等价无穷小

等价无穷小

常用等价无穷小

(前提)当x →0时:

sinx ~x tanx ~x arcsinx ~x arctanx ~x sinx 2~x 2

tanx ?sinx~(secx-1)sinx~12x 3 (1+x )μ-1~μx e x ~x+1 e x -1~x e x2-1~x 2 In(1+x)~x a x -1~xIna

log a (1+x)~

1Ina x 1

x +1~x secx-1~12x 2 1-cosx ~12x 2 1+x n ~1+x n x +1-1~12

x 1+x - 1?x ~x 1+sinx ?1~12sinx 1+x 32-1~13x 2 1- 1?x 2= 1+x 2-1~12x 2

(完整word)高等数学等价替换公式

无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x Θ .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x Θ .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n Θ .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。

高等数学等价无穷小替换

无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x ) 函数()x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n

定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无 穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷 小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系:

高等数学中的导数公式和等价无穷小公式

声明:第一次弄这些,花了本人好些时间,o(∩_∩)o ,版权所有,严禁将本人的劳动成果用于商业用途。 导数公式 (1) (C)'=0 (2) (x μ )'=μ1 x μ- (3) (sinX)'=cosX (4) (cosX)'=-sinX (5) (tanA)'=2 sec A (6) (cotA)'=-2 csc A (7) (secA)'=secAtanA (8) (cscA)'=-cscAcotA (9) (x a )'=x a ln a (10) (x e )'=x e (11) (㏒a x)'= 1 ln x a (12)(lnx)'= 1x (13) (arcsinX)' (14) (arccosX)'= - (15) (arctanX)'= 2 1 1X + (16) (arccotX)'=- 2 11X +10 2 2 33331lim(1)1~ (1) 123 (4) n x x x n n n n →+-+++++=

等价公式 10 1lim(1)1~ n x x x n →+- 当0x →时,ln(1+x)~x 201cos 1 lim 2 x x x →-= 当0x →时,1~x e x - 0sin lim 1x x x →= 当0x →时,1~ln x a x a - 1 lim(1)x x e x →∞+= 22221 123...(1)(21)6 n n n n ++++=++ 0tan lim 1x x x →= 22 3 3 3 3 (1)123 (4) n n n +++++= 0arcsin lim 1x x x →= 220 sin cos n n xdx xdx π π =?? 0ln(1) lim 1x x x →+= 01lim 1ln x x a x a →-=

三角函数极限等价无穷小公式

三角函数公式整合: 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB- cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB- cot(A-B) = (cotAcotB+1)/(cotB-cotA) 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差 sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] 诱导公式 sin(-α) = -sinα cos(-α) = cosα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα

关于大学高等数学等价无穷小

这个问题很多人都搞不明白,很多自认为明白的人也不负责任地说一句“乘除可以,加减不行”,包括不少高校教师。其实这种讲法是不对的!关键是要知道其中的道理,而不是记住结论。 1.做乘除法的时候一定可以替换,这个大家都知道。 如果f(x)~u(x),g(x)~v(x),那么lim f(x)/g(x) = lim u(x)/v(x)。关键要记住道理 lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x) 其中两项的极限是1,所以就顺利替换掉了。 2.加减法的时候也可以替换!但是注意保留余项。 f(x)~u(x)不能推出f(x)+g(x)~u(x)+g(x),这个是很多人说不能替换的原因,但是如果你这样看: f(x)~u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意这里是等号,所以一定是成立的! 问题就出在u(x)+g(x)可能因为相消变成高阶的无穷小量,此时余项o(f(x))成为主导,所以不能忽略掉。当u(x)+g(x)的阶没有提高时,o(f(x))仍然是可以忽略的。 比如你的例子,ln(1+x)+x是可以替换的,因为 ln(1+x)+x=[x+o(x)]+x=2x+o(x), 所以ln(1+x)+x和2x是等价无穷小量。 但是如果碰到ln(1+x)-x,那么 ln(1+x)+x=[x+o(x)]-x=o(x), 此时发生了相消,余项o(x)成为了主导项。此时这个式子仍然是成立的!只不过用它来作为分子或分母的极限问题可能得到不定型而无法直接求出来而已。

碰到这种情况也不是说就不能替换,如果你换一个高阶近似: ln(1+x)=x-x^2/2+o(x^2) 那么 ln(1+x)-x=-x^2/2+o(x^2) 这个和前面ln(1+x)-x=o(x)是相容的,但是是更有意义的结果,此时余项o(x^2)可以忽略。也就是说用x-x^2/2作为ln(1+x)的等价无穷小量得到的结果更好。 从上面的例子就可以看出来,余项很重要,不能直接扔掉,因为余项当中包含了一定的信息。而且只要保留余项,那么所做的就是恒等变换(注意上面我写的都是等式)而不是近似,这种方法永远是可行的,即使得到不定型也不可能得出错误的结论。等你学过带余项的Taylor公式之后对这一点就会有更好的认识。 高数教了一段时间了,对于等价无穷小量代换法求极限为什么只能在乘除中使用,而不能在加减的情况下使用的条件感到有些疑惑,于是找了一些资料,仔细的研究了这个问题,整理如下: 等价无穷小的定义及常用的等价无穷小 无穷小量是指某变化过程中极限为0的变量。而等价无穷小量是指在某变化过程中比值极限为1的两个无穷小量。 常用的等价无穷小有: sinx~tanx~arctanx~arcsinx~ln(1+x)~x(x→0) sin?x~tan?x~arctan?x~arcsin?x~ln?(1+x)~x(x→0) 1?cosx~x22,1+x?????√n?1~xn(x→0)1?cos?x~x22,1+xn?1~xn(x→0) 等价无穷小量在求极限问题中非常重要。恰当的使用等价无穷小量代换常常使极限问题大大简化。但是有时却不能使用等价无穷小量代换。

等价无穷小公式大全

1,x\sim \tan x\sim \sin x\sim \arcsin x\sim (e^x-1)\sim\arctan x\sim ln(1+x)\sim ln(x+\sqrt{1+x^2})x~tanx~sinx~arcsinx~(ex?1)~arctanx~ln(1+x)~ln(x+1+x2) 2,(1-\cos x)\sim\frac{1}{2}x^2(1?cosx)~21x2 3,log_a(1+x)\sim\frac{x}{lna}loga(1+x)~lnax 4,(x - \sin x)\sim\frac{1}{6}x^3\sim(\arcsin x-x)(x?sinx)~61x3~(arcsinx?x) 5,(\tan x -x)\sim\frac{1}{3}x^3\sim(x-\arctan x)(tanx?x)~31x3~(x?arctanx) 6,(1+bx)^a-1\sim abx(1+bx)a?1~abx 7,(\tan x-\sin x)\sim \frac{1}{2}x^3(tanx?sinx)~21x3 8,a^x-1\sim xlnaax?1~xlna 9,(\sqrt[n]{1+x}-1)\sim \frac{x}{n}(n1+x?1)~nx 等价无穷小替换公式如下: 以上各式可通过泰勒展开式推导出来。

等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。 扩展资料: 求极限时,使用等价无穷小的条件: 1. 被代换的量,在取极限的时候极限值为0; 2. 被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以,加减时可以整体代换,不一定能随意单独代换或分别代换。

应用等价无穷小巧解考研高等数学试题

龙源期刊网 https://www.360docs.net/doc/6a14893056.html, 应用等价无穷小巧解考研高等数学试题 作者:黄英芬龙红兰 来源:《中国科教创新导刊》2013年第16期 摘要:在考研高等数学试题当中,“极限”知识点所占考核比重逐年提升,对考生考试成绩有着决定性的影响。掌握“极限”知识点的相关计算方法,备受考生的关注与重视。在现阶段,等价无穷小被证实能够达到合理提高“极限”知识点相关题目解题精确性与速度的目的。本文在简要分析等价无穷小解题方法的基础之上,结合考研高等数学试题,就如何应用等价无穷小解考研高等数学试题这一问题展开了较为详细的分析与阐述,希望能够引起各方人员的参考与关注,从而为考生解答相关试题题目提供一定的参考与借鉴。 关键词:等价无穷小考研高等数学解题方法分析 中图分类号:G64 文献标识码:A 文章编号:1673-9795(2013)06(a)-0047-01 在数学分析,特别是求解考研高等数学试题的过程当中,等价无穷小是比较常用的概念与方法之一。实践研究结果证实:借助于对等价无穷小相关方法的合理应用,能够在很大程度上实现对计算流程的简化。特别是在高等数学考研试题当中,近年来,涉及到应用等价无穷小方法进行计算的题目越来越多,且所占分值也越来越多。如何在遇到这部分题型的过程当中,合理应用等价无穷小方法进行作答,在确保计算精确性的同时,实现对解题时间的合理控制,这一问题备受考生、以及教师的特别关注与重视。本文试针对以上相关问题做详细分析与说明。 1 等价无穷小基本概念分析[1] 数学分析研究的最核心对象为函数,而在有关函数研究的过程当中,最主要的方法是极限。通过对极限方法的应用,能够达到研究函数连续性、可微性、可积性的目的。从而极限在分析数学试题中有着至关重要的地位。在相关数学题,特别是极限问题的求解过程当中,借助于对等价无穷小方法的应用,能够通过代换方式使问题变得更加的简单化,从而使极限值更加容易求出。常规意义上来说,在x→0的状态下,常见的等价无穷小定理包括以下几项内容: (1)sin x~ x; (2)arc sin x~ x (3)tan x~ x (4)In(1+x)~ x (5)(1+x)1/n-1~ x/n

高等数学等价无穷小替换

无穷小极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近方式。下面我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如,,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。

三角函数、极限、等价无穷小公式

三角函数、极限、等价 无穷小公式 -CAL-FENGHAI.-(YICAI)-Company One1

三角函数公式整合: 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差 sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] 诱导公式 sin(-α) = -sinα cos(-α) = cosα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα

等价无穷小性质的理解及应用

等价无穷小性质的理解、延拓及应用 【摘要】等价无穷小具有很好的性质,灵活运用这些性质,无论是在在求极限的运算中,还是在正项级数的敛散性判断中,都可取到预想不到的效果,能达到罗比塔法则所不能取代的作用。通过举例,对比了不同情况下等价无穷小的应用以及在应用过程中应注意的一些性质条件,不仅使这些原本复杂的问题简单化,而且可避免出现错误地应用等价无穷小。 【关键词】等价无穷小极限罗比塔法则正项级数比较审敛法 Comprension,Expand and Application of Equivalent Infinitesimal's Character Abstract Equivalent Infinitesimal have good characters,both in opreation of test for Limit and determine whether the positive series converges or diverges,if these quality that apply flexibly can obtain more effect,the effection can not be replace by L'Hospital Rule.this paper give examples and compare some instance to pay attention to condition in application of Equivalent Limit,so the question can be simply and avoid error in application. Key words equivalent Infinitesimal; limit; L'Hospital rule positive series; comparison test 等价无穷小概念是高等数学中最基本的概念之一,但在高等数学中等价无穷小的性质仅仅在“无穷小的比较”中出现过,其他地方似乎都未涉及到。其实,在判断广义积分、级数的敛散性,特别是在求极限的运算过程中,无穷小具有很好的性质,掌握并充分利用好它的性质,往往会使一些复杂的问题简单化,可起到事半功倍的效果,反之,则会错误百出,有时还很难判断错在什么地方。因此,有必要对等价无穷小的性质进行深刻地认识和理解,以便恰当运用,达到简化运算的目的。 1 等价无穷小的概念及其重要性质〔1〕 无穷小的定义是以极限的形式来定义的,当x→x0时(或x→∞)时,limf(x)=0,则称函数f(x)当x→x0时(或x→∞)时为无穷小。 当limβα=1,就说β与α是等价无穷小。 常见性质有: 设α,α′,β,β′,γ 等均为同一自变量变化过程中的无穷小,①若α~α′,β~β′,且limα′β′存在,则limαβ=limα′β′②若α~β,β~γ,则α~γ

高等数学等价无穷小替换_极限的计算

讲义 无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+ →0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用

→x *表示上述七种的某一种趋近方式,即 *{ } -+→→→-∞→+∞→∞→∞→∈000 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小 是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0lim ()() (),x x x f x A f x A x α? =?+其中)(x α是自变量在同一变化过 程0x x →(或∞→x )中的无穷小. 证:(必要性)设0 lim (),x x f x A ?=令()(),x f x A α=-则有0 lim ()0,x x x α?= ).()(x A x f α+=∴

等价无穷小在求函数极限中的应用

等价无穷小在求函数极限中的应用 XX (XX 学院XX 学院 山西XX ) 摘要:等价无穷小替换是求函数极限的常用方法之一,本文讨论了等价无穷小在四则运算、变上限积分、幂指运算中的应用,并通过实例分析了等价无穷小求极限的优势及常见错误. 关键词:等价无穷小;替换;极限 1 引言 在微积分中极限处于十分重要的地位,极限求法众多,而等价无穷小替换是一类重要的方法.在求极限时,灵活运用等价无穷小,往往会使一些复杂的问题简单化.但现在的高等数学和数学分析教材中,只给出积、商运算中等价无穷小因子的替换规则,对四则运算、变上限积分及幂指运算等广泛使用的情况未能提及.本文作了一个比较系统和全面的总结及适当的拓展,并对等价无穷小求极限的优势和常见错误举例分析,以加深对等价无穷小性质的认识和理解. 2 等价无穷小的定义及性质 定义1 如果函数)(x f 当0x x →(或∞→x )时的极限为零,那么称函数)(x f 为当0x x →(或∞→x )时的无穷小. 定义2 设)(x f 与)(x g 都是在同一个自变量的变化过程中的无穷小,且 0)(≠x g ,如果1) () (lim =x g x f ,就说)(x f 与)(x g 是等价无穷小,记作)(~)(x g x f . 常用的等价无穷小:

当0→x 时,x x ~sin ,x x ~arcsin ,x x ~tan ,x x ~arctan ,x x ~)1ln(+, x e x ~1-,22 1 ~cos 1x x -,x n x n 1~1)1(1 -+. 关于等价无穷小,有三个重要性质: 性质1 β与α是等价无穷小的充分必要条件为 )(ααβo +=. 性质2 设αα'~,ββ'~,且αβ'' lim 存在,则 αβαβ' '=lim lim . 性质3 βα~,)(~)(~a x a x →?→γαγβ. 3 等价无穷小在求函数极限中的应用 3.1 含四则运算的等价无穷小替换 定理2表明求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替.因此,如果用来代替的无穷小选得适当的话,可以使计算简化. 例1 求极限2 0sin )1() cos 1(lim x e x x x x --→. 解 当0→x 时,2 2 1~ cos 1x x -,x e x --~1,22~sin x x ,因此 20sin )1()cos 1(lim x e x x x x --→=22 021lim x x x x x ?-?→=2 1-. 例2 求极限) cos 1cos(11lim 4 x x e x x ---→. 解 )cos 1cos(11 lim 4 x x e x x ---→=42 121lim )cos 1(21lim 224 024 0=?=-→→x x x x x x x x . 注意0→x 时,424 1 ~)cos 1(21~ )cos 1cos(1x x x x x ---.用到了性质3. 利用等价无穷小因子替换求极限,可以大大减少计算量,但利用等价无穷小

等价无穷小公式大全

等价无穷小是现代词,是一个专有名词,指的是数学术语,是大学高等数学微积分使用最多的等价替换。 基本信息 中文名称 等价无穷小 外文名称 The equivalent infinitesimal 释义 是一个专有名词,指的是数学术语 拼音 děng jià wú qióng xiǎo 目录 1基本定义 2重要替换 折叠编辑本段基本定义 首先来看看什么是无穷小:

无穷小就是以数零为极限的变量。 等价无穷小 等价无穷小 确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0(或f(x0)=0),则称f(x)为当x→x0时的无穷小量。 例如,f(x)=(x-1)2是当x→1时的无穷小量,f(n)=1/n是当n→∞时的无穷小量,f(x)=sinx是当x→0时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。 这里值得一提的是,无穷小是可以比较的: 假设a、b都是lim(x→x0)时的无穷小, 如果lim b/a=0,就说b是比a高阶的无穷小,记作b=o(a) 如果lim b/a=∞,就是说b是比a低阶的无穷小。 比如b=1/x^2,a=1/x。x->无穷时,通俗的说,b时刻都比a更

快地趋于0,所以称做是b高阶。假如有c=1/x^10,那么c比a b 都要高阶,因为c更快地趋于0了。 等价无穷小 等价无穷小 等价无穷小 等价无穷小 等价无穷小 等价无穷小 如果lim b/a^n=常数C≠0(k>0),就说b是关于a的n阶的无穷小,b和a^n是同阶无穷小。 下面来介绍等价无穷小: 从无穷小的比较里可以知道,如果lim b/a^n=常数,就说b是a的n阶的无穷小,b和a^n是同阶无穷小。特殊地,如果这个常数是1,且n=1,即lim b/a=1,则称a和b是等价无穷小的关系,记作a~b

几个重要的等价无穷小公式

几个重要的等价无穷小公式 注:以下无穷小的等价性都是在 0x → 的极限过程中成立的。 sin x x tan x x arcsin x x arctan x x 1x e x - 1ln x a x a - ln(1) x x ±± log (1)ln a x x a + 3 sin 6x x x - 3 tan 3x x x - 3 arcsin 6x x x - 3 arctan 3x x x - 2 1cos 2 x x - 2 sec 12 x x - 3 tan sin 2 x x x - 2 ln(1)2 x x x ±- (1)1k k x x αα+- (0 k α>>0,) 特别地有:11k n k x x n +- (k >0) 更一般的有:(1())1()g x g x αα+- (其中0α>、()g x 为 0x → 时的无穷小) 几个重要结论: △ Stolz 定理:若 lim n n x a →∞=,则 ① 12lim n n x x x a n →∞++???+=; ② 12lim n n n x x x a →∞???= 注:Stolz 定理对于a =∞也是成立的。 △ 0a ?> 有 lim 1n n a →∞ =; k Z +?∈ 有 lim 1n k n n →∞ =; 但是 lim !n n n →∞ =+∞ △当 x →∞(或+∞或-∞)时,()f x A →(正常极限),则函数 ()y f x = 的图像在相应方向上有水平渐近线 y A =(教材第31页)。 △ 当 0x x → 时,()f x →∞(或+∞、或-∞),则函数 ()y f x = 的图像在0x 处有铅直渐近线 0x x =(教材第36页)。 △ 当 x →∞(或+∞或-∞)时,有 () lim (0 )f x k x =≠、lim [()]f x kx b -=, 则函数 ()y f x = 的图像在相应方向上有斜渐近线 y kx b =+(教材第72页)。 初等函数的连续性:一切初等函数在其定义区间内都是连续的(教材第64页)。

相关文档
最新文档