(裂缝)受约束早龄期混凝土收缩开裂的理论预测和试验研究

(裂缝)受约束早龄期混凝土收缩开裂的理论预测和试验研究
(裂缝)受约束早龄期混凝土收缩开裂的理论预测和试验研究

第41卷第9期2007年9月

浙 江 大 学 学 报(工学版)

Journal of Zhejiang University (Engineering Science )

Vol.41No.9

Sep.2007

收稿日期:20060426.

浙江大学学报(工学版)网址:https://www.360docs.net/doc/6b11194859.html,/eng

基金项目:国家自然科学基金资助项目(50578142).

作者简介:金南国(1959-),男,吉林珲春人,副教授,主要从事混凝土材料及力学性能研究.E 2mail :jinng @https://www.360docs.net/doc/6b11194859.html,

受约束早龄期混凝土收缩开裂的

理论预测和试验研究

金南国,金贤玉,田 野

(浙江大学土木工程学系,浙江杭州310027)

摘 要:为了揭示受约束混凝土内部的应力发展以及更好地预测混凝土的开裂时间,研究了纤维对高性能混凝土早龄期力学性能与干燥收缩的影响,考虑徐变、约束度等影响因素,在弹性理论基础上,推导了受约束混凝土环应力增量表达式,采用应力破坏准则预测受约束混凝土开裂时间.研究结果表明,在特定的配合比下,掺加聚丙烯腈纤维使混凝土各龄期的干燥收缩应变降低2%~20%,且降低幅度随着龄期的增加而减小;掺加聚丙烯腈纤维可以延迟混凝土的开裂时间,减小裂缝宽度.针对受约束混凝土环,理论预测掺纤维与未掺纤维混凝土的开裂时间分别为28和22d ,理论预测结果与试验结果吻合良好.

关键词:高性能混凝土;纤维;环形约束试验;约束度;收缩开裂;开裂时间

中图分类号:TU52 文献标识码:A 文章编号:1008973X (2007)09149904

Analytical prediction and experimental research on shrinkage

cracking of restrained early 2age concrete

J IN Nan 2guo ,J IN Xian 2yu ,TIAN Ye

(De partment of Civil Engi neering ,Zhej iang Universit y ,H angz hou 310027,China )

Abstract :The early 2age mechanical properties and drying shrinkage of high performance concrete added wit h fiber were st udied to investigate t he develop ment of st ress in rest rained concrete and predict t he crack 2ing age of concrete more precisely.An incremental rep resentation of stress of rest rained concrete ring was established based on elasticity t heory in considering creep and rest raint degree.Then t he maximum tension st ress t heory was int roduced to predict t he cracking age of rest rained concrete ring.Experimental and t he 2oretical analysis showed t hat fiber addition reduced t he drying shrinkage for about 2%to 20%at different ages ,and t he reduction decreased wit h age.Fiber addition also po stpo ned t he cracking age of concrete ring and narrowed t he crack widt h.In t heory ,t he cracking ages of t he high performance concrete wit h and wit hout fiber were 28and 22d respectively ,which were in good agreement wit h t he experimental result s.K ey w ords :high performance co ncrete ;fiber ;ring test ;restraint degree ;shrinkage cracking ;cracking age

随着混凝土材料科学和结构科学的发展,兴建的大型混凝土工程日渐增多,高强度、高性能混凝土得到了广泛应用,对早龄期高性能混凝土的研究也日益深入[123].研究发现,高强度、高性能混凝土在早期更容易开裂.Lepage 等人[4]的研究表明,水胶比为0.25及0.30的高性能混凝土在龄期不超过1d 时就出现网状裂纹.Wiegrink 等人[526]研究发现掺硅粉的高强度、高性能混凝土更容易在早期出现开

裂.由收缩引起的体积变形受到约束而产生的应力

导致混凝土开裂,已经成为影响混凝土结构劣化、耐久性的重要因素.

正确地检测与判断混凝土的收缩与开裂时间及开裂趋势是采取有效措施以减少或避免开裂的前提.混凝土环形约束试验由于试验装置简单、简便实用,已经被广泛采用.在国内已开展的混凝土环形约束收缩试验研究[7]中,多数是对受限混凝土圆环收

缩开裂的定性判断,定量研究很少.然而只有通过定量研究才能够真正了解和揭示受限混凝土的内部应力发展情况,预测混凝土开裂时间,以指导混凝土结构设计,为大型混凝土工程防裂提供可靠依据.

本文通过环形约束试验,研究了不同配合比混凝土的收缩开裂性能,基于Shah等人[829]的混凝土环形收缩开裂理论分析结果,综合考虑自由收缩应变、徐变、约束度和弹性模量等因素对混凝土环开裂的影响,推导出了混凝土环应力公式.将混凝土环应力公式与最大拉应力理论相结合,可以预测混凝土环开裂时间.

1 原材料和配合比

1.1 原材料

水泥:浙江兰溪红狮牌32.5级普通硅酸盐水泥;粉煤灰:北仑利晖建材开发有限公司生产的Ⅰ级粉煤灰;矿粉:兰溪力强外加剂有限公司生产的HL 型复合矿粉;砂子:细度模数为2.49的河砂;纤维:路威2002聚丙烯腈纤维,性能见表1;石子:碎石,粒径为5~40mm,连续级配;外加剂:杭州华冠建材有限公司生产的L S8012A型高效泵送剂.

表1 路威2002聚丙烯腈纤维基本性能Tab.1 Properties of L uWei2002polyacrylonitrile fiber 参数数值参数数值

纤度/dtex 1.9弹性模量/GPa17.1

直径/μm15抗拉强度/MPa>910

长度/mm6延伸率/%14~20

密度/(g?cm-3) 1.18——

1.2 混凝土配合比

混凝土配合比如表2所示,其中配合比B是在配合比A基础上掺入0.5kg/m3聚丙烯腈纤维.

表2 混凝土配合比

Tab.2 Mix proportions of concrete kg?m-3编号水泥水砂石子

A2781697191125

B2781697191125

编号粉煤灰矿粉纤维外加剂

A4058— 6.8

B40580.5 6.8

2 试验及方法

2.1 基本力学性能

按照《普通混凝土力学性能试验方法标准》(G B/T5008122002)的规定进行劈裂抗拉强度、静力受压弹性模量的测试.立方体试件尺寸为100 mm×100mm×100mm,静力受压弹性模量试件尺寸为100mm×100mm×300mm.测试龄期为1、3、7、14、28、60、90d.

2.2 自由收缩

自由收缩试件尺寸为100mm×100mm×500 mm,其两端预埋侧头.试件在20℃,相对湿度大于95%的标准养护室中养护,1d后拆模,再放在养护室养护2d后取出测定初始值,之后放入(20±2℃),相对湿度为60%

±5%的干燥室中.测定试件在1、3、7、14、28、45、90、180d的收缩变形(测长龄期从放入干燥室开始算起).

2.3 收缩开裂

收缩开裂试验采用的环形约束试验装置如图1所示.每种配合比制作3块试件,试件成模后置于20℃,相对湿度大于95%的标准养护室养护.养护3d后拆模,放入干燥室内养护.在混凝土环开裂以前,用放大镜观察混凝土环表面是否开裂,记录混凝土环出现第一条裂缝的时间,开裂后用读数显微镜量测裂缝宽度,记录裂缝宽度随龄期的发展情况.

图1 环形约束试验装置图

Fig.1 Experimental device of restrained concrete ring

3 讨 论

3.1 试验结果

图2、3是混凝土环形约束试验结果.由图2可知,配合比B和配合比A的开裂(“开裂”是用放大镜能够观察到的裂缝)时间(3个试件开裂时间的平均值)分别为27.3和21.7d.聚丙烯腈纤维混凝土的开裂时间比不掺纤维混凝土推迟约6d.图3是每个配合比中一个试件开裂后首条裂缝宽度随龄期的发展情况.

由图3可知,在开始出现裂缝后大约3个星期内裂缝宽度发展迅速,之后发展趋于缓慢.配合比B 的开裂宽度比配合比A明显减小,在60d时配合比B的开裂宽度比配合比A减小约39%.也就是说,聚丙烯腈纤维混凝土比不掺纤维混凝土开裂宽度减小,开裂时间延迟.因此聚丙烯腈纤维能够很好地提

0051浙 江 大 学 学 报(工学版) 第41卷 

图2 不同配合比混凝土开裂时间

Fig.2 Cracking age of concrete with different mix

proportion

图3 裂缝宽度与龄期关系

Fig.3 Relationship between crack width and age

高混凝土的抗裂性能.

图4是不同配合比混凝土干燥收缩(包括自由

收缩)试验结果.配合比B 在各龄期的干燥收缩应变均小于配合比A ,降低幅度为2%~20%,且降低幅度随着龄期的增加逐渐减小,1d 时降低20.0%,7d 时降低10.4%,28d 时降低5.4%,180d 时降低2.0%.故掺入一定量的聚丙烯腈纤维可以减少混凝土的干燥收缩,并主要表现在早期.当理论预测混凝土环收缩开裂时,需要混凝土的弹性模量E 、劈拉强度f sp 的试验数据,试验结果如表3所示

.

图4 干燥收缩与龄期的关系

Fig.4 Relationship between drying shrinkage and age

3.2 混凝土环收缩开裂理论分析

混凝土环形试件在收缩时受到内钢环的约束,

混凝土环内部的受力情况如图5所示.Shah 等人[8]根据弹性力学理论,分析得到混凝土环在完全约束状态下的应力为

表3 不同配合比混凝土基本力学性能

Tab.3 Basic mechanic performance of concrete with differ 2

ent mix proportion

配合比t a /d f sp /MPa E /GPa

A

1

3714286090 1.202.062.662.973.483.723.9023.827.428.029.731.733.033.2B

137142860900.811.802.492.583.253.774.0124.127.127.529.230.832.333.

图5 混凝土环内部应力

Fig.5 Internal stresses of concrete ring

σθ=

r 2e /r 2

+1

r 2e /r 2

i -1

p ,(1)σr =r 2

e /r 2

-1r 2e /r 2

i -1p ,(2)p =

E

ε(r 2e

+r 2i

)/(r 2e -r 2

i )+ν

.(3)

式中:σθ、σr 分别为(r ,θ)处混凝土环的环向应力和径向应力;r e 、r i 分别为混凝土环的外径和内径;

p 为混凝土收缩对内钢环产生的压应力;ε、

ν分别为混凝土环试件自由收缩的应变和泊松比.

混凝土环形试件在约束收缩时,处于环向均匀拉应力状态[5].假设此拉应力等于混凝土环中点的环向拉应力,则式(1)可写成增量形式:

d σ(τ)=r 2

e /r 2

m +1

r 2e /r 2i -1

d p (τ

).(4)式中:r m 为混凝土环圆心离混凝土环中点的距离,

r m =(r e +r i )/2.

随着龄期的增长,内钢环对混凝土不再是完全约束,通过引入约束度R s 概念,可将式(3)写成增量形式:

d p (τ)=E (τ

)R s (τ)d ε(τ)(r 2e +r 2i )/(r 2e -r 2

i )+ν.(5)将式(4)代入式(5)得到混凝土环瞬时弹性应力为

1

051第9期金南国,等:受约束早龄期混凝土收缩开裂的理论预测和试验研究

dσ(τ)=C E(τ)R s(τ)dε(τ).(6)式中:C为混凝土环几何尺寸参数,

C=

r2e/r2m+1

(r2e/r2i-1)[(r2e+r2i)/(r2e-r2i)+ν].

由徐变引起应力松弛,在t(t>τ)时的应力为

dσ(t,τ)=dσ(τ)K(t,τ)=

C E(τ)R s(τ)dε(τ)×K(t,τ).(7)式中:K(t,τ)为混凝土的松弛系数,ε(τ)为混凝土自由收缩应变.对式(7)积分,得到总拉应力为

σ(t)=C∫t0K(t,τ)E(τ)R s(τ)dε(τ).(8)根据最大拉应力理论,如果混凝土环在时间t的拉应力σ(t)大于混凝土在该时间的抵抗力即抗拉强度

f R(t),就可以认为混凝土开裂,混凝土开裂时间即为t.

3.3 收缩开裂预测

试验中取几何尺寸参数C=0.85(取ν=0.18),混凝土环截面面积A c=4900mm2,钢环截面面积A st=2100mm2,钢环弹性模量E st=200GPa.

在式(8)中,混凝土环变形约束度R s(τ)是钢环刚度与钢环刚度和混凝土环刚度之和的比值[9],即R s(τ)=A st E st/(A st E st+A c E(τ));松弛系数K(t,τ)通过K(t,τ)=exp[-0.80(<0(t,τ))0.85][7]来计算, <0(t,τ)=<(t,τ)E(τ)/E(28),其中E(28)为混凝土28d弹性模量;徐变系数<(t,τ)根据CEB/FIP MC90规范给出的计算公式求得;E(τ)、ε(τ)通过试验数据得到,试验采用棱柱体试件测量自由收缩ε

sh,所用的棱柱体试件和混凝土环形试件的体表比(V/S)不同,根据ACI209收缩公式,反映不同体表比对干燥收缩影响的调整系数βd=1.2×exp(-0.00472V/S),经过调整可得ε=0.97εsh.假定混凝土环从浇注至标准养护3d内,自由收缩和温度变形产生的应力很小,可忽略不计.在确定R s(τ)、K(t,τ)、E(τ)和ε(τ)后,代入式(8)可得σ(t),即如图6所示理论拉应力曲线.通过试验数据得到f sp(t),根据f R(t)=0.9f sp(t)[10]可得混凝土抗拉强度f R(t),即如图6所示混凝土抗拉强度曲线.

在图6中,混凝土的理论拉应力曲线与抗拉强度曲线的交点表示混凝土开裂点,对应的龄期就是混凝土环的预测开裂时间.根据理论预测混凝土A、B的开裂时间分别为22和28d,试验实测的开裂时间(3个试件的平均时间)分别为21.7和27.3d,与理论预测结果吻合良好.

4 结 论

(1)聚丙烯腈纤维混凝土具有良好的阻裂性能

,

图6 混凝土的理论拉应力及抗拉强度

Fig.6 Theoretical tensile stress and tensile

strength of concrete

聚丙烯腈纤维可以延迟混凝土的开裂时间,减小裂缝宽度.

(2)聚丙烯腈纤维混凝土能够减小干燥收缩,但随着龄期的增加,与不掺纤维混凝土的收缩量的差异逐渐减小.

(3)根据最大拉应力理论,综合考虑影响混凝土收缩开裂的主要因素:自由收缩应变、徐变、约束度和弹性模量,建立了混凝土环应力公式,能够较好地反映混凝土环内部应力.

(4)针对本研究采用的混凝土,理论预测的开裂时间与试验测量结果吻合良好.

参考文献(R eferences):

[1]张剑,金南国,金贤玉,等.混凝土多边形骨料分布的计

算机模拟方法[J].浙江大学学报:工学版,2004,38

(4):581585.

ZHAN G Jian,J IN Nan2guo,J IN Xian2yu,et al.Nu2 merical simulation method for polygonal aggregate dis2 tribution in concrete[J].Journal of Zhejiang U niversity:

E ngineering Science,2004,38(4):581585.

[2]金南国,金贤玉,郭剑飞.混凝土孔结构与强度关系模型

研究[J].浙江大学学报:工学版,2005,39(11):1680

1684.

J IN Nan2guo,J IN Xian2yu,GUO Jian2fei.Relationship modeling of pore structure and strength of concrete[J].

Journal of Zhejiang U niversity:E ngineering Science, 2005,39(11):16801684.

(下转第1507页)

2051浙 江 大 学 学 报(工学版) 第41卷 

G3=[(-6ν+2)h-10ν+6]λ-Ef h-2ε1E, G4=-16λ(2k+λ)Eε1(ν-0.5),

H1=λ(2ν-1),

H2=(4hν+4ν-4)λ+2ε1Eh,

F1=2ε1E+ε1Eh+6λνh-6λ+10λν-2λh, F2=(F21+F22+F23)/F24,

F3=2λ(2ν-1)k-ε1Eλ-2Eε1k

(2ν-1)λ.

式中:

G11=4[(ν-1)h+3ν-1]2λ2,

G13=(h+2)2E2ε21,

G12=4[(1-ν)h2+(3ν-1)h+10ν-6]Eε1λ,

F21=λ2(4-24ν+8h+36ν2+4h2-32νh+

24ν2h-8νh2+4ν2h2),

F22=4h2(E2ε21+ε1Eλ-ε1Eλν)+4(h+1)ε21E2, F23=-24λε1E-4λε1Eh+12λε1Ehν+40λε1Eν, F24=2(ε1Eh+2λνh+2λν-2λ).

参考文献(R eferences):

[1]V ESIC A S.Expansion of cavity in infinite soil mass

[J].Journal of Soil Mechanics and Found ations Division, 1972,98(3):265289.

[2]CAR TER J P,BOO KER J R,YEUN G S K.Cavity ex2

pansion in cohesive f rictional soils[J].G eotechnique, 1986,36(3):349358.

[3]YU H S.Finite cavity expansion in dilation soils:loading a2

nalysis[J].G eotechniqu e,1991,41(2):173183.

[4]蒋明镜,沈珠江.考虑剪胀的线性软化柱形孔扩张问题

[J].岩石力学与工程学报,1997,16(6):550557.

J IAN G Ming2jing,SH EN Zhu2jiang.On expansion of cylindrical cavity with linear softening and shear dilation behavior[J].Journal of R ock Mechanics and E ngineer2 ing,1997,16(6):550557.

[5]王晓鸿,王家来,梁发云.应变软化岩土材料内扩孔问题

解析解[J].工程力学,1999,16(5):7176.

WAN G Xiao2hong,WAN G Jia2lai,L IAN G Fa2yun.

Analytical solution to expansion of cavity in strain2 softening materials[J].E ngineering Mechanics,1999, 16(5):7176.

[6]梁发云,陈龙珠.应变软化Tresca材料中扩孔问题解答

及其应用[J].岩土力学,2004,25(2):261265.

L IAN G Fa2yun,CH EN Long2zhu.Analytical solution to cavity expansion in strain2softening soils with Tresca yield criterion and its applications[J].R ock and Soil Mechanics,2004,25(2):261265.

[7]李广信.高等土力学[M].北京:清华大学出版社,

2004.

(上接第1502页)

[3]金南国,金贤玉,郑砚国,等.早龄期混凝土断裂性能和

微观结构的试验研究[J].浙江大学学报:工学版, 2005,39(9):13741377.

J IN Nan2guo,J IN Xian2yu,ZH EN G Yan2guo,et al.

Experimental study on f racture properties and micro2 structure of early age concrete[J].Journal of Zhejiang U niversity:E ngineering Science,2005,39(9):1374

1377.

[4]L EPA GE S,BALBA KI M,DALL A IRE E,et al.Early

shrinkage development in a high performance concrete [J].C ement,Concrete,and Aggregates,1999,21(2): 3135.

[5]WIEGRIN K K,MARIKUN TE S,SHA H S P.Shrink2

age cracking of high2strength concrete[J].ACI Materi2 als Journal,1996,93(5):409415.[6]SUBRAMAN IAN K V,GROMO T KA R.Influence of

ultrafine fly ash on the early age response and the shrinkage cracking potential of concrete[J].Journal of Materials in Civil E ngineering,2005,17(1):4553. [7]韩素芳,耿维恕.钢筋混凝土结构裂缝控制指南[M].

北京:化学工业出版社,2004.

[8]SHA H S P,OU YAN G C.A method to predict shrink2

age cracking of concrete[J].ACI Materials Journal, 1998,95(4):339346.

[9]SEE H T,A T TIO G B E E K,MIL TENBER GER M A.

Shrinkage cracking characteristics of concrete using ring specimens[J].ACI Materials Journal,2003,100(3): 239245.

[10]袁勇.混凝土结构早期裂缝控制[M].北京:科学出版

社,2004:2627.

7051

第9期胡士兵,等:线性软化土体中球孔扩张问题的解析解

混凝土裂缝的鉴别标准及处理原则

混凝土裂缝的鉴别及处理原则 裂缝是固体材料中的一种不连续现象,许多钢筋混凝土形式建筑物在建设过程和使用过程中出现了不同程度、不同形式的裂缝,这是一个相当普遍的现象,也是长期困扰土木技术人员的一项技术难题。在工程鉴定加固中,经常遇到各种形式的混凝土裂缝,准确地对混凝土裂缝进行鉴别不仅是工程鉴定一项主要内容,也是对裂缝进行加固修补处理的重要依据,因此显得尤为重要。 二、混凝土裂缝的主要类型 混凝土裂缝产生的基本原因可以归纳为两大类:一类是荷载变化引起的裂缝,包括施工和使用阶段的静荷载、动荷载;一类是由变形变化引起的裂缝,包括温度、湿度变化、不均匀沉降、冻胀、钢筋锈蚀、化学反应膨胀等等(1)。 按裂缝产生的机理分,建筑物中常见的裂缝基本类型有:塑性收缩裂缝,沉降收缩裂缝,温度裂缝,干燥收缩裂缝,碳化收缩裂缝,化学反应裂缝,沉陷裂缝,冻胀裂缝,徐变裂缝,凝缩裂缝等等。 三、混凝土裂缝鉴别的主要内容 建筑物的破坏,特别是钢筋混凝土结构的破坏往往是从裂缝开始的。但是,并不是所有的裂缝都是建筑物危险的征兆,只有那些影响结构承载能力、稳定性、刚度以及节点连接可靠性等的裂缝才可能危及建筑物的使用安全。而大量常见的裂缝,如温度、收缩裂缝等,并不危及建筑结构安全。因此,各类裂缝对建筑物的危害是不同的,故对各类裂缝的处理应有区别。所以准确鉴别不同类型的裂缝是十分重要的。 裂缝鉴别一般从裂缝现状、开裂时间和裂缝的发展变化三个方面调查分析(2),其鉴别的主要内容有以下几个方面: (一) 裂缝现状调查 包括对所处理裂缝调查其产生形式、裂缝宽度、裂缝长度、是否贯通、缝内有无异物及裂缝宽度的变化等情况。裂缝末端位置是推断混凝土应力状态的重要参数,一定要仔细观察到看不见为止。 1、裂缝宽度 裂缝宽度是判断裂缝对混凝土结构物影响程度的重要参数,应预先查明裂缝宽度是否发展变化,因为它是分析开裂原因、决定修补及补强加固方法的重要项目。

混凝土裂缝的预防措施和处理方案

混凝土裂缝的预防和处理 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,针对兰渝正线浩口双线大桥11#承台出现的一些裂缝问题,项目技术负责人带领领工及班组施工在现场进行了探讨分析,同时通过查询资料,针对混凝土的各种具体裂缝情况提出了系统的探讨,并提出了相关的预防和处理措施,作为书面交底,希望大家遵照执行,避免出现裂缝,影响工期、质量及加大项目成本。 一、混凝土裂缝产生的原理及危害 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人身安全。 二、凝土工程中常见裂缝起因及预防 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 1.干缩裂缝及预防 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产生。干缩裂缝多为表面性的平行线状或网状浅细裂缝,宽度多在0.05~0.2mm之间,大体积混凝土中平面部位多见,较薄的梁板中多沿其短向分布。干缩裂缝通常会影响混凝土的抗渗性,引起钢筋的锈蚀影响混凝土的耐久性,在水压力的作用下会产生水力劈裂影响混凝土的承载力等等。混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。 主要预防措施: 一、是选用收缩量较小的水泥,一般采用中低热水泥和粉煤灰水泥,降低水泥的用量。 二、是混凝土的干缩受水灰比的影响较大,水灰比越大,干缩越大,因此在混凝土配合比设计中应尽量控制好水灰比的选用,同时掺加合适的减水剂。 三、是严格控制混凝土搅拌和施工中的配合比,混凝土的用水量绝对不能大于配合比设计所给定的用水量。 四、是加强混凝土的早期养护,并适当延长混凝土的养护时间。冬季施工时要适当延长混凝土保温覆盖时间,并涂刷养护剂养护。 五、是在混凝土结构中设置合适的收缩缝。 2.塑性收缩裂缝及预防 塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细且长短不一,互不连

混凝土裂缝产生原因

大体积混凝土的裂缝产生的可能原因与预防措施 1.1大体积混凝土裂缝的可能原因 1.1.1裂缝的类型和形成原因 大体积混凝土墩台身或基础等结构裂缝的发生是由多种因素引起的。各类裂缝产生的主要影响因素如下: 1.1.1.1收缩裂缝: 混凝土的收缩引起收缩裂缝。收缩的主要影响因素是混凝土中的用水量和水泥用量,混凝土中的用水量和水泥用量越高,混凝土的收缩就越大。 选用水泥品种的不同,干缩、收缩的量也不同。收缩量较小的水泥为中低热水泥和粉煤灰水泥。 混凝土的逐渐散热和硬化过程引起的收缩,会产生很大的收缩应力,如果产生的收缩应力超过当时的混凝土极限抗拉强度,就会在混凝土中产生收缩裂缝。 人们对收缩给予了很大的关注,但引人关注的并不是收缩本身,而是由于它会引起开裂。混凝土的收缩现象有好几种,比较熟悉的是干燥收缩和温度收缩,这里着重介绍的是自身收缩,还顺便提及塑性收缩问题。 自身收缩与干缩一样,是由于水的迁移而引起。但它不是由于水向外蒸发散失,而是因为水泥水化时消耗水分造成凝胶孔的液面下降,形成弯月面,产生所谓的自干燥作用,混凝土体的相对湿度降低,体积减小。水灰比的变化对干燥收缩和自身收缩的影响正相反,即当混凝土的水灰比降低时干燥收缩减小,而自身收缩增大。如当水灰比大于0.5时,其自干燥作用和自身收缩与干缩相比小得可以忽略不计;但是当水灰比小于0.35时,体内相对湿度会很快降低到80%以下,自身收缩与干缩则接近各占一半。 自身收缩中发生于混凝土拌合后的初龄期,因为在这以后,由于体内的自干燥作用,相对湿度降低,水化就基本上终止了。换句话说,在模板拆除之前,混凝土的自身收缩大部分已经产生,甚至已经完成,而不像干燥收缩,除了未覆盖且暴露面很大的地面以外,许多构件的干缩都发生在拆模以后,因此只要覆盖了表面,就认为混凝土不发生干缩。 在大体积混凝土里,即使水灰比并不低,自身收缩量值也不大,但是它与温度收缩叠加到一起,就要使应力增大,所以在水工大坝施工时早就将自身收缩作为一项性能指标进行测定和考虑。现今许多断面尺寸虽不很大,且水灰比也不算小的混凝土,如上所述,已“达到必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂影响”,因而也需要像大坝一样,需要考虑将温度收缩和自身收缩叠加的影响,况且在这些结构里,两者的发展速率均要比大坝混凝土中快得多,因此也激烈得多。 还有塑性收缩,在水泥活性大、混凝土温度较高,或者水灰比较低的条件下也会加剧引起开裂。因为这时混凝土的泌水明显减少,表面蒸发的水分不能及时得到补充,这时混凝土尚处于塑性状态,稍微受到一点拉力,混凝土的表面就会出现分布不规则的裂缝。出现裂缝以后,混凝土体内的水分蒸发进一步加快,于是裂缝迅速扩展。所以在上述情况下混凝土浇注后需要及早覆盖。 1.1.1.2温差裂缝 混凝土内部和外部的温差过大会产生裂缝。温差裂缝的主要影响因素是水泥水化热引起的混凝土内部和混凝土表面的温差过大。特别是大体积混凝土更易发生此类裂缝。 大体积混凝土结构一般要求一次性整体浇筑,浇筑后,水泥因水化引起水化热,由于混凝土体积大,聚集在内部的水泥水化热不容易散发,混凝土内部温度将显著升高,而混凝土表面土则散热较快,形成了较大的温度差,使混凝土内部产生压应力,表面产生拉应力,此时,混凝龄期短,抗拉强度很低。当温差产生的表面抗拉应力超过混凝土极限抗拉强度,则会在混凝土的表面产生裂缝。 大体积混凝土施工,由于混凝土内部与表面散热速率不一样,在其表面形成较大的温度梯度,从而引起较大的表面拉应力。同时,此时混凝土的龄期很短,抗拉强度很低,温差产生的表面拉应力,超过此

混凝土裂缝的预防与处理

混凝土裂缝的预防与处理

摘要 混凝土的裂缝是建筑工程中存在的普遍问题。分析裂缝产生的原因:非施工因素和施工因素,其中非施工因素又包括设计因素、环境因素、环境因素。施工因素中又包括材料质量控制不当、施工过程控制不当,材料原因、混凝土配合比设计原因、施工及现场养护原因、使用原因(外界因素)。提出裂缝处理的方法,通常处理裂缝的方法有以下几种:表面修补、局部修复法、水泥压力灌浆法、化学灌浆、减少结构内力、结构补强、改变结构方案,加强整体刚度、其它方法。重点阐述了坡屋面混凝土浇筑的裂缝防治,坡屋面混凝土施工裂缝防治要注意以下六个方面:工艺流程、混凝土供料手段、混凝土浇筑顺序、混凝土振捣方法、坡地屋面板厚的控制、防渗砂浆找平层施工。下面就混凝土裂缝的成因分析及处理进行简单探讨。 关键词:1、裂缝2、成因3、处理

目录 一、裂缝的产生的成因分析 (1) (一)非施工因素 (1) (二)施工因素 (2) 二、裂缝的控制措施 (4) (一)设计方面 (4) (二)材料选择和混凝土配合比设计方面 (4) 三、裂缝的处理方法 (6) (一)表面修补法 (6) (二)灌浆、嵌逢封堵法 (6) (三)结构加固法 (7) (四)混凝土置换法 (7) (五)电化学防护法 (7) (六)仿生自愈合法 (7) 四、坡屋面混凝土浇筑的裂缝防治 (8) (一)工艺流程 (8) (二)混凝土供料手段 (8) (三)混凝土浇筑顺序 (8) (四)混凝土振捣方法 (9) (五)坡屋面板厚的控制 (9) (六)防渗砂浆找平层施工 (9) 五、结论 (10) 致谢 (11) 参考文献 (11)

混凝土收缩与方块裂缝

混凝土收缩与方块裂缝 摘要:混凝土干缩变形对结构物的危害很大,它可使混凝土表面出现较大的拉应力,从而引起表面开裂,直接影响结构物的耐久性。近几年,对于如何做好混凝土的防裂工作,倍受大家的关注,提出了一些如何控制干缩变形的措施,有的已在工程中得到应用,并取得成效。关键词:混凝土收缩方块裂缝混凝土干缩变形对结构物的危害很大,它可使混凝土表面出现较大的拉应力,从而引起表面开裂,直接影响结构物的耐久性。近几年,对于如何做好混凝土的防裂工作,倍受大家的关注,提出了一些如何控制干缩变形的措施,有的已在工程中得到应用,并取得成效。一、混凝土收缩和方块裂缝的成因由于混凝土所含水分的变化、化学反应及温度降低等因素引起的体积缩小,均称为混凝土的收缩。当在某一瞬间由混凝土收缩产生的拉应力大于同期混凝土的抗拉强度时,就会产生裂缝。混凝土的收缩变形根据其成因可分为塑性收缩、温度收缩和干燥收缩等几大类。 建筑物的构件形式、使用材料、施工条件如有不同,裂缝的主要成因也有差别。根据近期对预制方块的跟踪调查,可认为方块裂缝主要是由干燥收缩引起。混凝土浇筑后置于未饱和空气中,表面水份散失很快,内外湿度梯度产生很大的毛细管压力,从而引的体积缩小变形。干燥收缩可贯穿于整个建筑物的施工及使用阶段,在大体积预制件施工中,裂缝占的比例较高。根据国外20 年的干缩试验资料表明,混凝土浇筑后14d 仅完成20 年干缩的14~34,90d 完成40~80,1 年完成66~85。方块的表面积与其它构件相比差别较大,表面积越大,水分的散失速度越快,干燥收缩也就越明显。二、方块裂缝的特征1、方块裂缝一般出现在块体的侧面,并在截面有突变的阳榫附近较为明显;2、裂缝自上而下延伸,走向不规则,长度不等;3、出现裂缝的方块其裂缝数量为1-2 条,裂缝宽度约在 0.1mm 以内,用肉眼观察,很难发现;4、裂缝发生时间一般在4-5 月份多风少雨季节,并在混凝土浇筑后约10 天内发生。此类裂缝发现后,经过进一步观察没有发现扩展现象,因此对构筑物不会造成大的危害。为了从根本上控制裂缝的发生,有必要在各个施工环节采取有效措施予以消除 三、方块防裂措 1、改进配合 为了进行比较,我们首先对混凝土配合比进行了调整,见下表 配合比调整前后对比 注:(1)砼设计强度等级均为C2 (2)砼用砂均为本地中砂,粗骨料粒径16~31.5mm,31.6-63mm

混凝土裂缝产生的原因及处理方法

混凝土裂缝产生的原因及处理方法 一、普通混凝土裂缝产生的原因 01荷载引起的裂缝 混凝土在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。直接应力裂缝是指外荷载引起的直接应力产生的裂缝, 次应力裂缝是指由外荷载引起的次生应力产生裂缝。 荷载裂缝特征依荷载不同而异呈现不同的特点。这类裂缝多出现在受拉区、受剪区或振动严重部位。但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。 02温度变化引起的裂缝 混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。 03收缩引起的裂缝

在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。 塑性收缩。发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。 缩水收缩(干缩)。混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。 自生收缩。自生收缩是混凝土在硬化过程中,水泥与水发生水化

混凝土裂缝预防及处理

混凝土裂缝的预防与处理 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。 一、前言 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。 混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的,只是要采取有效的措施将其危害程度控制在一定的范围之内。 钢筋混凝土规范也明确规定[1]:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 二、凝土工程中常见裂缝及预防 1、干缩裂缝产生原因及预防措施 (1)裂缝现象及产生原因 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产生。干缩裂缝多为表面性的平行线状或网状浅细裂缝,宽度多在0.05~0.2mm之间,大体积混凝土中平面部位多见,较薄的梁板中多沿其短向分布。干缩裂缝通常会影响混凝土的抗渗性,引起钢筋的锈蚀影响混凝土的耐久性,在水压力的作用下会产生水力劈裂影响混凝土的承载力等等。混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。 (2)预防措施

混凝土裂缝的成因与控制

混凝土裂缝的成因与控制 混凝土的裂缝是一个普遍存在而又难于解决的工程实际问题。我在工作中对混凝土工程中常见的一些裂缝成因进行了分析探讨,提出了控制裂缝发展的措施,总结了混凝土裂缝的处理方法。 1 裂缝的成因 裂缝产生的形式和种类很多,有设计方面的原因,但更多的是施工过程各种因素组合产生的,正确判断和分析混凝土裂缝的成因是有效地控制和减少混凝土裂缝产生的有效途径,裂缝原因是设计、施工、材料、环境等相互影响的综合性问题,解决裂缝控制问题应当采取综合方法。 1.1 设计原因 1)设计结构中的断面突变而产生的应力集中所产生的构件开裂。 2)设计中构造钢筋配置过少或过粗引起构件裂缝,如墙板、楼板等 3)设计中未充分考虑混凝土构件的收缩变形。 4)设计中采用的混凝土等级过高,造成用灰量过大,对收缩不利。 5)荷载收缩,使用环境温度变化,管线配置不当,保

护层厚度不足,抗温度收缩配筋不足。 1.2 材料原因 1)粗细集料含泥量过大,造成混凝土收缩增大。集料颗粒级配不良或采取不恰当的间断级配,容易造成混凝土收缩的增大,诱导裂缝的产生。 2)果料粒径越细、针片含量越大,混凝土单方用灰量、用水量增多,收缩量增大。 3)混凝土外加剂、掺合料选择不当或掺量不当,严重增加混凝土收缩。 4)水泥品种的原因,粉煤灰及矾土水泥收缩值较小,快硬水泥收缩大。 5)水泥等级及混凝土强度等级原因:水泥等级越高,细度越细、早强越高对混凝土开裂影响很大。混凝土设计强度等级越高,混凝土脆性越大,越易开裂。 1.3 混凝土配合比设计原因 1)配合比中水灰比过大。 2)单方水泥用量越大,用水量越高,表现为水泥浆体积越大、坍落度越大,收缩越大。 3)配合比设计中砂率、水灰比选择不当造成混凝土和易性偏差,导致混凝土离析、泌水、保水性不良,增加收缩值。 4)配合比设计中混凝土膨胀剂掺量选择不当。

混凝土裂缝的预防与处理措施

混凝土裂缝的预防和处理措施 一、前言 混凝土结构在建设和使用过程中出现不同程度、不同形式的裂缝,这是一个相当普遍的现象。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差、湿度、地基变形以及碱骨料反应等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。很多工程的失事都是由于裂缝的不稳定发展所致。 近代科学研究和大量的混凝土工程实践证明,在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的,只是要采取有效的措施将其危害程度控制在一定的范围之内。钢筋混凝土规范也明确规定:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。 二、混凝土工程中常见裂缝及预防 1. 温度裂缝及预防 温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热,导致内部温度急剧上升,而混凝土表面散热较快,这样就形成内外的较大温差,较大的温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。温度裂缝的走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短

混凝土裂缝的成因与控制

混凝土裂缝的成因与控制 摘要 针对混凝土工程中普遍存在的裂缝问题,对混凝土裂缝形成的原因、危害、防治措施进行了分析和探讨。 本文从设计、材料、配合比、施工现场养护等方面对混凝土工程中常见的一些裂缝的成因进行了分析探讨。针对混凝土裂缝产生的原因,在混凝土结构设计、混凝土材料选择、配合比优化、以及施工现场的养护等方面提出了控制裂缝发展的措施。 依据相关文献,并总结了混凝土裂缝的处理方法:表面处理法、灌浆法、填充法、混凝土置换法、结构补强法、电化学防护法等。 关键词:混凝土;裂缝;成因;控制;防治措施

Causes and Control of Concrete Cracks Abstract In view of the common crack problems in concrete engine ering, the causes, hazards and prevention measures of co ncrete cracks are analyzed and discussed. In this paper, the causes of some common cracks in concrete engi neering are analyzed and discussed from the aspects of design, ma terial, mix proportion, construction site maintenance and so on. I n view of the causes of concrete cracks, measures to control the development of cracks are put forward in the aspects of concret e structure design, selection o f concrete materials, optimization o f mix proportion, and maintenance of construction site. According to the related literature, and summarized the treatment methods of concrete cracks : surface treatment method, grouting me thod, filling method, concrete replacement method, structure reinfor cement method, electrochemical protection method and so on. Key words:concrete; crack; genesis; control; prevention and contro l measures

混凝土的收缩裂缝

早期收缩裂缝怎么形成? 引起混凝土收缩的驱动力可分为两类:温度作用与湿度作用。 温度作用引起的早期收缩包括水化热与昼夜温差引起的温降收缩,其中前者在大体积混凝土中尤为显著。 湿度作用引起的早期收缩包括塑性收缩、自收缩与干燥收缩。值得注意的是,温度作用与湿度作用引起的收缩是同时发生,相互作用的,因此使得研究的难度增大。 1、水化热引起的温度收缩 温度收缩主要是混凝土在水泥水化放热出现温峰后的降温过程中产生的。水泥在早期水化过程中将放出大量的热,一般每克水泥可放出502J热量,在绝对条件下,每45kg 水泥水化将产生5~8℃绝热温升。在没有缓凝剂的条件下,通常在开始的12h左右出现温度峰值。随后,由于水化放缓放热减小,在与外界环境热交换下温度开始下降。由于混凝土内、外散热条件的不一致,表层混凝土温度降低得快,沿混凝土截面出现温度梯度,使得温降过程中出现收缩沿截面的不一致,从而导致表层混凝土受拉,当拉应力超过混凝土抗拉强度时产生温度裂缝。这在大体积混凝土中温升可高达60℃,是造成这类混凝土早期裂缝的主要因素。另外需要解释的是水化温升阶段通常不会出现胀裂,因为温升膨胀过程中混凝土尚处于流塑性状态,且温升过程迅速,沿截面也相对均匀。而随后的散热温降过程由于较为缓慢、均匀性又较差,且混凝土已逐渐硬化,往往容易在此时出现温度收缩裂缝。 2、昼夜温差引起的温度收缩 昼夜温差也会引起相应的温度变形。如对于混凝土板,在早晨太阳的照射下,表层混凝土的温度显著升高,其膨胀受到底层混凝土的限制而使表层拱起;在白天,随着全截面温度趋于相同,变形表现为自由伸长;而夜晚,随着表层温度的开始降低,又出现表层弯起的现象。因此对于新浇筑的混凝土,昼夜温差大时极易出现早期的这类温度裂缝。 3、塑性收缩 塑性收缩发生在混凝土终凝前的塑性阶段,通常在浇筑后4~15h 左右出现,绝大部分发生在初凝前的流塑性阶段。这一阶段水泥水化反应激烈,分子链逐渐形成,出现

建筑工程中混凝土裂缝的成因与防治

建筑工程中混凝土裂缝的成因与防治 发表时间:2017-09-11T16:30:03.197Z 来源:《基层建设》2017年第13期作者:王建锋李卫东[导读] 摘要:在建筑工程中,混凝土往往在施工中会出现各种混凝土裂缝,对建筑物的使用安全构成威胁。本文主要对混凝土裂缝的成因与防治要点进行了简单的探讨。 浙江恒誉建设有限公司摘要:在建筑工程中,混凝土往往在施工中会出现各种混凝土裂缝,对建筑物的使用安全构成威胁。本文主要对混凝土裂缝的成因与防治要点进行了简单的探讨。 关键字:混凝土裂缝;裂缝成因;裂缝防治混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。混凝土在硬化成型的过程中存在许多的微孔隙、气穴和微裂缝,这些微裂缝在混凝土受到荷载、温差等作用之后会不断的扩展和连通,最终形成我们肉眼可见的裂缝。当混凝土裂缝的宽度超过规定的限值时,会影响建筑物和构件的适用性和耐久性,减小建筑结构抵抗荷载的能力,降低建筑结构的整体性和刚度。 一、混凝土裂缝成因 1)材料质量引起的裂缝配置混凝土所采用的水泥、砂、骨料等材料质量不合格,导致结构出现裂缝,例如:水泥中游离的氧化钙含量超标、水泥含碱量较高同时又使用含有碱活性的骨料、砂石粒径太小、级配不良、空隙率大等。 2)荷载引起的裂缝结构受荷后产生裂缝的因素很多,例如:吊装时的垫块或吊点位置不当、施工超载、张拉预应力值过大等,而最常见的是钢筋砼梁、板受弯构件,在使用荷载作用下往往会出现不同程度的裂缝。 3)温度变化引起的裂缝混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。 4)湿度变形引起的裂缝砼在空气中结硬会导致体积减小,砼的收缩值一般为0.2~0.4‰,一般谓之干缩。收缩裂缝较普遍,常见于现浇墙板式结构、现浇框架结构等,通常是因为养护不良造成。砼的收缩值一般为 0.2~0.4‰,其发展规律是早期快、后期缓慢。 5)基础变形引起的裂缝由于地基地质差异太大、结构基础类型差别大、基础分期建造、地基冻胀、基础置于滑坡体、溶洞或活动断层等不良地质段、原有地基条件变化等原因,使基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。 6)收缩裂缝收缩是砼的一个主要特性,对砼的性能有很大影响。产生收缩裂缝的原因,一般认为在施工阶段因水泥水化热及外部气温的作用引起砼收缩而产生的裂缝。多为规则的条状,很少交叉。常发生在结构变截面处,往往与受力钢筋平行。收缩裂缝多发生在大体积砼中,梁、板、柱等小块体构件,砼收缩裂缝危害较大,尤其是暴露在大气中的构筑物,影响更大。 二、混凝土裂缝的预防措施与处理 1)混凝土裂缝的预防措施 1.材料选用上应选用符合规范要求的合格材料 水泥应选用水化热较低的水泥,严禁使用安定性、强度不合格的水泥。粗骨料宜用表面粗糙、质地坚硬、级配良好、空隙率小、无碱性反应、有害物质及粘土含量不超过规定的石料。细骨料宜用颗粒较粗、空隙较小、含泥量较低的中砂。 2.对于温度变化和湿度变化引起的裂缝主要预防措施 一是尽量选用低热或中热水泥,如矿渣水泥、粉煤灰水泥等。二是控制水泥的用量。三是降低水灰比,一般混凝土的水灰比控制在0.6以下。四是改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,改善混凝土拌合物的流动性、保水性,降低水化热。 3.对于基础变形引起的裂缝主要预防措施 一是加强地基的检查与验收工作,基坑开挖后应及时通知监理到现场验收,对较复杂的地基,设计方在基坑开挖后应要求勘察补钻探。二是开挖基槽时,要注意不扰动其原状结构。三是控制建筑物有长高比,调整不均匀沉降的能力。四是合理地调整各部分承重结构的受力情况,使荷载分布均匀,尽量防止受力过于集中。 4.对于施工工艺产生的裂缝可采取以下措施预防 一是配合比设计采用低水灰比、低用水量,以减少水泥用量。禁止任意增加水泥用量。二是钢筋的配置应严格按施工图施工,尤应重视钢筋品种、规格、数量的改变,此外,钢筋的位置要正确。三是模板构造要合理,模板和支架要有足够的刚度,合理选择拆模时机。四是合理安排施工顺序。当相邻建(构)筑物间距较近时,一般应先施工较深的基础,以防基坑开挖破坏已建基础的地基础。当建(构)筑物各部分荷载相差较大时,一般应施工重、高部分,后施工轻、低部分。 2)混凝土裂缝的处理技术裂缝不但会影响结构的整体性和刚度,还会降低混凝土的耐久性和抗疲劳、抗渗能力,因此在实际工程中,应根据裂缝的性质和实际情况区别对待,及时处理,以保证建筑物的安全。混凝土结构裂缝的修补措施主要有以下几种方法:表面封闭法,灌浆、嵌缝封堵法,结构加固法,混凝土置换法等等。 1. 表面封闭法 表面封闭法是一种简单、常见的修补方法,它主要适用于稳定和对结构承载能力没有影响的表面裂缝以及身进裂缝的处理。该法适用于裂缝较窄,用以恢复构件表面美观和提高耐久性时所用,常用的处理措施是在裂缝表面拌水泥浆、环氧胶泥或在混凝土表面涂刷油漆、沥青等防腐材料,在防护的同时为了防止混凝土受各种作用的影响而继续开裂,通常可以采用在裂缝的表面贴玻璃纤维布等措施,以防止裂缝开裂。

如何识别六大常见混凝土裂缝

如何识别六大常见混凝土裂缝 1、塑性塌落裂缝 一般多在混凝土浇注过程或浇注成型后,在混凝土初凝前发生,由于混凝土拌合物中的骨料在自重作用下缓慢下沉,水向上浮,即所谓的泌水,若是素混凝土,混凝土内部下沉是均匀的,若是钢筋混凝土,则混凝土沿钢筋下方继续下沉,钢筋上面的混凝土被钢筋支顶,使混凝土沿钢筋表面产生顺筋裂缝。这种塑性塌落裂缝,对于大流动性混凝土或水灰比较大的混凝土尤为严重。 裂缝一般特征:混凝土沿钢筋表面产生顺筋裂缝

2、塑性收缩(干缩)裂缝 一般多在混凝土浇注后,还处于塑性状态时,由于天气炎热、蒸发量大、大风或混凝土本身水化热高等原因,而产生裂缝。 裂缝一般特征:一般有两种形状:一种为不规则龟纹状或放射状裂缝;另一种为每隔一段距离出现一条裂缝;有时上述两类裂缝同时在混凝土构件上出现。 3、温度裂缝 一般是由于外界温度变化,使混凝土产生胀缩变形,这种变形即为温度变化,当混凝土构件受到约束时,将在混凝土构件内产生应力,当由此产生的混凝土内部的拉应力超过混凝土抗拉强度极限值时,混凝土便产生温度裂缝。

裂缝一般特征:温度裂缝,由于与温度场分布、温差大小,约束程度以及结构构件的类型不同,其温度裂缝的形状和发生的部位,都有较大的差异,同时,随时间的推移,温度裂缝还会逐渐开展,甚至恶化。温度裂缝是混凝土裂缝中较为复杂的一类。 4、水化热裂缝 一般多在大体积混凝土或高强混凝土施工过程中,由于混凝土水化热很高土内部温度与混凝土表面温度以及外部环境温度相差较大,加之有约束的存在水化热裂缝。 裂缝一般特征:有表层裂缝、内部裂缝、底层裂缝、贯穿裂缝、非贯穿裂缝和转角、截面突变部位及孔洞角部的热应力集中裂缝等类型。就其裂缝形状而言,

混凝土裂缝预防及措施

XXXXXXXXXXXXXX工程 混凝土防裂方案 编制 审核 审批 XXXXXXX项目部 年月日

目录 一.工程概况 (1) 二.施工准备 (1) 三.施工方法 (1) 四.预防措施 (3) ㈠.商品混凝土的性能改善 (4) ㈡.施工中应采取的主要技术措施 (4) 五.对裂缝的弥补处理措施 (7)

一、工程概况 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 二、施工准备 本工程混凝土强度图纸设计: XXXXXXXXXXXXX 三、施工方法 1、混凝土裂缝问题是混凝土工程中普遍存在的技术问题,尤其是商品混凝土(特别是泵送混凝土)防裂问题。商品砼可自动化生产,原材料计量准确,节约人力、物力、施工工期,减少噪声。因具备这些优点,商品混凝土被广泛使用。但是商品砼楼板在实际应用中普遍存在产生裂缝的情况。特别是大流动性泵送商品砼楼板,控制泵送商品混凝土裂缝,应从商品混凝土的生产和施工及设计等几个方面采取相应的技术措施。混凝土结构发生裂缝的原因,总体可分为三类,因此针对此缺点的产生原因与防治措施如下: (一)、混凝土选材和混凝土生产。如所用水泥的保水性差、泌水性大、收缩率大、水化热大,所用骨料的级配不合理、含泥量高;或混凝土配合比不合理、水灰比过大、混凝土坍落度控制不当等等。这些均易导致混凝土结构出现裂缝。 (二)、混凝土施工技术和质量。如混凝土的施工工艺不合理、振捣不好、养护不当、拆模过早、施工荷载作用等,均易造成混凝土裂缝。

(三)、设计因素。如钢筋混凝土配筋率较高,钢筋过密,当石子尺寸偏大时混凝土常常难以灌注,使其均质性差,易造成收缩不匀而开裂。本工程每个工作面面积较大,一次连续浇筑混凝土量大,结构配筋率大。经综合考虑,选用了泵送商品混凝土,其坍落度控制在16cm~18cm; 在实际施工中采取以下技术措施: 1、在柱角四周原附加钢筋上面,铺设L=1500?6的辐射钢筋,以减少柱角四周的裂缝。 2、商品混凝土搅拌采用保水性好、干缩值小且质量稳定的42.5#普硅水泥;混凝土水灰比、水泥用量控制在配合比数值以内,掺入适量添加剂,改善混凝土和易性和可泵送性,减少混凝土干缩。采用缓凝高效减水剂,有效减少混凝土用水量,避免混凝土出现泌水离析,并将初凝时间控制在5~6h、终凝时间控制在7~8h。粗骨料采用10~30mm连续级配的碎石,含泥量小于1%;细集料选用细度模数为 2.4~2.7,级配良好的中砂,其含泥量小于2%,并适当降低砂率。 3、在混凝土运输到场后对混凝土坍落度进行抽查,严防坍落度过大。 4、在混凝土浇注过程中,柱、梁、板一次浇筑完成,不留施工缝;并确保振捣密实。 5、在混凝土初凝后、终凝前做好二次抹面,在终凝前用湿草包覆盖,派专人洒水;并在混凝土梁侧面、底板也作好养护工作,保证混凝土表面处于足够的湿润状态,养护最终持续14天。

混凝土收缩或膨胀影响因素分析

混凝土收缩或膨胀的原因 导致混凝土收缩或膨胀的原因包括: 1.含水量的变化 2. 温度 3.载荷及支承条件引起的变形 4.接缝处理 所有这些原因主要源于混凝土内部的位移;若不做处理,表面裂缝将会进一步增加。虽然这裂缝很少会影响到混凝土内部的结构整体性,但它影响外观,使水易于渗入。而且,可能还会导致其它问题和麻烦的发生(主要取决于裂缝的长短、宽窄、位移及变形)。 大多数裂缝的产生是由于设计或施工的不适当或不充分,其中包括: 1.接缝未作处理或处理不当 2.基础的预处理不够 3.拌和水过多 4.抹面工艺不当 5.养护不够或不当 二、考虑因素 骨料级配的恰当与否,对于混凝土浇筑及抹面所需的用水量影响很大。骨料的级配应使混合料在不影响和易性时拌和水用量最少。同样,粘土类材料易于干缩而导致干裂,过量的拌和水也会增加收缩及开裂。 三、常见裂缝类型 1.细裂缝(网状、龟裂状) 细裂缝发生在表面,呈规则或不规则的网络状。它是因混凝土(或其他水泥材料)面层的缩引起的。这种裂缝的深度一般不超过3mm,常见于硬结的,金属镘抹表面或潮湿的表面。典型的裂缝呈六边型,对角线长40mm,通常在早期形成。 虽然细裂缝不影响混凝土的结构整体性,不影响其耐久性和耐磨性,但它十分显眼,影响美观。 造成网状裂缝原因有: 1)养护方法不对或不够; 2)在高温或多风气候下进行浇筑作业时,未使用缓蒸发剂 (MASTER KURE 111CF),导致在塑性状混凝土的表面“结壳”,最后产生龟裂; 3)过大的坍落度,过度的表面镘抹,或过度压迫(篾式夯压器施工)都会使粗骨料下落,导致水泥浆和细骨料过度集中于表面。这种表面砂浆过富是产生龟裂的主要原因; 4)混凝土抹面时造成的表面渗水,过度镘抹或过早镘抹均会使水灰比增加,造成脆弱面层,使表面易于龟裂和起尘; 5)为使过湿表面干燥而加洒水泥灰也会产生龟裂; 6)在抹面时为了光整,对干撒表面另外加水,这也是产生龟裂的另一重要原因。 为了防止龟裂,必须做到; 7) 严格按照基础处理工艺施工

钢筋混凝土梁产生裂缝的原因及处理

现浇混凝土梁裂缝的分析及预防 【摘要】本文分析了钢筋混凝土梁的裂缝产生原因和部位,并提出了相应的预防措施。【关键词】钢筋混凝土梁裂缝热胀冷缩 1前言 钢筋混凝土梁在外荷载的直接应力和次应力的作用下,引起结构变形而裂缝。构件在使用过程中受年温差的长期作用,当温差的胀缩应力大于构件极限抗拉强度时就会裂缝。构件裂缝的因素是多方面的,包括结构设计、地基沉降差异、施工质量、材料质量、环境影响等,无论何种原因产生的裂缝,都会给建筑物肢体结构带来影响。 2裂缝形成原因 钢筋混凝土梁出现裂缝的原因很复杂。主要有:材料或气候因素、施工不当、设计和施工错误、改变使用功能或使用不合理等。通常可归纳为以下几种: (1)收缩裂缝。混凝土尚处于未完全硬化状态时,如干燥过快,则产生收缩裂缝,通常发生在表面上,裂缝不规则,宽度小。 (2)水泥水化硬化时的裂缝。水泥在水化及硬化的过程中,散发大量热量,使混凝土内外部产生温差.超过一定值时.因混凝土的收缩不一致而产生裂缝。 (3)温变裂缝。现浇钢筋混凝土梁随着温度变化会产生热胀冷缩变形。即温度变形。 AL=L(t1-t2)﹠△AL——钢筋混凝土梁的变形值 L――梁的长度 ((t1—t2))——温度变化值 d——材料的线嘭胀系数、混凝土为10a×10-b由于混凝土截面高度较大或较特殊环境下施工.如较寒冷地区施工。梁的上下表面温度不一致,梁会产生温度弯矩。如温度弯矩与荷载弯矩迭加超过梁所能承担的能力。梁便会产生裂缝。预防产生温度裂缝的措施主要有:①设置温度裂缝。②运用水化热小和收缩小的水泥。③浇筑后.表面应及时覆盖并洒水养护.复季应延长养护时间,寒冷季节混凝土表面采取保温措施。 (4)设计欠周全。如钢筋混凝土梁的截面不够,梁的跨度过大,高度偏小,或者由于计算错误,受力钢筋截面偏小、配筋位置不当、节点不合理等。都会导致混凝土梁出现结构裂缝。 (5)施工质量造成的裂缝。

混凝土裂缝的成因与控制论文

. Word文档资料 建筑工程技术毕业论文混凝土裂缝的成因与控制 学生姓名: 学号: 指导教师: 专业: 年级: 学校:建设职业技术学院

. Word文档资料

. Word文档资料摘要 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题。 本文从设计、材料、配合比、施工现场养护等方面对混凝土工程中常见的一些裂缝的成因进行了分析探讨。针对混凝土裂缝产生的原因,在混凝土结构设计、混凝土材料选择、配合比优化、以及施工现场的养护等方面提出了控制裂缝发展的措施。 依据相关文献,并总结了混凝土裂缝的处理方法:表面处理法、填充法、灌浆法、结构补强法、混凝土置换法、电化学防护法、仿生自愈合法等。 关键词:混凝土;裂缝;成因;控制;

. Word文档资料目录 摘要 (1) 第1章概述 (4) 1.1 课题的提出 (4) 1.2 本论文的研究容 (4) 1.3本论文的研究方法 (5) 第2章裂缝的成因 (6) 2.1 设计原因 (6) 2.2 材料原因 (7) 2.3 混凝土配合比设计原因 (7) 2.4 施工及现场养护原因 (7) 2.5使用原因(外界因素) (8) 第3章裂缝的控制措施 (9) 3.1 设计方面 (9) 3.1.1 设计中的‘抗’与‘放’ (9) 3.1.2尽量避免结构断面突变带来应力集中 (9) 3.1.3采用补偿收缩混凝土技术 (9) 3.1.4 设计上要注意容易开裂部位 (9) 3.1.5 重视构造钢筋 (10) 3.2 材料选择 (10) 3.3 混凝土配合比设计 (11) 3.4 施工方面 (11) 3.4.1 模板的安装及拆除 (11) 3.4.2 混凝土的制备 (12) 3.4.3 混凝土的运输 (12)

水工混凝土裂缝的预防与处理标准范本

安全管理编号:LX-FS-A51503 水工混凝土裂缝的预防与处理标准 范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

水工混凝土裂缝的预防与处理标准 范本 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、概述 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质的多项复合脆性材料。由于混凝土施工和本身变形和约束等一系列问题,使混凝土产生裂缝,微裂缝通常是一种无害裂缝,对混凝土结构的承重、防渗及其他功能不产生危害。但是受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,这些裂缝已成为水利工程中常见的工程病害,轻者使混凝土内部的钢筋材料产生腐蚀,降低钢筋混凝土结构的承载

相关文档
最新文档