LED芯片

LED芯片
LED芯片

什么是bonding?

https://www.360docs.net/doc/609425453.html,/node/10010

一、什麼是bonding?

bonding,也就是芯片打线,芯片覆膜,又称邦定。bonding是芯片生产工艺中一种打线的方式,一般用于封装前将芯片内部电路用金线与封装管脚连接,一般bonding 后(即电路与管脚连接后)用黑色胶体将芯片封装,同时采用先进的外封装技术COB(Chip On Board),这种工艺的流程是将已经测试好的外延片植入到特制的电路板上,然后用金线将外延片电路连接到电路板上,再将融化后具有特殊保护功能的有机材料覆盖到外延片上来完成芯片的后期封装

二、bonding技术优势

1、bonding芯片防腐、抗震,性能稳定。

这种封装方式的好处是制成品稳定性相对于传统SMT贴片方式要高很多,因为目前大量应用的SMT贴片技术是将芯片的管脚焊接在电路板上,这种生产工艺不太适合移动存储类产品的加工,在封装的测试中存在虚焊、假焊、漏焊等问题,在日常使用过程中由于线路板上的焊点长期暴露在空气中受到潮湿、静电、物理磨损、微酸腐蚀等自然和人为因素影响,导致产品容易出现短路、断路、甚至烧毁等情况。而bonding芯片是将芯片内部电路通过金线与电路板封装管脚连接,再用具有特殊保护功能的有机材料精密覆盖,完成后期封装,芯片完全受到有机材料的保护,与外界隔离,不存在潮湿、静电、腐蚀情况的发生;同时,有机材料通过高温融化,覆盖到芯片上之后经过仪器烘乾,与芯片之间无缝连接,完全杜绝芯片的物理磨损,稳定性更高。

2、bonding芯片适用大规模量产

bonding技术目前只被少数的几家大外延片厂掌握,开片的数量最少不会低于10万片甚至更高。其生产过程安全稳定,几乎不存在产品品质问题,而且产品的一致性强,使用寿命长。所以有技术实力的大厂会采用这种先进但是研发成本很高的生产工艺来加工高端产品。

三、bonding技术的应用

其实bonding技术早已大量应用在我们的身边,如手机、PDA、MP3播放器、数位相机、游戏主机等设备的液晶屏幕,很多就是采用bonding技术。所以採购国际大厂bonding后的产品,相对来说品质、性能与规格都比较好。在运行频率越来越高、对遮罩电磁干扰要求较高的设备上,使用传统的封装方式将会很难避免一些技术上的隐患,使用bonding技术是有效改善的解决方案。

分析AC LED光源的原理及应用技术

https://www.360docs.net/doc/609425453.html,/CompanyNews/80.html

LED光源作为绿色、节能、省电、长寿命的第四代照明灯具而异军突起、广受关注、如火如荼地迅速发展。目前的LED光源是低电压(VF=2→3.6V)、大电流(IF=200→1500mA)工作的半导体器件,必须提供合适的直流流才能正常发光。直流(DC)驱动LED光源发光的技术已经越来越成熟,由于我们日常照明使用的电源是高压交流(AC 100~220V),所以必须使用降压的技术来获得较低的电压,常用的是变压器或开关电源降压,然后将交流(AC)变换成直流(DC),再变换成直流恒流源,才能促使LED光源发光。因此直流驱动LED光源的系统应用方案必然是:变压器+整流(或开关电源)+恒流源(图1)。

LED灯具里必然要有一定的空间来安置这个模块,但是对于E27标准螺口的灯具来说空间十分有限,很难安置。无论是经由变压器+整流或是开关电源降压,系统都会有一定量的损耗,DC LED在交流、直流之间转换时约15%~30%的电力被损耗,系统效率很难做到90%

以上。如果能用交流(AC)直接驱动LED光源发光,系统应用方案将大大简化,系统效率将很轻松地达到90%以上。

图1:直流驱动LED光源的系统应用方案

韩国公司早在2005年已发明可以用交流直接驱动使其发光的AC LED,其次是美国III-N Technology,3N技术开发MOCVD生长技术基础上的氮化镓衬底,可以增进照明和传感器的应用,并降低成本和提高生产效率。对大大小小的硅发光二极管提供6英寸生产技术。3N发明的单芯片交流发光二极管(AC LED),建立了全面的专利组合,以保护和改善技术,牢固地确立其专有的立场,是首屈一指的大规模商业化生产的交流发光二极管产品。

中国台湾“工业技术研究院”2008年也完成可产业化生产并有实际应用系统方案的AC LED产品,可直接插电于60Hz或更高频率的AC 110V 交流压使其交流发光,应用于指示灯、霓虹灯、低瓦数照明灯,能有效解决现有 LED 无法直接在交流源下使用,造成产品应用成本较高的缺点。台湾工研院的On Chip AC LED(片上AC LED)因此获得素有美国产业创新奥斯卡奖之称的2008年R&D 100 Award大奖。现在全世界只有美国、韩国与中国台湾有此技术,台湾工研院开发出白光、蓝光及绿光AC LED的制程技术,不仅与国际同步,也是全球领先者之一。

AC LED灯具的优点

与白炽灯、卤素灯、荧光日光灯、荧光节能灯、直流LED灯相比,AC LED灯具有更节能省电、更长寿、更有能效的高性价比。AC LED发光省去了成本不菲的AC/DC转换器和恒流源。交流LED与现有的照明灯具性能比较如表1所示。

表1:交流LED与现有的照明灯具性能比较

AC LED光源超细晶粒采用特殊交错的矩阵排列

AC LED光源的重大技术突破是超细LED晶粒在封装时的特殊排列组合技术,同时利用LED PN结的二极管特性兼作整流,半导体制程在其中扮演着相当重要的角色。AC LED通过半导体制程整合成一堆微小晶粒,采用交错的矩阵式排列工艺,并加入桥式电路至芯片设计,使AC电流可双向导通,实现发光。晶粒的排列如图2所示,左图是AC LED晶粒采用交错的

矩阵式排列示意图,右小图是实际AC LED晶粒排列照片,AC LED晶粒在接上交流后通体发光,因此只需要二根引线导入交流源即能发光工作。

图2:AC LED晶粒排列照片与示意图

湿式蚀刻工艺提高LED光萃取效率之产能与良率

https://www.360docs.net/doc/609425453.html,/node/13295

主题:

技术

1、前言

近几年来III族氮化物(III-Nitride)高亮度发光二极体(High Brightness Light Emission Diode; HB-LED)深获广大重视,目前广泛应用于交通号誌、LCD背光源及各种照明使用上。基本上,GaN LED是以磊晶(Epitaxial)方式生长在蓝宝石基板(Sapphire Substrate)上,由于磊晶GaN与底部蓝宝石基板的晶格常数(Lattice Constant)及热膨胀係数(Coefficient of Thermo Expansion; CTE)相差极大,所以会产生高密度线差排(Thread Dislocation)达108~1010 / cm2,此种高密度线差排

则会限制了GaN LED的发光效率。

此外,在HB-LED结构中,除了主动层(Active Region)及其他层会吸收光之外,另外必须注意的就是半导体的高折射係数(High Refractive Index),这将使得LED所产生的光受到侷限(Trapped Light)。以图1来进行说明,从主动区所发射的光线在到达半导体与周围空气之界面时,如果光的入射角大于逃逸角锥(Escape Cone)之临界角(Critical Angle;αc)时,则会产生全内反射(Total Internal Reflection);对于高折射係数之半导体而言,其临界角都非常小,当折射係数为3.3时,其全内反射角则只有17o,所以大部份从主动区所发射的光线,将被侷限(Trapped)于半导体内部,这种被侷限的光有可能会被较厚的基板所吸收。此外,由于基板之电子与电洞对,会因基板品质不良或效率较低,导致有较大机率产生非辐射復回(Recombine Non-Radiatively),进而降低LED效率。所以如何从半导体之主动区萃取光源,以进而增加光萃取效率(Light Extraction Efficiency),乃成为各LED制造商最重要的努力目标。

目前有两种方法可增加LED光之萃取效率:(1)第一种方法是在LED磊晶前,进行蓝宝石基板的蚀刻图形化(Pattern Sapphire Substrate; PSS);(2)第二种方法是在LED磊晶后,进行蓝宝石基板的侧边蚀刻(Sapphire Sidewall Etching; SSE),以及基板背面粗糙化(Sapphire Backside Roughing; SBR)。本文将参考相关文献[1~6],探讨如何利用高温磷酸湿式化学蚀刻技术,来达到增加LED光萃取效率之目的。此外,针对LED生产线之高产能与高良率需求时,在工艺系统设计制作上必须考虑到哪些因数,亦将进行详细探讨,以期达到增加LED光萃取效率之目的。

图1、从主动区所发射的光线在到达半导体与周围空气之界面时,如果光的入射角大于

临界角(αc)时,则会产生全内反射。

2、磊晶前蓝宝石基板之蚀刻图形化(PPS)工艺

蓝宝石基板蚀刻图形化(PPS)可以有效增加光的萃取效率,因为藉由基板表面几何图形之变化,可以改变LED的散射机制,或将散射光导引至LED内部,进而由逃逸角锥中穿出。目前使用单步骤无光罩乾式蚀刻技术(Maskless Dry Etching)来加工蓝宝石(Sapphire)基板,虽然可以改善内部量子效率(Internal Quantum Efficiency)和光萃取率(Light Extraction Efficiency),然而由于蓝宝石基板表面非常坚硬,乾式蚀刻会损伤蓝宝石表面,使得线差排(Thread Dislocation)由基板逐渐延伸到顶端的GaN 磊晶层,因而影响到LED之磊晶品质,所以一般都倾向使用湿式化学蚀刻方式。有关蓝宝石基板之湿式化学蚀刻图形化,以及LED之前段工艺流程,说明如下:

A. 首先利用黄光微影工艺在蓝宝石基板上制作出所需的图案。

B. 利用电浆辅助化学气相沉积(Plasma Enhanced Chemical Vapor Deposition; PE-CVD)系统在蓝宝石基板上方沉积SiO2,进行光组去除后,即可形成间隔3μm的阵列图案。

C. 利用SiO2当作蚀刻遮罩层,在温度280℃的高温磷酸与硫酸混合液中蚀刻蓝宝石基板,以形成图案化结构。图2为使用湿式化学蚀刻蓝宝石基板(PSS)后之横截面示意图;图3为光学显微镜照片。

D. 使用MO-CVD生长GaN-LED于蚀刻图案化之蓝宝石基板C(0001)面上,GaN-LED结构由下而上,包括:GaN成核层、未掺杂的GaN层、硅掺杂的N-type GaN 层、MQW层及P-type GaN层。

E. 使用标准微影技术及乾式蚀刻来蚀刻部份的P-type GaN层,以露出N-type

GaN层,进而定义发光区域及电极。

F. 沉积ITO透明导电层,接着沉积Cr/Au金属层,在200℃氮气气氛下进行合金化,以制作P电极与N电极。图4为GaN LED之前段工艺流程图;图5为经过化学湿式蚀刻图形化蓝宝石基板(PSS),接着生长GaN磊晶层的LED结构图。

图2、湿式化学蚀刻蓝宝石基板后(PSS)之横截面示意图。

图3、湿式化学蚀刻蓝宝石基板后(PSS)之光学显微镜照片。

图4、GaN LED前段工艺流程图[3, 4, 5]。

图5、湿式蚀刻图形化蓝宝石基板后,接着生长GaN磊晶层的LED结构[2]。

如图6所示,经湿式化学蚀刻图形化之蓝宝石基板,基于表面晶格特性,所以会被蚀刻出呈57o倾斜的{1-102}R面(R Plane),此种倾斜R面可以大大地增加光的萃取效率。Lee等人利用湿式蚀刻图形化蓝宝石基板制作GaN LED并评估其效能,图7为传统LED 和PPS LED的电流-输出光功率曲线之关係图,在20mA操作电压下,传统LED和PPS LED的输出功率分别为7.8和9 mW,PPS LED的输出功率为传统LED的1.15~1.3倍。此外,在20mA操作电压下,传统LED和PPS LED的外部量子效率(External Quantum Efficiency)分别为14.2%和16.4%,PPS LED的外部量子效率也较传统

LED高1.15倍。因此PPS技术不只利用蓝宝石基板的特殊几何结构,将光导引至逃逸角锥(Escape Cone)进而发射出去,以增加LED的外部量子效率外,湿式蚀刻PPS结构也可降低Sapphire基板之差排缺陷密度,以进而提高GaN的磊晶品质[3, 4, 5]。

图6、经湿式蚀刻图形化蓝宝石基板,其表面因晶格特性,会被蚀刻出成57o倾斜的的{1-102}面(R Plane),可以大大增加光的萃取效率[3]。

图7、传统的LED和PPS LED的电流-输出光功率曲线之关係图[3, 4]。

3、磊晶后蓝宝石基板之蚀刻工艺

元件形状化之覆晶LED是使用高温磷酸来蚀刻蓝宝石基板的侧边(Sapphire Sidewall Etching; SSE),并使基板背面粗糙化(Sapphire Backside Roughing; SBR),以此双重方式来达到增加光萃取效果,其详细工艺流程如图8所示。首先在蓝宝石基板上磊晶制作GaN之LED结构,再将蓝宝石基板磨薄至200 μm厚度,以利于后续芯片切割之进行,接着分别在元件上下面镀上二氧化硅(SiO2)当作蚀刻保护层,使用黄光微影工艺来定义蓝宝石基板被蚀刻的开口位置。接着将已设计图案化之蓝宝石基板浸入高温300℃的磷酸与硫酸的混合液中,进行蓝宝石基板之侧边蚀刻,接者去除二氧化硅保护层。后续进行透明导电膜(ITO)与金属电极(Electrode)制作,并用覆晶(Flip Chip)设备将芯片黏着于硅基板上,制作完成之元件剖面,如图9所示[4, 6]。

蓝宝石的蚀刻速率与磷酸和硫酸的比例,以及蚀刻液温度有关,由于蚀刻结果取决于其晶格结构,蚀刻会沿者蓝宝石的晶格面进行,至于蓝宝石基板的背面,因为其原本是一个粗糙面,所以无法在其表面镀上一层均匀的二氧化硅保护层,在进行蚀刻时,覆盖二氧化硅较薄区域的蓝宝石基板则会先被蚀刻,进而形成粗糙化的表面。在发光性能表现上,有制作元件形状化之覆晶LED比传统覆晶发光二极体的流明度增加了62%;在功率的表现上,于20mA的注入电流下,有形状化的LED输出光功率为14.2 mW,比传统覆晶结构LED的9.3 mW,增加了52%,如图10所示[4, 6]。

图8、元件形状化之覆晶LED工艺流程图[6]。

图9、具形状化之覆晶LED结构示意图[6]。

(a) 电流发光强度图

(b) 电流输出功率图

图10、有无形状化之覆晶LED的(a)电流发光强度与(b)电流输出功率比较图[6]。

此外,针对芯片后段工艺,在雷射切割芯片后之残留物问题,也可应用高温磷酸蚀刻技术来解决此问题,因为使用雷射切割LED芯片后,会将基材烧出一道痕跡,因此在芯片边缘会流下焦黑的切割痕跡,这种切割残留物会影响LED亮度达5~10%,如图11所示为雷射切割LED芯片后之SEM照片。对于现今HB-LED对于亮度錙銖必较之情形,亦有业界于雷射切割后,接着使用高温磷酸来进行蓝宝石基板的侧边蚀刻(Sapphire Sidewall Etching; SSE),以去除雷射切割后的焦黑残留物,进而增进HB-LED的发光效率。

图11、雷射切割LED芯片后之SEM照片。

4、高温磷酸湿式蚀刻工艺设备在制作上,必须考虑的设计项目

图12为弘塑科技(Grand Plastic Technology Corporation; GPTC)所制作之全自动化高温磷酸湿式蚀刻工艺设备,由于磷酸湿式蚀刻工艺设备是在280~300℃高温下进行,所以必须考虑加热方式,昇降温度之速率控制,因应石英槽体之热应力分析所设计的槽体机械结构,化学蚀刻液补充系统的补充精确度及设备自动化必须能够兼顾人员安全与环保设计等。系统在制作上有七大设计关键,分别详述如下:

I. 安全性设计:符合SEMI-S2, 200认证,人员与上下货区域作分离,可确保操作人员之工作安全,以及将反应废气充分抽离,维持空气之高洁净度。

II. 高产能设计:一次可上货达200片外延片,产能为一般设备的2.75倍。

III. 多槽体设计:具备多组磷酸槽,当1组磷酸槽作工艺蚀刻时,另外1组磷酸槽可同步进行化学品更换与加热,如此可防止因等待化学品更换或加热所造成的时间浪费。IV. 加热与温度控制:在石英槽体外围镀上一层薄膜加热层,此种加热方式可以使得温度均匀分佈于整个槽体,防止因温度梯度所造成芯片的局部热应力,以及蚀刻速率之变异,目前高温磷酸湿式化学蚀刻蓝宝石基板的厚度可精确控制在1.9±0.1μm,蚀刻速率为每秒27.5 ± 0.5 A。

V. 昇降温度之速率控制:具备外延片蚀刻前之预先加热,以及蚀刻候之冷却设计,可避免外延片因急速昇降温度所产生的热冲击破片。

VI. 化学品供应系统:化学液之补充体积的精确度要高。

VII. 外延片自动传送系统:外延片传送可保证连续顺利传送达400 Runs,以确保制造上之良率。

图12、弘塑科技设计制作之高温磷酸湿式蚀刻自动化量产设备。

5、结论

本文已针对蓝宝石基板之高温磷酸湿式蚀刻工艺,以及其工艺设备在设计制作上必须考虑哪些因素,进行详细探讨。由于LED之蓝宝石基板化学湿式蚀刻工艺,可藉由基板表面几何图形之变化,来改变LED的散射机制,或将散射光导引至LED内部,进而由逃逸角锥中穿出,所以成为增加LED光萃取效率的有效技术。目前LED业界特别考虑到如何降低成本与增进产能,并且又要合乎环保与工业安全等需求,可以预见地具备操作自动化与工艺标准化之系统设备,将成为未来LED生产线量产之竞争主力。

6、作者:

许明哲(David Hsu):弘塑科技公司(Grand Plastic Technology Corporation; GPTC )计划主持人,毕业于成功大学材料所。E-mail: david_hsu@https://www.360docs.net/doc/609425453.html,。连络地址:新竹县新竹工业区大同路13号TEL:+886-3-597-2353

Company Website: https://www.360docs.net/doc/609425453.html,

詹印丰(Jesse Chan):弘塑科技公司总经理,从臺湾工业技术学院电子系获得学士学位,并在美国密苏里州立大学哥伦比亚校区获得MSEE。

顏锡鸿(Clyde Yen ):弘塑科技公司副总经理,半导体设备与材料之市场行销规划多年经验。

顏荣伟(Steven Yen):弘塑科技公司产品经理。

余智林(Frank Yu):弘塑科技公司专案经理。

LED常识介绍!

(https://www.360docs.net/doc/609425453.html,/s/blog_6e25ab700100lhei.html

1、LED发光原理:PN结的端电压构成一定势垒,当加正向偏置电压时势垒下降,P区和N 区的多数载流子向对方扩散。由于电子迁移率比空穴迁移率大得多,所以会出现大量电子向P区扩散,构成对P区少数载流子的注入。这些电子与价带上的空穴复合,复合时得到的能量以光能的形式释放出去。这就是PN结发光的原理。

2、LED发光效率:一般称为组件的外部量子效率,其为组件的内部量子效率与组件的取出效率的乘积。所谓组件的内部量子效率,其实就是组件本身的电光转换效率,主要与组件本身的特性(如组件材料的能带、缺陷、杂质)、组件的垒晶组成及结构等相关。而组件的取出效率则指的是组件内部产生的光子,在经过组件本身的吸收、折射、反射后,实际在组件外部可测量到的光子数目。因此,关于取出效率的因素包括了组件材料本身的吸收、组件的几何结构、组件及封装材料的折射率差及组件结构的散射特性等。而组件的内部量子效率与组件的取出效率的乘积,就是整个组件的发光效果,也就是组件的外部量子效率。早期组件发展集中在提高其内部量子效率,主要方法是通过提高垒晶的质量及改变垒晶的结构,使电能不易转换成热能,进而间接提高LED的发光效率,从而可获得70%左右的理论内部量子效率,但是这样的内部量子效率几乎已经接近理论上的极限。在这样的状况下,光靠提高组件的内部量子效率是不可能提高组件的总光量的,因此提高组件的取出效率便成为重要的研究课题。目前的方法主要是:晶粒外型的改变——TIP结构,表面粗化技术。

3、LED热学特性:小电流下,LED温升不明显。若环境温度较高,LED的主波长就会红移,亮度会下降,发光均匀性、一致性变差。尤其点阵、大显示屏的温升对LED的可靠性、稳定性影响更为显著。所以散热设计很关键。

4、LED光学特性:LED提供的是半宽度很大的单色光,由于半导体的能隙随温度的上升而减小,因此它所发射的峰值波长随温度的上升而增长,即光谱红移,温度系数为+2~3A/ 。LED发光亮度L与正向电流近似成比例:,K为比例系数。电流增大,发光亮度也近似增大。另外发光亮度也与环境温度有关,环境温度高时,复合效率下降,发光强度减小。

5、LED电气特性:电流控制型器件,负载特性类似PN结的UI曲线,正向导通电压的极小变化会引起正向电流的很大变化(指数级别),反向漏电流很小,有反向击穿电压。在实际使用中,应选择。LED正向电压随温度升高而变小,具有负温度系数。LED消耗功率,一部分转化为光能,这是我们需要的。剩下的就转化为热能,使结温升高。散发的热量(功率)可表示为。

6、白光LED:类自然光谱白光LED主要有三种:第一种是比较成熟且已商业化的蓝光芯片+黄色荧光粉来获得白光,这种白光成本最低,但是蓝光晶粒发光波长的偏移、强度的变化及荧光粉涂布厚度的改变均会影响白光的均匀度,而且光谱呈带状较窄,色彩不全,色温偏高,显色性偏低,灯光对眼睛不柔和不协调。人眼经过进化最适应的是太阳光,白炽灯的连续光谱是最好的,色温为2500K,显色指数为100。所以这种白光还需要改进,比如加多发光过程来改善光谱,使之连续且足够宽。第二种是紫外光或紫光芯片+红、蓝、绿三基色荧光粉来获得白光,发光原理类似于日光灯,该方法显色性更好,而且UV-LED不参与白光的配色,所以UV-LED波长与强度的波动对于配出的白光而言不会特别地敏感,并可由各色荧光粉的选择和配比,调制出可接受色温及演色性的白光。但同样存在所用荧光粉有效转化效率低,尤其是红色荧光粉的效率需要大幅度提高的问题。这类荧光粉发光稳定性差、光衰较大、配合荧光粉紫外光波长的选择、UV-LED制作的难度及抗UV封装材料的开发也是需要克服的困难。第三种是利用三基色原理将RGB三种超高亮度LED混合成白光,

该方法的优点是不需经过荧光粉的转换而直接配出白光,除了可避免荧光粉转换的损失而得到较佳的发光效率外,更可以分开控制红、绿、蓝光LED的发光强度,达成全彩的变色效果(可变色温),并可由LED波长及强度的选择得到较佳的演色性。但这种办法的问题是绿光的转换效率低,混光困难,驱动电路设计复杂。另外,由于这三种光色都是热源,散热问题更是其它封装形式的3倍,增加了使用上的困难。偏振LED和三波长全彩化的白光LED 将是未来的发展方向。

7、大功率LED封装:主要考虑散热和出光。散热方面,用铜基热衬,再连接到铝基散热器上,晶粒与热衬之间以锡片焊作为连接,这种散热方式效果较好,性价比较高。出光方面,采用芯片倒装技术,并在底面和侧面增加反射面反射出浪费的光能,这样可以获得更多的有消出光。

8、LED寿命:LED的长时间工作会光衰引起老化,尤其对大功率LED来说,光衰问题更加严重。在衡量LED的寿命时,仅仅以灯的损坏来作为LED寿命的终点是远远不够的,应该以LED的光衰减百分比来规定LED的寿命,比如35%,这样更有意义。

LED荧光粉发光原理

https://www.360docs.net/doc/609425453.html,/s/blog_6e25ab700100lhf2.html

原文地址:LED荧光粉发光原理!作者:CHENJIAN_陈建

物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在反回到基态的过程中,以光的形式放出能量。以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光粉。稀土元素原子具有丰富的电子能级,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,从而获得多种发光性能。稀土是一个巨大的发光材料宝库,在人类开发的各种发光材料中,稀土元素发挥着非常重要的作用。

自1973年世界发生能源危机以来,各国纷纷致力于研制节能发光材料,于是利用稀土三基色荧光材料制作荧光灯的研究应运而生。1979年荷兰菲利浦公司首先研制成功,随后投放市场,从此,各种品种规格的稀土三基色荧光灯先后问世。随着人类生活水平的不断提高,彩电已开始向大屏幕和高清晰度方向发展。稀土荧光粉在这些方面显示自己十分优越的性能,从而为人类实现彩电的大屏幕化和高清晰度提供了理想的发光材料。

稀土荧光材料与相应的非稀土荧光材料相比,其发光效率及光色等性能都更胜一筹。因此近几年稀土荧光材料的用途越来越广泛,年用量增长较快。

根据激发源的不同,稀土发光材料可分为光致发光(以紫外光或可见光激发)、阴极射线发光(以电子束激发)、X射线发光(以X射线激发)以及电致发光(以电场激发)材料等。

阴极射线发光材料—显示用荧光粉

主要用于电视机、示波器、雷达和计算机等各类荧光屏和显示器。稀土红色荧光粉(Y2O3∶Eu 和Y2O2S∶Eu)用于彩色电视机荧光屏,使彩电的亮度达到了更高水平。蓝色和绿色荧光粉仍使用非稀土的荧光粉,但La2O2S∶Tb绿色荧光粉发光特性较好,有开发前景。最近彩色电视机统一使用EBU(欧州广播联盟)色,红粉为Y2O2S∶Eu。计算机不象电视机那样重视颜色的再现性,而优先考虑亮度,因而采用橙色更强的红色,Y2O2S中Eu的含量通常为5~7wt%。而彩色电视机红粉中Eu的含量约为计算机的1.5倍。

参考资料:https://www.360docs.net/doc/609425453.html,/soft/zhishi/xtyy9.htm

led芯片知识

LED芯片知识大了解 目录 一 LED芯片基本知识 (2) 1、LED芯片的概念 (2) 2、LED芯片的组成元素 (2) 3、LED芯片的分类 (2) 二 LED衬底材料 (4) 1、LED衬底材料的概念及作用 (4) 2、LED衬底材料的种类 (4) 三 LED外延片 (6) 1、LED外延片生长的概念 (6) 2、LED外延片衬底材料的种类 (6) 3、LED外延片的检测 (6)

一、LED芯片基本知识 1、LED芯片的概念 LED芯片是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的芯片,芯片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个芯片被环氧树脂封装起来。半导体芯片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个P-N 结。当电流通过导线作用于这个芯片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。LED芯片为LED的主要原材料 ,LED主要依靠芯片来发光。 LED芯片是在外延片上的基础上经过下面一系列流 程,最终完成如右图的成品-芯片。 外延片→清洗→镀透明电极层透 (Indium Tin Oxide,ITO)→透明电极图形光刻→腐蚀→去胶→ 平台图形光刻→干法刻蚀→去胶→退火→ SiO2沉积→窗口图形光刻→SiO2腐蚀→去胶→ N极图形光刻→预清洗→镀膜→剥离→退火→ P极图形光刻→镀膜→剥离→研磨→切割→ 芯片→成品测试。图1 外延片成品示意图 2、LED芯片的组成元素 LED芯片的元素主要为III-V族元素,主要有砷(AS)、铝(AL)、镓(Ga、)铟(IN)、磷(P)、氮(N)、锶(Si)这几种元素中的若干种组成。 3、LED芯片的分类 1)按发光亮度分 A、一般亮度:R(红色GaAsP 655nm)、H ( 高红GaP 697nm )、G ( 绿色GaP 565nm )、 Y ( 黄色GaAsP/GaP 585nm )、E(桔色GaAsP/ GaP 635nm )等 B、高亮度:VG(较亮绿色GaP 565nm)、VY(较亮黄色 GaAsP/ GaP 585nm)、 SR(较亮红色GaA/AS 660nm); C、超高亮度:UG﹑UY﹑UR﹑UYS﹑URF﹑UE等 D、不可见光(红外线):R﹑SIR﹑VIR﹑HIR

LED分bin 分类基本知识

人眼對於光的顏色及亮度的解析度非常高,特別是對於顏色的差異和變化非常敏感。圖2-14所示的是人眼對顏色變化的敏感曲線。從圖中可以看出對於不同顏色波長的光人眼的敏感度是不同的。例如,對於波長為585 nm的光,當顏色變化大於1nm時,人眼就可以感覺到。而對於波長為650 nm的紅光,當顏色變化在3nm的時候,人眼才能察覺到。對於波長為465 nm的藍光和525 nm的綠光,人眼的解析度分別為~2 nm和~3nm。 在早期,由於LED主要被作用指示或顯示燈用,而且一般以單個器件出現,所以對於其波長的分選和亮度的控制要求並不高。可是隨著LED的效率和亮度的不斷提高,其應用範圍越來越廣。當LED作為陣列顯示和螢幕元件時,由於人眼對於顏色波長和亮度的敏感性,用沒有分選過的LED就產生了不均勻的現象,就而影響到人們的視覺效果。不論是波長不均勻或是光亮度的不均勻都會給人產生不舒服的感覺。這是各LED顯示器製造廠家不願看到的,也是人們無法接受的。LED的分選不可能將光學、電學特性和壽命及可靠性等所有參數都做,而是按照通常大家所關心的幾個關鍵參數進行分類分選。這些關鍵參數有:主波長、發光強度、光通量、色溫、工作電壓、反向擊穿電壓等。 LED的測試與分選是LED供應商的一項必要的工序。而且目前它是許多LED晶片廠商的產能瓶頸,也是LED晶片成本的一個重要來源。在外延片的均勻度得到控制以前,比較行之有效的方法是解決快速低成本的晶片分選問題。 (1)LED的分選方法: LED的分選有兩種方法進行:一是以晶片為基礎的測試分選,二是對封裝後的LED管子進行分選。 1)以LED管子的形式進行分選: 封裝好的LED管子可以按照波長、發光強度、發光角度以及工作電壓等分類。其結果是把LED分成很多檔次和類別,然後測試分選機會自動地根據設定把LED分裝在不同的Bin內。由於人們對於LED的要求越來越嚴,早期的分選機是32Bin後來增加到64Bin。現在已有72Bin的商用分選機。即使這樣,分Bin的數量仍然無法滿足生產和市場的需求。 LED測試分選機,是在一個特定的電流下,比如20mA,對於LED進行測試。一般還會做一個反向電壓值的測試。現在商業的測試分選機大概在40-50萬人民幣一台,其測試速度在每小時10000只左右。如果按照每月20天,每天20小時的工作時間計算,每一台分選機的產能為每月4KK。 對於LED封裝廠來說,如果他們的客戶是用在大型顯示幕上或是其它高檔應用上,他們對LED的品質就會有較高的要求。特別是在波長與亮度的一致性上的要求會很嚴格。假如LED封裝廠在採購晶片上沒有提出嚴格的要求,則這些封裝廠在做了大量的封裝後會發現,他們還是無法提供足夠多的LED給他們的客戶。因為在他們已封裝好的LED中很少的數量能滿足某一客戶的要求。當封裝廠把他們其中的一少部分提供給其中的一個客戶後,其餘大部分變成為放在倉庫裡的存貨。這種情形迫使LED封裝廠在採購LED晶片時提出嚴格的要求,特別是對波長、亮度和工作電壓的指標。比如,過去人們的波長要求是±2 nm,而現在則要求為±1 nm,甚至在某些應用上,人們已提出±0.5 nm的要求。這樣對於晶片廠就產生了巨大的壓力,因為他們在賣晶片時必須進行嚴格的分選。 2)以晶片的形式分選 相比較封裝好的LED,晶片分選的難度很大,主要的原因是LED的晶片一般都很小,從9mil—14mil(0.22 mm—0.35 mm)的尺寸。這樣小的晶片在抓放的過程中需要比較精確的機械和圖像識別系統,而測試則需要微探針才能夠完成。這使得設備的造價變得較高,而且測試速度受到限制。目前典型的晶片分選測試系統,平均每台在100萬元左右,而每小時的分選數量大約為2000個左右。這使得晶片分選測試的產能每月不到1KK。這與封裝好的LED的分選相比顯

LED知识大全

LED知识大全 led光谱晶片,什么是led晶片? 一、LED晶片的作用: LED晶片为LED的主要原材料,LED主要依靠晶片来发光。 二、LED晶片的组成 主要有砷(AS)铝(AL)镓(Ga)铟(IN)磷(P)氮(N)锶(Si)这几种元素中的若干种组成。 三、LED晶片的分类 1、按发光亮度分: A、一般亮度:R﹑H﹑G﹑Y﹑E等 B、高亮度:VG﹑VY﹑SR等 C、超高亮度:UG﹑UY﹑UR﹑UYS﹑URF﹑UE等 D、不可见光(红外线):R﹑SIR﹑VIR﹑HIR E、红外线接收管:PT F、光电管:PD 2、按组成元素分: A、二元晶片(磷﹑镓):H﹑G等 B、三元晶片(磷﹑镓﹑砷):SR﹑HR﹑UR等 C、四元晶片(磷﹑铝﹑镓﹑铟):SRF﹑HRF﹑URF﹑VY﹑HY﹑UY﹑UYS﹑UE﹑HE、UG 四、LED晶片特性表(详见下表介绍) LED晶片型号发光颜色组成元素波长(nm)晶片型号发光颜色组成元素波长(nm)SBI蓝色lnGaN/sic 430 HY超亮黄色AlGalnP 595 SBK较亮蓝色lnGaN/sic 468 SE高亮桔色GaAsP/GaP 610 DBK较亮蓝色GaunN/Gan 470 HE超亮桔色AlGalnP 620 SGL青绿色lnGaN/sic 502 UE最亮桔色AlGalnP 620 DGL较亮青绿色LnGaN/GaN 505 URF最亮红色AlGalnP 630 DGM较亮青绿色lnGaN 523 E桔色GaAsP/GaP635 PG纯绿GaP 555 R红色GAaAsP 655 SG标准绿GaP 560 SR较亮红色GaA/AS 660 G绿色GaP 565 HR超亮红色GaAlAs 660 VG较亮绿色GaP 565 UR最亮红色GaAlAs 660 UG最亮绿色AIGalnP 574 H高红GaP 697 Y黄色GaAsP/GaP585 HIR红外线GaAlAs 850

LED芯片基础知识的一些要点.doc

LED芯片基础知识的一些要点 一、l ed历史 50年前人们己经了解半导体材料可产生光线的基本知识,1962年,通用电气公司的尼克?何伦亚克(NickHolonyakJr. ) JF发出第一种实际应用的可见光发光二极管。LED是英文lightemittingdiode (发光二极管)的缩写,它的基木结构是一块电致发光的半导体材料,置于一个有引线的架了上,然后四周用环氧树脂密封, 即固体封装,所以能起到保护内部芯线的作用,所以LED的抗震性能好。 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏屮得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国木来是采用长寿命、低光效的140 瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯屮,Lumileds公司采用了 18个红色LED光源,包括电路损失在内,共耗电14 k,即可产生同样的光效。汽车信号灯也是LED光源应用的重要领域。 二、L ED芯片的原理 LED (LightEmittingDiode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占?主导地位,另一端是N型半导体,在这边主要是电了。但这两种半导体连接起来的时候,它们Z间就形成一个“P-N结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。 三、主要芯片厂商 德国的欧司朗,美国的流明、CREE、AXT,台湾的广稼、国联(FPD)、鼎元(TK)、华汕(A0C)、汉光(HL)、艾迪森、光磊(ED),韩国的有首尔,LI本的有口亚、东芝,大陆的有大连路美、福地、三安、杭州士兰明芯、仿U亚等它们都是大家耳熟能详的芯片供应商,下面根据产地细分下o

设计师收藏总结LED芯片知识大全

设计师收藏总结LED芯片知识大全 摘要:50年前人们已经了解半导体材料可产生光线的基本知识,1962年,通用电气公司的尼克何伦亚克(NickHolonyakJr.)开发出第一种实际应用的可见光发光二极管。 LED 芯片知识 一、LED历史50年前人们已经了解半导体材料可产生光线的基本知识,1962年,通用电气公司的尼克何伦亚克(NickHolonyakJr.)开发出第一种实际应用的可见光发光二极管。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料, 置于一个有引线的架子上,然后四周用环氧树脂密封,即固体封装,所以能起到保护内部芯线的作用,所以LED的抗震性能好。最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国本来是采用长寿命、低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds 公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。汽车信号灯也是LED光源应用的重要领域。 二、LED芯片的原理:LED(LightEmittingDiode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成, 一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。 三、LED芯片的分类: 1.MB芯片定义与特点定义:MetalBonding(金属粘着)芯片;该芯片属于UEC的专利产品。特点:(1)采用高散热系数的材料---Si作为衬底,散热容易。ThermalConductivity GaAs:46W/m-K GaP:77W/m-K Si:125~150W/m-K Cupper:300~400W/m-k SiC:490W/m-K (2)通过金属层来接合(waferbonding)磊晶层和衬底,同时反射光子,避免衬底的吸收。(3)导电的Si衬底取代GaAs衬底,具备良好的热传导能力(导热系数相差3~4倍),更适应于高驱动电流领域。(4)底部金属反射层,有利于光度的提升及散热。(5)尺寸可加大,应用于Highpower领域,eg:42milMB。 2.GB芯片定义和特点定义:GlueBonding(粘着结合)芯片;该芯片属于UEC的专利产品。特点:(1)透明的蓝宝石衬底取代吸光的GaAs衬底,其出光功率是传统AS(Absorbable structure) 芯片的2倍以上,蓝宝石衬底类似TS芯片的GaP衬底。(2)芯片四面发光,具有出色的Pattern图。(3)亮度方面,其整体亮度已超过TS芯片的水平(8.6mil)。(4)双电极结构,其耐高电流方面要稍差于TS单电极芯片。 3.TS芯片定义和特点定义:transparentstructure(透明衬底)芯片,该芯片属于HP的专利产品。特点: (1)芯片工艺制作复杂,远高于ASLED。(2)信赖性卓越。(3)透明的GaP衬底,不吸收光,亮度高。(4)应用广泛。 4.AS芯片定义与特点定义:Absorbablestructure(吸收衬底)芯片;经过近四十年的发展努力,台湾LED光电业界对于该类型芯片的研发、生产、销售处于成熟的阶段,各大公司在此方面的研发水平基本处于同一水平,差距不大。大陆芯片制造业起步较晚,其亮度及可靠度与台湾业界还有一定的差距,在这里我们所谈

LED封装基本知识

LED封装基本知识 LED(发光二极管)封装是指发光芯片的封装,相比集成电路封装有较大不同。LED的封装不仅要求能够保护灯芯,而且还要能够透光,所以LED的封装对封装材料有特殊的要求。 封装简介 LED封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而LED封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于LED。 自上世纪九十年代以来,LED芯片及材料制作技术的研发取得多项突破,透明衬底梯形结构、纹理表面结构、芯片倒装结构,商品化的超高亮度(1cd以上)红、橙、黄、绿、蓝的LED产品相继问市,2000年开始在低、中光通量的特殊照明中获得应用。LED的上、中游产业受到前所未有的重视,进一步推动下游的封装技术及产业发展,采用不同封装结构形式与尺寸,不同发光颜色的管芯及其双色、或三色组合方式,可生产出多种系列,品种、规格的产品。 技术原理 大功率LED封装由于结构和工艺复杂,并直接影响到LED的使用性能和寿命,特别是大功率白光LED封装更是研究热点中的热点。

LED封装的功能主要包括:1.机械保护,以提高可靠性;2.加强散热,以降低芯片结温,提高LED性能;3.光学控制,提高出光效率,优化光束分布;4.供电管理,包括交流/直流转变,以及电源控制等。 LED封装方法、材料、结构和工艺的选择主要由芯片结构、光电/机械特性、具体应用和成本等因素决定。经过40多年的发展,LED 封装先后经历了支架式(Lamp LED)、贴片式(SMD LED)、功率型LED(Power LED)等发展阶段。随着芯片功率的增大,特别是固态照明技术发展的需求,对LED封装的光学、热学、电学和机械结构等提出了新的、更高的要求。为了有效地降低封装热阻,提高出光效率,必须采用全新的技术思路来进行封装设计。 关于LED封装结构说明 LED的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高LED的内、外部量子效率。常规Φ5mm型LED封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树脂包封。反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内发射。顶部包封的环氧树脂做成一定形状,有这样几种作

led芯片基础知识

led芯片基础知识 一、led历史 50年前人们已经了解半导体材料可产生光线的基本知识,1962年,通用电气公司的尼克?何伦亚克(Nick HolonyakJr.)开发出第一种实际应用的可见光发光二极管。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,即固体封装,所以能起到保护内部芯线的作用,所以LED的抗震性能好。 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国本来是采用长寿命、低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。汽车信号灯也是LED光源应用的重要领域。 二、LED芯片的原理 LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。 三、主要芯片厂商 德国的欧司朗,美国的流明、CREE、AXT,台湾的广稼、国联(FPD)、鼎元(TK)、华汕(AOC)、汉光(HL)、艾迪森、光磊(ED),韩国的有首尔,日本的有日亚、东芝,大陆的有大连路美、福地、三安、杭州士兰明芯、仿日亚等它们都是大家耳熟能详的芯片供应商,下面根据产地细分下。 台湾LED芯片厂商:晶元光电(Epistar)简称:ES、(联诠、元坤,连勇,国联),广镓光电(Huga),新世纪(Genesis Photonics),华上(Arima OptoELectronics)简称:AOC,泰谷光电(Tekcore),奇力,钜新,光宏,晶发,视创,洲磊,联胜(HPO),汉光(HL),光磊(ED),鼎元(Tyntek)简称:TK,曜富洲技TC,灿圆(FormosaEpitaxy),国通,联鼎,全新光电(VPEC)等。华兴(Ledtech Electronics)、东贝(UnityOptoTechnology)、光鼎(ParaLight Electronics)、亿光(Everlight Electronics)、佰鸿(Bright LED

LED芯片知识大解密

LED芯片知识大解密 1、led芯片的制造流程是怎样的? LED芯片制造主要是为了制造有效可靠的低欧姆接触电极,并能满足可接触材料之间最小的压降及提供焊线的压垫,同时尽可能多地出光。渡膜工艺一般用真空蒸镀方法,其主要在1.33×10?4Pa高真空下,用电阻加热或电子束轰击加热方法使材料熔化,并在低气压下变成金属蒸气沉积在LED照明材料表面。一般所用的P型接触金属包括AuBe、AuZn等合金,N面的接触金属常采用AuGeNi合金。镀膜后形成的合金层还需要通过光刻工艺将发光区尽可能多地露出来,使留下来的合金层能满足有效可靠的低欧姆接触电极及焊线压垫的要求。光刻工序结束后还要通过合金化过程,合金化通常是在H2或N2的保护下进行。合金化的时间和温度通常是根据LED照明材料特性与合金炉形式等因素决定。当然若是蓝绿等芯片电极工艺还要复杂,需增加钝化膜生长、等离子刻蚀工艺等。 2、LED芯片制造工序中,哪些工序对其光电性能有较重要的影响? 一般来说,LED外延生产完成之后她的主要电性能已定型,芯片制造不对其产甞核本性改变,但在镀膜、合金化过程中不恰当的条件会造成一些电参数的不良。比如说合金化温度偏低或偏高都会造成欧姆接触不良,欧姆接触不良是芯片制造中造成正向压降VF偏高的主要原因。在切割后,如果对芯片边缘进行一些腐蚀工艺,对改善芯片的反向漏电会有较好的帮助。这是因为用金刚石砂轮刀片切割后,芯片边缘会残留较多的碎屑粉末,这些如果粘在LED芯片的PN结处就会造成漏电,甚至会有击穿现象。另外,如果芯片表面光刻胶剥离不干净,将会造成正面焊线难与虚焊等情况。如果是背面也会造成压降偏高。在芯片生产过程中通过表面粗化、划成倒梯形结构等办法可以提高光强。 3、LED芯片为什么要分成诸如8mil、9 mil、…,13∽22 mil,40 mil等不同尺寸?尺寸大小对LED光电性能有哪些影响? LED芯片大小根据功率可分为小功率芯片、中功率芯片和大功率芯片。根据客户要求可分为单管级、数码级、点阵级以及装饰照明等类别。至于芯片的具体尺寸大小是根据不同芯片生产厂家的实际生产水平而定,没有具体的要求。只要工艺过关,芯片小可提高单位产出并降低成本,光电性能并不会发生根本变化。芯片的使用电流实际上与流过芯片的电流密度有关,芯片小使用电流小,芯片大使用电流大,它们的单位电流密度基本差不多。如果10mil 芯片的使用电流是20mA的话,那么40mil芯片理论上使用电流可提高16倍,即320mA。但考虑到散热是大电流下的主要问题,所以它的发光效率比小电流低。另一方面,由于面积增大,芯片的体电阻会降低,所以正向导通电压会有所下降。 4、LED大功率芯片一般指多大面积的芯片?为什么? 用于白光的LED大功率芯片一般在市场上可以看到的都在40mil左右,所谓的大功率芯片的使用功率一般是指电功率在1W以上。由于量子效率一般小于20?大部分电能会转换成热能,所以大功率芯片的散热很重要,要求芯片有较大的面积。 5、制造GaN外延材料的芯片工艺和加工设备与GaP、GaAs、InGaAlP相比有哪些不同的要求?为什么? 普通的LED红黄芯片和高亮四元红黄芯片的基板都采用GaP 、GaAs等化合物LED照明材料,一般都可以做成N型衬底。采用湿法工艺进行光刻,最后用金刚砂轮刀片切割成芯片。GaN材料的蓝绿芯片是用的蓝宝石衬底,由于蓝宝石衬底是绝缘的,所以不能作为LED

LED芯片原理分类基础知识大全_百度文库

LED芯片原理分类基础知识大全 一、LED历史 50年前人们已经了解半导体材料可产生光线的基本知识,1962年,通用电气公司的尼 克何伦亚克(NickHolonyakJr.开发出第一种实际应用的可见光发光二极管。LED是英文light emitting diode(发光二极管的缩写,它的基本结构是一块电致发光的半导体材料, 置于一个有引线的架子上,然后四周用环氧树脂密封,即固体封装,所以能起到保护内部芯 线的作用,所以LED的抗震性能好。最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯 为例,在美国本来是采用长寿命、低光效的140瓦白炽灯作为光源,它产生2000流明的白 光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds 公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。汽车 信号灯也是LED光源应用的重要领域。 二、LED芯片的原理 LED(LightEmittingDiode,发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架

上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成, 一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电 子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的 形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。 三、LED芯片的分类 1.MB芯片定义与特点定义:MetalBonding(金属粘着芯片;该芯片属于UEC的专利产品。 特点: (1采用高散热系数的材料---Si作为衬底,散热容易。ThermalConductivity GaAs:46W/m-K GaP:77W/m-KSi:125~150W/m-K Cupper:300~400W/m-k SiC:490W/m-K (2通过金属层来接合(waferbonding磊晶层和衬底,同时反射光子,避免衬底的吸收。 (3导电的Si衬底取代GaAs衬底,具备良好的热传导能力(导热系数相差3~4倍,更适应于高驱动电流领域。 (4底部金属反射层,有利于光度的提升及散热。 (5尺寸可加大,应用于Highpower领域,eg:42milMB。 2.GB芯片定义和特点定义:GlueBonding(粘着结合芯片;该芯片属于UEC的专利产品。

LED芯片知识

LED芯片知识 一、LED历史 50年前人们已经了解半导体材料可产生光线的基本知识,1962年,通用电气公司的尼克?何伦亚克(NickHolonyakJr.)开发出第一种实际应用的可见光发光二极管。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,即固体封装,所以能起到保护内部芯线的作用,所以LED的抗震性能好。 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国本来是采用长寿命、低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds 公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。汽车信号灯也是LED光源应用的重要领域。 二、LED芯片的原理: LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。 三、LED芯片的分类: 1.MB芯片定义与特点 定义:Metal Bonding(金属粘着)芯片;该芯片属于UEC的专利产品。 特点: (1)采用高散热系数的材料---Si作为衬底,散热容易。 Thermal Conductivity GaAs: 46W/m-K GaP: 77W/m-K Si: 125~150W/m-K Cupper:300~400W/m-k SiC: 490W/m-K (2)通过金属层来接合(wafer bonding)磊晶层和衬底,同时反射光子,避免衬底的吸收。(3)导电的Si衬底取代GaAs衬底,具备良好的热传导能力(导热系数相差3~4倍),更适应于高驱动电流领域。 (4)底部金属反射层,有利于光度的提升及散热。

LED灯珠的基础知识

LED灯珠常识 什么是LED: LED是英文light emittingdiode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,加上合适的电 压就能正常发光。 LED光源的特点: 1.电压:LED使用低压电源,供电电压在1.8-3.6V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2.效能:消耗能量较同光效的白炽灯减少80% 3.稳定性:理论上可以点亮10万小时。 4.光衰:随着科技的进步,光衰越来越小。现在普通LED灯在一千小时以内的光衰已经可以真正控制在5%以内,即使超过一千小时以后,光衰也很小。 5.环保:无辐射,无污染,真真正正的环保材料。出口时LED产品一般免检 LED芯片的尺寸常识: 按外形分类,芯片一般分为圆片和方片。其中圆片相对较低档,性能不够稳定,我司一般不采用圆片生产的LED;方片一般以尺寸大小来衡量,比如12mil (1 mil=0.0254平方毫米)。一般来说,同一品牌的芯片,芯片尺寸越大,亮度越高。我司最常采用的LED灯珠,红光和黄光一般在9~12mil,白,蓝,绿光一般都在12~14mil,这也是市面上最常用的芯片,如果用更大的芯片,亮度虽然可以提高不少,但是芯片价格大幅度提高,这就是为什么大尺寸芯片很少有人采用的原因。 LED灯珠常识 LED的颜色常识:LED灯珠常识 LED的不同颜色是由其不同波长的芯片决定的,比如,红光芯片一般波长是620~630nm (纳米),绿光芯片一般波长是527nm,蓝光芯片的一般波长是470nm, 黄光芯片的一般波长是585nm,白光LED用的也是蓝光芯片,只是在蓝光芯片上加上适量的的荧光粉就发出白光了。 LED灯珠常识 LED的分类:LED灯珠常识 按功率大小分:可分为小功率,大功率(行业上一般把0.5W以上的灯叫做大功率灯)按外形分:可分为直插式DIP和贴片式SMD 草帽LED又可以按灯头的尺寸细分为F3(灯头的直径是3mm),F5(灯头的直径是5mm);或按灯头的形状细分为无边,薄边,厚边,圆头;按灯头透明与否可分为透明,雾状。。。。。。。更多细分方法不尽列举,以上所列仅以我司经常采用为依据。 食人鱼LED同样可以按灯头的尺寸分为F3,F5,按灯头的形状分为圆头(即最常见的食人鱼灯),平头(这种形头很特殊,其发光角度接近180度,一般用在需要散光的场合)。 LED灯珠常识 LED灯珠常识 小功率贴片式LED按外形尺寸可以分为0805,1206,3020,3528,5050或5060(5050与5060

解析LED倒装芯片知识

360度解析LED倒装芯片知识 什么是LED倒装芯片?近年来,在芯片领域,倒装芯片技术正异军突起,特别是在大功率、户外照明的应用市场上更受欢迎。但由于发展较晚,很多人不知道什么叫LED倒装芯片,LED倒装芯片的优点是什么?今天慧聪LED屏网编辑就为你做一个简单的说明。先从LED 正装芯片为您讲解LED倒装芯片,以及LED倒装芯片的优势和普及难点。 要了解LED倒装芯片,先要了解什么是LED正装芯片 LED正装芯片是最早出现的芯片结构,也是小功率芯片中普遍使用的芯片结构。该结构,电极在上方,从上至下材料为:P-GaN,发光层,N-GaN,衬底。所以,相对倒装来说就是正装。 LED倒装芯片和症状芯片图解 为了避免正装芯片中因电极挤占发光面积从而影响发光效率,芯片研发人员设计了倒装结构,即把正装芯片倒置,使发光层激发出的光直接从电极的另一面发出(衬底最终被剥去,芯片材料是透明的),同时,针对倒装设计出方便LED封装厂焊线的结构,从而,整个芯片称为倒装芯片(Flip Chip),该结构在大功率芯片较多用到。

正装、倒装、垂直LED芯片结构三大流派 倒装技术并不是一个新的技术,其实很早之前就存在了。倒装技术不光用在LED行业,在其他半导体行业里也有用到。目前LED芯片封装技术已经形成几个流派,不同的技术对应不同的应用,都有其独特之处。 目前LED芯片结构主要有三种流派,最常见的是正装结构,还有垂直结构和倒装结构。正装结构由于p,n电极在LED同一侧,容易出现电流拥挤现象,而且热阻较高,而垂直结构则可以很好的解决这两个问题,可以达到很高的电流密度和均匀度。未来灯具成本的降低除了材料成本,功率做大减少LED颗数显得尤为重要,垂直结构能够很好的满足这样的需求。这也导致垂直结构通常用于大功率LED应用领域,而正装技术一般应用于中小功率LED。而倒装技术也可以细分为两类,一类是在蓝宝石芯片基础上倒装,蓝宝石衬底保留,利于散热,但是电流密度提升并不明显;另一类是倒装结构并剥离了衬底材料,可以大幅度提升电流密度。 LED倒装芯片的优点 一是没有通过蓝宝石散热,可通大电流使用;二是尺寸可以做到更小,光学更容易匹配;三是散热功能的提升,使芯片的寿命得到了提升;四是抗静电能力的提升;五是为后续封装工艺发展打下基础。 什么是LED倒装芯片 据了解,倒装芯片之所以被称为“倒装”是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过金属线键合与基板连接的晶片电气面朝上,而倒装晶片的电气面朝下,相当于将前者翻转过来,故称其为“倒装芯片”。

LED知识学习资料

LED灯(Light Emitting Diode)又叫发光二极管,它是一种固态的半导体器件,可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由三部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子,中间通常是1至5个周期的量子阱。当电流通过导线作用于这个晶片的时候,电子和空穴就会被推向量子阱,在量子阱内电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。 LED灯具有体积小、耗电低、寿命长、无毒环保等诸多优点,LED灯具从室外装饰,工程照明,逐渐发展到家用照明。 台湾、大陆、国外芯片厂名单总汇 台湾LED芯片厂商:晶元光电(Epistar)简称:ES、(联诠、元坤,连勇,国联),广镓光电(Huga),新世纪(Genesis Photonics),华上(Arima Optoelectronics)简称:AOC,泰谷光电(Tekcore),奇力,钜新,光宏,晶发,视创,洲磊,联胜(HPO),汉光(HL),光磊(ED),鼎元(Tyntek)简称:TK,曜富洲技TC,燦圆(Formosa Epitaxy),国通,联鼎,全新光电(VPEC)等。 华兴(Ledtech Electronics)、东贝(Unity Opto Technology)、光鼎(Para Light Electronics)、亿光(Everlight Electronics)、佰鸿(Bright LED Electronics)、今台(Kingbright)、菱生精密(Lingsen Precision Industries)、立基(Ligitek Electronics)、光宝(Lite-On Technology)、宏齐(HARVATEK)等。 大陆LED芯片厂商:三安光电简称(S)、上海蓝光(Epilight)简称(E)、士兰明芯(SL)、大连路美简称(LM)、迪源光电、华灿光电、南昌欣磊、上海金桥大晨、河北立德、河北汇能、深圳奥伦德、深圳世纪晶源、广州普光、扬州华夏集成、甘肃新天电公司、东莞福地电子材料、清芯光电、晶能光电、中微光电子、乾照光电、晶达光电、深圳方大,山东华光、上海蓝宝等。国外LED芯片厂商:CREE,惠普(HP),日亚化学(Nichia),丰田合成,大洋日酸,东芝、昭和电工(SDK),Lumileds,旭明(Smileds),Genelite,欧司朗(Osram),GeLcore,首尔半导体等,普瑞,韩国安萤(Epivalley)等。 1,CREE 著名LED芯片制造商,美国CREE公司,产品以碳化硅(SiC),氮化镓(GaN),硅(Si)及相关的化合物为基础,包括蓝,绿,紫外发光二极管(LED),近紫外激光,射频(RF)及微波器件,功率开关器件及适用于生产及科研的碳化硅(SiC)外延片。 2,OSRAM OSRAM是世界第二大光电半导体制造商,产品有照明,传感器,和影像处理器。公司总部位于德国,研发和制造基地在马来西亚,约有3400名员工,2004年销售额为45.9亿欧元。 OSRAM最出名的产品是LED,长度仅几个毫米,有多种颜色,低功耗,寿命长 3,NICHIA 日亚化学,著名LED芯片制造商,日本公司,成立于1956年,开发出世界第一颗蓝色LED(1993年),世界第一颗纯绿LED(1995年),在世界各地建有子公司。 4,ToyodaGosei ToyodaGosei丰田合成,总部位于日本爱知,生产汽车部件和LED,LED约占收入10%, 丰田合成与东芝所共同开发的白光LED,是采用紫外光LED与萤光体组合的方式,与一般蓝光LED与萤光体组合的方式不同。 5,Agilent 作为世界领先的LED供应商,其产品为汽车、电子信息板及交通讯号灯、工业设备、蜂窝电话及消费产品等为数众多的产品提供高效、可靠的光源。这些元件的高可靠性通常可保证在设备使用寿命期间不用再更换光源。安捷伦低成本的点阵LED显示器、品种繁多的七段码显示

LED芯片知识大全:分类,制造,参数(精)

LED 芯片知识大全:分类,制造,参数我们在买灯具的时候,经常会听说LED 芯片,那么,LED 芯片究竟是什么呢?下面就带着大家了解下。 LED 芯片也称为led 发光芯片,是led 灯的核心组件,也就是指的P-N 结。其主要功能是:把电能转化为光能,芯片的主要材料为单晶硅。 半导体晶片由两部分组成,一部分是P 型半导体,在它里面空穴占主导地位,另一端是N 型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个P-N 结。 当电流通过导线作用于这个晶片的时候,电子就会被推向P 区,在P 区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED 发光的原理。而光的波长也就是光的颜色,是由形成P-N 结的材料决定的。 分类 用途:根据用途分为大功率led 芯片、小功率led 芯片两种; 颜色:主要分为三种:红色、绿色、蓝色(制作白光的原料); 形状:一般分为方片、圆片两种; 大小:小功率的芯片一般分为8mil 、9mil 、12mil 、14mil 等 片尺寸 大功率LED 芯片有尺寸为38*38mil,40*40mil,45*45mil等三种当然芯片尺寸是可以订制的,这只是一般常见的规格。mil 是尺寸单位,一个mil 是千分之一英寸。40mil 差不多是1毫米。38mil ,40mil ,45mil 都是1W 大功率芯片的常用尺寸规格。

理论上来说,芯片越大,能承受的电流及功率就越大。不过芯片材质及制程也是影响芯片功率大小的主要因素。例如CREE40mil 的芯片能承受1W 到3W 的功率,其他厂牌同样大小的芯片,最多能承受到2W 。 发光亮度 一般亮度:R(红色GaAsP655nm 、H(高红GaP697nm 、G(绿色GaP565nm 、Y(黄色GaAsP/GaP585nm、E(桔色GaAsP/GaP635nm等; 高亮度:VG(较亮绿色GaP565nm 、VY(较亮黄色GaAsP/GaP585nm、SR(较亮红色GaA/AS660nm; 超高亮度:UG ﹑UY ﹑UR ﹑UYS ﹑URF ﹑UE 等。 二元晶片(磷﹑镓:H ﹑G 等; 三元晶片(磷﹑镓﹑砷:SR(较亮红色GaA/AS660nm、HR(超亮红色 GaAlAs660nm 、UR(最亮红色GaAlAs660nm 等; 四元晶片(磷﹑铝﹑镓﹑铟:SRF(较亮红色AlGalnP 、HRF(超亮红色AlGalnP 、URF(最亮红色AlGalnP630nm 、VY(较亮黄色GaAsP/GaP585nm、 HY(超亮黄色AlGalnP595nm 、UY(最亮黄色AlGalnP595nm 、UYS(最亮黄色AlGalnP587nm 、UE(最亮桔色 AlGalnP620nm 、HE(超亮桔色AlGalnP620nm 、UG(最亮绿色 AIGalnP574nmLED 等。 衬底 对于制作LED 芯片来说,衬底材料的选用是首要考虑的问题。应该采用哪种合适的衬底,需要根据设备和LED 器件的要求进行选择。三种衬底材料:蓝宝石(Al2O3)、硅(Si )、碳化硅(SiC )。

LED芯片的发光原理与分类

LED芯片的发光原理与分类 一、LED历史 50年前人们已经了解半导体材料可产生光线的基本知识,1962年,通用电气公司的尼克何伦亚克(NickHolonyakJr.)开发出第一种实际应用的可见光发光二极管。LED是英文light emitTIng diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,即固体封装,所以能起到保护内部芯线的作用,所以LED的抗震性能好。 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国本来是采用长寿命、低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds 公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。汽车信号灯也是LED光源应用的重要领域。 二、LED芯片原理 LED(Light EmitTIng Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个P-N结。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。

相关主题
相关文档
最新文档