性能与便携完美平衡ThinkPadT440评测_IT168

性能与便携完美平衡ThinkPadT440评测_IT168
性能与便携完美平衡ThinkPadT440评测_IT168

【IT168 评测】今天为大家介绍的是ThinkPad T440商务超极本,尽管从名称上看是ThinkPad T430的升级版,但实

际上,T430的升级版应该是T440p,因为他们同为笔记本,而T440已经演化为超极本,是T系列的新成员,拥有更为轻薄的机身,更符合时下主流用户对笔记本的要求。

作为经典商务系列的一员,ThinkPad T440在继承ThinkPad优秀DNA的同时也进行了不少改进,特别是对于比较传统的T4X0系列来说,T440这个型号首次定位于超极本,首次引入下沉式转轴,首次取消扩展坞插槽,首次取消光驱,首次使用一体式触

摸板……

既然T440是一款超极本,它在硬件部分也要符合超极本标准,所以它没有像T420、T430那样配备标准电压处理器,而是选择第四代英特尔智能酷睿i7-4500U低功耗处理器,其功耗仅为15W,集成有芯片组的功能,是一颗高度融合型CPU,在保证性能的同时将整机功耗降低了至少20W,在机身大幅缩减的同时可以提供更长的电池使用时间。

与此同时T440配备指纹识别,支持APS硬盘防护,通过了抗冲击、防潮、防尘、抗震、耐高温和耐低温等8项严苛的军标测试,虽然舍弃了许多经典设计,加入了不少创新元素,但其整体品质在主流笔记本电脑中依然处于较高的地位,在同类型产品中依然

具有较强的竞争力,只是9999元的售价确实略微偏高。

▲点击查看详情

永恒不变的黑色机身 搭载一体式触控板

2个USB接口略少 底部扩展坞接口被取消

硬件性能主流 1TB硬盘存储空间充足

◆硬件配置

ThinkPad T440拥有多种硬件配置,此次测试的为搭载第四代英特尔智能酷睿i7-4500U处理器、8GB内存、16GB SSD+1TB 7200转HDD、GT 720M独显的版本,其硬件性能主流,完全满足日常影音娱乐的需求,1TB硬盘提供了充足的存储空间,GT 720M独显较配备核芯显卡带来更强的图形处理能力。

◆电池使用时间

▲MobileMark 2012

ThinkPad T440采用双电池设计,除了可拆卸的24Wh锂离子聚合物电池以外,其机身内部还集成了另一块24Wh锂离子聚合物电池,它的MobileMark 2012办公模式成绩为368分钟(6小时08分钟)。

◆机身表面温度

ThinkPad T440在经过了30分钟拷机测试以后,其键盘面没有明显热量堆积,整体处于较为清凉的状态。

▲机身底面温度分布

转向机身底面,ThinkPad T440在核芯部件附近开设有散热孔,从上面的图片可以看到这些区域温度较高,日常使用过程中要尽量不要放在柔软的物体表面,避免堵塞底部散热孔影响散热效果。

总结:

升级超极本以后,ThinkPad T440较传统14寸商务笔记本轻薄了30%,T系列原有的许多经典元素已经被新的设计所取代,尽管看上去ThinkPad T440和老一辈产品完全不同,但在使用方面,T440保持了T系列合理的设计与舒适的使用体验,在同类型产品

中依然具有较强的竞争力。

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

飞机飞行性能-稳定和操纵

2.4 飞机的飞行性能、稳定与操纵 2.4.1 机体坐标轴系 研究飞机的飞行性能、稳定与操纵原理的时候,为了描述飞机的空间位置、速度、加速度、力和力矩等向量时,须采用相应的坐标系。常用的坐标系有:地面坐标轴系、机体坐标轴系、气流坐标轴系、航迹坐标轴系、半机体坐标轴系、稳定坐标轴系等。这些坐标系都是三维正交右手系。为研究问题的方便,在讨论飞机的操稳特性时,我们选用机体坐标轴系作为参考坐标系。 图 2.4.1 机体 坐标轴系 机体坐标轴系(Oxyz)是固定在飞机上的坐标轴系,其原点O位于飞机的质心,纵轴x位于飞机参考面(对称面)内指向前方且平行于机身轴线(或翼根弦线),横轴y垂直于飞机参考面指向右方,竖轴z在飞机参考面内垂直于纵轴指向下方,如图2.4.1所示。 飞机绕机体横轴oy的转动(称为俯仰运动)以及沿纵轴ox和竖轴oz的移动,是发生在飞机对称面内的运动,通常称为纵向运动;而飞机绕机体纵轴ox 的转动(称为滚转运动)和沿横轴oy的移动,是发生在飞机横截面内的运动,称为横向运动;飞机绕竖轴oz的转动(称为偏航运动)称为方向运动。

2.4.2飞机的飞行性能和机动飞行 讨论飞机的飞行性能时,将飞机作为一个质点,其上所受到的力有:重力G、动力装置的推力T、升力L和阻力D,如图2.4.2所示。在等速直线飞行时,这些力是平衡的。图中为航迹速度与水平面的夹角,称为爬升角。当航迹速度 位于过原点的水平面之上时,为正。为发动安装角,为飞行迎角。发动安装角通常很小,近似认为=0。 飞机等速直线飞行的轨迹不外有3种情况:等速直线爬升(>0)、等速直线平飞(=0)和等速直线下滑(<0)。这3种典型等速直线运动的飞行性能分别称为爬升(或上升)性能、平飞性能和下滑性能。 图2.4.2 作用在飞机上的力图2.4.3 爬升率 飞机有各种飞行状态(如起飞/着陆、等速上升/下降、上升/下降转弯、巡航、机动飞行等),概括起来可将飞机的飞行性能分为类:(1) 等速直线飞行性能(基本飞行性能),(2) 续航性能,(3) 起飞着陆性能,(4) 机动飞行性能。下面分别予以简要介绍。 等速直线飞行性能 在等速直线飞行时,飞行迎角较小,近似认为=0。 水平等速直线飞行性能保持飞机等速直线平飞的条件是:动力装置提供的推力等于飞机的迎面阻力,飞机的升力等于飞机的重量。这其中认为发动机安装角及迎角α都很小。在图2.4.2中令=0,则有

高分辨率手机镜头的光学设计与性能仿真文献综述

文献综述 题目_高分辨率手机镜头的 光学设计与性能仿真 学生姓名洪鑫 专业班级电子科技13-01 学号541311010111 院(系)物理电子工程学院 指导教师(职称)运高谦(讲师) 完成时间2017年5月30日

高分辨率手机镜头的光学设计与性能仿真 摘要:手机的数码相机功能指的是手机是否可以通过内置或是外接的数码相机进行拍摄静态图片或短片拍摄,作为手机的一项新的附加功能,手机的数码相机功能得到了迅速的发展。针对目前国内高像素手机镜头的快速发展,本文对整个手机镜头发展历史与现状以及发展趋势,设备原理及其制造材料加以了阐述。 关键字:手机镜头/发展/原理/未来 1.手机镜头的历史背景 手机拍照功能的日益发展带动了整个手机镜头产业的进步,作为手机产业中重要的一环,手机的拍照功能的竞争己经到了一个白热化的阶段,这就带动了手机镜头产业的飞速发展,市场规模和需求不断增大,手机对传感器的需求量,已经超过电子产品的整个市场,成为最大。 前几年,全球的手机出货量达到惊人的百亿部,这种格局的改变带动了整个产业的火热度,从而提升整体的业界水平。智能手机的高清晰度及其功能效果更能在同类行业里形成明显的价格优势,加上三星、苹果等大企业在各自品牌上,对拍照功能的优势进行品牌效应的手段,更使得手机镜头行的发展得到长足的进步。 镜头行业的高速发展,究其原因,其一源于移动终端的高速发展。平板电脑与智能手机目前的发展潜力非常大,成长最快,并且搭载了双镜头的模式。随着人生活水平的提高,加上3G/4G业务的广泛应用这种双镜头模式的技术提升,也是未来终端镜头技术发展的重点;其二,高像素手机的使用比例步步攀升,这种使用比例的迅速提高,促使镜头市场的规模也不断的增加,从iphone4搭载了500万像素的镜头开始以后快速发展指到现在普遍手机都会有1300万像素的手机镜头最高可达5000万像素以上。 近几年来,计算机自动控制技术得到广泛的发展与应用,镀膜技术,高精密数控加工技术的单点金刚石加工技术,新型材料的研发与使用,非球面技术的研

§9.4 光学传递函数评价成像质量

§9.4 光学传递函数评价成像质量 上面介绍的几种光学系统成像质量的评价方法,都是基于把物体看作是发光点的集合,并以一点成像时的能量集中程度来表征光学系统的成像质量的。利用光学传递函数来评价光学系统的成像质量,是基于把物体看作是由各种频率的谱组成的,也就是把物体的光场分布函数展开成傅里叶级数(物函数为周期函数)或傅里叶积分(物函数为非周期函数)的形式。若把光学系统看成是线性不变的系统,那么物体经光学系统成像,可视为不降,相位要发生推移,并在某一频率处截止,即对比度为零。这种对比度的降低和相位推移是随频率不同而不同的,其函数关系我们称之为光学传递函数。由于光学传递函数既与光学系统的像差有关,又与光学系统的衍射效果有关,故用它来评价光学系统的成像质量,具有客观和可靠的优点,并能同时运用于小像差光学系统和大像差光学系统。 光学传递函数是反映物体不同频率成分的传递能力的。一般来说,高频部分是反映物体的细节传递情况,中频部分是反映物体的层次传递情况,而低频部分则是反映物体的轮廓传递情况。而表明各种频率传递情况的则是调制传递函数(MTF),因此下面来简要介绍二统传递后,其传递效果是频率不变,但其对比度下种利用调制传递函数来评价光学系统成像质量的方法。 一、利用MTF曲线来评价成像质量 所谓MTF是表示各种不同频率的正弦强度分布函数径光学系统成像后,其对比度(即振幅)的衰减程度。当某一频率的对比度下降到零时,说明该频率的光强分布已无亮度变化,即该频率被截止。这是利用光学传递函数来评价光学系统成像质量的主要方法。 设有二个光学系统(Ⅰ和Ⅱ)的设计结果,它们的MTF曲线如图9-3所示,图中的调制传递函数MTF曲线为频率n的函数。曲线Ⅰ的截止频率较曲线Ⅱ小,但曲线Ⅰ在低频部分的值较曲线Ⅱ大得多。对这二种光学系统的设计结果,我们不能轻易说哪种设计结果较好,这要根据光学系统的实际使用要求来判断。若把光学系统作为目视系统来应用,由于人眼的对比度阀值大约为0.03左右,因此MTF曲线下降到0.03时, 曲线Ⅱ的MTF值大于曲线Ⅰ, 如图9-3中的虚线所示,说明光学系统Ⅱ用作目视系统较光学系统Ⅰ有较高的分辨率。若把光学系统作为摄影系统来使用,其MTF值要大于0.1,从图9-3中可看出,曲线Ⅰ的MTF 值要大于曲线Ⅱ,即光学系统Ⅰ较光学系统Ⅱ有较高的分辨率。且光学系统Ⅰ在低频部分有较高的对比度,用光学系统Ⅰ作摄影使用时,能拍摄出层次丰富,真实感强的对比图像。所以在实际评价成像质量时,不同的使用目的,其MTF的要求是不一样的。 二、利用MTF曲线的积分值来评价成像质量 上述方法虽然能评价光学系统的成像质量,但只能反映MTF曲线上的少数几个点处的情况,而没有反映MTF曲线的整体性质。从理论上可以证明,像点的中心点亮度值等于MTF曲线所围的面积,MTF所围的面积越大,表明光学系统所传递的信息量越多,光学系统的成像质量越好,图像越清晰。因此在光学系统的接收器截止频率范围内,利用MTF 曲线所围面积的大小来评价光学系统的成像质量是非常有效的。 在一定的截止频率范围内,只有获得较大的MTF值,光学系统才能传递较多的信息。

《飞行性能与计划》习题汇总

《飞行性能与计划》 题型:1、名词解释2、单选题3、多选题4、判断题5、简答题6、查图计算题 第一章 一、名词解释 气动效率-飞行马赫数与飞机升阻比的乘积,高速飞行时,常常使用气动效率来衡量飞机气动性能的好坏。低速时常用升阻比。 二、掌握以下结论 2、国际标准大气海平面标准温度和平流层的标准温度分别为多少? 国际标准大气海平面标准温度为15℃,气压高度37000英尺处的标准温度为-56.5℃。 3、非标准大气如何表示成ISA偏差的形式? 场气压高度1500ft,气温30℃,则温度可以表示为ISA+18℃。气压高度3000英尺处的气温为20℃,则该大气温度可表示为ISA+ ? 11℃。 第二章 一、名词解释 1、中断起飞距离(教材P29):是指飞机从0开始加速滑跑到一台发动机停车,飞行员判断并采用相应的制动程序使飞机完全停下来所需的距离 2、空中最小操纵速度(教材P18):指在飞行中在该速度关键发动机突然停车和继续保持停车的情况下,使用正常的操纵技能,能保持向可工作发动机一侧的坡度不大于5度的直线飞行,为保持操纵的方向舵蹬力不超过150磅,也不得用减小工作发动机推力的方法来维持方向控制。 3、起飞平衡速度(教材P36):在同一起飞重量下的中断起飞所需距离与继续起飞所需距离的两条曲线的交点所对应的速度,在此速度下,中断起飞距离与继续起飞距离相等。 4、继续起飞最小速度(教材P35):是指如果发动机在此速度上停车,飞行员采用继续起飞标准程序,可以使飞机在净空道外侧完成起飞场道阶段的最小速度。 5、起飞决断速度(教材P19):指飞机在此速度上被判定关键发动机停车等故障时,飞行员可以安全地继续起飞或中断起飞,中断起飞的距离和继续起飞的距离都不会超过可用的起飞距离。 6、净空道(教材P22):是指在跑道头的一段宽度不小于500尺,其中心线是跑道中心延长线,并受机场相关管制的区域。 7、污染道面(教材P65):湿滑道面或跑道上有积水积冰积雪以及其他沉积物的跑道统称污染道面 二、掌握以下结论 11)中断起飞中,开始执行中断程序的最迟速度为V1。 2)使用假设温度法减推力起飞,假设温度与当前实际温度的关系是前者比后者高

《飞行性能与计划》综合复习提纲

《飞行性能与计划》复习要点 题型:1、名词解释2、单选题3、多选题4、判断题5、简答题6、查图计算题 第一章 一、名词解释 气动效率-飞行马赫数与飞机升阻比的乘积,高速飞行时,常常使用气动效率来衡量飞机气动性能的好坏。低速时常用升阻比。 二、掌握以下结论 2、国际标准大气海平面标准温度和平流层的标准温度分别为多少? 国际标准大气海平面标准温度为15℃,气压高度37000英尺处的标准温度为-56.5℃。 3、非标准大气如何表示成ISA偏差的形式? 场气压高度1500ft,气温30℃,则温度可以表示为ISA+18℃。气压高度3000英尺处的气温为20℃,则该大气温度可表示为ISA+ ? 11℃。 第二章 一、名词解释 1、中断起飞距离(教材P29):是指飞机从0开始加速滑跑到一台发动机停车,飞行员判断并采用相应的制动程序使飞机完全停下来所需的距离 2、空中最小操纵速度(教材P18):指在飞行中在该速度关键发动机突然停车和继续保持停车的情况下,使用正常的操纵技能,能保持向可工作发动机一侧的坡度不大于5度的直线飞行,为保持操纵的方向舵蹬力不超过150磅,也不得用减小工作发动机推力的方法来维持方向控制。 3、起飞平衡速度(教材P36):在同一起飞重量下的中断起飞所需距离与继续起飞所需距离的两条曲线的交点所对应的速度,在此速度下,中断起飞距离与继续起飞距离相等。 4、继续起飞最小速度(教材P35):是指如果发动机在此速度上停车,飞行员采用继续起飞标准程序,可以使飞机在净空道外侧完成起飞场道阶段的最小速度。 5、起飞决断速度(教材P19):指飞机在此速度上被判定关键发动机停车等故障时,飞行员可以安全地继续起飞或中断起飞,中断起飞的距离和继续起飞的距离都不会超过可用的起飞距离。 6、净空道(教材P22):是指在跑道头的一段宽度不小于500尺,其中心线是跑道中心延长线,并受机场相关管制的区域。 7、污染道面(教材P65):湿滑道面或跑道上有积水积冰积雪以及其他沉积物的跑道统称污染道面 二、掌握以下结论 11)中断起飞中,开始执行中断程序的最迟速度为V1。 2)使用假设温度法减推力起飞,假设温度与当前实际温度的关系是前者比后者高 3)在起飞航道阶段,FAR要求起飞净航迹需高于障碍物35英尺。

光学镜头基本知识

光學镜头基本知識 第一章光線的傳播 一﹑光在真空中是沿直線傳播的 光在真空中(均勻介質中)是沿直線傳播的﹐但是由於在我們的真實空間中﹐光並不能做到這一點﹐這是因為空氣。在我們的空氣中﹐有存在著各式各樣的雜物﹐粉塵﹐水霧等。由於這些東西的存在﹐光在直線傳播的過程中﹐碰到這些東西﹐就會產生反射﹐折射。而﹐粉塵表面並不光滑﹐光照射到這粉塵面上的時候便會往各個方向反射﹐這邊形成了漫反射。正是由於漫反射的存在﹐這便能使我們能感覺到光﹐能看到東西。 二﹑光的反射﹑透射﹑折射 光在大氣中傳輸總不能按著直線傳輸﹐光在碰到不透光的物質時會發生反射﹐光碰到透光的物質時會發生透射﹐折射。入射光線﹐反射光線﹐折射光線﹐在同一個平面上﹐即三線共面。 2.1 光的反射 光在傳輸過程中是遵守反射定理的。 反射定理﹕ 入射角等於反射角。 入射角定義為﹕入射光線和法線組成的夾角 反射角定義為﹕反射光線和法線組成的夾角 法線﹕法線就是垂直於入射面的線。法線是一條虛構的線﹐並不是事實存在的。 2.2 光的透射和折射 有些物質是透光的﹐光可以穿透這些物質﹐這便是光的透射。 每種不同材質的東西都有著不同的透過率﹐光在這些物質中穿透的時候總會有著能量的損失。入射光線的強度與出射光線的強度的比值為這一材質的透過率。 所謂光線的折射就是指光線在進行傳輸的過程中從一種介質進入另一種介質的時候﹐不會沿直線傳播﹐而是有了一定角度的彎折。這便是光線的折射。 通常在大氣中我們認定其折射率為1。 折射定律被描述為﹕入射角的正弦与折射角的正弦之比為常數﹐它等于折射線所處介質的折射率n`与入射線所處介質的折射率n之比。 通常折射率較大的介質稱為光密介質﹐折射率較小的介質稱為光疏介質。若入射光在光密介質﹐這時折射角總大于入射角﹐折射角隨著入射角增大而增大﹐最大使折射角為90度﹐這時sini`=1﹐若入射角再增大﹐將發生全反射。 自然界有很多全反射現象﹕海市蜃樓﹑沙漠幻影﹑等。

光学镜头的选择及主要参数

光学镜头的选择及主要参数 发布者:pomeas 浏览次数:13 摄像头镜头是视频监视系统的最关键设备,它的质量(指标)优劣直接影响摄像头的整机指标,因此,摄像头镜头的选择是否恰当既关系到系统质量,又关系到工程造价。 镜头相当于人眼的晶状体,如果没有晶状体,人眼看不到任何物体;如果没有镜头,那么摄像头所输出的图像就是白茫茫的一片,没有清晰的图像输出,这与我们家用摄像头和照相机的原理是一致的。当人眼的肌肉无法将晶状体拉伸至正常位置时,也就是人们常说的近视眼,眼前的景物就变得模糊不清;摄像头与镜头的配合也有类似现象,当图像变得不清楚时,可以调整摄像头的后焦点,改变CCD芯片与镜头基准面的距离(相当于调整人眼晶状体的位置),可以将模糊的图像变得清晰。由此可见,镜头在闭路监控系统中的作用是非常重要的。 工程设计人员和施工人员都要经常与镜头打交道:设计人员要根据物距、成像大小计算镜头焦距,施工人员经常进行现场调试,其中一部分就是把镜头调整到最佳状态。 1、镜头的分类 (1) 以镜头安装分类 所有的摄像头镜头均是螺纹口的,CCD摄像头的镜头安装有两种工业标准,即C安装座和CS安装座。两者螺纹部分相同,但两者从镜头到感光表面的距离不同。 C安装座:从镜头安装基准面到焦点的距离是17.526mm。 CS安装座:特种C安装,此时应将摄像头前部的垫圈取下再安装镜头。其镜头安装基准面到焦点的

距离是12.5mm。如果要将一个C安装座镜头安装到一个CS安装座摄像头上时,则需要使用镜头转换器。 (2) 以摄像头镜头规格分类 摄像头镜头规格应视摄像头的CCD尺寸而定,两者应相对应。即摄像头的CCD靶面大小为1/2英寸时,镜头应选1/2英寸。摄像头的CCD靶面大小为1/3英寸时,镜头应选1/3英寸。摄像头的CCD靶面大小为1/4英寸时,镜头应选1/4英寸。如果镜头尺寸与摄像头CCD靶面尺寸不一致时,观察角度将不符合设计要求,或者发生画面在焦点以外等问题。 (3) 以镜头光圈分类 镜头有手动光圈(manual iris)和自动光圈(auto iris)之分,配合摄像头使用,手动光圈镜头适合于亮度不变的应用场合,自动光圈镜头因亮度变更时其光圈亦作自动调整,故适用亮度变化的场合。 自动光圈镜头有两类:一类是将一个视频信号及电源从摄像头输送到透镜来控制镜头上的光圈,称为视频输入型,另一类则利用摄像头上的直流电压来直接控制光圈,称为DC输入型。自动光圈镜头上的ALC (自动镜头控制)调整用于设定测光系统,可以整个画面的平均亮度,也可以画面中最亮部分(峰值)来设定基准信号强度,供给自动光圈调整使用。 一般而言,ALC已在出厂时经过设定,可不作调整,但是对于拍摄景物中包含有一个亮度极高的目标时,明亮目标物之影像可能会造成"白电平削波"现象,而使得全部屏幕变成白色,此时可以调节ALC来变换画面。 另外,自动光圈镜头装有光圈环,转动光圈环时,通过镜头的光通量会发生变化,光通量即光圈,一般用F表示,其取值为镜头焦距与镜头通光口径之比,即:F=f(焦距)/D(镜头实际有效口径),F值越小,则光圈越大。 采用自动光圈镜头,对于下列应用情况是理想的选择,它们是:在诸如太阳光直射等非常亮的情况下,用自动光圈镜头可有较宽的动态范围。要求在整个视野有良好的聚焦时,用自动光圈镜头有比固定光圈镜头更大的景深。要求在亮光上因光信号导致的模糊最小时,应使用自动光圈镜头。 (4) 以镜头的视场大小分类

飞机的飞行性能

飞机的飞行性能 在对飞机进行介绍时,我们常常会听到或看到诸如“活动半径”、“爬升率”、“巡航速度”这样的名词,这些都是用来衡量飞机飞行性能的术语。简单地说,飞行性能主要是看飞机能飞多快、能飞多高、能飞多远以及飞机做一些机动飞行(如筋斗、盘旋、战斗转弯等)和起飞着陆的能力。 速度性能 最大平飞速度:是指飞机在一定的高度上作水平飞行时,发动机以最大推力工作所能达到的最大飞行速度,通常简称为最大速度。这是衡量飞机性能的一个重要指标。 最小平飞速度:是指飞机在一定的飞行高度上维持飞机定常水平飞行的最小速度。飞机的最小平飞速度越小,它的起飞、着陆和盘旋性能就越好。 巡航速度:是指发动机在每公里消耗燃油最少的情况下飞机的飞行速度。这个速度一般为飞机最大平飞速度的70%~80%,巡航速度状态的飞行最经济而且飞机的航程最大。这是衡量远程轰炸机和运输机性能的一个重要指标。 当飞机以最大平飞速度飞行时,此时发动机的油门开到最大,若飞行时间太长就会导致发动机的损坏,而且消耗的燃油太多,所以一般只是在战斗中使用,而飞机作长途飞行时都是使用巡航速度。 高度性能 最大爬升率:是指飞机在单位时间内所能上升的最大高度。爬升率的大小主要取决与发动机推力的大小。当歼击机的最大爬升率较高时,就可以在战斗中迅速提升到有利的高度,对敌机实施攻击,因此最大爬升率是衡量歼击机性能的重要指标之一。 理论升限:是指飞机能进行平飞的最大飞行高度,此时爬升率为零。由于达到这一高度所需的时间为无穷大,故称为理论升限。 实用升限:是指飞机在爬升率为5m/s时所对应的飞行高度。升限对于轰炸机和侦察机来说有相当重要的意义,飞得越高就越安全。 飞行距离 航程:是指飞机在不加油的情况下所能达到的最远水平飞行距离,发动机的耗油率是决定飞机航程的主要因素。在一定的装载条件下,飞机的航程越大,经济性就越好(对民用飞机),作战性能就更优越(对军用飞机)。 活动半径:对军用飞机也叫作战半径,是指飞机由机场起飞,到达某一空中位置,并完成一定任务(如空战、投弹等)后返回原机场所能达到的最远单程距离。飞机的活动半径略小于其航程的一半,这一指标直接构成了歼击机的战斗性

飞机的飞行性能.

飞机的飞行性能 2014-06-15 飞机的飞行性能 在对飞机进行介绍时,我们常常会听到或看到诸如“活动半径”、“爬升率”、“巡航速度”这样的名词,这些都是用来衡量飞机飞行性能的术语。简单地说,飞行性能主要是看飞机能飞多快、能飞多高、能飞多远以及飞机做一些机动飞行(如筋斗、盘旋、战斗转弯等)和起飞着陆的能力。 速度性能 最大平飞速度:是指飞机在一定的高度上作水平飞行时,发动机以最大推力工作所能达到的最大飞行速度,通常简称为最大速度。这是衡量飞机性能的一个重要指标。 最小平飞速度:是指飞机在一定的飞行高度上维持飞机定常水平飞行的最小速度。飞机的最小平飞速度越小,它的起飞、着陆和盘旋性能就越好。 巡航速度:是指发动机在每公里消耗燃油最少的情况下飞机的飞行速度。这个速度一般为飞机最大平飞速度的'70%~80%,巡航速度状态的飞行最经济而且飞机的航程最大。这是衡量远程轰炸机和运输机性能的一个重要指标。 当飞机以最大平飞速度飞行时,此时发动机的油门开到最大,若飞行时间太长就会导致发动机的损坏,而且消耗的燃油太多,所以一般只是在战斗中使用,而飞机作长途飞行时都是使用巡航速度。 高度性能 最大爬升率:是指飞机在单位时间内所能上升的最大高度。爬升率的大小主要取决与发动机推力的大小。当歼击机的最大爬升率较高时,就可以在战斗中迅速提升到有利的高度,对敌机实施攻击,因此最大爬升率是衡量歼击机性能的重要指标之一。 理论升限:是指飞机能进行平飞的最大飞行高度,此时爬升率为零。由于达到这一高度所需的时间为无穷大,故称为理论升限。 实用升限:是指飞机在爬升率为5m/s时所对应的飞行高度。升限对于轰炸机和侦察机来说有相当重要的意义,飞得越高就越安全。 飞行距离

飞机主要的飞行性能和飞行科目

飞机主要的飞行性能和飞行科目 一、飞机的主要飞行性能 飞机的飞行性能是评价飞机优劣的主要指标。主要的飞行性能包括下列几项: (一)最大平飞速度(V最大)。’ 飞机的最大平飞速度是在发动机最大率(或最大推力)时一飞机所获得的平飞速度。 飞机的最大平飞速度是在发动机最大率(或最大推力)时一飞机所获得的平飞速度。 影响飞机最大平飞速度的主要因素是发动机的推力和飞机的阻力。由于发动机推力、飞机阻力与高度有关,所以在说明最大平飞速度时,要明确是在什么高度上达到的。 通常飞机不用最大平飞速度长时间飞行,因为耗油太多,而且发动机容易损坏,缩短 使用寿命。除作战或特殊需要外,一般以比较省油的巡航速度飞行。 对歼击歼来说,V最大更重要一些。歼击机靠它来追上敌机,予以歼灭。同时也靠它变被动为主动。 创造世界速度纪录的飞机,都是以最大平飞速度作为评定标准。其速度单位是“公里/小时”。 (二)巡航速度(V巡) ‘ 巡航速度是指发动机每公里消耗燃油最少情况下的飞行速度。这时飞机的飞行最经济,航程也最远,发动机也不大“吃力”。对于远程轰炸机和运输机,巡航速度也是一项重要的性能指标。其单位也是“公里/小时”。 (三)爬升率(V、,) 飞机的爬升率是指单位时问内飞机所上升的高度,其单位是“米/分”或“米/秒”。 爬升率大,说明飞机爬升快,上升到预定高度所需的时间短。

爬升率是歼击机的一项重要性能。 爬升率与飞行高度有关。随着飞行高度增加,空气密度减少,发动机推力降低,所以一般最大爬升率在海平面时,随着高度增加而减小。 (四)升限(H) 飞机上升所能达到的最大高度,叫做升限。“升限”对战斗机是一项重要性能。歼击机升限比敌机高,就可居高临下,取得主动权。 飞机的升限有两种:一种叫理论升限,它指爬升率等于零时的高度,没有什么实际意义;常用的是“实用升限”。所谓“实用升限”就是飞机的爬升率等于每秒5米时的高度。此外还有动力升限,它是靠动能向上冲而取得最大高度的。一般创纪求的升限是指动力升限。(五)航程及续航时间 航程是指飞机一次加油所能飞越的最大距离。用巡航速度飞行可取得最大航程。增加航程的主要办法是多带燃料、减小发动机的燃料消耗和增大升阻比K。 航程远,表示飞机的活动范围大。对军用飞机来说,可以直接威胁敌人的战略后方,远程作战能力强;对民用客机和运输机来说,可以把客货运到更远的地方,而减少中途停留加油的次数。 续航时间是指飞机一次加油,在空中所能持续飞行的时间。这一性能对侦察机、海上巡逻机和反潜机是很重要的;歼击机的续航时间长,也有利于对敌作战。增加续航时间的措施同增加航程的措施相类似。现代作战飞机大都挂有副油箱,就是为了多带燃料,以增大航程和航时。某些飞机为了增大航程,并减小起飞时的载油量,以缩短滑跑距离或增加其它载重,可用空中加油的办法,在飞行途中由加油机补给燃料。 (六)作战半径 飞机从某一机场起飞,执行作战任务后再返回原机场,这距

第3讲 光学镜头及其运用

第三讲光学镜头及其运用 任课老师:郭小平 E-mail:guoxp2008@https://www.360docs.net/doc/659449011.html, Tel:134******** 幻灯片2 本讲要点 ●Outline: ●镜头的光学特性 ●长焦距镜头 ●广角镜头 ●变焦距镜头 幻灯片3 一、镜头的光学特性 幻灯片4 一、镜头的光学特性 镜头系统外部结构图 幻灯片5 一、镜头的光学特性 镜头系统内部结构图 幻灯片6 一、镜头的光学特性 ●电视摄像机的光学镜头一般由多片正透镜和负透镜以及相应的金属零件组合而成,一 般还带有自动光圈、电动变焦距等装置。 ●我们掌握镜头,主要是要掌握镜头的光学特性。 幻灯片7 一、镜头的光学特性 ●镜头的光学特性 ●是指由其光学结构所形成的物理性能,由焦距、视场角和相对孔径三个因素组成。 幻灯片8 一、镜头的光学特性 ●(一)焦距 ●定义:从焦点到镜头中心的距离称为焦距。 ●焦距可以决定镜头视角大小、拍摄范围、透视程度和景深范围等等。 ●电视摄像机装配的一般是变焦镜头。

一、镜头的光学特性 ●标准镜头(变焦) ●焦距与像平面对角线接近或者相等的镜头称为标准镜头。其视角一般为45°~ 50°。 ●摄像管面积大小不同,摄像机标准镜头的焦距也不一样。 ● ●摄像管面积?英寸?英寸 1英寸 1?英寸 ●标准镜头焦距 12mm 17.5mm 25mm 35mm 幻灯片10 一、镜头的光学特性 下面我们来看一下镜头焦距对视角大小、拍摄范围的影响,对景深的影响我们放到后面相关部分讲。 视角大小和取景范围其实是一个问题,视角大,那么取景范围必然就大,视角小,取景范围当然也小。 镜头焦距与视角大小: 下面我们来看一幅图片,请大家思考一下镜头焦距与视角大小和取景范围大小的关系。 幻灯片11 幻灯片12 一、镜头的光学特性 ●由上图我们可以知道,拍摄距离不变的情况下: ● ●镜头焦距与(视角大小)取景范围成反比:镜头焦距越长,(视角)取景范围越 小;镜头焦距越短,(视角)取景范围越大。 ●下面我们通过一幅图片来加深一下印象: 幻灯片13 幻灯片14 一、镜头的光学特性 ●(二)景深 ● ●焦点和焦点前后清晰的范围叫做景深。 ●清晰的范围越大,我们就说景深越大,清晰的范围越小,我们就说景深越小。 ●我们可以通过下面的图片来看一下不同大小景深的效果:

影视摄影之第二章光学镜头

第二章 光学镜头的使用 光学表现手段,包括光学镜头和附加设备。光学镜头是获得最佳影像的主要工具。镜头的性能直接影响成像质量,因此每一位电影摄影师对构成影像质量的镜头性能非常关注,但是今天的电视摄像,对自己使用的摄像机光学镜头的了解,远远不如电影摄影师。 虽然电视的像质本身就低于电影银幕上的影像质量。但这不能作为不熟悉镜头性的借口。特别是镜头本身还是摄像的表现手段。 从表现角度来有,电视摄像远远不能像电影摄影师那样,充分地利用光学镜头进行艺术表现。 为了把握光学技巧,对光学镜头发展和运用过程应有一定的认识。 镜头的发展是和电影艺术的发展分不开的,是随着电影摄影师的艺术创作的需要而逐步发展起来的。 电影的初期: 摄影是用来记录“舞台式”的演出。摄影机固定在“乐池指挥”位置上,一部影片也就是一个全景镜头。 电影如此的简单,因此摄影机只需一个固定镜头就可以完成拍摄任务,当时摄影机只配置一个接近视觉的50mm镜头. 随着艺术的发展出现了景别。早期的摄影机很笨重,移动很不方便,因此出现了拍摄近景和全景的75mm长焦距和35mm焦距镜头,这样摄影机在原地不动采用更换镜头就可以拍出全、中、近三个不同的景别画面。现代的电影摄影机一般都配置这三个镜头。 电影艺术的进一步发展是摄影机的"解放"。突破舞台空间的限制,摄影机有了更大的空间自由,表现在景别和角度的多样化。

这又要求技术上给予更多的方便。所以在有声电影时期,镜头焦距的种类有了较大的发展。 向长、短两个焦距方向伸展。三四十年代的电影还是戏剧化电影,摄影工作主要是在摄影棚里。 电影追求豪华的布景和广阔的空间造型,摄影在光学镜头上要求更多的短焦距镜头,所以这时期短焦距镜头有较大的发展。二战之后,世界上许多人失去了亲人,战争给人们带来无限的灾难和痛苦。 电影艺术对情节的追求,变成了对人性的表现。为了随时随地的观察人的精神面貌,运动摄影和长焦距镜头有了发展。到六七十年代,彩色电影得到发展,出现了宽银幕,对光学镜头的质量,特别是结像力、清晰度的要求有了更高的标准,出现了高质量覆膜镜头和变焦距镜头。70年代,5247胶片出现,把彩色胶片的感光度提高到ASA/100度,接着日本富士胶片出现8512,美国出现5293,把感光度提高到ASA/400度以上。 在艺术上纪实风格的流行,自然光效的使用,都要求摄影师在拍摄方法上进行革新,大光孔快速镜头的出现为摄影师低照度拍摄提供了有力的武器。时至今日,电影技术为摄影师提供了一系列性能更完善、像质更优良的光学镜头。 对摄影艺术来说,高质量的光学镜头能获得高质量的影像,能使银幕更加真实。那些像差较大、质量较差的镜头同样有用。影像真实可信是摄影师的表现手段,同样制造影像变形,也是摄影师的表现手段。 例如影片《寒夜》摄影师罗德安在创作中有意选用老式的未覆膜的镜头拍摄。这是一部描写解放前旧社会,小职员的悲惨命运的影片,色彩暗淡,不够清晰的影像更能表现出这个时代的意味。 对摄影师来说更多的关心是银幕上的视觉效果,能拍摄出摄影师需要的影像就是好镜头O充分地把握镜头的性能,真实地记录影像,是摄影师创作的需要,同样运用镜头的某些属性,改变物象的某些形态,制造出物体的各种不同的表象,甚至夸张变形,使影象失去物象常态,甚至失去原貌……镜头也能使我

飞行性能与计划复习总结

●1、国际标准大气参数:海平面高度为0, 这一海平面称为ISA标准海平面;海平 面 气温为288.15K、15C或59F;海平面气压为1013.2mBar(毫巴)或1013.2hPa(百帕)或29.92inHg(英寸汞柱);当H≤11000m(36089ft)时,随着高度增加,温度线性递减,标准递减率为:-6.5℃/1000m 或-2℃/1000ft;当11000m≤H≤20000m (36089ft≤H≤65547ft)时,随着高度的增加,温度保持不变,为-56.5℃。 ●重心靠前,会使同迎角下飞机的升力系数和最大升力系数减小,阻力系数增加,失速速度变大(飞机越容易失速)。 ●1g失速速度比FAR失速速度大一些。1g失速速度比FAR失速速度判断时机更早。 ●衡量飞机空气动力性能的参数:在低速飞行时,衡量标准为:最大升阻比Kmax而在高速飞行时,用气动效率MK来衡量气动性能的好坏。 ●发动机的七个工作状态:1、最大起飞/复飞工作状态(TO/GA)2、最大连续推力状态(MCT)3、最大上升(爬升)工作状态(MCL)4、最大巡航工作状态(MCR)5、减推力和减功率起飞状态(FLEX)、6、慢车工作状态(IDLE)7、、反推工作状态 ●与起飞有关的几个速度关系: 对VR的限制:①VR≥1.05VMCA;②VR≥V1 对V1的限制:①V1≥V1(MCG) 注: V1(MCG)=VMCG+△V;△V:飞行员 判断发动机停车并采取相应措施这段时 V1≤VR目的是为了保证起飞(抬轮必须起飞)③V1 ≤VMBE目的是为了保证刹车效率 对V2的限制:取下列速度的较大值: ①起飞最小安全速度V2min ②VR加上在起飞跑道表面上空达到 35 英尺之前获得的速度增量 ●起飞距离和着陆距离 全发起飞滑跑距离:全发起飞滑跑距离是指飞机从静止开始加速滑跑到起飞空中段的中点所经过的水平距离的1.15倍。 ●起飞速度v1的确定和跑道限制的最大起飞重量(平衡场地法)(计算题)P39 1.平衡场地法:中断起飞可用距离L中可与继续起飞可用距离L继可相等的跑道称为平衡跑道。二者不相等的跑道称为不平衡跑道。即L中可= L继可= L可 ●起飞航道性能:所谓起飞航道是指从飞机离地35ft开始到飞机高度不小于1500ft,速度增加不小于1.25倍VS,爬升梯度满足法规规定的最小梯度要求,并完成收起落架、襟翼的阶段。 起飞航道Ⅰ段:自基准零点开始,结束于起落架完全收上(收起落架动作可以开始于起飞航道Ⅰ段之前)。在该段襟翼处于起飞位置,发动机处于起飞工作状态(TO/GA),速度保持在V2到V2+20kt之间(根据发动机工作情况,以下同)。 起飞航道Ⅱ段:为等表速爬升段。从起落架完全收上到高度不低于400ft,发动机处于起飞工作状态(TO/GA),保持起飞襟翼,速度保持在V2到V2+20kt之间上升。如果在航道上有障碍物,则应该越过障碍物后才能进入航道Ⅲ段。 起飞航道Ⅲ段:减小上升角或改平使飞机增速,(空客绿点速度)根据规定的收襟翼速度分几次将襟翼全部收起,同时增速到襟翼全收的速度。在该段,考虑到发动机起飞工作状态的使用时间限制,这段通常使用最大上升工作状态(MCL)或最大连续工作状态(MCT)(该状态常用于一台发动机停车后的爬升) 上升梯度分为:总上升梯度和净上升梯度。二者之差为上升梯度减小量双发0.8%,由净上升梯度得到的航迹为净航迹,要求飞机的净航迹至少高于障碍物顶点35ft, 这样可以保证飞机安全越障。 双发飞机的航道Ⅱ段的最小爬升梯度要求最高,为2.4% ?限制起飞(着陆)重量的因素(简答题) 1、场道条件 2、起飞航道Ⅱ的爬升梯度 3、轮胎速度的限制 4、最大刹车能量限制 5、障碍物限制:①远障:障碍物距基准零点的距离超过72000ft的称为远障。采用的越障程序是最低改平高度上升程序,也称为标准程序。②近障:障碍物距基准零点小于

分析报告-非球面光学镜头

非 球 面 光 学 镜 头 项 目 建 议 书 昆明禹诚投资管理咨询有限公司编制 Kunming Yunnan China 昆明钱局街186号兴云大厦606室 邮编:650031 电话:(0871)5339860 非球面光学镜头 项 目 建 议 书 昆明禹诚投资管理咨询有限公司编制 昆明钱局街186号兴云大厦606室 邮编:650031 电话:(0871)5339860 Kunming Yunnan China 目 录 第1章 总论 1. 项目提出的必要性和依据 2. 主要经济技术指标 第2章 产品市场现状及初步预测 第3章 资源情况及原材料供应状况 3.1 资源情况 3.2 原材料供应状况 第4章 项目主要技术内容 4.1 技术指标及技术来源 4.2 技术负责单位和主要技术负责人简介

第5章 项目实施方案 5.1 项目选址及拟建规模 5.2 产品工艺方案 5.3 项目承担单位和项目负责人简介 第6章 项目投资估算及资金筹措 第7章 项目社会经济效益分析 7.1 项目经济效益分析 7.2 项目社会效益及生态效益分析 第8章 项目实施进度 第1章 总 论 1. 1 项目提出的必要性和依据 随着光学和电子技术的发展,光电技术不仅广泛地应用于国民经济、科学技术和日常生活的各个领域,而且光学零件也由大而分散的零件发展成为小的集成元件。在这个发展过程中非球面光学零件起着很重要的作用。所谓非球面光学零件简单地说就是光学零件的面形是一个高次曲面,其数学方程是一个高次方程。非球面光学零件不仅可以校正球差、慧差、畸变、像散等像差,使光学系统的像质提高,从而增大观察或瞄准的视场和作用距离,而且使用少量的非球面光学零件就能显著地减少整个系统的零件数量,缩小系统的尺寸,从而节省大量的材料和劳动工作量,在降低成本的同时还减少光能损失,提高成像的清晰度。非球面技术是近几年少数几个发达国家首先发展起来的高科技应用技术。 自从有光学仪器以来,其光学系统的透镜都是采用玻璃球面透镜,据不完全统计,目前仅在中国的光学仪器制造行业中,透镜每年的生产量有2亿件左右。早在17世纪,科学家就认识到在光学系统中采用非球面光学零件的优点,但长期以来一直未能推广应用,这主要是非球面光学零件的制造和检测要比球面光学零件困难得多。过去,非球面光学零件主要靠技术熟练的工人用手工进行修抛,生产率很低,成本很高,重复精度不能保证。随着科学技术的发展,特别是精密加工和计算机技术的发展,在70年代在非球面光学零件的加工方法上有了突破。加工效率、精度和成本等方面取得了许多令人满意的研究成果。目前国外非球面光学零件的制造技术主要有计算机数控精磨抛光技术,计算机数控单点金刚石车削技术,光学玻璃透镜精密模压成型技术,光学塑料注射成型技术等。目前国外的各种非球面加工工艺已经处于比较成熟的阶段。从大到几米直径小到几毫米直径、从单件到大批量、从高精度到一般精度都能加工。可以根据产品的规格和批量的要求选用不同的非球面加工工艺,经济合理地加工出非球面光学零件。

光学传递函数的测量和评价

光学传递函数的测量和评价 引言 光学传递函数是表征光学系统对不同空间频率的目标函数的传递性能,是评价光学系统的指标之一。它将傅里叶变换这种数学工具引入应用光学领域,从而使像质评价有了数学依据。由此人们可以把物体成像看作光能量在像平面上的再分配,也可以把光学系统看成对空间频率的低通滤波器,并通过频谱分析对光学系统的成像质量进行评价。到现在为止,光学传递函数成为了像质评价的一种主要方法。 一、实验目的 了解光学镜头传递函数的基本测量原理,掌握传递函数测量和成像品质评价的近似方法,学习抽样、平均和统计算法,熟悉光学软件的应用。 二、基本原理 光学系统在一定条件下可以近似看作线性空间中的不变系统,因此我们可以在空间频 率域来讨论光学系统的响应特性。其基本的数学原理就是傅里叶变换和逆变换,即: dxdy y x i y x )](2exp[,ηξπψηξψ+-=??) () ,( (1) ηξηξπηξψψd d y x i y x )](2exp[),(),(+=?? (2) 式中),(ηξψ是),(y x ψ的傅里叶频谱,是物体所包含的空间频率),(ηξ的成分含量,低频成分表示缓慢变化的背景和大的轮廓,高频成分表示物体细节,积分范围是全空间或者是有光 通过空间范围。 当物体经过光学系统后,各个不同频率的正弦信号发生两个变化:首先是调制度(或反差度)下降,其次是相位发生变化,这一综合过程可表为 ),(),(),(ηξηξψηξφH ?= (3) 式中),(ηξφ表示像的傅里叶频谱。),(ηξH 成为光学传递函数,是一个复函数, 它的模为调制度传递函数(modulation transfer function, MTF ),相位部分则为相位传递函数(phase transfer function, PTF )。显然,当H =1时,表示象和物完全一致,即成象过程完全保真,象包含了物的全部信息,没有失真,光学系统成完善象。由于光波在光学系统孔径光栏上的衍射以及象差(包括设计中的余留象差及加工、装调中的误差),信息在传递过程中不可避免要出现失真,总的来讲,空间频率越高,传递性能越差。要得到像的复振幅分布,只需要将像的傅里叶频谱作一次逆傅里叶变换即可。 在光学中,调制度定义为 min max min max I I I I m +-= (4) 式中max I 、min I 表示光强的极大值和极小值。光学系统的调制传递函数可表为给定空间频率

镜头的主要参数及对成像质量有什么影响

镜头的主要参数及对成像质量有什么影响 中国网络摄像机专业网(内参资料) 镜头分不同类型,但即使对于同一类型的镜头,其成像质量也有着很大的差异,这主要是由于材质、加工精度和镜片结构的不同等因素造成的,同时也导致不同档次的镜头价格从几百元到几万元的巨大差异。比较著名的如四片三组式天塞镜头、六片四组式双高斯镜头。对于镜头设计及生产厂家,一般用光学传递函数OTF(Optical Transfer Function)来综合评价镜头成像质量,光学系统传递的是亮度沿空间分布的信息,光学系统在传递被摄景物信息时,被传递之各空间频率的正弦波信号,其调制度和位相在成实际像时的变化,均为空间频率的函数,此函数称为光学传递函数。OTF一般由调制传递函数MTF(Modulation Transfer Function)与位相传递函数PTF(Phase Transfer Function )两部分组成。 像差是影响图像质量的重要方面,常见的像差有如下六种: ·球差:由主轴上某一物点向光学系统发出的单色圆锥形光束,经该光学系列折射后,若原光束不同孔径角的各光线,不能交于主轴上的同一位置,以至在主轴上的理想像平面处,形成一弥散光斑(俗称模糊圈),则此光学系统的成像误差称为球差。 ·慧差:由位于主轴外的某一轴外物点,向光学系统发出的单色圆锥形光束,经该光学系列折射后,若在理想像平面处不能结成清晰点,而是结成拖着明亮尾巴的慧星形光斑,则此光学系统的成像误差称为慧差。

·像散:由位于主轴外的某一轴外物点,向光学系统发出的斜射单色圆锥形光束,经该光学系列折射后,不能结成一个清晰像点,而只能结成一弥散光斑,则此光学系统的成像误差称为像散。 ·场曲:垂直于主轴的平面物体经光学系统所结成的清晰影像,若不在一垂直于主轴的像平面内,而在一以主轴为对称的弯曲表面上,即最佳像面为一曲面,则此光学系统的成像误差称为场曲。当调焦至画面中央处的影像清晰时,画面四周的影像模糊;而当调焦至画面四周处的影像清晰时,画面中央处的影像又开始模糊。

相关文档
最新文档