MATLAB三次样条插值之三弯矩法

MATLAB三次样条插值之三弯矩法
MATLAB三次样条插值之三弯矩法

24.构造三次样条函数s(x)去模拟一只飞鸟外形的上部,测得的数据如下:

x=[0.9,1.3,1.9,2.1,2.6,3.0,3.9,4.4,4.7,5.0,6.0,7.0,8.0,9.2,10.5,1 1.3,11.6,12.0,12.6,13.0,13.3];

y=[1.2,1.5,1.85,2.1,2.6,2.7,2.4,2.15,2.05,2.1,2.25,2.3,2.25,1.95, 1.4,0.9,0.7,0.6,0.5,0.4,0.25];

边界条件为自然边界条件,即:S’’(0.9)=0,s’’(13.3)=0(可画出图形)。

解:

程序:

%解样条差值%

function [newu,w,newv,d]=sanzhi(x,y,x0,y0,y1a,y1b)

n=length(x);m=length(y);

if m~=n

error('x or y 重新输入');

end

v=ones(n-1,1);

u=ones(n-1,1);

d=zeros(n-1,1);

w=2*ones(n-1,1);

h0=x(1)-x0;

h=zeros(n-1,1);

for k=1:n-1

h(k)=x(k+1)-x(k);

end

v(1)=h0/(h0+h(1));

u(1)=1-v(1);

d(1)=3*(v(1)*(y(2)-y(1))/h(1)+u(1)*((y(1)-y0))/h0);

for k=2:n-1

v(k)=h(k-1)/(h(k-1)+h(k));

u(k)=1-v(k);

d(k)=3*(v(k)*(y(k+1)-y(k))/h(k)+u(k)*(y(k)-y(k-1))/h(k-1));

end

d(1)=d(1)-u(1)*y1a;

d(n-1)=d(n-1)-v(n-1)*y1b;

newv=v(1:n-2,:);

newu=u(2:n-1,:);

function intersanzhi(x,y,x0,y0,y1a,y1b)

n=length(x);m=length(y);

if m~=n

error('x or y 重输');

end

h=zeros(n,1);

h(1)=x(1)-x0;

for k=2:n

h(k)=x(k)-x(k-1);

end

[a,b,c,d]=sanzhi(x,y,x0,y0,y1a,y1b);

%追赶解矩阵%

m=chase(a,b,c,d);

M=[1;m;0];

fprintf('三次样条插值的表达式\n');

syms X ;

fprintf('S0--1:\n');

S(1)=collect((y0/h(1).^3)*(X-x(1)).^2*(h(1)+2*(X-x0))+(y(1)/h(1).^3)*(X-x0).^2*(h(1)+2*(x(1)-X))+(M(1)/h(1).^2)*(X-x0)*(X-x(1)).^2+(M(2)/h(1). ^2)*(X-x(1))*(X-x0).^2);

for k=2:n

fprintf('S%d--%d:\n',k-1,k);

S(k)=collect((y(k-1)/h(k).^3)*(X-x(k)).^2*(h(k)+2*(X-x(k-1)))+(y(k)/h( k).^3)*(X-x(k-1)).^2*(h(k)+2*(x(k)-X))+(M(k)/h(k).^2)*(X-x(k-1))*(X-x(k )).^2+(M(k+1)/h(k).^2)*(X-x(k))*(X-x(k-1)).^2);

end

S=S.';

disp(S);

fprintf('习惯解析式如下:\n');

pretty(S);

以下为飞鸟上部数据图形,三次样条曲线图形:

图1 程序运行结果图

图2 利用Matlab的样条差值函数得到的结果图

三次样条插值---matlab实现

计算方法实验—三次样条插值 机电学院075094-19 苏建加 20091002764 题目:求压紧三次样条曲线,经过点(-3,2),(-2,0),(1,3),(4,1),而且一阶导 数边界条件S'(-3)=-1;S'(4)=1。 解:首先计算下面的值: 记 1--=j j j x x h ; 1++=j j j j h h h u ;1=+j j u λ ; ?? ????????---+=-++++-j j j j j j j j j j j h y y h y y h h x x x f 1111 111],,[ ;M j =)(''j x s ;],,[611+-=j j j j x x x f d ; h1=-2-(-3)=1;h2=1-(-2)=3;h3=4-1=3; u1=1/4;u2=3/6; d1=6/4*(3/3-(-2)/1)=4.5;d2=6/6*(-2/3-3/3)=-5/3; 由于边界条件S'(-3)=-1;S'(4)=1,得到如下 式子: d0=6/1*(-2/1-(-1))=-6; d3=6/3*(1-(-2)/3)=10/3; 所以得到4个含参数m0~m3 的线性代数方程组为: 2.0000 1.0000 0 0 m0 0.2500 2.0000 0.7500 0 m1 0 0.5000 2.0000 0.5000 m2 0 0 1.0000 2.0000 m3 利用matlab 求解方程得: m = -4.9032 3.8065 -2.5161 2.9247 所以 S1(x)=-0.8172*(-2-x)^3+ 0.6344*(x+3)^3+2.8172*(-2-x)-0.6344*(x+3) x ∈[-3,-2] S2(x)=0.2115*(1-x)^3 -0.1398*(x+2)^3- 1.9032*(1-x)+ 2.2581*(x+2) x ∈[-2,1] S3(x)=-0.1398*(4-x)^3+0.1625(x-1)^3+ 2.2581*(4-x)-1.1290*(x-1) x ∈[1,4] 化简后得:S1(x)=1.4516*x^3 + 10.6128*x^2 + 23.4836*x + 16.1288 x ∈[-3,-2] S2(x)=-0.3513x^3-0.2043x^2+1.8492x+1.7061 x ∈[-2,1] S3(x)=0.3023x^3-2.1651x^2+3.8108x+1.0517 x ∈[1,4] 画图验证:

运用matlab建立三次样条插值函数

(1)编写三条样条插值函数程序如下: x=[1 4 9 16 25 36 49 64 81]; y=[1 2 3 4 5 6 7 8 9]; n=length(x); lamda(1)=1; miu(n)=1; h=diff(x); df=diff(y)./diff(x); d(1)=6*(df(1)-1/2)/h(1); d(n)=6*(0.5*81^-0.5-df(n-1))/h(n-1); for j=2:n-1 lamda(j)=h(j)/(h(j-1)+h(j)); miu(j)=h(j-1)/(h(j-1)+h(j)); d(j)=6*(df(j)-df(j-1))/(h(j-1)+h(j)); end miu=miu(2:end); u=diag(miu,-1);r=diag(lamda,1);a=diag(2*ones(1,n)); A=u+r+a; %求出矩阵形式的线性方程组 M=inv(A)*d'; %求出M值 syms g for j=1:n-1 s(j)=M(j)*(x(j+1)-g)^3/(6*h(j))+M(j+1)*((g-x(j))^3/(6*h(j)))+(y(j)-M( j)*h(j)^2/6)*(x(j+1)-g)/h(j)+(y(j+1)-M(j+1)*h(j)^2/6)*(g-x(j))/h(j); end format rat for j=1:n-1 S(j,:)=sym2poly(s(j)); %三条样条插值函数 end %生成三次样条插值函数图象 for j=1:n-1 x1=x(j):0.01:x(j+1); y1=polyval(S(j,:),x1); plot(x1,y1,x,y,'o'); title('spline 三次样条插值函数图象'); xlabel('x'); ylabel('y'); grid on; hold on; end

MATLAB三次样条插值之三弯矩法

MATLAB三次样条插值之三弯矩法 首先说这个程序并不完善,为了实现通用(1,2,…,n)格式解题,以及为调用追赶法程序,没有针对节点数在三个以下的情况进行分类讨论。希望能有朋友给出更好的方法。 首先,通过函数 sanwanj得到方程的系数矩阵,即追赶法方程的四个向量参数,接下来调用 追赶法(在intersanwj函数中),得到三次样条分段函数系数因子,然后进行多项式合并得 到分段函数的解析式,程序最后部分通过判断输入值的区间自动选择对应的分段函数并计算改 点的值。附:追赶法程序 chase %%%%%%%%%%%%%% function [newv,w,newu,newd]=sanwj(x,y,x0,y0,y1a,y1b) % 三弯矩样条插值 % 将插值点分两次输入,x0 y0 单独输入 % 边值条件a的二阶导数 y1a 和b的二阶导数 y1b,这里建议将y1a和y1b换成y2a和 y2b,以便于和三转角代码相区别 n=length(x);m=length(y); if m~=n error('x or y 输入有误,再来'); end v=ones(n-1,1);u=ones(n-1,1);d=zeros(n-1,1); w=2*ones(n+1); h0=x(1)-x0; h=zeros(n-1,1); for k=1:n-1 h(k)=x(k+1)-x(k); end v(1)=h0/(h0+h(1)); u(1)=1-v(1); d(1)=6*((y(2)-y(1))/h(1)-(y(1)-y0)/h0)/(h0+h(1)); % for k=2:n-1 v(k)=h(k-1)/(h(k-1)+h(k)); u(k)=1-v(k); d(k)=6*((y(k+1)-y(k))/h(k)-(y(k)-y(k-1))/h(k-1))/(h(k-1)+h(k)); end newv=[v;1]; newu=[1;u]; d0=6*((y(1)-y0)/h0-y1a)/h0;

三次样条插值的MATLAB实现

MATLAB 程序设计期中考查 在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法: 对插值区间[]b a ,进行划分:b x x x a n ≤

三次样条插值的Matlab实现(自然边界和第一边界条件)

(第一边界条件)源代码:function y=yt1(x0,y0,f_0,f_n,x)_____________(1) %第一类边界条件下三次样条插值; %xi所求点; %yi所求点函数值; %x已知插值点; %y已知插值点函数值; %f_0左端点一次导数值; %f_n右端点一次导数值; n = length(x0); z = length(y0); h = zeros(n-1,1); k=zeros(n-2,1); l=zeros(n-2,1); S=2*eye(n); fori=1:n-1 h(i)= x0(i+1)-x0(i); end fori=1:n-2 k(i)= h(i+1)/(h(i+1)+h(i)); l(i)= 1-k(i);

end %对于第一种边界条件: k = [1;k];_______________________(2) l = [l;1];_______________________(3) %构建系数矩阵S: fori = 1:n-1 S(i,i+1) = k(i); S(i+1,i) = l(i); end %建立均差表: F=zeros(n-1,2); fori = 1:n-1 F(i,1) = (y0(i+1)-y0(i))/(x0(i+1)-x0(i)); end D = zeros(n-2,1); fori = 1:n-2 F(i,2) = (F(i+1,1)-F(i,1))/(x0(i+2)-x0(i)); D(i,1) = 6 * F(i,2); end %构建函数D: d0 = 6*(F(1,2)-f_0)/h(1);___________(4)

计算方法三次样条插值课程设计

摘要 本文细致的讲解了三次样条插值函数的产生及在实际中解决的问题,通过MATLAB的程序编写,可以将复杂的计算省去,直接的给出了三次样条插值的结果与实际结果间的误差,验证实际结果和理论值的一致性。避免了求解方程中的不必要计算,使求解效率得到显著的提高。 关键词插值函数三次样条插值 MATLAB

1 三次样条插值函数概论 当插值节点很多时,插值多项式的次数就会很高,这不仅增大了计算量,还会影响结果的精确度.虽然可以采用上述分段插值,但是主要缺点就是个分段接头处不光滑,插值函数的导数不连续,因此想构造这样的插值:既能分段的低次插值,又能保证接头处的光滑,就产生了三次样条插值函数. 1.1定义 设函数()f x 市区间[a,b]上的二次连续可微函数,在区间[a,b]上给处一个划分。设函数()f x 是区间[a,b]上的一个划分 011...n n a x x x x b -?=<<<<= 如果函数()S x 满足条件 (1)在每个小区间1[,]k k x x +(k=1,2,….,n )上()S x 是一个部超过m 次的多项式。 (2)在节点k x (k=1,2,….,n )处具有m-1阶的连续导数。 (3)()()(0,1,2,...) j j s x f x j n == 1.2三次样条差值函数的构造 由于三次样条插值我、函数s(x)的插值节点处的二阶导数存在,因此令各节点处的二阶导数为 ' ()(0,1,...,)k s x m k n == (1.01) 根据样条插值函数的定义,三次样条插值函数是s(x)在每一个小区间)1....,1,0](,[]1-=+n k x x k k 上市不超过三次的多项式。在每一个小区间 )1....,1,0](,[]1-=+n k x x k k 上,其二阶导数为线性函数,即 '' 11 11()k k k k k k k k x x x x s x m m x x x x ++++--=+-- (1.02) 对式(1.02)积分两次,则得到 k k k k k k k k k b x x a h x x m h x x m x s +-+-++=++)(6)(6)()(3 1 3 1 (1.03)

三次样条插值法

natural cubic spine二阶导数求解 1 Natural cubic spine is The formula (3.37) in book ‘Numerical Recipes in Fortran 77’ is: (1) Where . Formula (1) can be simplified as: (2) Where: (3) Formula (2) can be written as: (4) This is a ‘m=n-2’ dimensional equation, then change the subscript. Take: , and (4) can be changed into: (5) To solve equation (5), we can get , then we can get . 三次样条插值法使用时,一般要对y均分取值。

2 The second derivative is known: , (6) When : (7) When : (8) So formula (4) can be written as: (9) Then we can solve equation (9).

3 The first derivative is known. The formula (3.35) is : (6) Where: Case 1: , (6) can be changed into: (7) And , (7) can be written as: (8) (9) Case 2: , (6) can be written as: (10) And , (10) can be written as: (11) (12) , (13) j=2:

MATLAB三次样条插值之三转角法

非常类似前面的三弯矩法,这里的sanzhj函数和intersanzhj作用相当于前面的sanwanj和intersanwj,追赶法程序通用,代码如下。 %%%%%%%%%%%%%%%%%%% function [newu,w,newv,d]=sanzhj(x,y,x0,y0,y1a,y1b) % 三转角样条插值 % 将插值点分两次输入,x0 y0 单独输入 % 边值条件a的一阶导数 y1a 和b的一阶导数 y1b n=length(x);m=length(y); if m~=n error('x or y 输入有误,再来'); end v=ones(n-1,1); u=ones(n-1,1); d=zeros(n-1,1); w=2*ones(n-1,1); h0=x(1)-x0; h=zeros(n-1,1); for k=1:n-1 h(k)=x(k+1)-x(k); end v(1)=h0/(h0+h(1)); u(1)=1-v(1); d(1)=3*(v(1)*(y(2)-y(1))/h(1)+u(1)*((y(1)-y0))/h0); % for k=2:n-1 v(k)=h(k-1)/(h(k-1)+h(k)); u(k)=1-v(k); d(k)=3*(v(k)*(y(k+1)-y(k))/h(k)+u(k)*(y(k)-y(k-1))/h(k-1)); end d(1)=d(1)-u(1)*y1a; d(n-1)=d(n-1)-v(n-1)*y1b; newv=v(1:n-2,:); newu=u(2:n-1,:); %%%%%%%%%%%% function intersanzhj(x,y,x0,y0,y1a,y1b) % 三转角样条插值

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

三次样条插值的Matlab实现(自然边界和第一边界条件)(精)

(第一边界条件源代码: function y=yt1(x0,y0,f_0,f_n,x _____________(1 %第一类边界条件下三次样条插值; %xi 所求点; %yi所求点函数值; %x 已知插值点; %y 已知插值点函数值; %f_0左端点一次导数值; %f_n右端点一次导数值; n = length(x0; z = length(y0; h = zeros(n-1,1; k=zeros(n-2,1; l=zeros(n-2,1; S=2*eye(n; fori=1:n-1 h(i= x0(i+1-x0(i; end fori=1:n-2

k(i= h(i+1/(h(i+1+h(i; l(i= 1-k(i; end %对于第一种边界条件: k = [1;k]; _______________________(2 l = [l;1]; _______________________(3 %构建系数矩阵 S : fori = 1:n-1 S(i,i+1 = k(i; S(i+1,i = l(i; end %建立均差表: F=zeros(n-1,2; fori = 1:n-1 F(i,1 = (y0(i+1-y0(i/(x0(i+1-x0(i; end D = zeros(n-2,1; fori = 1:n-2 F(i,2 = (F(i+1,1-F(i,1/(x0(i+2-x0(i; D(i,1 = 6 * F(i,2;

end %构建函数 D : d0 = 6*(F(1,2-f_0/h(1; ___________(4 dn = 6*(f_n-F(n-1,2/h(n-1; ___________(5 D = [d0;D;dn]; ______________(6 m= S\D; %寻找 x 所在位置,并求出对应插值: fori = 1:length(x for j = 1:n-1 if (x(i<=x0(j+1&(x(i>=x0(j y(i =( m(j*(x0(j+1-x(i^3/(6*h(j+... (m(j+1*(x(i-x0(j^3/(6*h(j+... (y0(j-(m(j*h(j^2/6*(x0(j+1-x(i/h(j+... (y0(j+1-(m(j+1*h(j^2/6*(x(i-x0(j/h(j ; break; else continue; end end end (2 (自然边界条件源代码: 仅仅需要对上面部分标注的位置做如下修改 :

matlab_牛顿插值法_三次样条插值法

(){} 2 1 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)() ()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x = -≤≤=+=-+====-+ = 题目:插值多项式和三次样条插值多项式。已知对作、计算函数在点处的值;、求插值数据点 的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=- 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两 种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

MATLAB三次样条插值之三弯矩法

MATLAB三次样条插值之三弯矩法 首先说这个程序并不完善,为了实现通用(1,2,…,n)格式解题,以及为调用追赶法程序,没有针对节点数在三个以下的情况进行分类讨论。希望能有朋友给出更好的方法。 首先,通过函数sanwanj得到方程的系数矩阵,即追赶法方程的四个向量参数,接下来调 用追赶法(在intersanwj函数中),得到三次样条分段函数系数因子,然后进行多项式合并 得到分段函数的解析式,程序最后部分通过判断输入值的区间自动选择对应的分段函数并计算 改点的值。附:追赶法程序chase %%%%%%%%%%%%%% function [newv,w,newu,newd]=sanwj(x,y,x0,y0,y1a,y1b)?%三弯矩样 条插值?%将插值点分两次输入,x0y0单独输入?% 边值条件a的二阶导数 y1a 和b 的二阶导数y1b,这里建议将y1a和y1b换成y2a和y2b,以便于和三转角代码相区别 ?n=length(x);m=length(y); if m~=n?error('x or y 输入有误,再来'); end?v=ones(n-1,1);u=ones(n-1,1);d=zeros(n-1,1);?w=2*o nes(n+1);?h0=x(1)-x0;?h=zeros(n-1,1); for k=1:n-1?h(k)=x(k+1)-x(k);?end v(1)=h0/(h0+h(1)); u(1)=1-v(1); d(1)=6*((y(2)-y(1))/h(1)-(y(1)-y0)/h0)/(h0+h(1));?% for k=2:n-1?v(k)=h(k-1)/(h(k-1)+h(k));?u(k)=1-v(k);?d(k)= 6*((y(k+1)-y(k))/h(k)-(y(k)-y(k-1))/h(k-1))/(h(k-1)+h(k)); end newv=[v;1];?newu=[1;u]; d0=6*((y(1)-y0)/h0-y1a)/h0; d(n)=6*(y1b-(y(n)-y(n-1))/h(n-1))/h(n-1); newd=[d0;d]; %%%%%%%%%%%% function intersanwj(x,y,x0,y0,y1a,y1b) %三弯矩样条插值?%第一部分?n=length(x);m=length(y); if m~=n?error('xory 输入有误,再来'); end?%重新定义h?h=zeros(n,1); h(1)=x(1)-x0; for k=2:n h(k)=x(k)-x(k-1);?end %sptep1调用三弯矩函数?[a,b,c,d]=sanwj(x,y,x0,y0,y1a,y1b);

matlab 牛顿插值法 三次样条插值法

(){} 21 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)() ()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x =-≤≤=+=-+====-+ = 题目:插值多项式和三次样条插值多项式。 已知对作、计算函数在点处的值;、求插值数据点 的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=- 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

数值分析实验报告-插值、三次样条(教育教学)

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数2 1()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i);

end syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

Matlab中插值函数汇总和使用说明

告: Matlab中插值函数汇总和使用说明收藏 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。x:原始数据点 Y:原始数据点 xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。 (2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函

数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数p chip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4)yi = interp1(x,Y,xi,method,'extrap') 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5)yi = interp1(x,Y,xi,method,extrapval) 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1 1.>>x = 0:10; y = x.*sin(x); 2.>>xx = 0:.25:10; yy = interp1(x,y,xx); 3.>>plot(x,y,'kd',xx,yy) 复制代码 例2 1.>> year = 1900:10:2010; 2.>> product = [75.995 91.972 105.711 12 3.203 131.669 150.697 179.323 203.212 226.505

MATLAB实现拉格朗日插值精编版

数值分析上机报告 题目:插值法 学号:201014924 姓名:靳会有

一、调用MATLAB内带函数插值 1、MATLAB内带插值函数列举如下: 2、取其中的一维数据内插函数()为例,程序如下:其调用格式为: yi=interp1(x, y, xi) yi=interp1(x, y, xi, method) 举例如下: x=0:10:100 y=[40 44 46 52 65 76 80 82 88 92 110]; xi=0:1:100 yi=interp1(x,y,xi,'spline') 3、其他内带函数调用格式为: Interpft函数: y=interpft(x,n) y=interpft(x,n,dim) interp2函数: ZI=interp2(X, Y, Z, XI, YI),ZI=imerp2(Z, ntimes)

ZI=interp2(Z, XI, YI) ,ZI=interp2(X, Y, Z, XI, YI, method) interp3函数: VI=interp3(X,Y,Z,V,XI,YI,ZI) VI=interp3(V, ntimes) VI=interp3(V,XI,YI,ZI) VI=interp3(…, method) Interpn函数: VI=interpn(X1, X2, X3, …, V, Y1, Y2, Y3, …) VI=interpn(V, ntimes) VI=interpn(V, Yl, Y2, Y3, …) VI=interpn(…, method) Spline函数: yi=spline(x,y,xi) pp=spline(x,y) meshgrid函数: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x) [X,Y,Z]=meshgrid(x,y,z) Ndgrid函数: [X1, X2, X3, …]=ndgrid(x1, x2, x3, …) [X1, X2, X3, …]=ndgrid(x) Griddata函数: ZI=griddata(x, y, z, XI, YI) [XI, YI, ZI]=griddata(x, y, z, xi, yi) […]=griddata(… method) 二、自编函数插值 1、拉格朗日插值法: 建立M 文件: function f = Language(x,y,x0) syms t l; if(length(x) == length(y)) n = length(x); else disp('x和y的维数不相等!'); return; %检错

三次样条插值函数matlab程序绝不坑爹

x0=[0 0.9211 1.8431 2.9497 3.8714 4.9781 5.9 7.0064 7.9286 8.9678 10.9542 12.0328 12.9544 13.8758 14.9822 15.9039 16.8261 17.9317 19.0375 19.9594 20.8392 22.9581 23.88 24.9869 25.9083]; >> >> y0=[14405 11180 10063 11012 8797 9992 8124 10160 8488 11018 19469 20196 18941 15903 18055 15646 13741 14962 16653 14496 14648 15225 15264 13708 9633]; >> x=0:0.1:25.9; >> y1=interp1(x0,y0,x,'spline'); >> pp1=csape(x0,y0); %样条插值工具箱函数 y2=ppval(pp1,x); %计算x对应的y值 pp2=csape(x0,y0,'second'); y3=ppval(pp2,x); xydata=[x',y1',y2',y3'] subplot(1,2,1) plot(x0,y0,'+',x,y1) title('Spline1') subplot(1,2,2) plot(x0,y0,'+',x,y2) title('Spline2') dx=diff(x); dy=diff(y2); dy_dx=dy./dx; dy_dx0=dy_dx(1) ytemp=y2(13<=x&x<=15); ymin=min(ytemp); xmin=x(y2==ymin); xymin_1315=[xmin,ymin]

三次样条插值多项式matlab

三次样条插值多项式 ——计算物理实验作业四 陈万物理学2013级 主程序: clear,clc; format rat x = [1,4,9,16,25,36,49,64]; y = [1,2,3,4,5,6,7,8]; f1 = ; fn = 1/16; [a,b,c,d,M,S] = spline(x,y,f1,fn); 子程序1: function [a,b,c,d,M,S]=spline(x,y,f1,fn) % 三次样条插值函数 % x是插值节点的横坐标 % y是插值节点的纵坐标 % u是插值点的横坐标 % f1是左端点的一阶导数 % fn是右端点的一阶导数 % a是三对角矩阵对角线下边一行 % b是三对角矩阵对角线 % c是三对角矩阵对角线上边一行 % S是插值点的纵坐标

n = length(x); h = zeros(1,n-1); deltay = zeros(1,n); miu = zeros(1,n-1); lamda = zeros(1,n-1); d = zeros(1,n-1); for j = 1:n-1 h(j) = x(j+1)-x(j); deltay(j) = y(j+1)-y(j); end % 得到h矩阵 for j = 2:n-1 sumh = h(j-1) + h(j); miu(j) = h(j-1) / sumh; lamda(j) = h(j) / sumh; d(j) = 6*( deltay(j)/h(j)-(deltay(j-1)/h(j-1)))/sumh; end % 根据第一类边界条件,作如下规定 lamda(1) = 1; d(1) = 6*(deltay(1)/h(1)-f1)/h(1); miu(1) = 1; d(n) = 6*(fn-deltay(n-1)/h(n-1))/h(n-1);

matlab---三次样条插值

4多项式插值与函数最佳逼近 37(上机题)3次样条插值函数: (1)编制求第一型3次样条插值函数的通用程序;(2)已知汽车门曲线型值点的数据如下: 端点条件为8.0' 0=y ,2.0' 10=y ,用所编程序求车门的3次样条插值函数S (x ),并打印出9,,1,0),5.0(?=+i i S 。用matlab 编写 通用程序为: function [Sx ]=Threch(X,Y,dy0,dyn ) %X 为输入变量x 的数值%Y 为函数值y 的数值%dy0为左端一阶导数值%dyn 为右端一阶导数值%Sx 为输出的函数表达式 n=length(X)-1;d=zeros(n+1,1);h=zeros(1,n-1);f1=zeros(1,n-1);f2=zeros(1,n-2);for i=1:n %求函数的一阶差商 h(i)=X(i+1)-X(i); f1(i)=(Y(i+1)-Y(i))/h(i);end for i=2:n %求函数的二阶差商 f2(i)=(f1(i)-f1(i-1))/(X(i+1)-X(i-1));d(i)=6*f2(i);end d(1)=6*(f1(1)-dy0)/h(1); d(n+1)=6*(dyn-f1(n-1))/h(n-1);%赋初值 A=zeros(n+1,n+1);

B=zeros(1,n-1); C=zeros(1,n-1); for i=1:n-1 B(i)=h(i)/(h(i)+h(i+1)); C(i)=1-B(i); end A(1,2)=1; A(n+1,n)=1; for i=1:n+1 A(i,i)=2; end for i=2;n A(i,i-1)=B(i-1); A(i,i+1)=C(i-1); end M=A\d; syms x; for i=1:n Sx(i)=collect(Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x-X(i))... +M(i)/2*(x-X(i))^2+(M(i+1)-M(i))/(6*h(i))*(x-X(i))^3); digits(4); Sx(i)=vpa(Sx(i)); end for i=1:n disp('S(x)='); fprintf('%s(%d,%d)\n',char(Sx(i)),X(i),X(i+1)); end S=zeros(1,n); for i=1:n x=X(i)+0.5; S(i)=Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x-X(i))... +M(i)/2*(x-X(i))^2+(M(i+1)-M(i))/(6*h(i))*(x-X(i))^3; end disp('S(i+0.5)'); disp('i X(i+0.5)S(i+0.5)'); for i=1:n fprintf('%d%.4f%.4f\n',i,X(i)+0.5,S(i)); end End 在运行窗口输入: >>X=[012345678910];Y=[2.513.304.044.705.225.545.785.405.575.705.80]; Threch(X,Y,0.8,0.2)

相关文档
最新文档