ARIMA模型在房屋销售价格指数预测中的应用及SAS实现

ARIMA模型在房屋销售价格指数预测中的应用及SAS实现
ARIMA模型在房屋销售价格指数预测中的应用及SAS实现

AR,MA,ARIMA模型介绍及案例分析

BOX -JENKINS 预测法 1 (1)()AR p 模型(Auto regression Model )——自回归模型 p 阶自回归模型: y t =c +?1y t?1+?2y t?2+?+?p y t?p +e t 式中,y t 为时间序列第t 时刻的观察值,即为因变量或称被解释变量;y t?1,y t?2,?,y t?p 为时序y t 的滞后序列,这里作为自变量或称为解释变量;e t 是随机误差项;c ,?1,?2,?,?p 为待估的自回归参数。 (2)()MA q 模型(Moving Average Model )——移动平均模型 q 阶移动平均模型: 1122t t t t q t q y e e e e μθθθ---=+--- - 式中,μ为时间序列的平均数,但当{}t y 序列在0上下变动时,显然μ=0,可删除此项;t e ,1t e -,2t e -,…,t q e -为模型在第t 期,第1t -期,…,第t q -期的误差;1θ,2θ,…,q θ为待估的移动平均参数。 (3)(,)ARMA p q 模型——自回归移动平均模型(Auto regression Moving Average Model ) 模型的形式为: 11221122t t t p t p t t t q t q y c y y y e e e e φφφθθθ------=+++ ++--- - 显然,(,)ARMA p q 模型为自回归模型和移动平均模型的混合模型。当q =0,时,退化为纯自回归模型()AR p ;当p =0时,退化为移动平均模型()MA q 。 2 改进的ARMA 模型 (1)(,,)ARIMA p d q 模型 这里的d 是对原时序进行逐期差分的阶数,差分的目的是为了让某些非平稳(具有一定趋势的)序列变换为平稳的,通常来说d 的取值一般为0,1,2。 对于具有趋势性非平稳时序,不能直接建立ARMA 模型,只能对经过平稳化处理,而后对新的平稳时序建立(,)ARMA p q 模型。这里的平文化处理可以是差分处理,也可以是对数变换,也可以是两者相结合,先对数变换再进行差分处理。 (2)(,,)(,,)s ARIMA p d q P D Q 模型 对于具有季节性的非平稳时序(如冰箱的销售量,羽绒服的销售量),也同样需要进行季节差分,从而得到平稳时序。这里的D 即为进行季节差分的阶数;,P Q 分别是季节性自回归阶数和季节性移动平均阶数;S 为季节周期的长度, 如

基于ARIMA模型下的时间序列分析与预测

龙源期刊网 https://www.360docs.net/doc/6216611901.html, 基于ARIMA模型下的时间序列分析与预测 作者:万艳苹 来源:《金融经济·学术版》2008年第09期 摘要:大多数的时间序列存在着惯性,或者说具有迟缓性。通过对这种惯性的分析,可以由时间序列的当前值对其未来值进行估计。本文以1949年到2004年江苏省社会消费品零售总额数据为研究对象,将这些数据平稳化并做分析,发现ARIMA(1,1,2)模型能比较好的对江苏省社会消费品零售总额进行市时间序列分析和预测,。 关键词:ARIMA;江苏省消费品零售总额;时间序列分析 一、引言 江苏省是一个经济大省,经济一直保持平稳较快增长,城乡居民收入都位于全国前茅,消费品需求旺盛,人们生活水平比较高。其中社会消费品零售总额是反映人民生活水平提高的一个很好的指标。所以对社会消费品零售总额做分析就比较重要。但是影响社会消费品零售总额的因素有很多,包括收入、住房、医疗、教育以及人们的预期等很多因素,而且这些因素之间又保持着错综复杂的联系。因此运用数理经济模型来分析和预测较为困难。所以本文采用ARIMA模型对江苏省的社会消费品零售总额进行分析,得出其规律性,并预测其未来值。 二、ARIMA模型的说明和构建 ARIMA模型又称为博克斯-詹金斯模型。ARIMA模型是由三个过程组成:自回归过程(AR(p));单整(I(d));移动平均过程(MA(q))。AR(p)即自回归过程,是指一个过程的当前值是过去值的线性函数。如:如果当前观测值仅与上期(滞后一期)的观测值有显著的线性函数关系,则我们就说这是一阶自回归过程,记作AR(1)。推广之,如果当前值与滞后p期的观测值都有线性关系则称p阶自回归过程,记作AR(p)。MA(q),即移动平均过程,是指模型值可以表示为过去残差项(即过去的模型拟合值与过去观测值的差)的线性函数。如:MA(1)过程,说明时间序列受到滞后一期残差项的影响。推广之,MA(q)是指时间序列受到滞后q期残差项的

自回归分布滞后模型ADL的运用试验指导-时间序列分析

案例六 自回归分布滞后模型(ADL )的运用实验指导 一、实验目的 理解ADL 模型的原理与应用条件,学会运用ADL 模型来估计变量之间长期稳定关系。理解从经济理论上来说,两个经济变量之间的确有长期关系采用使用该模型进行估计。理解ADL 模型的优点:不管回归项是不是1阶单整或平稳都可以进行检验和估计。而进行标准的协整分析前,必须把变量分类成(0)I 和(1)I 。 二、基本概念 Jorgenson(1966)提出的(,p q )阶自回归分布滞后模型ADL(autoregressive distributed lag):011111 i t t p t p t t q t q i t i i y y y ταφφεθεθεβ-----='=++++--+∑x ,其中t i -x 是滞后i 期 的外生变量向量(维数与变量个数相同),且每个外生变量的最大滞后阶数为i τ,i β是参数向量。当不存在外生变量时,模型就退化为一般ARMA (,p q )模型。 如果模型中不含有移动平均项,可以采用OLS 方法估计参数,若模型中含有移动平均项,线性OLS 估计将是非一致性估计,应采用非线性最小二乘估计。 三、实验内容及要求 (1)实验内容 运用ADL 模型研究1992年1月到1998年12月我国城镇居民月对数人均生活费支出yt 和对数可支配收入xt 之间的长期稳定关系。 (2)实验要求 在认真理解模型应用条件的基础上,通过实验掌握ADL 模型的实际应用方法,并熟悉Eniews 的具体操作过程。 四、实验指导 (1)数据录入 打开Eviews 软件,选择“File”菜单中的“New --Workfile”选项,在“Workfile structure type ”栏选择“Dated-regular frequency ”,在“Data specification ”栏中“Frequency ”中选择“Monthly ”即月份数据,起始时间输入1992m1即1992年1月份,止于1998m12,点击ok ,见图6-1,这样就建立了一个工作文件。 图6-1 建立工作文件窗口

一元线性回归模型的置信区间与预测

§2.5 一元线性回归模型的置信区间与预测 多元线性回归模型的置信区间问题包括参数估计量的置信区间和被解释变量预测值的置信区间两个方面,在数理统计学中属于区间估计问题。所谓区间估计是研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差范围,是一个必须回答的重要问题。 一、参数估计量的置信区间 在前面的课程中,我们已经知道,线性回归模型的参数估计量^ β是随机变量 i y 的函数,即:i i y k ∑=1?β,所以它也是随机变量。在多次重复抽样中,每次 的样本观测值不可能完全相同,所以得到的点估计值也不可能相同。现在我们用参数估计量的一个点估计值近似代表参数值,那么,二者的接近程度如何?以多大的概率达到该接近程度?这就要构造参数的一个区间,以点估计值为中心的一个区间(称为置信区间),该区间以一定的概率(称为置信水平)包含该参数。 即回答1β以何种置信水平位于() a a +-1 1?,?ββ之中,以及如何求得a 。 在变量的显著性检验中已经知道 ) 1(~^ ^ ---= k n t s t i i i βββ (2.5.1) 这就是说,如果给定置信水平α-1,从t 分布表中查得自由度为(n-k-1)的临界值 2 αt ,那么t 值处在() 22,ααt t -的概率是α-1。表示为 α αα-=<<-1)(2 2 t t t P 即 α ββαβα-=<-< -1)(2 ^ 2 ^ t s t P i i i

α ββββαβα-=?+<

时间序列ARIMA模型的SAS程序编写

goptions vsize=7cm hsize=10cm; data b; format time monyy5.; input monyy7. asr; dif=dif(asr) ; keep time asr dif; cards; Jan1999 50 Feb1999 54.5 Mar1999 51 Apr1999 49 May1999 50 Jun1999 52 Jul1999 49 Aug1999 49 Sep1999 55 Oct1999 58 Nov1999 60 Dec1999 67.6 Jan2000 62 Feb2000 58.4 Mar2000 55 Apr2000 52.7 May2000 54.4 Jun2000 55.9 Jul2000 53.6 Aug2000 53.4 Sep2000 58.7 Oct2000 62.8 Nov2000 64.2 Dec2000 73.9 Jan2001 66.9 Feb2001 61.7 Mar2001 58.5 Apr2001 56.3 May2001 60.1 Jun2001 60.3 Jul2001 58 Aug2001 58.5 Sep2001 64.3 Oct2001 68.5 Nov2001 70.6 Dec2001 79.2 Jan2002 72.4

Feb2002 67.3 Mar2002 62.9 Apr2002 60.7 May2002 65.9 Jun2002 65.8 Jul2002 62.9 Aug2002 63.6 Sep2002 70.5 Oct2002 76 Nov2002 79 Dec2002 85.1 Jan2003 79.9 Feb2003 73.5 Mar2003 69.5 Apr2003 64.8 May2003 67.6 Jun2003 73.4 Jul2003 70.2 Aug2003 71.6 Sep2003 79.3 Oct2003 85.5 Nov2003 88.5 Dec2003 98.4 Jan2004 90.8 Feb2004 81.8 Mar2004 78.8 Apr2004 75 May2004 81 Jun2004 83.9 Jul2004 80.1 Aug2004 81.1 Sep2004 89.7 Oct2004 98.7 Nov2004 101.7 Dec2004 116.3 Jan2005 103.7 Feb2005 94.2 Mar2005 89.1 Apr2005 86.2 May2005 91.9 Jun2005 98.6 Jul2005 92.2 Aug2005 96.1 Sep2005 103.5

实验三:ARIMA模型建模与预测实验报告

课程论文 (2016 / 2017学年第 1 学期) 课程名称应用时间序列分析 指导单位经济学院 指导教师易莹莹 学生姓名班级学号 学院(系) 经济学院专业经济统计学

实验三ARIMA 模型建模与预测实验指导 一、实验目的: 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念: 所谓ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,我们主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验任务: 1、实验内容: (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。 2、实验要求: (1)深刻理解非平稳时间序列的概念和ARIMA 模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA 模型;如何利用ARIMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。 四、实验要求: 实验过程描述(包括变量定义、分析过程、分析结果及其解释、实验过程遇到的问题及体会)。 实验题:对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。

季节ARIMA模型建模与预测实验指导

季节ARIMA模型建模与预测实验指导

————————————————————————————————作者: ————————————————————————————————日期: ?

实验六季节ARIMA模型建模与预测实验指导 学号:20131363038 姓名:阙丹凤班级:金融工程1班 一、实验目的 学会识别时间序列的季节变动,能看出其季节波动趋势。学会剔除季节因素的方法,了解ARIMA模型的特点和建模过程,掌握利用最小二乘法等方法对ARIMA模型进行估计,利用信息准则对估计的ARIMA模型进行诊断,以及如何利用ARIMA模型进行预测。掌握在实证研究如何运用Eviews软件进行ARIMA模型的识别、诊断、估计和预测。 二、实验内容及要求 1、实验内容: 根据美国国家安全委员会统计的1973-1978年美国月度事故死亡率数据,请选择适当模型拟合该序列的发展。 2、实验要求: (1)深刻理解季节非平稳时间序列的概念和季节ARIMA模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA模型;如何利用ARIMA模型进行预测; (3)熟练掌握相关Eviews操作。 三、实验步骤 第一步:导入数据 第二步:画出时序图

6,000 7,000 8,000 9,000 10,000 11,000 12,000 510152025303540455055 606570 SIWANGRENSHU 由时序图可知,死亡人数虽然没有上升或者下降趋势,但由季节变动因素影响。 第三步:季节差分法消除季节变动 由时序图可知,波动的周期大约为12,所以对原序列作12步差分,得到新序列如下图所示。

自回归综合移动平均预测模型

自回归综合移动平均预测模型 数据采集 本文选取了2011年某省电力系统从1月1日开始之后80天的电力负荷观测,如表一。 第n天 负荷量第n天负荷量第n天负荷量第n天负荷量 1 2565957.38 21 2705368.6 41 2429907.99 61 2743833.56 2 2588923.0 3 22 2677964.55 42 2476962.26 62 2736933.52 3 2595037.39 23 2667444.01 43 2576255. 4 63 2773791.8 4 2621899.1 5 24 2659986.34 44 2614097.2 64 2748178.37 5 2605604.4 25 2646095.54 45 2680843.85 65 2737334.22 6 2597404.13 26 2652315.14 46 2775056.43 66 2720053.61 7 2363386.42 27 2641570.43 47 2728907.25 67 2700061.15 8 2620185.38 28 2584430.88 48 2611172.72 68 2709553.04 9 2615940.83 29 2474001.24 49 2601989.82 69 2681309.47 10 2615480.96 30 2396095.97 50 2668757.4 70 2683185.56 11 2612348.58 31 2288598.13 51 2677390.06 71 2661837.7 12 2610054.23 32 2166399.62 52 2695802.63 72 2644097.64 13 2610964.36 33 2062979.7 53 2689571.21 73 2685694.93 14 2637653.21 34 1997281.18 54 2654423.52 74 2702991.02 15 2633388.14 35 1925136.26 55 2642984.00 5 75 2687024.37 5 16 2640311.3 36 1970438.06 56 2712142.78 76 2680354.45 17 2678530.11 37 1976557.67 8 57 2754918.32 77 2682596.37 18 2687189.9 38 2050309.54 58 2758839.28 78 2695560.6 19 2694733.01 39 2154488.52 59 2817728.94 79 2674342.97 20 2709637.21 8 40 2384011.84 60 2759327.72 80 2685891.98 表1 数据处理 利用spass绘制时间序列原始数据的散点图

AR,MA,ARIMA模型介绍及案例分析

BOX-JENKINS 预测法 1 适用于平稳时序的三种基本模型 (1)()AR p 模型(Auto regression Model )——自回归模型 p 阶自回归模型: 式中,为时间序列第时刻的观察值,即为因变量或称被解释变量;, 为时序的滞后序列,这里作为自变量或称为解释变量;是随机误 差项;,,,为待估的自回归参数。 (2)()MA q 模型(Moving Average Model )——移动平均模型 q 阶移动平均模型: 式中,μ为时间序列的平均数,但当{}t y 序列在0上下变动时,显然μ=0,可删除此项;t e ,1t e -,2t e -,…,t q e -为模型在第t 期,第1t -期,…,第t q -期 的误差;1θ,2θ,…,q θ为待估的移动平均参数。 (3)(,)ARMA p q 模型——自回归移动平均模型(Auto regression Moving Average Model ) 模型的形式为: 显然,(,)ARMA p q 模型为自回归模型和移动平均模型的混合模型。当q =0,时,退化为纯自回归模型()AR p ;当p =0时,退化为移动平均模型()MA q 。 2 改进的ARMA 模型 (1)(,,)ARIMA p d q 模型 这里的d 是对原时序进行逐期差分的阶数,差分的目的是为了让某些非平稳(具有一定趋势的)序列变换为平稳的,通常来说d 的取值一般为0,1,2。 对于具有趋势性非平稳时序,不能直接建立ARMA 模型,只能对经过平稳化处理,而后对新的平稳时序建立(,)ARMA p q 模型。这里的平文化处理可以是差分处理,也可以是对数变换,也可以是两者相结合,先对数变换再进行差分处理。 (2)(,,)(,,)s ARIMA p d q P D Q 模型 对于具有季节性的非平稳时序(如冰箱的销售量,羽绒服的销售量),也同样需要进行季节差分,从而得到平稳时序。这里的D 即为进行季节差分的阶数; ,P Q 分别是季节性自回归阶数和季节性移动平均阶数;S 为季节周期的长度, 如时序为月度数据,则S =12,时序为季度数据,则S =4。 在SPSS19.0中的操作如下

股票预测模型【运用ARIMA模型预测股票价格】

股票预测模型【运用ARIMA模型预测股票价格】 [摘要]ARIMA模型是时间序列中十分常见和常用的一种模型,应用与经济的各个领域。本文基于ARIMA模型,采用了莱宝高科近67个交易日的数据,对历史数据进行分析,并且在此基础上做出一定的预测,试图为现实的投资提供一些参考信息。[关键字]ARIMA模型;股价预测;莱宝高科一、引言时间序列分析是从一段时间上的一组属性值数据中发现模式并预测未来值的过程。ARIMA模型是目前最常用的用于拟合非平稳序列的模型,对于满足有限参数线形模型的平稳时间序列的分析,ARIMA在理论上已趋成熟,它用有限参数线形模型描述时间序列的自相关结构,便于进行统计分析与数学处理。有限参数线形模型能描述的随机现象相当广泛,模型拟合的精度能达到实际工程的要求,而且由有限参数的线形模型结构可推导出适用的线形预报理论。利用ARIMA 模型描述的时间序列预报问题在金融,股票等领域具有重要的理论意义。本文将利用ARIMA模型结合莱宝高科的数据建立模型,并运用该模型对莱宝的股票日收盘价进行预测。二、ARIMA模型的建立 2.1ARIMA模型简介ARIMA是自回归移动平均结合模型的简写形式,用于平稳序列或通过差分而平稳的序列分析,简记为ARIMA(p,d,q)用公式表示为:△dZt=Xt=ψ1Xt-1+ψ2Xt-2+?+ψpXt-p+at-θ1at-1-θ2at-2-?-θqat-q 其中,p、d、q分别是自回归阶数、差分阶数和滑动平均阶数;Zt是时间序列;Xt是经过d阶差分后的时间序列值;at-q是时间为t-q的随机扰动项;ψp、θq分别是对应项前的系数。 2.2模型建立流程(1)平稳性检验以2010-3-4到2010-6-10的“莱宝高科”(002106)股票的收盘价作为模型的数据进行建立时间序列模型:做出折线图观察数据的特征:进行单位根检验,判别序列是否为平稳序列;若一阶差分后的数据为平稳序列,可以建立时间序列模型。说明原数据为一阶单整。(2)模型的选择和参数的估计根据数据的平稳性特征,初步确定建立ARIMA模型。观察一阶差分以后的序列的自相关函数和偏自相关

时间序列分析,sas各种模型,作业神器

实验一分析太阳黑子数序列 一、实验目的:了解时间序列分析的基本步骤,熟悉SAS/ETS软件使用方法。 二、实验内容:分析太阳黑子数序列。 三、实验要求:了解时间序列分析的基本步骤,注意各种语句的输出结果。 四、实验时间:2小时。 五、实验软件:SAS系统。 六、实验步骤 1、开机进入SAS系统。 2、创建名为exp1的SAS数据集,即在窗中输入下列语句: 3、保存此步骤中的程序,供以后分析使用(只需按工具条上的保存按钮然后填写完提问 后就可以把这段程序保存下来即可)。 4、绘数据与时间的关系图,初步识别序列,输入下列程序: ods html; ods listing close; 5、run;提交程序,在graph窗口中观察序列,可以看出此序列是均值平稳序列。

6、识别模型,输入如下程序。 7、提交程序,观察输出结果。初步识别序列为AR(2)模型。 8、估计和诊断。输入如下程序: 9、提交程序,观察输出结果。假设通过了白噪声检验,且模型合理,则进行预测。 10、进行预测,输入如下程序: 11、提交程序,观察输出结果。

12、退出SAS系统,关闭计算机。总程序: data exp1; infile "D:\"; input a1 @@;

year=intnx('year','1jan1742'd,_n_-1); format year year4.; ; proc print;run; ods html; ods listing close; proc gplot data=exp1 ; symbol i=spline v=dot h=1 cv=red ci=green w=1; plot a1*year/autovref lvref=2 cframe=yellow cvref=black ; title "太阳黑子数序列"; run; proc arima data=exp1; identify var=a1 nlag=24 minic p=(0:5) q=(0:5); estimate p=3; forecast lead=6 interval=year id=year out=out; run; proc print data=out; run; 选取拟合模型的规则: 1.模型显著有效(残差检验为白噪声)

R 语言环境下用ARIMA模型做时间序列预测

R 语言环境下使用ARIMA模型做时间序列预测 1.序列平稳性检验 通过趋势线、自相关(ACF)与偏自相关(PACF)图、假设检验和因素分解等方法确定序列平稳性,识别周期性,从而为选择适当的模型提供依据。 1.1绘制趋势线 图1 序列趋势线图 从图1很难判断出序列的平稳性。 1.2绘制自相关和偏自相关图

图2 序列的自相关和偏自相关图

从图2可以看出,ACF拖尾,PACF1步截尾(p=1),说明该现金流时间序列可能是平稳性时间序列。 1.3 ADF、PP和KPSS 检验平稳性 图3 ADF、PP和KPSS检验结果 通过ADF检验,说明该现金流时间序列是平稳性时间序列(p-value for ADF test <0.02,拒绝零假设).pp test和kpss test 结果中的警告信息说明这两种检验在这里不可用。但是这些检验没有充分考虑趋势、周期和季节性等因素。下面对该序列进行趋势、季节性和不确定性因素分解来进一步确认序列的平稳性。 1.4 趋势、季节性和不确定性因素分解 R 提供了两种方法来分解时间序列中的趋势、季节性和不确定性因素。第一种是使用简单的对称过滤法,把相应时期内经趋势调整后的观察值进行平均,通过decompose()函数实现,如图4。第二种方法更为精确,它通过平滑增大规模后的观察值来寻找趋势、季节和不确定因素,利用stl()函数实现。如图5。

图4 decompose()函数分解法 图5 stl()函数分解法 两种方法得到的结果非常相似。从上图可以看出,该现金流时间序列没有很明显的长期趋势。但是有明显的季节性或周期性趋势,经分解后的不确定因素明显减少。

向量自回归与ARCH、GARCH模型

向量自回归 预测是计量经济分析的重要部分,宽泛的说,依据时间序列数据进行经济预测的方法有五种:(1)指数平滑法;(2)单一方程回归模型;(3)联立方程回归模型;(4)单整自回归移动平均模型;(5)向量自回归模型(V AR ,vector autoregression )。 一、V AR 的估计 V AR 方法论同时考虑几个内生变量,它看起来类似于联立方程模型。但是,在V AR 模型中,每一个内生变量都是由它的滞后或过去值以及模型中所有其他内生变量的滞后或过去值来解释。通常模型中没有任何外生变量。在联立方程模型中,我们把一些变量看作内生的,而另一些变量看作外生的或预定的,在估计这些模型之前,必须肯定方程组中的方程是可识别的,而为达到识别的目的,常常要假定某些预定变量仅出现在某些方程之中,这些决定往往是主观的,因此这种方法受到C.A.西姆斯(Christopher Sims )的严厉批评,他认为如果在一组变量中有真实的联立性,这些变量就应该平等对待,而不应事先区分内生和外生变量,以此思路,其推出了V AR 模型。 例我们想考虑中国的货币(M1)与利率(R )的关系。如果通过格兰杰因果关系检验,我们无法拒绝两者之间有双向因果关系的假设,即M1 影响R ,而R 反过来又影响M1,这种情形是应用V AR 的理想情形。假定每个方程都含有M1 和R 的k 个滞后值作为回归元,每个方程都可以用OLS 去估计,实际模型如下: 11111k k t j t j j t j t j j M M R u αβγ--===+++∑∑

2111k k t j t j j t j t j j R M R u αθλ--=='=+++∑∑ 其中u 是随机误差项,在V AR 术语中称为脉冲值(impulses )。在估计以上方程时,必须先决定最大滞后长度,这是一个经验问题,包括过多的滞后项将消耗自由度,而且会引入多重共线性的可能性,而包含过少的滞后值将导致设定误差,解决这个问题的方法之一就是使用赤池、施瓦茨或汉南—奎因准则中的某一个准则,并选择准则最低值的模型,因此,这个过程中试错法就不可避免。 值得注意的是,向量自回归模型中同时引入同一变量的几个滞后项,可能因多重共线性而使每个估计系数在统计上都不显著,但基于F 检验它们可能是联合显著的。 二、V AR 建模的一些问题 V AR 的倡导者强调此法有如下的优点:(1)方法简单,无需决定哪些变量是内生的,哪些变量是外生的,V AR 中的全部变量都是内生的。(2)估计简单:常用的OLS 法可以用于逐个估计每一个方程。 (3)在许多案例中,此方法得到的预测优于用更复杂的联立方程模型得到的预测。 但V AR 建模的批评者指出如下的一些问题: 1、不同于联立方程模型,V AR 利用较少的先验信息,所有是缺乏理论支撑的,因为在联立方程中排除或包含某些变量,对模型的识别起到关键性作用。 2、由于重点放到预测,V AR 模型不适合用于政策分析。 3、实际上,对V AR 建模最大的挑战在于选择适当滞后长度。假

多元线性回归预测模型论文

多元线性回归统计预测模型 摘要:本文以多元统计分析为理论基础,在对数据进行统计分析的基础上建立多元线性回归模型并对未知量作出预测,为相关决策提供依据和参考。重点介绍了模型中参数的估计和自变量的优化选择及简单应用举例。 关键词:统计学;线性回归;预测模型 一.引言 多元线性回归统计预测模型是以统计学为理论基础建立数学模型,研究一个随机变量Y与两个或两个以上一般变量X 1,X 2,…,Xp 之间相依关系,利用现有数据,统计并分析,研究问题的变化规律,建立多元线性回归的统计预测模型,来预测未来的变化情况。它不仅能解决一些随机的数学问题,而且还可以通过建立适当的随机模型进而解决一些确定的数学问题,为相关决策提供依据和参考。 目前统计学与其他学科的相互渗透为统计学的应用开辟新的领域。并被广泛的应用在各门学科上,从物理和社会科学到人文科学,甚至被用来工业、农业、商业及政府部门。而多元线性回归是多元统计分析中的一个重要方法,被应用于众多自然科学领域的研究中。多元线性回归分析作为一种较为科学的方法,可以在获得影响因素的前提下,将定性问题定量化,确定各因素对主体问题的具体影响程度。 二.多元线性回归的基本理论 多元线性回归是多元统计分析中的一个重要方法,被广泛应用于众多自然科学领域的研究中。多元线性回归分析的基本任务包括:根据因变量与多个自变量的实际观测值建立因变量对多个自变量的多元线性回归方程;检验、分析各个自变量对因自变量的综合线性影响的显著性;检验、分析各个自变量对因变量的单纯线性影响的显著性,选择仅对因变量有显著线性影响的自变量,建立最优多元线性回归方程;评定各个自变量对因变量影响的相对重要性以及测定最优多元线性回归方程的偏离度等。由于多数的多元非线性回归问题都可以化为多元线性回归问题,所以这里仅讨论多元线性回归。许多非线性回归和多项式回归都可以化为多元线性回归来解决,因而多元线性回归分析有着广泛的应用。 2.1 多元线性回归模型的一般形式 设随机变量y 与一般变量12,, ,p x x x 线性回归模型为 01122...p p y x x x ββββε=+++++ (2.1) 模型中Y为被解释变量(因变量),而12,,,p x x x 是p 个可以精确测量并可控制的一般变 量,称为解释变量(自变量)。p =1时,(2.1)式即为一元线性回归模型,p 大于2时,(2.1)

SAS学习系列39. 时间序列分析Ⅲ—ARIMA模型

39. 时间序列分析Ⅱ——ARIMA 模型 随着对时间序列分析方法的深入研究,人们发现非平稳序列的确定性因素分解方法(如季节模型、趋势模型、移动平均、指数平滑等)只能提取显著的确定性信息,对随机性信息浪费严重,同时也无法对确定性因素之间的关系进行分析。 而非平稳序列随机分析的发展就是为了弥补确定性因素分解方法的不足。时间序列数据分析的第一步都是要通过有效手段提取序列中所蕴藏的确定性信息。Box 和Jenkins 使用大量的案例分析证明差分方法是一种非常简便有效的确定性信息的提取方法。而Gramer 分解定理则在理论上保证了适当阶数的差分一定可以充分提取确定性信息。 (一)ARMA 模型 即自回归移动平均移动模型,是最常用的拟合平稳时间序列的模型,分为三类:AR 模型、MA 模型和ARMA 模型。 一、AR(p )模型——p 阶自回归模型 1. 模型: 011t t p t p t x x x φφφε--=+++ 其中,0p φ≠,随机干扰序列εt 为0均值、2εσ方差的白噪声序列(()0t s E εε=, t ≠s ),且当期的干扰与过去的序列值无关,即E(x t εt )=0.

由于是平稳序列,可推得均值 11p φμφφ= -- -. 若00φ=,称为 中心化的AR (p )模型,对于非中心化的平稳时间序列,可以令 01(1)p φμφφ=---,*t t x x μ=-转化为中心化。 记B 为延迟算子,1()p p p B I B B φφΦ=-- -称为p 阶自回归多 项式,则AR (p )模型可表示为:()p t t B x εΦ=. 2. 格林函数 用来描述系统记忆扰动程度的函数,反映了影响效应衰减的快慢程度(回到平衡位置的速度),G j 表示扰动εt-j 对系统现在行为影响的权数。 例如,AR(1)模型(一阶非齐次差分方程),1, 0,1,2,j j G j φ== 模型解为0t j t j j x G ε∞ -==∑. 3. 模型的方差 对于AR(1)模型,22 2 1()()1t j t j j Var x G Var εσεφ∞ -===-∑. 4. 模型的自协方差 对中心化的平稳模型,可推得自协方差函数的递推公式: 用格林函数显示表示: 2 00 ()()i j t j t k j j k j i j j k G G E G G γεεσ ∞∞ ∞ ---+=====∑∑∑ 对于AR(1)模型,

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 %? % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显着 % fV:F分布值,越大越好,线性回归方程越显着 % fH:0或1,0不显着;1显着(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系 % tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着 % tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明 % 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10; % x2=rand(10,1)*10; % Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据 % X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了

线性回归和灰色预测模型案例

预测未来2015年到2020年的货运量 灰色预测模型 是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测. 预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断. 灰色系统的定义 灰色系统是黑箱概念的一种推广。我们把既含有已知信息又含有未知信息的系统称为灰色系统.作为两个极端,我们将称信息完全未确定的系统为黑色系统;称信息完全确定的系统为白色系统.区别白色系统与黑色系统的重要标志是系统各因素之间是否具有确定的关系。

建模原理 模型的求解

原始序列为: ) 16909 15781 13902 12987 12495 11067 10149 9926 9329 10923 7691())6(),...1(()0()0()0(==x x x 构造累加生成序列 ) 131159,114250,98469,84567,71580,59085, 48018,37869,27943,18614,7691())6(),...1(()1()1()1(==x x x 归纳上面的式子可写为 称此式所表示的数据列为原始数据列的一次累加生成,简称为一次累加生成. 对(1)X 作紧邻均值生成 ,.... 2)) 1()((21)()1() 1() 1(=-+=k k z k z k z MATLAB 代码如下: x=[7691 18614 27943 37869 48018 590857 71580 84567 98469 114250 131159]; z(1)=x(1); for i=2:6 z(i)=0.5*(x(i)+x(i-1)); end format long g z z = Columns 1 through 3 7691 13152.5 23278.5 Columns 4 through 6 32906 42943.5 319437.5

实验指导书ARIMA模型建模与预测范本

实验指导书ARIMA 模型建模与预测

实验指导书(ARIMA模型建模与预测) 例:中国1952- 的进出口总额数据建模及预测 1、模型识别和定阶 (1)数据录入 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated –regular frequency”,在“Date specification”栏中分别选择“Annual”(年数据) ,分别在起始年输入1952,终止年输入,文件名输入“im_ex”,点击ok,见下图,这样就建立了一个工作文件。 在workfile中新建序列im_ex,并录入数据(点击File/Import/Read Text-Lotus-Excel…, 找到相应的Excel数据集,打开数据集,出现如下图的窗口,

在“Data order”选项中选择“By observation-series in columns”即按照观察值顺序录入,第一个数据是从B15开始的,因此在“Upper-left data cell”中输入B15,本例只有一列数据,在“Names for series or number if named in file”中输入序列的名字im_ex,点击ok,则录入了数据): (2)时序图判断平稳性 双击序列im_ex,点击view/Graph/line,得到下列对话框:

得到如下该序列的时序图,由图形能够看出该序列呈指数上升趋势,直观来看,显著非平稳。 IM_EX 240,000 200,000 160,000 120,000 80,000 40,000 556065707580859095000510 (3 因为数据有指数上升趋势,为了减小波动,对其对数化,在Eviews命令框中输入相应的命令“series y=log(im_ex)”就得到对数序列,其时序图见下图,对数化后的序列远没有原始序列波动剧烈:

相关文档
最新文档