在丫一 Fe 中形成的间隙固溶体称为奥氏体。 符号:A 面心立方晶格 存在温度区间:大于727C 溶碳能力:较强。在11480C 时可溶C 为2.11%,在7270C 时,可溶 C 为 0.77%。(0.0218% ——2.11%) 性能:强度、硬度不高,具有良好的塑性,是绝大多数钢在 高温进行锻造和扎制时所要求的组织。 (3) 渗碳体: 概念:含碳量为6.69%的铁与碳的金属化合物。 符号:Fe3C 复杂的斜方晶体 存在温度区间:室温 ------ 1148C 溶碳能力: C=6.69% 912 C 体心立方晶格 结合纯铁 冷却曲线 得到铁碳 合金五种 组织

铁碳合金相图分析报告

第四章铁碳合金 第一节铁碳合金的相结构与性能 一、纯铁的同素异晶转变 δ-Fe→γ-Fe→α-Fe 体心面心体心 同素异晶转变——固态下,一种元素的晶体结构 随温度发生变化的现象。 特点: ? 是形核与长大的过程(重结晶) ? 将导致体积变化(产生内应力) ? 通过热处理改变其组织、结构→ 性能 二、铁碳合金的基本相 第二节铁碳合金相图 一、相图分析 两组元:Fe、Fe3C 上半部分图形(二元共晶相图) 共晶转变: 1148℃727℃ L4.3 → A2.11+ Fe3C → P + Fe3C莱氏体Ld Ld′ 2、下半部分图形(共析相图) 两个基本相:F、Fe3C 共析转变: 727℃ A0.77→ F0.0218 + Fe3C 珠光体P 二、典型合金结晶过程 分类:

三条重要的特性曲线 ① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线. ② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线. ③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值0.0218%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于0.001%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ. 工业纯铁(<0.0218%C) 钢(0.0218-2.11%C)——亚共析钢、共析钢(0.77%C)、过共析钢 白口铸铁(2.11-6.69%C)——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁 L → L+A → A → P(F+Fe3C) L → L+A → A → A+F → P+F L → L+A → A → A+ Fe3CⅡ→ P+ Fe3CⅡ 4、共晶白口铸铁L → Ld(A+Fe3C) → Ld(A+Fe3C+ Fe3CⅡ) → Ld′(P+Fe3C+ Fe3CⅡ) 5、亚共晶白口铸铁L → Ld(A+Fe3C) + A → Ld+A+ Fe3CⅡ→ Ld′+P+ Fe3CⅡ 6、过共晶白口铸铁L → Ld(A+Fe3C) + Fe3C → Ld + Fe3C→ Ld′+ Fe3C

第二章 金属与合金的晶体结构与结晶

第二章 金属与合金的晶体结构与结晶 第一节 金属的晶体结构 自然界的固态物质,根据原子在内部的排列特征可分为晶体与非晶体两大类。晶体与非晶体的区别表现在许多方面。晶体物质的基本质点(原子等)在空间排列是有一定规律的,故有规则的外形,有固定的熔点。此外,晶体物质在不同方向上具有不同的性质,表现出各向异性的特征。在一般情况下的固态金属就是晶体。 一、晶体结构的基础知识 (1)晶格与晶胞 为了形象描述晶体内部原子排列的规律,将原子抽象为几何点,并用一些假想连线将几何点连接起来,这样构成的空间格子称为晶格(图2-1) 晶体中原子排列具有周期性变化的特点,通常从晶格中选取一个能够完整反映晶格特征的最小几何单元称为晶胞(图2-1),它具有很高对称性。 (2)晶胞表示方法 不同元素结构不同,晶胞的大小和形状也有差异。结晶学中规定,晶胞大小以其各棱边尺寸a 、b 、c 表示, 称为晶格常数。晶胞各棱边之间的夹角分别以α、β、γ表示。当棱边a b c ==,棱边夹角90αβγ===?时,这种晶胞称为简单立方晶胞。 (3)致密度

金属晶胞中原子本身所占有的体积百分数,它用来表示原子在晶格中排列的紧密程度。 二、三种典型的金属晶格 1、体心立方晶格晶胞示意图见图2-2a。它的晶胞是一个立方体,立方体的8个顶角和晶胞各有一个原子,其单位晶胞原子数为2个,其致密度为0.68。属于该晶格类型的常见金属有Cr、W、Mo、V、α-Fe等。 2、面心立方晶格晶胞示 意图见图2-2b。它的晶胞也是 一个立方体,立方体的8个顶 角和立方体的6个面中心各有 一个原子,其单位晶胞原子数 为4个,其致密度为0.74(原 子排列较紧密)。属于该晶格类 型的常见金属有Al、Cu、Pb、 Au、γ-Fe等。 3、密排六方晶格它的晶 胞是一个正六方柱体,原子排 列在柱体的每个顶角和上、下 底面的中心,另外三个原子排 列在柱体内,晶胞示意图见图 2-2c。其单位晶胞原子数为6个,致密度也是0.74。属于该晶格类型常见金属有Mg、Zn、Be、Cd、α-Ti等。 三、金属实际的晶体结构 前面讨论的金属结构是理想的结构,即原子排列得非常整齐,晶格位向(原子列的方位和方向)完全一致,且无任何缺陷存在,称为单晶体。目前,只有采用特殊方法才能获得单晶体。 1、金属的多晶体结构实际使用的金属大都是多晶体结构,即它是由许多不同位向的小晶体组成,每个小晶体内部晶格位向基本上是一致的,而各小晶体

铁碳合金相图及结晶组织变化

铁碳合金相图及结晶组织变化 铁碳合金的组元和相 一、基本概念 铁碳合金:碳钢和铸铁的统称,都是以铁和碳为基本组元的合金 碳钢:含碳量为0.0218%~2.11%的铁碳合金 铸铁:含碳量大于2.11%的铁碳合金 铁碳合金相图:研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。 注:由于含碳量大于Fe3C的含碳量(6.69%)时,合金太脆,无实用价值,因此所讨论的铁碳合金相图实际上是F e-Fe3C 二、组元 1.纯铁 纯铁指的是室温下的α-Fe,强度、硬度低,塑性、韧性好。 2.碳 碳是非金属元素,自然界存在的游离的碳有金刚石和石墨,它们是同素异构体。 3.碳在铁碳合金中的存在形式有三种: C与Fe形成金属化合物,即渗碳体; C以游离态的石墨存在于合金中。 C溶于Fe的不同晶格中形成固溶体; A. 铁素体:C溶于α-Fe中所形成的间隙固溶体,体心立方晶格,用符号“F”或“α”表示,铁素体是一种强度和硬度低,而塑性和韧性好的相,铁素体在室温下可稳定存在。 B. 奥氏体:C溶于γ-Fe中所形成的间隙固溶体,面心立方晶格,用符号“A”或“γ”表示,奥氏体强度低、塑性好,钢材的热加工都在奥氏体相区进行,奥氏体在高温下可稳定存在。 C. C与Fe形成金属化合物:即渗碳体Fe3C,Fe与C组成的金属化合物,Fe与C组成的金属化合物,含碳量为6. 69%。以“Fe3C”或“Cm”符号表示,渗碳体的熔点为1227℃,硬度很高(HB=800)而脆,塑性几乎等于零。渗碳体在钢和铸铁中,一般呈片状、网状或球状存在。它的形状和分布对钢的性能影响很大,是铁碳合金的重要强化相。碳在a-Fe中溶解度很低,所以常温下碳以渗碳体或石墨的形式存在。 铁碳合金相图的分析 1.铁碳合金相图由三个相图组成:包晶相图、共晶相图和共析相图; 2.相图中有五个单相区:液相L、高温铁素体δ、铁素体α、奥氏体γ、渗碳体Fe3C;

铁碳合金相图分析应用

铁碳合金相图在实际生产中应用之我见 摘要:铁碳相图是研究钢和铸铁的基础,实际应用中对于钢铁材料的应用以及热加工和 热处理工艺的制订也具有重要的指导意义。铁和碳可以形成一系列化合物,如Fe 3C、Fe 2 C、 FeC等, 有实用意义并被深入研究的只是Fe-Fe 3C部分,通常称其为 Fe-Fe 3 C相图,相图中的 组元只有Fe和Fe 3 C。 关键词:相图分析结晶应用 一、铁碳合金基本相 1、铁素体δ相高温铁素体:C固溶到δ-Fe中,形成δ相。α相铁素体(用F表示):C固溶到α-Fe中,形成α相。F强度、硬度低、塑性好(室温:C%=0.0008%,727度: C%=0.0218%)。 2、奥氏体γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形 3、渗碳体 Fe 3 C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物,渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。 二、Fe-Fe 3 C相图分析 1、相图中的点、线、面 三条水平线和三个重要点 (1)包晶转变线HJB,J为包晶点。1495摄氏度,C%=0.09-0.53% L+δ→A (2)共晶转变线ECF, C点为共晶点。冷却到1148℃时, C点成分的L发生共晶反应:L →A (2.11%C)+Fe 3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe 3 C三 相共存。共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号 Le表示。

(3)共析转变线PSK,S点为共析点。合金(在平衡结晶过程中冷)却到727℃时, S点成分 的A发生共析反应:A →F(0.0218%C)+Fe 3 C(6.69%C、共析渗碳体)—P(珠光体)。共析 反应在恒温下进行, 反应过程中, A、F、Fe 3 C三相共存。共析反应的产物是铁素体与渗碳体的共析混合物, 称珠光体, 以符号P表示。珠光体的强度较高, 塑性、韧性和硬度介于渗碳体和铁素体之间, 其机械性能如下:抗拉强度极限σb≈770MPa 冲击韧性ak≈3×105J/m2~4×105J/m2 延伸率δ≈20%~35% 硬度:180HB 液固相线:液相线ABCD 固相线AECF 2、Fe-C合金平衡结晶过程 工业纯铁(C%≤0.0218%):铁熔点或凝固点为1538℃, 相对密度是7.87g/cm3。纯铁从液态结晶为固态后, 继续冷却到1394℃及912℃时, 先后发生两次同素异构转变。 L →L+A →A →A+F →F →F+Fe 3C III 相组成物:F+Fe 3 C (C%>0.0008%)或 F(C%<0.0008%) 相相对量:F%= Fe 3 C%= 组织组成物:F和Fe 3C III 工业纯铁的机械性能特点是强度低、硬度低、塑性好。共析钢(C%=0.77%): 相组成物:F和Fe 3 C 相相对量:F%= Fe 3 C%= 组织组成物:P L →L+A →A →A+P →P 亚共析钢(0.0218%<C%<0.77%): L →L+A →A →A+F →A+P+F →P+F

铁碳合金相图的分析

二、铁碳合金相图的分析 Fe-Fe3C相图如图3-25所示。可以看出,Fe-Fe3C相图由三个基本相图(包晶相图、共晶相图和共析相图)组成。相图中有五个基本相:液相L,高温铁素体相δ,铁素体相α,奥氏体相γ和渗碳体相Fe3C。这五个基本相构成五个单相区(其中Fe3C为一条垂线),并由此形成七个两相区:L+δ、L+γ、L+ Fe3C、δ+γ、γ+ Fe3C 、γ+α和α+ Fe3C。 图3-25 以相组成物标注的铁碳合金相图 在Fe-Fe3C相图中,ABCD为液相线,AHJECF为固相线。相图中各特征点的温度、成分及其含义如表3-2所示。

Fe- Fe3C HJB水平线(1495?C)为包晶线,与该线成分(0.09%~0.53%C)对应的合金在该线温度下将发生包晶转变:L0.53 + δ0.09→γ0.17(式中各相的下角标为相应的含碳量),转变产物为奥氏体。 ECF水平线(1148?C)为共晶线,与该线成分(2.11%~6.69%C)对应的合金在该线温度下将发生共晶转变:L4.3→γ2.11 + Fe3C。转变产物为奥氏体和渗碳体的机械混合物,称为莱氏体,用符号“Le”表示。莱氏体的组织特点为蜂窝状,以Fe3C为基,性能硬而脆。 PSK水平线(727?C)为共析线,与该线成分(0.0218%~6.69%C)对应的合金在该线温度下将发生共析转变:γ0.77→α0.0218 + Fe3C。转变产物为铁素体和渗碳体的机械混合物,称为珠光体,用符号“P”表示。珠光体的组织特点是两相呈片层相间分布,性能介于两相之间。共析线又称为A1线。 此外,Fe- Fe3C相图中还有六条固态转变线: GS、GP为γ?α固溶体转变线,HN、JN为δ?γ固溶体转变线,例如,GS线是冷却时铁素体从奥氏体中析出开始、加热时铁素体向奥氏体转变终了的温度线。GS线又称为A3线,JN线又称为A4线。 ES线为碳在γ-Fe中的固溶线。在1148?C,碳的溶解度最大,为2.11%,随温度降低,溶解度下降,到727?C 时溶解度只有0.77%。所以含碳量超过0.77%的铁碳合金自1148?C 冷至727?C 时,会从奥氏体中析出渗碳体,称为二次渗碳体,标记为Fe3C II。二次渗碳体通常沿奥氏体晶界呈网状分布。ES线又称为A cm线。 PQ线为碳在α-Fe中的固溶线。在727?C,碳的溶解度最大,为0.0218%,随温度降低,溶解度下降,到室温时溶解度仅为0.0008%。所以铁碳合金自727?C向室温冷却的过程中,将从铁素体中析出渗碳体,称为三次渗碳体,标记为Fe3C III。因其析出量极少,在含碳量较高的合金中不予以考虑,但是对于工业纯铁和低碳钢,因其以不连续网状或片状分布于铁素体晶界,会降低塑性,所以对于Fe3C III的数量和分布还是要加以控制。 综上所述可见,铁碳合金中的渗碳体根据形成条件不同可分为一次渗碳体Fe3CⅠ(由液相直接析出的渗碳体)、二次渗碳体Fe3CⅡ、三次渗碳体Fe3CⅢ、共晶渗碳体和共析渗碳体五种。它们分属于不同的组织组成物,区别仅在于形态和分布不同,但都同属于一个相。由于它们的形态和分布不同,所以对铁碳合金性能的影响也不相同。 另外,Fe- Fe3C相图中还有两条物理性能转变线:MO线(770?C )是铁素体磁性转变温度。在770?C以上,铁素体为顺磁性物质,在770?C以下,铁素体转变为铁磁性物质。此线又称为A2线;UV线(230?C)是渗碳体磁性转变温度,又称为A0线。

《工程材料及热处理》复习经典归纳

《工程材料及热处理》复习经典归纳 池茶永2011.01.02 ★基础部分(填空、选择及简答) 1、原子(离子、分子或原子团)在三维空间作有规则的周期性重复排列的物质叫晶体;在图示1的晶胞中,a、b、c称晶格常数。 (图示1)(图示2) 2、根据晶胞的几何形状或自身的对称性,可把晶体结构分为七大晶系、十四种空间点阵。 3、常见的金属晶体结构有_体心立方晶格(BCC)、面心立方晶格(FCC)和密排六方晶格(HCP)_三种。 4、下列晶面和晶向指数的表示方法正确的是( B ) A、﹙h k l﹚﹙μ v w﹚ B、﹙h k l﹚[μ v w] C、﹙h, k, l﹚[μ, v, w] D、﹙-h k l﹚[-μ v w] (提示:晶面和晶向指数分别用圆括号和方括号表示,数值间不用标点断开,负号写在数值上方) 5、实际金属中存在有点缺陷、线缺陷和面缺陷三类晶体缺陷。位错和晶界分别属于( C ) A、点缺陷,面缺陷 B、面缺陷,线缺陷 C、线缺陷,面缺陷 D、点缺陷,线缺陷 6、金属结晶的条件是其温度低于理论结晶温度,造成液体与晶体间的自由能差,即具有一定的结晶驱动力才行。那么由此产生的过冷度指的是理论结晶温度与实际结晶温度之差。 7、下图为金属结晶过程和奥氏体形成过程的示意图,填写下面的空白处。(1)金属结晶过程: 晶核的形成→晶核的成长→晶体互相接触并向液体伸展→结晶完毕 (2)奥氏体形成过程: 晶核的形成→晶核的长大→残余渗碳体的溶解→奥氏体成分的均匀化 8、观察图示2在显微镜下的组织为珠光体。 9、细化铸态金属晶粒主要采用增大金属的过冷度、变质处理的方法。 10、合金中的相结构分为固溶体和金属间化合物两类;前者有可分为置换固

铁碳合金相图习题)

铁碳合金相图 一、选择题 1. 铁素体是碳溶解在()中所形成的间隙固溶体。 A.α-Fe B.γ-Fe C.δ-Fe D.β-Fe 2.奥氏体是碳溶解在()中所形成的间隙固溶体。 A.α-Fe B.γ-Fe C.δ-Fe D.β-Fe 3.渗碳体是一种()。 A.稳定化合物 B.不稳定化合物 C.介稳定化合物 D.易转变化合物 4.在Fe-Fe3C相图中,钢与铁的分界点的含碳量为()。 A.2% B.2.06% C.2.11% D.2.2% 5.莱氏体是一种()。 A.固溶体B.金属化合物 C.机械混合物 D.单相组织金属 6.在Fe-Fe3C相图中,ES线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 7.在Fe-Fe3C相图中,GS线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 8. 在Fe-Fe3C相图中,共析线也称为()。 A.A1线 B.ECF线 C.Acm线 D.PSK线 9.珠光体是一种()。 A.固溶体 B.金属化合物 C.机械混合物 D.单相组织金属 10.在铁-碳合金中,当含碳量超过()以后,钢的硬度虽然在继续增加,但强度却在明显下降。 A.0.8% B.0.9% C.1.0% D.1.1%

11.通常铸锭可由三个不同外形的晶粒区所组成,其晶粒区从表面到中心的排列顺序为()。 A.细晶粒区-柱状晶粒区-等轴晶粒区 B.细晶粒区-等轴晶粒区-柱状晶粒区 C.等轴晶粒区-细晶粒区-柱状晶粒区 D.等轴晶粒区-柱状晶粒区-细晶粒区 12.在Fe-Fe3C相图中,PSK线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 13.Fe-Fe3C相图中,共析线的温度为()。 A.724℃ B.725℃ C.726℃ D.727℃ 14.在铁碳合金中,共析钢的含碳量为()。 A.0.67% B.0.77% C.0.8% D.0.87% 二、填空题 1. 珠光体是(铁素体)和(二次渗碳体)混合在一起形成的机械混合物。 2. 碳溶解在(α-F e)中所形成的(固溶体)称为铁素体。 3. 在Fe-Fe3C相图中,共晶点的含碳量为( 4.3% ),共析点的含碳量为(0.77% )。 4. 低温莱氏体是(珠光体)和(二次渗碳体,一次渗碳体)组成的机械混合物。 5. 高温莱氏体是(奥氏体)和(共晶渗碳体)组成的机械混合物。 6. 铸锭可由三个不同外形的晶粒区所组成,即(细晶粒区),(柱状晶粒区)和心部等轴晶粒区。 7. 在Fe-Fe3C相图中,共晶转变温度是(1148 ),共析转变温度是( 727 )。 三、改正题(红色字体为改正后答案) 1. 在Fe-Fe3C相图中,GS斜线表示由奥氏体析出二次渗碳体的开始线,称为A3线。ES;A cm 2. 在铁碳合金相图中,PSK线是一条水平线(727℃),该线叫共晶线。共析线 3. 过共析钢缓冷到室温时,其平衡组织由铁素体和二次渗碳体组成。珠光体 4. 珠光体是由奥氏体和渗碳体所形成的机械混合物,其平均含碳量为0.77%。铁素体 5. 亚共晶白口铁缓冷到室温时,其平衡组织由铁素体,二次渗碳体和莱氏体组成。珠光体 6. 在亚共析钢平衡组织中,随含碳量的增加,则珠光体量增加,而二次渗碳体量在减少。铁素体 7. 过共晶白口铁缓冷到室温时,其平衡组织由珠光体和莱氏体组成。渗碳体 8. 在铁碳合金相图中,钢的部分随含碳量的增加,内部组织发生变化,则其塑性和韧性指标随之提高。降低

铁碳合金平衡状态图分析教材

铁碳合金相图 3.3.1 铁碳合金的组元和相 一、基本概念 铁碳合金:碳钢和铸铁的统称,都是以铁和碳为基本组元的合金 碳钢:含碳量为0.0218%~2.11%的铁碳合金 铸铁:含碳量大于2.11%的铁碳合金 铁碳合金相图:研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。 注:由于含碳量大于Fe3C的含碳量(6.69%)时,合金太脆,无实用价值,因此所讨论的铁碳合金相图实际上是Fe-Fe3C 二、组元 1.纯铁 纯铁指的是室温下的α-Fe,强度、硬度低,塑性、韧性好。 2.碳 碳是非金属元素,自然界存在的游离的碳有金刚石和 石墨,它们是同素异构体。 3.碳在铁碳合金中的存在形式有三种: C与Fe形成金属化合物,即渗碳体; C以游离态的石墨存在于合金中。 C溶于Fe的不同晶格中形成固溶体; A. 铁素体:C溶于α-Fe中所形成的间隙固溶体,体 心立方晶格,用符号“F”或“α”表示,铁素体是一种强度 和硬度低,而塑性和韧性好的相,铁素体在室温下可 稳定存在。 B. 奥氏体:C溶于γ-Fe中所形成的间隙固溶体,面心立方晶格,用符号“A”或“γ”表示,奥氏体强度低、塑性好,钢材的热加工都在奥氏体相区进行,奥氏体在高温下可稳定存在。 C. C与Fe形成金属化合物:即渗碳体Fe3C,Fe与C组成的金属化合物,Fe与C组成的金属化合物,含碳量为6.69%。以“Fe3C”或“Cm”符号表示,渗碳体的熔点为1227℃,硬度很高(HB=800)而脆,塑性几乎等于零。渗碳体在钢和铸铁中,一般呈片状、网状

或球状存在。它的形状和分布对钢的性能影响很大,是铁碳合金的重要强化相。碳在a-Fe中溶解度很低,所以常温下碳以渗碳体或石墨的形式存在。 3.3.2 铁碳合金相图的分析 1.铁碳合金相图由三个相图组成: 包晶相图、共晶相图和共析相图; 2.相图中有五个单相区:液相L、 高温铁素体δ、铁素体α、奥氏体 γ、渗碳体Fe3C; 3.相图中有三条水平线: HJB水平线(1495℃):包晶线, 发生包晶反应,反应产物为奥氏 体。 L0.53+δ0.09←→γ0.17 ECF水平线(1148℃):共晶线, 发生共晶反应,反应产物为奥氏体 和渗碳体的机械混合物,称为莱氏 体,用“Le”表示。 L 4.3←→γ2.11+ Fe3C PSK水平线(727℃):共析线,发生共析反应,反应产物为铁素体和渗碳体的机械混合物,称为珠光体,用“P”表示。共析线又称为A1线 γ0.77←→F0.0218+ Fe3C 4.图中的特性点 A点:纯铁的熔点 C点:共晶点 D点: Fe3C的熔点 E点:γ-Fe中的最大溶碳量 G点:α-Fe→γ-Fe的同素异构转变点 J点:包晶点 N点:γ-Fe→α-Fe的同素异构转变点 S点:共析点 5.图中的特性线 ABCD-液相线

相关文档
最新文档