对刀调配

对刀调配
对刀调配

对刀块使用说明:

光盘上的使用资料:图

使用说明:

首先安装软件:

安装2.63版本的mach3,并破解汉化装好,把光盘上的1024.set拷贝到安装的根目录覆盖原来的,把光盘上的page1.jpg拷贝到C:\Mach3\Bitmaps\MillBitmaps 覆盖原来的文件

进入mach3界面和原来有些不一样了

自动对刀功能设置:点击----操作----编辑按钮脚本----此时主界面对刀功能区对刀按钮闪动,点击此按钮弹出代码编辑

区,删除原代码,将我提供的光盘下的代码用文本打开复制里面的内容的代码考入,保存并退出。

一般驱动板上都留有对刀接口,没有的话随便找个空闲的并口针脚,我用的是13脚,按照下面提供的图设置mach3,

(特说明。购买雕刻机者,对刀块我已接好,直接设好参数就可以使用了)

还要用到一个地,接两根线出来一个接到主轴,一个接对刀块,厚度用卡尺量一下,把数值输入到对刀区的输入框里.-26.2mm(实际量过对刀块厚度后输入)

对刀操作的时候,把对刀块放置在材料表面,点击“对刀”按钮,刀头会缓慢下降,当触碰到对刀块的时候z轴坐标会自动清零,刀头自动上抬到安全高度,对刀就完成了,寻边和寻中心的功能类似,可以自己研究一下,我就不啰嗦了

这里代码上有个重要点说明一下,有些驱动板方向会搞错,需要客户经过实际玩过才知道,比如6560控制板和A3977控制板刚好是Z轴相反的

代码参数我说明一下这点

'Rem Probe Down by PEU (Based on Erniebro Work)

FeedCurrent = GetOemDRO(818) 'Get the current settings

ZCurrent = GetDro(2)

Code "G4 P1" 'Pause 1 second to give time to position probe plate

Code "F100" 'slow feed rate to 100 MM/MIN

GageH = GetOEMDRO (1002)

Rem Probe Down by PEU (Based On Erniebro Work)

FeedCurrent = GetOemDRO(818) 'Get the current settings

ZCurrent = GetOemDro(802)

Code "G4 P1" 'Pause 1 second to give time to position probe plate

Code "F100" 'slow feed rate to 100 MM/MIN

GageH = GetUserDRO(1152)

ZNew = ZCurrent + 20 'probe down 20 mm (这里的正20和负20可以根据实际调整)

Code "G31 Z" &ZNew

While IsMoving()

Wend

Call SetDro (2,GageH)

FinalMove = GageH * 1

Code "G0 Z" &FinalMove

Code "G0 Z" &-20(这里的正20和负20可以根据实际调整,数据也可以根据实际来调)

Code "F" &FeedCurrent 'restore starting feed rate dr.lin 2008.8.16

数控车床对刀原理及方法步骤实用详细

数控车床对刀原理及方法 步骤实用详细 Last revision date: 13 December 2020.

数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。 所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 以图2为例,试切对刀步骤如下:

对刀仪使用办法

对刀仪使用办法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

对刀仪使用方法随着的广泛使用,许多用户也开始使用刀具装置。它不仅可以检测刀具的磨损情况,而且可实现自动补偿(通过修改刀补值实现),极大的提高了加工效率和精度。另外,同时使用其刀具破损检测功能与刀具寿命管理功能,还可以实现自动寻找同组刀具的功能,节约了刀具检查和更换的时间。但由于用户对原理不是很了解,使用时容易产生误区,有时补偿后的精度反而不如补偿前,这就使用户产生了迷惑,限制了测量装置的广泛使用。本文以英国.html"target="_blank"class="keylink">雷尼绍()公司TS27R测头的安装调试为例,就如何更好的使用刀具测量装置做一详细介绍,供读者参考借鉴。 刀具测量的基本原理是利用系统的跳步功能(G31):在程序中指令“G31ZxxxFxxx”(与GO1的动作相同)。但此时如果SKIP信号由“0”变为“1”时,Z轴将停止运动,再用宏程序控制坐标轴后退,然后再次碰触量块,反复测量并运算后得出刀具的实际长度和直径,最后修改系统宏变量从而达到修改刀补值的目的。 刀具测量装置的使用主要包括三个步骤:安装和接线;标定;测量。 1安装和接线

刀具侧量装置通常包括测头和信号转换装置(硬件)及相关的测量程序(软件包)。测头(TS27R)安装在工作台上,并尽量远离加工区域,外部应加防护装置,使用前先将防护装置打开并将刀具用风吹干净(用M代码控制气动元件可实现自动),确保刀具表面无杂物,测量完成后关闭防护。 测头安装完成后,首先要调整测头接触面的平行度和直线度。将一只百分表(或千分表DTI)吸在头上,表头打在量块(圆形或方形)的上表面;用手轮控制X轴沿量块表面来回移动,观察表针变化,同时调整测头上的调节螺钉,使X向的直线度保证在0.010mm,调整好后紧固螺钉。再控制Y轴沿量块表面来回移动,同时调整测头上的调节螺钉,使Y向的直线度也保证在0.010mm,调整好后紧固螺钉。 转换装置(MI8-4)用35mm标准导轨安装在电气柜里。需要注意的是,给转换装置提供DC24V的稳压电源最好是单独的,尽量不要和电磁阀或中间继电器共用电源,如果必须共用,就要考虑信号的抗干扰能力,否则可能会影响测量结果。 安装结束后,按照图1(三菱系统)或图2(系统)正确接线。 图1测量装置接线原理图(三菱64M系统) 图2测量装置接线原理图(-0i-M系统) 2测头的标定

数控机床自动换刀装置的主要类型、特点及适用范围

数控机床自动换刀装置的主要类型、特点及适用范围

————————————————————————————————作者:————————————————————————————————日期:

数控机床自动换刀装置的主要类型、特点及适用范围 数控机床自动换刀装置的主要类型、特点及适用范围见表1。 表1 自动换刀装置的主要类型、特点及适用范围 1.自动回转刀架 自动回转刀架是数控车床上使用的一种简单的自动换刀装置,有四方刀架和六角刀架等多种形式,回转刀架上分别安装有四把、六把或更多的刀具,并按数控指令进行换刀。回转刀架又有立式和卧式两种,立式回转刀架的回转轴与机床主轴成垂直布置,结构比较简单,经济型数控车床多采用这种刀架。 回转刀架在结构上必须具有良好的强度和刚度,以承受粗加工时切削抗力和减少刀架在切削力作用下的变形,提高加工精度。回转刀架还要选择可靠的定位方案和合理的定位结构,以保证回转刀架在每次转

位之后具有较高的重复定位精度(一般为0.001~0.005mm)。图1所示为螺旋升降式四方刀架,它的换刀过程如下: (1)刀架抬起当数控装置发出换刀指令后,电机22正转,并经联轴套16、轴17,由滑键(或花键)带动蜗杆18、蜗轮2、轴1、轴套10转动。轴套10的外圆上有两处凸起,可在套筒9内孔中的螺旋槽内滑动,从而举起与套筒9相连的刀架8及上端齿盘6,使6与下端齿盘5分开,完成刀架抬起动作。 图1 立式四方刀架结构 1,17—轴;2—蜗轮;3—刀座;4—密封圈;5,6—齿盘;7—压盖;8—刀架;9,20—套简;10—轴套;11—垫圈;12—螺母;13—销;14—底盘;15—轴承;16—联轴套;18—蜗杆;19—微动开关;21—压缩弹簧;22—电机

加工中心对刀原理及方法

加工中心对刀原理及方 法 -CAL-FENGHAI.-(YICAI)-Company One1

一线员工职业技能等级鉴定 申报论文 (高级技师) 题目:数控加工中心刀具对刀原理方法及其应用! 单位: 姓名: 申报工种: 2016年4月18日

摘要 数控加工操作中的对刀好坏不仅直接影响到加工零件的精度,还会影响数控机床的操作。对刀的过程牵涉到一系列的步骤,在实际操作中往往会出现一些具体的问题,因此通过对数控加工中心对刀的基本原理、对刀的方法并结合具体的数控加工中心的操作特点对对刀方法进行了阐述。 关键词:数控加工中心;对刀原理;对刀方法

目录 摘要 ........................................................................................................... 错误!未定义书签。绪论 (4) 一、对刀基本原理 (5) 二、对刀基本方法及运用 (5) 、用对刀探头对刀 (6) 用机外对刀仪对刀 (6) 用对刀器对刀 (7) 用试切法对刀 (8) 结论 (11) 参考文献 (12)

绪论 数控加工操作中的对刀好坏不仅直接影响到加工零件的精度,还会影响数控机床的操作。当工件坐标系确定之后,还要确定刀位点在工件坐标系中的位置。也就是确定工件坐标系与机床坐标系之间的关系,要让刀具在数控程序的控制下使加工对象相对于定位基准有正确的尺寸关系。由于数控机床所用的刀具各种各样,刀具寸也极不统一。在编制加工中心数控程序时,一般不考虑刀具规格及安装位置,加工前由操作者通过对刀将测出的刀具在主轴上的伸出长度及其直径等补偿参数输入数控系统,进行刀具补偿,通常把这一过程称为对刀。对刀的过程牵涉到一系列的步骤,如对刀基本原理、对刀方法的选择和对刀参数的设置等等。在实际操作中往往会出现一些具体的问题,因此通过数控加工中心对刀的基本原理、对刀的方法并结合具体的数控加工中心的操作特点对对刀方法进行了阐述。

数控机床FANUC系统对刀步骤

数控机床F A N U C系统对 刀步骤 Last updated on the afternoon of January 3, 2021

数控机床对刀步骤 法兰克加工中心机床 一、主轴转速的设定 ○1、将工作方式置于“MDI”模式; ○2、按下“程序键”; ○3、按下屏幕下方的“MDI”键; ○4、输入转速和转向(如“S500M03;”后按“INSRT”); ○5、按下启动键。 二、分中 1、意义:确定工件X、Y向的坐标原点。 2、X、Y平面原点的确定。 ○1、四面分中 ○2、两面分中,碰单边 ○3、单边碰数 3、抄数 ○1、意义:将分中后的机械值输入工件坐标系中,借以建立与机床坐标原点的位置关系。○2、方法: →切换到工件坐标系:OFS/SET→坐标系→选择具体的工件坐标系(如G54、G55、 G56、G57、G58、G59等)→输入“X0”后按屏幕下方的“测量”键(或直接输入机械坐标值)。 4、分中的类型 ○1、四面分中

○2、单边碰数 ○3、X轴分中,Y轴碰单边 ○4、Y轴分中,X轴碰单边 ○5、有偏数工件原点的确定,如X30Y20 5、分中的方法 试切分中 如果分中的要求不高,或工件为毛坯料,而且外形均可铣去,为了方便操作,可采用加工时所用的刀具直接进行碰刀,从而确定工作原点,其步骤如下(一四面分中为例): ○1、将所要用到的铣刀装在主轴上,并使主轴中速旋转; ○2、手动移动铣刀沿X方向靠近工件被测边,直到铣刀刚好切削刀工件材料即可; ○3、保持X、Y不变将Z轴沿+Z方向升起,并在相对值处将X轴置零; 归零方法: 按下X后按屏幕下方的“起源”或“归零”; ○4、将X轴移动到工件另一边,同样用刀具刚好切到工件材料即可; ○5、将主轴沿+Z方向升起; ○6、将X轴移到此时X轴相对值的1/2处(口算、心算或计算器); ○7、利用相同的方法测Y轴; ○8、抄数。 注:试切分中虽然比较简单,但会在工件表面留有刀痕,所以常用于铝和铜等毛坯料的分中。 6、分中棒分中: ○1、原理:采用离心力的原理。 ○2、方法及步骤:

数控机床的自动换刀装置设计

第六章 数控机床的自动换刀装置第一节自动换刀装置的形式数控机床 为了能在工件一次装夹中完成多种甚至所有加工工序,以缩短辅助时间和减少多次安装工件所引起的误差,必须带有自动换刀装置。数控车床上的回转刀架就是一种简单的自动换刀装置,所不同的是在多工序数控机床出现之后,逐步发展和完善了各类回转刀具的自动换刀装置,扩大了换刀数量,从而能实现更为复杂的换刀操作。 在自动换刀数控机床上,对自动换刀装置的基本要求是:换刀时间短,刀具重复定位精度高,有足够的刀具存储量,刀库占地面积小及安全可靠等。 各类数控机床的自动换刀装置的结构取决于机床的形式、工艺范围及其刀具的种类和数量。其基本类型有以下几种。 一、转刀架换刀回转刀架是一种最简单的自动换刀装置,常用于数控车床。可以设计成四方刀架、六角刀架或圆盘式轴向装刀刀架等多种形式。回转刀架上分别安装着四把、六把或更多的刀具,并按数控装置的指令换刀。 回转刀架在结构上必须具有良好的强度和刚度,以承受粗加工时的切削抗力。由于车削加工精度在很大程度上取决于刀尖位置,对于数控车床来说,加工过程中刀具位置不进行人工调整,因此更有必要选择可靠的定位方案和合理的定位结构,以保证回转刀架在每次转位之后,具有尽可能高的重复定位精度(一般为 0.001~0.005mm)。 一般情况下,回转刀架的换刀动作包括刀架抬起、刀架转位及刀架压紧141 等。回转刀架按其工作原理分为若干类型,如图6-1所示。 图6-1a)所示为螺母升降转位刀架,电动机经弹簧安全离合器到蜗轮副带动螺母旋转,螺母举起刀架使上齿盘与下齿盘分离,随即带动刀架旋转到位,然后给系统发信号螺母反转锁紧。 转位刀架 刀架内装信号盘上齿盘销钉端齿盘定位开电动机合下齿盘销钉n螺母弹簧安全离合器蜗轮副(a)(b) 刀架 凸轮凸轮拔爪棘爪上齿盘下齿盘电动机液压缸棘轮摆动阀芯(c)(e)(d)回转刀架的类型及其工作原理图6-1 图6-1b)所示为利用十字槽轮来转位及锁紧刀架(还要加定位销),销钉每转一周,刀架便转1/4转(也可设计成六工位等)。 图6-1c)所示为凸台棘爪式刀架,蜗轮带动下凸轮台相对于上凸轮台转动,使其上、下端齿盘分离,继续旋转,则棘轮机构推动刀架转90o,然后利用一个接触开关或霍尔元件发出电动机反转信号,重新锁紧刀架。 图6-1d)所示为电磁式刀架,它利用了一个有10kN左右拉紧力的线圈使刀架定 位锁定。 142

数控车床对刀的原理及方法

一、数控车床对刀得原理: 对刀就是数控加工中得主要操作与重要技能。在一定条件下,对刀得精度可以决定零件得加工精度,同时,对刀效率还直接影响数控加工效率、仅仅知道对刀方法就是不够得,还要知道数控系统得各种对刀设置方式,以及这些方式在加工程序中得调用方法,同时要知道各种对刀方式得优缺点、使用条件等。 一般来说,数控加工零件得编程与加工就是分开进行得。数控编程员根据零件得设计图纸,选定一个方便编程得工件坐标系,工件坐标系一般与零件得工艺基准或设计基准重合,在工件坐标系下进行零件加工程序得编制。 对刀时,应使指刀位点与对刀点重合,所谓刀位点就是指刀具得定位基准点,对于车刀来说,其刀位点就是刀尖。对刀得目得就是确定对刀点, 在机床坐标系中得绝对坐标值,测量刀具得刀位偏差值。对刀点找正得准确度直接影响加工精度。在实际加工工件时,使用一把刀具一般不能满足工件得加工要求,通常要使用多把刀具进行加工。在使用多把车刀加工时,在换刀位置不变得情况下,换刀后刀尖点得几何位置将出现差异,这就要求不同得刀具在不同得起始位置开始加工时,都能保证程序正常运行。为了解决这个问题,机床数控系统配备了刀具几何位置补偿得功能,利用刀具几何位置补偿功能,只要事先把每把刀相对于某一预先选定得基准刀得位置偏差测量出来,输入到数控系统得刀具参数补正栏指定组号里,在加工程序中利用T 指令,即可在刀具轨迹中自动补偿刀具位置偏差。刀具位置偏差得测量同样

也需通过对刀操作来实现。 生产厂家在制造数控车床,必须建立位置测量、控制、显示得统一基准点,该基准点就就是机床坐标系原点,也就就是机床机械回零后所处得位置。 数控机床所配置得伺服电机有绝对编码器与相对编码器两种,绝对编码器得开机不用回零,系统断电后记忆机床位置,机床零点由参数设定。相对编码器得开机必须回零,机床零点由机床位置传感器确定、编程员按工件坐标系中得坐标数据编制得刀具运行轨迹程序,必须在机床坐标系中加工,由于机床原点与工件原点存在X向偏移距离与Z向偏移距离,使得实际得刀尖位置与程序指令得位置有同样得偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调 整刀具得运动轨迹,才能加工出符合零件图纸得工件。这个过程就就是对刀,所谓对刀其实质就就是测量工件原点与机床原点之间得偏移距离,设置工件原点在以刀尖为参照得机床坐标系里得坐标。 二、对刀方法 对刀得方法有很多种,按对刀得精度可分为粗略对刀与精确对刀;按就是否采用对刀仪可分为手动对刀与自动对刀;按就是否采用基准刀,又可分为绝对对刀与相对对刀等、但无论采用哪种对刀方式,都离不开试切对刀,试切对刀就是最根本得对刀方法。 1。数控车床试车对刀方法

对刀仪使用方法

对刀仪使用方法 随着加工中心的广泛使用,许多用户也开始使用刀具测量装置。它不仅可以检测刀具 的磨损情况,而且可实现自动补偿(通过修改刀补值实现),极大的提高了加工效率和精度。 另外,同时使用其刀具破损检测功能与刀具寿命管理功能,还可以实现自动寻找同组刀具的 功能,节约了刀具检查和更换的时间。但由于用户对测量原理不是很了解,使用时容易产生 误区,有时补偿后的精度反而不如补偿前,这就使用户产生了迷惑,限制了测量装置的广泛 使用。本文以英国RENISHAWtml" target="_blank" class="keylink"> 雷尼绍(RENISHAW 公司TS27 R测头的安装调试为例,就如何更好的使用刀具测量装置做一详细介绍,供读者 刀具测量的基本原理是利用系统的跳步功能(G31):在程序中指令“G31 Zx x x Fx x x” (与GO1的动作相同)。但此时如果SKIP信号由“0”变为“ 1”时,Z轴将停止运动,再用宏程序控制坐标轴后退,然后再次碰触量块,反复测量并运算后得出刀具的实际长度和直 径,最后修改系统宏变量从而达到修改刀补值的目的。 刀具测量装置的使用主要包括三个步骤:安装和接线;标定;测量。 1安装和接线

刀具侧量装置通常包括测头和信号转换装置(硬件)及相关的测量程序(软件包)。测头(TS27R)安装在工作台上,并尽量远离加工区域,外部应加防护装置,使用前先将防护装置 打开并将刀具用风吹干净(用M代码控制气动元件可实现自动),确保刀具表面无杂物,测量完成后关闭防护。 测头安装完成后,首先要调整测头接触面的平行度和直线度。将一只百分表(或千分表DTI)吸在主轴头上,表头打在量块(圆形或方形)的上表面;用手轮控制X轴沿量块表面来回移动,观察表针变化,同时调整测头上的调节螺钉,使X向的直线度保证在0.010mm调整 好后紧固螺钉。再控制Y轴沿量块表面来回移动,同时调整测头上的调节螺钉,使Y向的直线度也保证在0.010mm,调整好后紧固螺钉。 转换装置(Ml 8-4)用35mm标准导轨安装在电气柜里。需要注意的是,给转换装置提供DC24V勺稳压电源最好是单独的,尽量不要和电磁阀或中间继电器共用电源,如果必须共用, 就要考虑信号的抗干扰能力,否则可能会影响测量结果。 安装结束后,按照图1(三菱系统)或图2( FANU係统)正确接线。 图1测量装置接线原理图(三菱64M系统) 图2测量装置接线原理图(FANUCDi-M系统) 2测头的标定

数控车床对刀操作方法

数控车床对刀操作方滕 一、FANUC绻统对刀操作、设置方滕 1、必须完成回零操作。 2、装夹好刀具、工件。 3、选择手动方式(JOG),使刀具接近工件。 4、选择MDI方式,输入转速如M3S400,按下启动键。 5、选择手轮方式,选择合适的位移速度。 6、选择X轴,踃整好切削深度,溿Z轴切削一段距离。 7、然后溿Z轴退回(滨意:在Z轴退回前、后,X轴方向不能移动,待输入参数后方可移动) 8、按下 键让主轴停止旋转,再按下 键进入刀补界面,接着再按下 ―→ ,此 时CRT显示如下:(滨意:第一竖列中显示应为G001,而不是WOO1) 9、用游标卡帺测量试切过的外圆直径,帆光标移到G001行中的X列,并帆测量值Φ输入为XΦ后 按下 ,完成X方向对刀设置。 10、再次在启动主轴,踃整好端面切削量,溿X轴切平端面,并溿X轴退回(Z方向不可移动)。 11、帆光标移到G001行中的Z列,输入Z0后按下 ,完成Z方向对刀设置。 12、帆刀具移至安全位置。

二、SIEMENS绻统对刀操作、设置方滕 1、必须完成回零操作。 2、装夹好刀具、工件。 3、选择手动方式(JOG),使刀具接近工件。 4、选择MDI方式,输入转速如M3S400,按下启动键 。 5、选择手轮方式,选择合适的位移速度。 6、按下JOG键,再按 键,按 键选X轴,踃整好切削深度,溿Z轴切削一段距离。 7、然后溿Z轴退回(滨意:在Z轴退回前、后,X轴方向不能移动,待输入参数后方可移动) 8、按下 键让主轴停止旋转,再按下 ―→ ,此时CRT显示如下: 9、用游标卡帺测量试切过的外圆直径,帆光标移到Φ后,输入测量值Φ如 后按 下 ―→ ,完成X方向对刀设置。 10、再次在启动主轴,踃整好端面切削量,溿X轴切平端面,并溿X轴退回(Z方向不可移动)。

车床对刀仪原理【详细介绍】

车床对刀仪原理【详细介绍】 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 在工件的加工过程中,工件装卸、刀具调整等辅助时间,占加工周期中相当大的比例,其中刀具的调整既费时费力,又不易准确,最后还需要试切。统计资料表明,一个工件的加工,纯机动时间大约只占总时间的55%,装夹和对刀等辅助时间占45%。因此,对刀仪便显示出极大的优越性。 对刀仪的核心部件是由一个高精度的开关(测头),一个高硬度、高耐磨的硬质合金四面体(对刀探针)和一个信号传输接口器组成(其他件略)。四面体探针是用于与刀具进行接触,并通过安装在其下的挠性支撑杆,把力传至高精度开关;开关所发出的通、断信号,通过信号传输接口器,传输到数控系统中进行刀具方向识别、运算、补偿、存取等。 数控机床的工作原理决定,当机床返回各自运动轴的机械参考点后,建立起来的是机床坐标系。该参考点一旦建立,相对机床零点而言,在机床坐标系各轴上的各个运动方向就有了数值上的实际意义。 对于安装了对刀仪的机床,对刀仪传感器距机床坐标系零点的各方向实际坐标值是一个固定值,需要通过参数设定的方法来精确确定,才能满足使用,否则数控系统将无法在机床坐标系和对刀仪固定坐标之间进行相互位置的数据换算。当机床建立了“机床坐标系”和“对刀仪固定坐标”后(不同规格的对刀仪应设置不同的固定坐标值),对刀仪的工作原理如下:

1.机床各直线运动轴返回各自的机械参考点之后,机床坐标系和对刀仪固定坐标之间的相对位置关系就建立起了具体的数值。 2.不论是使用自动编程控制,还是手动控制方式操作对刀仪,当移动刀具沿所选定的某个轴,使刀尖(或动力回转刀具的外径)靠向且触动对刀仪上四面探针的对应平面,并通过挠性支撑杆摆动触发了高精度开关传感器后,开关会立即通知系统锁定该进给轴的运动。因为数控系统是把这一信号作为高级信号来处理,所以动作的控制会极为迅速、准确。 3.由于数控机床直线进给轴上均装有进行位置环反馈的脉冲编码器,数控系统中也有记忆该进给轴实际位置的计数器。此时,系统只要读出该轴停止的准确位置,通过机床、对刀仪两者之间相对关系的自动换算,即可确定该轴刀具的刀尖(或直径)的初始刀具偏置值了。换一个角度说,如把它放到机床坐标系中来衡量,即相当于确定了机床参考点距机床坐标系零点的距离,与该刀具测量点距机床坐标系零点的距离及两者之间的实际偏差值。 4.不论是工件切削后产生的刀具磨损、还是丝杠热伸长后出现的刀尖变动量,只要再进行一次对刀操作,数控系统就会自动把测得的新的刀具偏置值与其初始刀具偏置值进行比较计算,并将需要进行补偿的误差值自动补入刀补存储区中。当然,如果换了新的刀具,再对其重新进行对刀,所获得的偏置值就应该是该刀具新的初始刀具偏置值了。 对刀仪作用: 1.在±X、±Z及Y轴五个方向上测量和补偿刀偏值 在五个方向上进行刀偏值的测量和补偿,可以有效地消除人工对刀产生的误差和效率低下的问题。不管是采用何种切削刀具(外圆、端面、螺纹、切槽、镬孔还是车削中心上的铣、钻削动力刀具),进行工件轮廓车削或铣削时,所有参与切削的刀尖点或刀具轴心线,都必须通过调整或补偿,使其精确地位于工件坐标系的同一理论点或轴心线上。对动力型回转刀具,除要测量并补偿刀具长度方向上的偏置值外,同时还要测量和补偿刀具直径方向上的偏置值

机床自动换刀装置

第一章、刀架和自动换刀装置设计 一、机床刀架和自动换刀装置的功能、类型和应满足的要求 (一) 机床刀架和自动换刀装置的功能 机床上的刀架是安放刀具的重要部件,许多刀架还直接参与切削工作,如卧式车床上的四方刀架、转塔车床的转塔刀架、回轮式转塔车床的回轮刀架、自动车床的转塔刀架和天平刀架等。这些刀架既安放刀具,而且还直接参与切削,承受极大的切削力,所以它往往成为工艺系统中的较薄弱环节。随着自动化技术的发展,机床的刀架也有了许多变化,特别是数控车床上采用电(液)换位的自动刀架,有的还使用两个回转刀盘。加工中心则进一步采用了刀库和换刀机械手,实现了大容量存储刀具静自动交换刀具的功能,这种刀库安放刀具的数量从几十把到上百把,自动交换刀具的时间从十几秒减少到几秒甚至零点几秒。这种刀库和换刀机械手组成的自动换刀装置,就成为加工中心的主要特征。 (二) 机床刀架和自动换刀装置的类型 按照安装刀具的数目可分为单刀架和多刀架。例如自动车床上的前、后刀架和天平刀架。按结构形式可分为方刀架、转塔刀架、回轮式刀架等;按驱动刀架转位的动力可分为手动转位刀架和自动(电动和液动)转位刀架。 自动换刀装置的刀库和换刀机械手,驱动都是采用电气或液压自动实现。目前自动换刀装置主要用在加工中心和车削中心上,但在数控磨床上自动更换砂轮,电加工机床上自动更换电极,以及数控冲床上自动更换模

具等,也日渐增多。 数控车床的自动 换刀装置主要采用回转 刀盘,刀盘上安装8~ 12把刀。有的数控车床 采用两个刀盘,实行四 坐标控制,少数数控车 床也具有刀库形式的自 动换刀装置。图3—122a 是一个刀架上的回转 盘,刀具与主轴中心平 行安装,回转刀盘既有 回转运动又有纵向进给 运动(S纵)和横向进给 运动(S横)。固3—122b 为刀盘中心线相对于主 轴中心线倾斜的回转刀 盘,刀盘上有6~8个刀 位,每个刀位上可装两把刀具,分别加工外圆和内孔。图3—122c装有两个刀盘的数控车床,刀盘1的回转中心与主轴中心线平线,用于加工外圆l刀盘2的回转中心线与主轴中心线垂直,用以加工内表面。图3—122d 安装有刀库的数控车床,刀库可以是回转式或链式,通过机械手交换刀具。

FANUC数控铣床对刀操作步骤

FANUC数控洗床对刀操作 步骤 数控铳床法兰克系统试切对刀详细步骤 通常,建立工件的零点偏置,使工件在加工时有一明确的参考点。建立工件的零点偏置的过 程,我们通常称之为“对刀”。在大多数精度要求不高、条件不十分优越的情况下,一般采用试切法 进行对刀,其详细步骤如下: 1. 先将机床各轴回零 (1)方法一 可以按“机床回零件”键,选择“ Z轴” "+”进给倍率打开机床Z轴移动回机械原点;选 择“X轴” "+”进给倍率打开机床X轴移动回机械原点;选择“Y轴” "+” 进给倍率打开 机床Y轴移动回机械原点; (2)方法二“程序” “MDI” 输入“ G91 G28 X0Y0ZQ ” "循环启动” 进给倍率打开机床X、Y、Z轴均移动回机械原点; 2. X、Y、Z向试切对刀(1) X轴方向对刀 ①将工件、刀具分别装在机床工作台和刀具主轴上。 ②转动主轴,快速移动工作台和主轴,让刀具靠近工件的左侧; ③改用手轮操作模式,让刀具慢慢接触到工件左侧,直到发现有少许切屑为止,然后进行以下操 作: 选择翻到“相对坐标” 输入“ X”选择“起源”此时相对坐标中的X值会变成“ X0”。 ④抬起刀具至工件上表面之上,快速移动,让刀具靠近工件右侧;⑤改用手轮操作模式, 让测头慢慢接触到工件左侧,直到发现有少许切屑为止,记下此时机械坐标系中的X坐标值,如120.300 ,然后进行以下操作: 选择翻到“相对坐标” 输入“ X60.15”选择“预定” 此时相对坐标中的X值会变成“ X60.15”。(2) Y轴方向对刀操作与X轴同。假设按上面同样的操作步骤后得出“Y55.63”。(3) Z轴方向对刀 ①转动刀具,快速移动到工件上表面附近; ②改用手轮操作模式,让刀具慢慢接触到工件上表面,直到发现有少许切屑为止,然后进行 以下操作: 选择翻到“相对坐标” 输入“ Z'选择"起源”此 时相对坐标中的Z值会变成“ Z0”。此时此刻,相对坐标值不再作改动。将刀具移到某一安全位置, 假设移到相对坐标值显示为 “X0、Y10.5、Z105.2”的位置处。(4)设偏置补偿 选择 "坐标系"光标移动到G54的位置上,输入相对坐标当前 值进行测量,具体操作如下: 输入“ X0” “测量”输入“ Y10.5” “测量”输入“ Z105.2” “测量” 此时刀具偏置的补偿已经建立,等待操作者的调用后即生效。(5)调用坐标补偿 “MDI'

数控车床对刀原理及方法步骤(实用详细)精品

【关键字】思路、方法、条件、前提、模式、运行、系统、执行、保持、统一、建立、位置、根本、工程、方式、设置、推广、保证、调整、方向、中心 数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。 所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。

广州数控gsk980td车床数控系统详细对刀方法[1]

广州数控gsk980td车床数控系统详细对刀方法 为了能使你对数控车床的操作编程能快速上手,我特别编写该章节,希望能给你带来一定的帮助: 一:你应学会如何把主轴、水泵、刀架运转起来: 1)主轴的启动、停止,从目前经济型数控车床的配置来说主轴的启动基本上可分三种形式: a)主轴为机械换档,主轴电机为单速电机:这种配置时数控系统只能实现主轴的开启和停止首先把数控系统的方式切换到<手动方式>直接按主轴正转键,主 轴就可运转起来.按主轴<停止>键主轴便停止. b)主轴为机械换档,主轴电机为双速电机:这种配置时数控系统可以实现主轴的开启、停止和高低速的自动切换,首先把数控系统的方式切换到<录入方式>, 再按<程序>键并按<翻页>键翻页到<程序段>界面, 按M3(主轴正转指令)、输入;S1(主轴低速指令)再按输入(IN)键最后按<

运行>键,主轴便运转起来.同理,如果要转换为高速,则输入S2(主轴高速指令)、输入,按<运行>键,则主轴运转在高速档上.如果要停止主轴则输 入M5(主轴停止指令)按<运行>键,主轴并停止运转.当然也可以把方式切换到<手动方式>按主轴<停止>键主轴同样可以停止运转.(值得一提的是:当第一次在<录入方式>下运行主轴后,只要在未切断主电源之前要再次运行主轴,只需按照a)项的方法在<手动方式>下按主轴<正转>键,主轴便可运转起来,如果要在S1、S2之间切换还是在<录入方式>下进行。) c)主轴为变频电机调速:这种配置时数控系统可以实现主轴的开启、停止和在主轴转速范围内转速自由切换,首先把数控系统的方式切换到<录入方式>,再 按<程序>键并按<翻页>、键翻页到<程序段>界面, 按M3(主轴正转指令)、输入;再S500(主轴每分钟500转的指令)再按输入 (IN)键最后按<运行>键,主轴便运转起来. (例如:你的机床主轴范围为125-3000转,你可输入S的转速值在125-3000之间的任意整数值:如S300,S450,S315,S2790,S3000...等等,则主轴运转在你

数控机床的自动换刀装置

数控机床大作业 数 控 机 床 的 自 动 换 刀 装 置 姓名: 学号: 班级:

数控机床的自动换刀装置 作者:刘伟杰 摘要 数控机床集中应用了计算机技术,电子技术,自动控制技术,传感测量,机械制造,等先进技术,是典型的机电一体化产品。它的发展和应用开创了制造业的新时代,改变了制造业的生产方式,产业结构,管理形式,使世界制造业的格局发生了巨大的变化,促进了其他行业的生成和飞速发展。刀具及自动换刀装置对加工时间有着重要的影响,自动换刀的快慢又影响了加工的时间,刀库的容量决定了刀具的数量,进而影响换刀时间和加工时间。本文主要讲述数控机床的自动换刀机构。 关键词:发展趋势机构自动换刀刀库 中图分类号:TH 文献标识码:B

1.刀库 刀库是自动换刀装置的主要部件,其容量、布局以及具体结构对数控机床的设计有很大影响。刀库的刀具定位机构是用来保证要更换的每一把刀具准确的停在换到位置上。采用电动机或液压系统为刀库提供动力。根据刀库所需要的容量和取刀方式,可以将刀库设计成多种形式。 1.1刀库的类型 刀库的功能是储存加工工序所需要的各种刀具,并按指令将要用的刀具准确的送到换刀位置,并接受从主轴送来的已用刀具。根据需求,刀库类型有多种(1)盘式刀具在盘式刀库结构中,刀具可以沿主轴轴向、径向、斜向安放,刀具轴向安装的结构最为紧凑。在刀库容量较大时,可采用弹仓式结构,目前大量的刀库安装在机床立柱的顶面或侧面,也可安装在单独的基地上。盘式刀库分径向、轴向两种取刀方式,其刀座结构不同。此种刀库结构简单,适用于刀库容量较少的情况。 (2)链式刀库刀具容量比盘式的大,结构也比较灵活和紧凑,常为轴向换刀。可将换刀位置刀座突出以利于换刀。另外还可以采用加长连带方式加大刀库的容量,也可采用折叠回绕的方式提高空间利用率,在要求刀量容量很大时可以采用多条链带的结构。 (3)格子盒式刀具固定型格子盒式刀库。刀具分几排直线排列,由纵、横向移动的取刀机械手完成选刀运动,将选取的刀具送到固定的换刀位置刀座上,由换刀机械手交换刀具,此刀具空间利用高,刀库容量大。 1.2刀库的容量 刀库的容量首先要考虑加工工艺的分析需要。一般情况下,并不是刀库中的刀具越多越好,太的容量会增加刀库的尺寸和占地面积,使选刀过程时间增长。如果从完成工件的全部加工所需要的刀具数目统计,所得结果是80%的工件完成加工任务所需的刀具数目在40种以下,所以一般的中小型立式加工中心配14--30把刀具的刀库就能够满足70%--95%的工件加工需要。 1.3刀库的转位 刀库转位机构由伺服电动机通过消隙齿轮带动蜗杆,通过涡轮使刀库转动。

仿真系统对刀操作

仿真系统对刀操作 一、实训目标: 1、学会仿真系统一把刀的对刀方法; 2、能正确应用仿真系统进行切削并进行尺寸测量; 3、熟练进行仿真系统中机床的主要操作 二、实训系统及机床: 控制系统:FANUC---0I 机床:平床身前置刀架车床 三、实训过程: (一)启动仿真软件并激活机床、回参考点 (二)定义毛坯并放置零件(毛坯:φ50 X 90 的圆柱棒料) (三)选择刀具(1号刀位,D型刀片,刃长11mm,刀尖半径0.4mm,外圆左向横柄,主偏角93°)(四)手动对刀,输入刀补: 点击“手动”“快速”键,点击“Z”、”“—”使刀架快速接近工件,接近工件后取消快速。 点击,使主轴正转,点击“Z”、”“—”“+”使刀具在Z向有合适的吃刀量。 点击“X”、“—”,使刀具X向进刀,切削端面,然后保持Z向位置不变,点击“X”、“+”使刀具沿X 向退出。点击(OFSETSETING)键输入刀补,如图1所示,点击“形状”软键如图2所示,选中01番号,输入“Z0”,点击“测量”软键,如图3所示,完成X向对刀。 图1 刀补界面

图2 刀补形状界面 图3 Z向刀补输入 移动刀架使刀具在X向有一定的吃刀量,使主轴正转,点击“Z”、“—”使刀具沿Z向移动,进行外圆切削,然后保持X向位置不变,Z向退出刀具。如图4所示 图4 X向对刀切削外圆

点击“测量”菜单,选择“剖面图测量”如图5所示。 2、进入数控加工仿真系统 方法一:点击“快速登录”直接进入,画面如图2所示 方法二:输入用户名和密码,再点击“确定”(考试方式下使用),进入仿真系统界面。(用户名为8位数字) 仿真系统界面上部第一行为菜单栏,包括文件、视图、机床、零件、塞尺检查、测量、互动教学、系统管理、帮助9个菜单;第二行为工具图标。

数控车床对刀原理及方法步骤(实用详细)

数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。

所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 以图2为例,试切对刀步骤如下: ①在手动操作方式下,用所选刀具在加工余量范围内试切工件外圆,记下此时显示屏中的X坐标值,记为Xa。(注意:数控车床显示和编程的X坐标一般为直径值)。 ②将刀具沿+Z方向退回到工件端面余量处一点(假定为α点)切削端面,记录此时显示屏中的Z坐标值,记为Za。 ③测量试切后的工件外圆直径,记为φ。 如果程序原点O设在工件端面(一般必须是已经精加工完毕的端面)与回转中心的交点,则程序原点O在机床坐标系中的坐标为 Xo=Xa-φ(1) Zo=Za 注意:公式中的坐标值均为负值。将Xo、Zo设置进数控系统即完成对刀设置。3 程序原点(工件原点)的设置方式 在FANUC数控系统中,有以下几种设置程序原点的方式:①设置刀具偏移量补偿;②用G50设置刀具起点;③用G54~G59设置程序原点;④用“工件移”设置程序原点。 程序原点设置是对刀不可缺少的组成部分。每种设置方法有不同的编程使用方式、不同的应用条件和不同的工作效率。各种设置方式可以组合使用。

CNC对刀方法图示

前言:因为CNC本身是高速旋转机械,操作疏忽会造成很大的危险,所以希望操作人员严格按照要求作业,不可马虎。 在每件产品第一件生成出来后,必须通过品检合格后,才可以继续生产,然后将程序按照零件编号保存好。 一、对刀前准备工作 1、三坐标机械归零 本机器在进行任何作业之前必须三坐标机械归零。 2、刀盘换刀 ① Z坐标归零后,打至手动资料输入(参照附图),在【PROG】MDI环境下输入“M06 TX;”(X为刀号,左下角可以看到)。 ②按【INSERT】键。 ③按【↑】键。 ④按绿色启动按钮。 按照工艺卡上的要求一一对应换好所有刀具。 二、X、Y坐标对刀(一般情况下都是两个方向分中对刀,如果编程不同,需要单方向对中,请工艺卡注明) 1、换刀为分中棒刀位(常用为1号刀位),给予转速 ①打至手动编程处,在【PROG】MDI环境下输入“M03S500;”。 ②按【INSERT】键。 ③按【↑】键。 ④按绿色启动按钮。 2、X方向寻找中点 ①通过手摇操作,分中棒碰到零件X方向的一边。 ②在POS相对坐标环境下,输入“X”,按“起源”(或者按“X0.”,按“setting”)。 ③通过手摇操作,分中棒碰到零件相对另一边。 ④在POS相对坐标环境下,记录下X轴当前数值,通过手摇至当前数值的一半,然后输入“X”,按“起源”(或者按“X0.”,按“setting”);或者在当前位置输入“X+一半当前数值”,按“setting”。 ⑤在OFS/SET下坐标系里的G54的X数值处,按“X0.”,按“测量”,找到当前X为0点时的绝对机械坐标处。 3、Y方向寻找中点 ①通过手摇操作,分中棒碰到零件Y方向的一边。 ②在POS相对坐标环境下,输入“Y”,按“起源”(或者按“Y0.”,按“setting”)。 ③通过手摇操作,分中棒碰到零件相对另一边。 ④在POS相对坐标环境下,记录下Y轴当前数值,通过手摇至当前数值的一半,然后输入“Y”,按“起源”(或者按“Y0.”,按“setting”);或者在当前位置输入“Y+一半当前数值”,按“setting”。 ⑤在OFS/SET下坐标系里的G54的Y数值处,按“Y0.”,按“测量”,找到当前Y为0点时的绝对机械坐标处。 三、Z坐标对刀(除分中棒之外,每把刀具都要进行对刀操作) 1、换至任意一把刀具 ①通过手摇至与工件相差一把刀位置处(一般使用φ10刀,这样做避免对刀时伤害工件表面) ②在POS相对坐标环境下,输入“Z”,按“起源”(或者按“Z0.”,按“setting”)。 ③在OFS/SET下坐标系里的G54的Z数值处,按“Z0.”,按“测量”,找到当前Z为0点时的绝对机械坐标处。 ④在补偿环境下,在对应刀号的形状补偿D下输入“-10”,在外径补偿D处,输入一半刀具数值(如果刀具是φ8平铣刀,则输入“”)。 ⑤按照前一把刀具操作方式,对每一把刀具进行对刀,在POS相对坐标环境下,记录下当前Z值,在补偿环境下,在对应刀号的形状补偿H下输入“当前值-10”(如当前数值为5,则输入5-10=-5;如果当前值为-8,则输入-8-10=-18),在外径补偿处,输入一半刀具数值。

数控车床对刀仪的用途及原理(doc 8页)

数控车床对刀仪的用途及原理(doc 8页)

英国“雷尼绍”(RENISHAW)车床对刀仪的用途及原理 济南一机床集团有限公司李军 摘要:文中着重介绍了英国“雷尼绍”公司数控车床用对刀仪的种类、用途以及简要的工作原理,同时也简要介绍了在数控车床上采用对刀仪对提高加工精度及加工效率的意义。 关键词:对刀仪种类及用途工作原理 作为机械加工业中用量最大的数控车床,近些年来随国内经济的高速发展已迅速得到普及。今天,一个企业内拥有几十台甚至上百台数控车床早已不是什么稀罕事了。 但众所周知,使用数控车床的目地是提高工件的加工质量和效率。可是使用过数控车床的人都知道,在一个工件的加工过程中,工件的装卸、刀具的调整等辅助时间占用了加工周期中相当大的比例,其中的刀具调整更是既麻烦、又费力。统计资料证明,实现一个工件的加工,纯机动时间大约要占总时间的55%,装、夹和对刀等辅助时间却占到45%,这实在不是一个小数。 老话讲磨刀不误砍柴工,但在现代社会中,时间就是金钱,效率就是生命。要多砍柴就必须向磨刀要效益,对时间进行分秒必争。那么,在提高对刀效率方面我们还有什么好办法吗?实践证明,通过在数控车床上增设对刀仪装置即是一种向“磨刀”要时间的好方法。 以下,结合英国雷尼绍公司的对刀仪装置,谈谈它在构成、用途及简要工作原理等方面的知识: 1、雷尼绍公司有哪几种对刀仪装置? 目前在雷尼绍车床对刀仪系列产品中共有三种型号,其对刀的原理是一样

图2:HPPA型对刀仪的系统构成 不用时由操作者作把对刀仪臂再摆动推回保护套中。这一种对刀仪与上一种型号相比的优点是不必把对刀仪臂频繁地插上、拔出,避免了频繁插拔产生的磨损对对刀精度的影响及电信号传递的可靠性。因对刀仪摆回后传感器部分进入到保护套中,也不必担心其在工作过程中受到损坏。 第三种,HPMA (High Precision Motorised Arm) 型: 这是雷尼绍公司该系列产品中的高档型。其特点是对刀仪的臂和基座之间是通过扭矩电机来实现对刀臂的摆出和摆回(图3),除提高了自动化程度外,更重要的是可把对刀臂的摆出、摆回通过M代码编制到加工程序中,在加工循环过程中即可方便地实现刀具磨损值的自动测量、补偿和刀具破损的监测。 图3:HPMA型对刀仪 的系统构成

相关文档
最新文档