随机信号分析试验(4)

随机信号分析试验(4)
随机信号分析试验(4)

随机信号分析试验(4)

1. 编写程序, 对均值为0方差为1的平稳高斯随机过程样本进行希尔伯特变换,绘制变换前后的概率密度直方图。

注:z=hilbert(x)返回解析信号x+jH(x), 所以imag(z)为x的希尔伯特变换

clc;clear all;close all;

N=20000;

x=random('normal',0,1,1,N);

xt=imag(hilbert(x));

n=-4:0.1:4;

subplot(2,1,1)

hist(x,n)

subplot(2,1,2)

hist(xt,n)

2. 编写Matlab函数, 产生一个采样频率为fs中心频率为f0带

宽为的窄带随机信号样本。

注:函数Narrowbandsignal(N,f0,deltf,fs,M)产生窄带随机过程样本。

N: 长度, f0: 单边功率谱中心频率, delta: 带宽, fs: 采样频率,

M: 产生窄带信号的滤波器阶数。(M<

function X=Narrowbandsignal(N,f0,deltf,fs,M)

N1=N-M;

xt=random('normal',0,1,1,N1);

f1=f0*2/fs;

df1=deltf/fs;

ht=fir1(M,[f1-df1,f1+df1]);

X=conv(xt,ht);

t=(1:N)/fs;

plot(t,X)

xlabel('时间(s)');ylabel('窄带随机信号样本X');

运行结果:x=Narrowbandsignal(1000,2,0.5,10,20)

3. 编写Matlab函数, 求采样频率为fs中心频率为f0的窄带随机过程X(t)的低频过程Ac(t)和As(t)的样本。

注:函数Lowfsignal(X,f0,fs)产生Ac和As样本

function [Ac,As]=Lowfsignal(X,f0,fs)

HX=imag(hilbert(X));

[M,N]=size(X);

for i=1:1:M

t(i,:)=(0:N-1)/fs;

end

Ac=X.*cos(2*pi*f0*t)+HX.*sin(2*pi*f0*t);

As=HX.*cos(2*pi*f0*t)-X.*sin(2*pi*f0*t);

subplot(2,1,1);plot(t,Ac(1,:));

xlabel('时间(s)');ylabel('窄带低频过程Ac');

subplot(2,1,2);plot(t,As(1,:));

xlabel('时间(s)');ylabel('窄带低频过程As');

运行结果:[Ac,As]=Lowfsignal(rand(10,100),0.3,20)

4. 编写Matlab程序, 对f0=10kHz, 带宽500Hz的窄带高斯过程X(t) 及低频过程Ac(t), As(t) 的功率谱密度进行估计, 其中fs=22kHz, 采样点数N=10000, 滤波器阶数M=200。clc;clear all;close all;

N=10000;f0=10000;deltf=500;fs=22000;M=200;

X=Narrowbandsignal(N,f0,deltf,fs,M);

[Ac,As]=Lowfsignal(X,f0,fs);

Rx=xcorr(X,'biased');

Rac=xcorr(Ac,'biased');

Ras=xcorr(As,'biased');

Rxw=abs(fft(Rx));

Racw=abs(fft(Rac));

Rasw=abs(fft(Ras));

f=(1:N)/N*fs/2;

subplot(3,1,1)

plot(f,10*log10(Rxw(1:N)));

axis([1,N,-120,20]);

subplot(3,1,2)

plot(f,10*log10(Racw(1:N)));

axis([1,N,-120,20]);

subplot(3,1,3)

plot(f,10*log10(Rasw(1:N)));

axis([1,N,-120,20]);

5. 编写Matlab函数, 建立采样频率fs, 中心频率f0的窄带随机过程X(t)的包络A(t), 相位和包络的平方样本。

注:函数EnvelopPhase(X, f0, fs), 用来产生At, Ph, A2.

function [At,Ph,A2]=EnvelopPhase(X,f0,fs)

HX=imag(hilbert(X));

[M,N]=size(X);

for i=1:1:M

t(i,:)=(0:N-1)/fs;

end

Ac=X.*cos(2*pi*f0*t)+HX.*sin(1*pi*f0*t);

As=HX.*cos(2*pi*f0*t)-X.*sin(2*pi*f0*t);

At=(Ac.^2+As.^2).^0.5;

Ph=atan(As./Ac);

A2=At.^2;

subplot(3,1,1);plot(t,At(1,:));

xlabel('时间(s)');ylabel('窄带包络At');

subplot(3,1,2);plot(t,Ph(1,:));

xlabel('时间(s)');ylabel('窄带相位Ph');

subplot(3,1,3);plot(t,A2(1,:));

xlabel('时间(s)');ylabel('包络平方A2');

运行结果:[At,Ph,A2]=EnvelopPhase(rand(10,100),10000,22000)

6. 编写f0=10kHz, 带宽为500Hz, 方差为1的窄带高斯过程X(t)的包络A(t), 相位, 包络平方的产生程序. 并对分布情况进行统计, 其中fs = 22kHz, 样本采样点数N=20000, 滤波器阶数M=50。

clc;clear all;close all;

N=20000;f0=10000;deltf=500;fs=22000;M=50;

X=Narrowbandsignal(N,f0,deltf,fs,M);

X=X/sqrt(var(X));

[At,Ph,A2]=EnvelopPhase(X,f0,fs);

subplot(3,1,1)

LA=0:0.05:4.5;

hist(At,LA);

axis([0,4.5,0,700])

subplot(3,1,2)

LP=-pi/2:0.05:pi/2;

hist(Ph,LP);

axis([-pi/2,pi/2,0,500])

subplot(3,1,3)

LA2=0:0.2:16;

hist(A2,LA2);

axis([0,16,0,2000])

7. 编写程序, 仿真f0=10kHz, 带宽400Hz, 归一化方差窄带高斯过程X(t), 在三种不同余弦信号情况下, 窄带高斯过程加余弦信号的包络A(t), 相位, 包络平方的分布, 其中, fs = 22kHz, 样本采样点数N = 10000, 滤波器阶数M=50, 三种余弦信号的幅度分别为2, 4, 8, theta值对应取pi/6, pi/4, pi/3。

clc;clear all;close all;

N=10000;f0=10000;deltf=400;fs=22000;M=50;

a1=2;a2=4;a3=8;

theta1=pi/6;theta2=pi/4;theta3=pi/3;

X=Narrowbandsignal(N,f0,deltf,fs,M);

X=X/sqrt(var(X));

t=(0:N-1)/fs;

X1=X+a1*cos(2*pi*f0*t+theta1);

X2=X+a2*cos(2*pi*f0*t+theta2);

X3=X+a3*cos(2*pi*f0*t+theta3);

[At1,Ph1,A21]=EnvelopPhase(X1,f0,fs);

[At2,Ph2,A22]=EnvelopPhase(X2,f0,fs);

[At3,Ph3,A23]=EnvelopPhase(X3,f0,fs);

LA=0:0.4:12;

GA1=hist(At1,LA);GA2=hist(At2,LA);GA3=hist(At3,LA);

subplot(3,1,1)

plot(LA,GA1,'r',LA,GA2,'g',LA,GA3,'b')

axis([0,12,0,2000])

subplot(3,1,2)

LP=-pi/2:0.05:pi/2;GP1=hist((Ph1-theta1),LP);

GP2=hist((Ph2-theta2),LP);GP3=hist((Ph3-theta3),LP);

plot(LP,GP1,'r',LP,GP2,'g',LP,GP3,'b')

axis([-pi/2,pi/2,0,2000])

subplot(3,1,3)

LA2=0:1:120;

GA21=hist(A21,LA2);GA22=hist(A22,LA2);GA23=hist(A23,LA2);

GP2=hist((Ph2-theta2),LP);GP3=hist((Ph3-theta3),LP);

plot(LA2,GA21,'r',LA2,GA22,'g',LA2,GA23,'b')

axis([0,120,0,1200])

8. 两个随机相位余弦信号, 振幅分别为0和2, 与均值为零方差为1, 中心频率f0=10kHz, 带宽500Hz的窄带高斯过程的合成信号, 经平方律检波, 视频积累8 次后, 对信号分布进行仿真, 其中, fs=22kHz, 样本采样点数N=160000, 滤波器阶数M=50。

注:视频累积8次, 即在总序列中, 将间隔一定点数(为保证8点不相关)的8个点之和, 作为一个点, 形成新的序列。

clc;clear all; close all;

N=160000;

f0=10000;

deltf=500;

fs=22000;

M=50;

a=2;theta=pi/3;

X=Narrowbandsignal(N,f0,deltf,fs,M);

X=X/sqrt(var(X));

t=(0:N-1)/fs;

X1=X+a*cos(2*pi*f0*t+theta);

[At,Ph,A2]=EnvelopPhase(X,f0,fs);

[At1,Ph1,A21]=EnvelopPhase(X1,f0,fs);

close all;

n=8;

m=20;

m1=n*m;

L=N/m1;

G0=zeros(1,L);

G1=zeros(1,L);

for i=1:1:L

for j=1:1:n

G0(i)=G0(i)+A2(i*m1-j*m+1);

G1(i)=G1(i)+A21(i*m1-j*m+1);

end

end

ly=0:2:120;

G0=hist(G0,ly);

G1=hist(G1,ly);

plot(ly,G0,'r',ly,G1,'b') legend('n=8,a=0','n=8,a=2')

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: )(m od ,110N ky y y n n -= N y x n n /= 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: 1、10 N 10,k 7==,周期7 510≈?; 2、(IBM 随机数发生器)31 16 N 2,k 23,==+周期8 510≈?; 3、(ran0)31 5 N 21,k 7,=-=周期9 210≈?; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有 )(1R F X x -= 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变

随机信号通过线性和非线性系统后地特性分析报告 实验报告材料

实验三 随机信号通过线性和非线性系统后的特性分析 一、实验目的 1、了解随机信号的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱特性。 2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱有何变化,分析随机信号通过线性系统和非线性系统后的特性 二、实验仪器与软件平台 1、 微计算机 2、 Matlab 软件平台 三、实验步骤 1、 根据本实验内容和要求查阅有关资料,设计并撰写相关程序流程。 2、 选择matlab 仿真软件平台。 3、 测试程序是否达到设计要求。 4、 分析实验结果是否与理论概念相符 四、实验内容 1、 随机信号通过线性系统和非线性系统后的特性分析 (1)实验原理 ①随机信号的分析方法 在信号系统中,可以把信号分成两大类:确定信号和随机信号。确定信号具有一定的变化规律,二随机信号无一定的变化规律,需要用统计特性进行分析。在这里引入了一个随机过程的概念。所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个采样序列。随机过程可以分为平稳的和非平稳的,遍历的和非遍历的。如果随机信号的统计特性不随时间的推移而变化。则随机过程是平稳的。如果一个平稳的随机过程的任意一个样本都具有相同的统计特性。则随机过程是遍历的。下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,可以随机取随机过程的一个样本值来描述随机过程中的统计特性。 随机过程的统计特性一般采用主要的几个平均统计特性函数来描述,包括、均方值、方差、自相关系数、互相关系数、概率密度、频谱及功率谱密度等。 a.随机过程的均值 均值E[x(t)]表示集合平均值或数学期望值。基于过程的各态历经行,可用时间间隔T 内的幅值平均值表示,即 ∑-==1 /)()]([N t N t x t x E 均值表达了信号变化的中心趋势,或称之为直流分量。

随机信号实验报告

随机信号分析 实验报告 目录 随机信号分析 (1) 实验报告 (1) 理想白噪声和带限白噪声的产生与测试 (2) 一、摘要 (2) 二、实验的背景与目的 (2) 背景: (2) 实验目的: (2) 三、实验原理 (3) 四、实验的设计与结果 (4) 实验设计: (4) 实验结果: (5) 五、实验结论 (12) 六、参考文献 (13) 七、附件 (13) 1

理想白噪声和带限白噪声的产生与测试一、摘要 本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。 关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度 二、实验的背景与目的 背景: 在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。定义2:不同频率、不同强度无规则地组合在一起的声音。如电噪声、机械噪声,可引伸为任何不希望有的干扰。第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。而第二种定义则相对抽象一些,大部分应用于机械工程当中。在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。 实验目的: 了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

随机信号分析上机实验指导书

目录 实验1 离散随机变量的仿真与计算(验证性实验) (1) 实验2 离散随机信号的计算机仿真(验证性实验) (5) 实验3 随机信号平稳性分析(验证性实验) (8) 实验4 实验数据分析(综合性实验) (10) 实验5 窄带随机过程仿真分析 (验证性实验) (11) 实验6 高斯白噪声通过线性系统分析(综合实验) (13)

实验1 离散随机变量的仿真与计算(验证性实验) 一、实验目的 掌握均匀分布的随机变量产生的常用方法。 掌握由均匀分布的随机变量产生任意分布的随机变量的方法。 掌握高斯分布随机变量的仿真,并对其数字特征进行估计。 二、实验步骤 无论是系统数学模型的建立,还是原始实验数据的产生,最基本的需求就是产生一个所需分布的随机变量。比如在通信与信息处理领域中,电子设备的热噪声,通信信道的畸变,图像中的灰度失真等都是遵循某一分布的随机信号。在产生随机变量时候,虽然运算量很大,但是基本上都是简单的重复,利用计算机可以很方便的产生不同分布的随机变量。各种分布的随机变量的基础是均匀分布的随机变量。有了均匀分不得阿随机变量,就可以用函数变换等方法得到其他分布的随机变量。 1.均匀分布随机数的产生 利用混合同余法产生均匀分布的随机数,并显示所有的样本,如图1所示。 yn+1=ayn+c (mod M) xn+1=yn+1/M

2.高斯分布随机数的仿真 根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。 若X 是分布函数为FX (x )的随机变量,且分布函数FX (x )为严格单调升函数,令Y=FX (x ),则Y 必是在[0,1]上均匀分布的随机变量。繁殖,若Y 是在[0,1]上均匀分布的随机变量,那么 X=F-1X(Y) (1.4.5) 就是分布函数为FX (x )的随机变量。这样,欲求某个分布的随机变量,先产生[0,1]区间上的均匀分布随机数,在经过(1.4.5)的变换,便可以求得所需要分布的随机数, 产生指数分布的随机数 fX(x)=ae-ax Y=FX(X)=1-e-aX X=-ln(1-Y)/a 利用函数变换法产生高斯分布的随机数的方法 : 图1-1生成均匀分布随机数的结果

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告 ——基于MATLAB语言 姓名: _ 班级: _ 学号: 专业:

目录 实验一随机序列的产生及数字特征估计 (2) 实验目的 (2) 实验原理 (2) 实验内容及实验结果 (3) 实验小结 (6) 实验二随机过程的模拟与数字特征 (7) 实验目的 (7) 实验原理 (7) 实验内容及实验结果 (8) 实验小结 (11) 实验三随机过程通过线性系统的分析 (12) 实验目的 (12) 实验原理 (12) 实验内容及实验结果 (13) 实验小结 (17) 实验四窄带随机过程的产生及其性能测试 (18) 实验目的 (18) 实验原理 (18) 实验内容及实验结果 (18) 实验小结 (23) 实验总结 (23)

实验一随机序列的产生及数字特征估计 实验目的 1.学习和掌握随机数的产生方法。 2.实现随机序列的数字特征估计。 实验原理 1.随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: y0=1,y n=ky n(mod N) ? x n=y n N 序列{x n}为产生的(0,1)均匀分布随机数。 定理1.1若随机变量X 具有连续分布函数F x(x),而R 为(0,1)均匀分布随机变量,则有 X=F x?1(R) 2.MATLAB中产生随机序列的函数 (1)(0,1)均匀分布的随机序列函数:rand 用法:x = rand(m,n) 功能:产生m×n 的均匀分布随机数矩阵。 (2)正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m×n 的标准正态分布随机数矩阵。 如果要产生服从N(μ,σ2)分布的随机序列,则可以由标准正态随机序列产生。 (3)其他分布的随机序列 分布函数分布函数 二项分布binornd 指数分布exprnd 泊松分布poissrnd 正态分布normrnd 离散均匀分布unidrnd 瑞利分布raylrnd 均匀分布unifrnd X2分布chi2rnd 3.随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特征。这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,……N-1。那么,

随机信号处理实验

随机信号处理实验 专业:电子信息科学与技术 班级: 学号: 学生姓名: 指导教师:钱楷

一、实验目的 1、熟悉GUI 格式的编程及使用。 2、掌握随机信号的简单分析方法 3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 3、熟悉各种随机信号分析及处理方法。 4、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法 二、实验原理 1、语音的录入与打开 在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。[N1 N2]表示读取从N1点到N2点的值。 2、高斯白噪声 白噪声信号是一个均值为零的随机过程,任一时刻是均值为零的随机变量,而服从高斯分布的白噪声即称为高斯白噪声。在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。 3、均值 随机变量X 的均值也称为数学期望,它定义为:,对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为,则均值定义为E(X)=,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。 4、方差 定义为随机过程x(t)的方差。方差通常也记为 D[X (t )] ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。 5、协方差 设两个随机变量X 和Y ,定义:为X 和Y 的协方差。其相关函数为: ?? +∞∞-+∞ ∞ -= =dxdy t t y x xyf t Y t X E t t R XY XY ),,,()}()({),(212121 由此可见协方差的相关性 与X 和Y 是密切相关的,表征两个函数变化的相似性。 5、协方差 设任意两个时刻1t , 2t ,定义: 为随机过程X (t )的自相关函数,简称为相关函数。自相关函数可正,可负,其绝对值越大表示相关性越强。 7、互相关 互相关函数定义为: 如果X (t )与Y (t )是相互独立的,则一定是不相关的。反之则不一定成立。它是两个随机过程联合统计特性中重要的数字特征。 8、平滑滤波 平滑滤波可以与中值滤波结合使用,对应的线性平滑器可以仅仅用低阶的低通滤波器(如果采用高阶的系统,则将抹掉信号中应该保存的不连续性)。 121212121212 (,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞ -∞ ==???? +∞∞-+∞ ∞ -==dxdy t t y x xyf t Y t X E t t R XY XY ),,,()}()({),(212121

随机信号分析实验报告二 2

《随机信号分析》实验报告二 班级: 学号: 姓名:

实验二高斯噪声的产生和性能测试 1.实验目的 (1)掌握加入高斯噪声的随机混合信号的分析方法。 (2)研究随机过程的均值、相关函数、协方差函数和方差。 ⒉实验原理 (1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。 (2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。 ⒊实验报告要求 (1)简述实验目的及实验原理。 (2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。 试求随机过程 的均值、相关函数、协方差函数和方差。用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。 (3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。 (4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。 (5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。 4、源程序及功能注释 (2)源程序: clear all; clc; t=0:320; %t=0:320 x=sin(2*pi*t/25); %x=sin(2*p1*t/25) x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbw

随机信号分析实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 实验报告 课程名称:随机信号分析 院系:电子与信息工程学院班级: 姓名: 学号: 指导教师: 实验时间: 实验一、各种分布随机数的产生

(一)实验原理 1.均匀分布随机数的产生原理 产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。最简单的方法是加同余法 )(mod 1M c y y n n +=+ M y x n n 1 1++= 为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。加同余法虽然简单,但产生的伪随机数效果不好。另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数 )(mod 1M ay y n n =+ M y x n n 1 1++= 式中,a 为正整数。用加法和乘法完成递推运算的称为混合同余法,即 )(mod 1M c ay y n n +=+ M y x n n 1 1++= 用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。 常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。 Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数, rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。 2.随机变量的仿真 根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。 若X 是分布函数为F(x)的随机变量,且分布函数F(x)为严格单调升函数,令Y=F(X),则Y 必为在[0,1]上均匀分布的随机变量。反之,若Y 是在[0,1]上 均匀分布的随机变量,那么)(1 Y F X X -= 即是分布函数为FX(x)的随机变量。式中F X -?1 ()为F X ()?的反函数。这样,欲求某个分布的随机变量,先产生在[0,1]区间上的均匀分布随机数,再经上式变 换,便可求得所需分布的随机数。 3.高斯分布随机数的仿真 广泛应用的有两种产生高斯随机数的方法,一种是变换法,一种是近似法。 如果X1,X2是两个互相独立的均匀分布随机数,那么下式给出的Y1,Y2

《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

随机信号分析与处理》 实验报告 指导教师: 班级:学号:姓名:

实验一熟悉MATLAB勺随机信号处理相关命令 一、实验目的 1、熟悉GUI格式的编程及使用。 2、掌握随机信号的简单分析方法 3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开 在MATLAB^, [y,fs,bits]=wavread('Blip',[N1 N2]); 用于读取语音,采样值放在向量y中,fs表示采 样频率(Hz),bits表示采样位数。[N1 N2]表示读取从N1点到N2点的值。 2、均匀分布白噪声 在matlab中,有x=rand (a,b)产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。 3、均值 随机变量X的均值也称为数学期望,它定义为 e+oc 对于离散型随机变量,假定随机变量X有N个可能取值,各个取值的概率为- p y --1则均值定义为 £(X) = £.r fPf /=1 上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。 4、方差 定义 为随机过程<r >的方差。方差通常也记为D【X(t)】,随机过程的方差也是时间t的函数,由方差的定义可以看岀,方差是非负函数。 5、自相关函数 设任意两个时刻t1,t2,定义:::: R X (叩2)= E[X(tJX(t2)] = Jq JX1X2 f (X1, X2,t1,t2)dX1dX2 为随机过程X(t)的自相关函数,简称为相关函数。自相关函数可正,可负,其绝对值越大表示相关性越强。 6. 哈明(hamming)窗 0.54+0.46 (10.100) 0,

随机信号处理模实验报告

随机信号分析与处理实验报告院系:信息工程学院 专业:电子信息科学与技术 姓名: 方静 学号:030941209 指导老师:廖红华

实验一 熟悉MATLAB 的随机信号处理相关命令 一、实验目的 1、利用Matlab 对随机熟悉各种随机信号函数的用法 2、掌握随机信号的简单分析方法 二、实验原理 1、语音的录入与打开 在MATLAB 中,wavread 函数用于读取语音信号,采样值放在向量y 中,s f 表示采样频率(Hz),bits 表示 采样位数。[N1 N2]表示读取从N1点到N2点的值。 2、语音信号的频域分析 FFT 即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。在Matlab 信号处理工具箱中,语音信号的频域分析就是对信号进行傅里叶变换后的分析。 4、方差 定义22)]}()({[t t m t X E X X -=)(δ 为随机过程的方差。方差通常也记为DX (t ) ,随机过程的方差也是时间 t 的函数, 由方差的 定义可以看出,方差是非负函数。 5、自相关与互相关 自相关和互相关分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 互相关函数给出了在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效. 事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。 6. 短时过零率与短时能量 语音一般分为无声段,清音段和浊音段。由于语音信号是一个非平稳过程,不能用处理平稳信号的信号处理技术对其进行分析处理。但由于语音信号本身的特点,在10-30ms 的短时间范围内,其特性可以看作是一个准稳态过程,具有短时性,因此采用短时能量和过零率来对语音进行端点检测是可行的。 信号的短时能量定义为:设语音波形时域信号为x(t),加窗分帧处理后得到第n 帧语音信号为xn(m),则定义的短时能量函数如下: ) ()()(x m n x m w m n +=,10-≤≤ N m ,,0)(),1(~0,1)(=-==n w N m m w m 为其他值,其中n=0,1T,2T……并且N 为帧长,T 为帧移长度。 短时过零率表示一帧语音中语音信号的波形穿过横轴的零电平的次数,他可以用来区分清音和浊音,因为语音信号中高音段有高的过零率,低音段有低的过零率,短时能量大的地方过零率小,短时能量小的地方过零率大。 过零率可以反映信号的频谱特性。当离散时间信号相邻两个样点的正负号相异时,我们称之为“过零”,即此时信号的时间波形穿过了零电平的横轴。统计单位时间内样点值改变符号的次数具可以得到平均过零

工程信号处理MATLAB实验指导书v1p0_2008完全版

工程信号处理——MATLAB实验指导书—— 伍星机电工程学院KUST-HMI联合实验室 2008.02

目录 1信号分析基础 (3) 1.1实验1典型时间信号的波形图 (3) 1.2实验2信号数据文件的读取与显示 (4) 2确定信号的频谱分析 (4) 2.1实验3周期信号的傅立叶级数三角函数展开式 (4) 2.2实验4非周期信号的傅立叶变换 (4) 2.3实验5时域有限信号的周期延拓 (5) 3时域分析 (5) 3.1实验6自相关和互相关分析 (5) 4随机信号分析 (5) 4.1实验7随机信号的数字特征 (5) 4.2实验8随机信号的功率谱分析 (6) 5系统分析概述 (6) 5.1实验9线性系统的主要性质 (6) 5.2实验10测定系统特性参数的方法 (7) 6模拟信号的离散化 (7) 6.1实验11时域采样定理 (7) 6.2实验12时域截断与泄露 (7) 7离散傅立叶变换 (7) 7.1实验13离散傅立叶变换 (7) 7.2实验14用X K计算信号的频谱 (8) 8快速傅立叶变换及其工程应用 (8) 8.1实验15快速傅立叶变换 (8) 8.2实验16快速傅立叶变换的应用 (9)

【预备知识】 机械工程测试技术、机械控制工程、MATLAB、虚拟仪器技术等。 【资料检索方法】 1.校图书馆相关书籍。 2.校图书馆数据库:维普中文科技期刊全文数据库,万方会议论文全文库, 万方硕博论文全文库,Elsevier外文期刊数据库,国外免费学位论文全文 数据库,超星电子图书系统。 3.互联网搜索引擎:https://www.360docs.net/doc/6d11175697.html,,https://www.360docs.net/doc/6d11175697.html,,https://www.360docs.net/doc/6d11175697.html,。1信号分析基础 1.1实验1典型时间信号的波形图 【实验目的】 (1)熟悉MATLAB环境,掌握与信号处理相关的常用MATLAB语句和命令; (2)熟悉MATLAB生成典型信号的方法; (3)掌握MATLAB绘制信号波形图的方法; (4)掌握M脚本文件和函数文件的编制方法。 【实验内容】 (1)熟悉各种典型信号生成的关键参数,对于大多数的连续时间信号,两个 关键要素是信号的起止时间、信号的幅值、频率等; (2)编制确定信号和随机信号的M自定义函数文件,包括的典型信号如下: z确定信号 周期信号:正弦信号(MySin),三角波信号(MyTri),方波信号(MySquare)。 非周期信号:准周期信号(MyStdPeriod),矩形脉冲信号(MyImpulse),指数衰减正弦信号(MyExpSin)。 z随机信号:白噪声信号(MyWhiteNoise) (3)使用上述M函数产生如下信号: z幅值为5,频率为10Hz的正弦信号; z幅值为1,频率为8Hz的三角波信号; z幅值为2.5,频率为20Hz,占空比为50%的方波信号; z使用两个幅值为1的正弦信号构成一个准周期信号; z幅值为10,脉宽为1,时间范围0~6s的矩形脉冲信号; z幅值为5,频率为20Hz,衰减系数为-10的指数衰减正弦信号; z幅值范围为-3~3的白噪声信号。

随机信号分析上机实验指导书(金科院新版)

目录 实验1 随机信号的计算机仿真(验证性实验) (1) 实验2 随机信号平稳性分析(验证性实验) (5) 实验3 高斯白噪声通过线性系统分析(综合实验) (6) 实验4 窄带随机过程仿真分析 (验证性实验) (13)

实验1 随机信号的计算机仿真(验证性实验) 一、实验目的 (1)掌握均匀分布随机信号产生的常用方法。 (2)掌握高斯分布随机信号的仿真,并对其数字特征进行估计。 (3)了解随机过程特征估计的基本概念和方法,学会运用 Matlab 函数对随机过程进行特征估计,并且通过实验了解不同估计方法所估计出来结果之间的差异。 二、实验原理 无论是系统数学模型的建立,还是原始实验数据的产生,最基本的需求就是产生一个所需分布的随机变量。各种分布的随机变量的基础是均匀分布的随机变量。有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。 1.均匀分布随机信号的产生 利用混合同余法产生均匀分布的随机数,并显示所有的样本。 (mod )n n y ay c M =+ 11n n x y M +=+ 2.高斯分布随机信号的仿真 若X 是分布函数为F(x)的随机变量,且分布函数F(x)为严格单调升函数,令Y=F(x),则Y 必是在[0,1]上均匀分布的随机变量。反之,若Y 是在[0,1]上均匀分布的随机变量,那么 1()X F Y -= (1) 就是分布函数为F(x)的随机变量。这样,欲求某个分布的随机变量,先产生[0,1]区间上的均匀分布随机数,在经过(1)的变换,便可以求得所需要分布的随机数。

利用函数变换法产生高斯分布的随机数的方法: 如果X1、X2是两个互相独立的均匀分布随机数,那么下式给出的Y1、Y2就是数学期望为m ,方差为2s 的高斯分布随机数 m X X Y +-=)2cos(ln 2211πσ m X X Y +-=)2s i n (ln 2212πσ 3.均值的估计 1 1?N x n n m x N -==? 4.方差的估计 方差估计有两种情况,如果均值x m 已知,则 ()12 20 1?N x n x n x m N s -==-? 如果均值未知,那么 ()12 20 1??1N x n x n x m N s -==--? 5. 相关函数估计 1 1?()N m x n m n n R m x x N m --+==-? 6. 功率谱估计 功率谱的估计有几种方法,此处介绍自相关法: 先求相关函数的估计, 1 1?()N m x n m n n R m x x N m --+==-? 然后对估计的相关函数做傅立叶变换, 1 (1) ?()()N jm x x m N G R m e w w +- =--=?

随机噪声的产生与性能测试

成绩 信息与通信工程学 院实验报告 (软件仿真性实验) 课程名称:随机信号分析 实验题目:随机噪声的产生与性能测试指导教师:陈友兴 班级:学号:学生姓名: 一、实验目的和任务 1、掌握随机序列的产生方法 2、巩固随机信号分布函数、概率密度函数以及数字特征的概念和应用 二、实验内容及原理 实验内容: 1.产生满足均匀分布、高斯分布、指数分布、瑞利分布(提高要求)的随机数,长度为N=1024; 2. 计算所产生数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 3.确定当5个均匀分布过程叠加时,结果是否是高斯分布; 4. 确定当5个指数分布分别叠加时,结果是否是高斯分布; 5.产生一混合随机信号,由幅度为2,频率为25Hz 的正弦信号和均值为2,方差为0.04 的高斯噪声组成。

6. 编程求 0()()t Y t X d ττ=?的均值、相关函数、协方盖函数和方差的程序,并与计算结果进行比较分析。(不做基本要求) 实验原理: 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: 011,(mod ) n n n n y y ky N x y N -=== (1.1) 序列{xn}为产生的(0,1)均匀分布随机数。 下面给出了式(1.1)的 3 组常用参数: ①N=1010,k=7,周期≈5×107; ②(IBM 随机数发生器)N=231,k=216+3,周期≈5×108; ③(ran0)N=231-1,k=75,周期≈2×109; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1若随机变量X 具有连续分布函数 ) (x FX ,而R 为(0,1)均匀分布随机变量,则有 1()x X F R -= 由这一定理可知,分布函数为FX(R)的随机数可以由(0,1)均匀分布随机数按(1.2)式进行变换得到。

随机信号分析与处理实验报告

随机信号分析与处理实 验 题目:对音频信号的随机处理 班级:0312412 姓名:肖文洲 学号:031241217 指导老师:钱楷 时间:2014年11月25日

实验目的: 1、学会利用MATLAB模拟产生各类随机序列。 2、熟悉和掌握随机信号数字特征估计的基本方法。 3、熟悉掌握MATLAB的函数及函数调用、使用方法。 4、学会在MATLAB中创建GUI文件。 实验内容: 1、选用任意一个音频信号作为实验对象,进行各种操作并画出信号和波形。 2、操作类型: (1)、概率密度; (2)、希尔伯特变换; (3)、误差函数; (4)、randn; (5)、原始信号频谱; (6)、axis; (7)、原始信号; (8)、normpdf; (9)、unifpdf; (10)、unifcdf; (11)、raylpdf; (12)、raylcdf; (13)、exppdf;

(14)、截取声音信号的频谱; (15)、expcdf; (16)、periodogram; (17)、weibrnd; (18)、rand; (19)、自相关函数; (20)、截取信号的均方值。 实验步骤: 1、打开MATLAB软件,然后输入guide创建一个 GUI文件。 2、在已经创建好的GUI文件里面穿件所需要的.fig 面板(以学号姓名格式命名)。入下图所示: 图为已经创建好的.fig面板

3、右击“概率密度”,查看回调,然后点击“callback”. 在相应的位置输入程序。然后点击运行,出现下图: 4、依次对后续操作方式进行类似的操作。 5、当完成所有按键的“callback”后,出现的均为上 图。 实验程序: function varargout = xiaowenzhou(varargin) % XIAOWENZHOU M-file for xiaowenzhou.fig % XIAOWENZHOU, by itself, creates a new XIAOWENZHOU or raises the existing % singleton*. % % H = XIAOWENZHOU returns the handle to a new XIAOWENZHOU or the handle to % the existing singleton*. % % XIAOWENZHOU('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in XIAOWENZHOU.M with the given input arguments.

随机信号实验报告

随机过程实验报告 通信1206班 U201213696 马建强 一、实验内容 1、了解随机模拟的基本方法,掌握随机数的概念及其产生方法; 2、掌握伪随机数的产生算法以及伪随机数发生器的特点; 3、掌握一般随机数的产生方法; 4、掌握平稳随机过程的数字特征的求解方法。 二、实验步骤 1、利用线性同余法产生在(min,max)上精度为4位小数的平均分布的随机数; 2、编程实现在min 到max 范围内产生服从正态分布的随机数; 3、编程产生服从指数分布的随机数; 4、编程产生服从泊松分布的随机数; 5、计算任意给定分布的随机过程的均值; 6、计算泊松过程的自相关序列。 三、实验代码与结果 1、均匀分布 /* 函数功能,采用线性同余法,根据输入的种子数产生一个伪随机数. 如果种子不变,则将可以重复调用产生一个伪随机序列。 利用CMyRand类中定义的全局变量:S, K, N, Y。 其中K和N为算法参数,S用于保存种子数,Y为产生的随机数 */ unsigned int CMyRand::MyRand(unsigned int seed) { //添加伪随机数产生代码 if(S != seed) { S = seed; Y = (seed * K) % N; } else { Y = (Y * K) % N; if(Y == 0) Y = rand(); }

return Y; } /*函数功能,产生一个在min~max范围内精度为4位小数的平均分布的随机数*/ double CMyRand::AverageRandom(double min,double max) { int minInteger = (int)(min*10000); int maxInteger = (int)(max*10000); int randInteger = MyRand(seed); int diffInteger = maxInteger - minInteger; int resultInteger = randInteger % diffInteger + minInteger; return resultInteger/10000.0; } 图一、均匀分布

6.窄带随机过程的产生 - 随机信号分析实验报告

计算机与信息工程学院综合性实验报告 一、实验目的 1、基于随机过程的莱斯表达式产生窄带随机过程。 2、掌握窄带随机过程的特性,包括均值(数学期望)、方差、概率密度函数、相关函数及功率谱密度等。 3、掌握窄带随机过程的分析方法。 二、实验仪器或设备 1、一台计算机 2、MATLAB r2013a 三、实验内容及实验原理 基于随机过程的莱斯表达式 00()()cos ()sin y t a t t b t t ωω=- (3.1) 实验过程框图如下:

理想低通滤波器如图所示: 图1 理想低通滤波器 ()20 A H ?ω ?ω≤ ?ω=? ??其它 (3.2) 设白噪声的物理谱0=X G N ω() ,则系统输出的物理谱为 2 2 0=()=20 Y X N A G H G ?ω ?0≤ω≤ ?ωωω???()() 其它 (3.3) 输出的自相关函数为: 01()()cos 2Y Y R G d τωωτωπ∞ = ? /22 1cos 2N A d ωωτωπ?=? (3.4) 2 0sin 242 N A ωτωωτπ ??=? ? 可知输出的自相关函数()Y R τ是一个振荡函数。计算高斯白噪声x(t)、限带白噪声()a t 、 ()b t 及窄带随机过程()y t 的均值,并绘出随机过程各个随机过程的自相关函数,功率谱密 度图形。 四、MATLAB 实验程序 function random(p,R,C) %产生一个p 个点的随机过程 %--------------------------高斯窄带随机过程代码--------------------------% n=1:p; w=linspace(-pi,pi,p); wn=1/2*pi*R*C; [b,a]=butter(1,wn,'low'); %产生低通滤波器 Xt=randn(1,p); %产生p 个点均值为0方差为1的随机数,即高斯白噪声 at=filter(b,a,Xt); %让高斯白噪声通过低通滤波器

随机信号实验报告(模板)(1)

随机信号实验报告 学院通信工程学院 专业信息工程 班级1401051班 制作人李文杰14010510039 制作人孙晓鹏14010510003

一、 摘要 根据实验的要求与具体内容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体内容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUSII 的2ASK 信号的产生及测试实验具体内容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。 二、实验原理及要求 实验一、信号通过线性系统与非线性系统的特性分析 1、实验原理 ① 随机过程的均值(数学期望): 均值E[x(t)](μ)表示集合平均值或数学期望值。基于随机过程的各态历经性,可用时间间隔T 内的幅值平均值表示,即: ∑-==1 /)()]([N t N t x t x E 均值表达了信号变化的中心趋势,或称之为直流分量。 ② 随机过程的均方值: 信号x(t)的均方值E[x2(t)](2?),或称为平均功率,其表达式为: N t x t x E N t /)()]([(1 22 ∑-== 均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的 一种表达。 ③ 随机信号的方差: 信号x(t)的方差定义为: N t x E t x N t /)]]([)([1 22 ∑-=-=σ

3.随机过程的模拟与特征估计-随机信号分析实验报告

计算机与信息工程学院验证性实验报告 专业: 通信工程 年级/班级:2011级 第3学年 第1学期 实验目的 1、 了解随机过程特征估计的基本概念和方法 2、 学会运用MATLAB^件产生各种随机过程 3、 学会对随机过程的特征进行估计 4、 通过实验了解不同估计方法所估计出来的结果之间的差异 实验仪器或设备 1、 一台计算机 2、 M ATLAB r2013a 实验原理 1、 高斯白噪声的产生:利用 MATLAB!数randn 产生 2、 自相关函数的估计:MATLAB!带的函数:xcorr 3、功率谱的估计:MATLAB!带的函数为pyulear 先估计自相关函数R x (m),再利用维纳—辛钦定理,功率谱为自相关函数的傅立叶变 N 1 G x ( X ' R x (m)e” (3.2) m=N 4) 4、 均值的估计:MATLAB!带的函数为mean 1 N 4 m x 二一' x(n) (3.3 ) N n =1 5、 方差的估计:MATLAB!带的函数为var 1 N -1 「[x(n) -mi x ]2 (3.4 ) N n# 6 AR(1)模型的理论自相关函数和理论功率谱 对于AR(1)模型 X(n) =aX(n-1) W(n) 自相关函数 R x (m)二 1 N-|m| N 4m|_J Z x(n + m)x (n) n =0 (3.1 ) 换: (3.5)

功率谱为 四、实验内容 (1)按如下模型产生一组随机序列x(n) =ax(n_1)?w(n),其中w(n)为均值为1,方差 为4的正态分布白噪声序列。 1、 产生并画出a=°.8和a=°.2的x(n)的波形; 2、 估计x(n)的均值和方差; 3、 估计x(n)的自相关函数。 (2)设有AR(1)模型, X(n) ?°.8X(n -1) W(n), 1、 W (n)是零均值正态白噪声,方差为 4。 2、 用MATLA 模拟产生X(n)的500个样本,并估计它的均值和方差; 3、 画出X(n)的理论的自相关函数和功率谱; 4、 估计X(n)的自相关函数和功率谱。 五、实验程序及其运行结果 澈验(1) a=0.8; sigma=2; N=500; u=1+4*ra ndn (N,1); x(1)=sigma*u(1)/sqrt(1-a A 2); for i=2:N x(i)=a*x(i-1)+sigma*u(i); end subplot (2,2,1) plot(x);title('a=0.8') Rx=xcorr(x,'coeff); subplot (2,2,2) plot(Rx);title('a=0.8 时,自相关函数') jun zhix=mea n( x); fan gchax=var(x); b=0.2; y(1)=sigma*u(1)/sqrt(1-bA2); for j=2:N y(j)=b*y(j-1)+sigma*u(j); end 2 m a a 门 R x (m) 2 , m -° 1 -a (3.6) G x ( J 二 2 CT (1-ae 」)2 (3.7)

相关文档
最新文档