开关电源上的MOS管选择方法

开关电源上的MOS管选择方法
开关电源上的MOS管选择方法

MOS管最常见的应用可能是电源中的开关元件,此外,它们对电源输出也大有裨益。服务器和通信设备等应用一般都配置有多个并行电源,以支持N+1 冗余与持续工作(图1)。各并行电源平均分担负载,确保系统即使在一个电源出现故障的情况下仍然能够继续工作。不过,这种架构还需要一种方法把并行电源的输出连接在一起,并保证某个电源的故障不会影响到其它的电源。在每个电源的输出端,有一个功率MOS管可以让众电源分担负载,同时各电源又彼此隔离。起这种作用的MOS管被称为“ORing”FET,因为它们本质上是以“OR”逻辑来连接多个电源的输出。

图1:用于针对N+1冗余拓扑的并行电源控制的MOS管在ORing FET应用中,MOS管的作用是开关器件,但是由于服务器类应用中电源不间断工作,这个开关实际上始终处于导通状态。其开关功能只发挥在启动和关断,以及电源出现故障之时。

相比从事以开关为核心应用的设计人员,ORing FET应用设计人员显然必需关注MOS管的不同特性。以服务器为例,在正常工作期间,MOS管只相当于一个导体。因此,ORing FET 应用设计人员最关心的是最小传导损耗。

低RDS(ON)可把BOM及PCB尺寸降至最小

一般而言,MOS管制造商采用RDS(ON)参数来定义导通阻抗;对ORing FET应用来说,RDS(ON)也是最重要的器件特性。数据手册定义RDS(ON)与栅极(或驱动)电压 VGS 以及流经开关的电流有关,但对于充分的栅极驱动,RDS(ON)是一个相对静态参数。

若设计人员试图开发尺寸最小、成本最低的电源,低导通阻抗更是加倍的重要。在电源设计中,每个电源常常需要多个ORing MOS管并行工作,需要多个器件来把电流传送给负载。在许多情况下,设计人员必须并联MOS管,以有效降低RDS(ON)。

需谨记,在 DC 电路中,并联电阻性负载的等效阻抗小于每个负载单独的阻抗值。比如,两个并联的2Ω电阻相当于一个1Ω的电阻。因此,一般来说,一个低RDS(ON)值的MOS 管,具备大额定电流,就可以让设计人员把电源中所用MOS管的数目减至最少。

除了RDS(ON)之外,在MOS管的选择过程中还有几个MOS管参数也对电源设计人员非常重要。许多情况下,设计人员应该密切关注数据手册上的安全工作区(SOA)曲线,该曲线同时描述了漏极电流和漏源电压的关系。基本上,SOA定义了MOSFET能够安全工作的电源电压和电流。在ORing FET应用中,首要问题是:在“完全导通状态”下FET的电流传送能力。实际上无需SOA曲线也可以获得漏极电流值。

若设计是实现热插拔功能,SOA曲线也许更能发挥作用。在这种情况下,MOS管需要部分导通工作。SOA曲线定义了不同脉冲期间的电流和电压限值。

注意刚刚提到的额定电流,这也是值得考虑的热参数,因为始终导通的MOS管很容易发热。另外,日渐升高的结温也会导致RDS(ON)的增加。MOS管数据手册规定了热阻抗参数,其定义为MOS管封装的半导体结散热能力。RθJC的最简单的定义是结到管壳的热阻抗。细言之,在实际测量中其代表从器件结(对于一个垂直MOS管,即裸片的上表面附近)到封装外表面的热阻抗,在数据手册中有描述。若采用PowerQFN封装,管壳定义为这个大漏极片的中心。因此,RθJC 定义了裸片与封装系统的热效应。RθJA 定义了从裸片表面到周围环境的热阻抗,而且一般通过一个脚注来标明与PCB设计的关系,包括镀铜的层数和厚度。

开关电源中的MOS管现在让我们考虑开关电源应用,以及这种应用如何需要从一个不同的角度来审视数据手册。从定义上而言,这种应用需要MOS管定期导通和关断。同时,有数十种拓扑可用于开关电源,这里考虑一个简单的例子。DC-DC电源中常用的基本降压转换器依赖两个MOS管来执行开关功能(图2),这些开关交替在电感里存储能量,然后把能量释放给负载。目前,设计人员常常选择数百kHz乃至1 MHz以上的频率,因为频率越高,磁性元件可以更小更轻。

图2:用于开关电源应用的MOS管对。(DC-DC控制器)

显然,电源设计相当复杂,而且也没有一个简单的公式可用于MOS管的评估。但我们不妨考虑一些关键的参数,以及这些参数为什么至关重要。传统上,许多电源设计人员都采用一个综合品质因数(栅极电荷QG ×导通阻抗RDS(ON))来评估MOS管或对之进行等级划分。

栅极电荷和导通阻抗之所以重要,是因为二者都对电源的效率有直接的影响。对效率有影响的损耗主要分为两种形式--传导损耗和开关损耗。

栅极电荷是产生开关损耗的主要原因。栅极电荷单位为纳库仑(nc),是MOS管栅极充电放电所需的能量。栅极电荷和导通阻抗RDS(ON)在半导体设计和制造工艺中相互关联,一般来说,器件的栅极电荷值较低,其导通阻抗参数就稍高。

开关电源中第二重要的MOS管参数包括输出电容、阈值电压、栅极阻抗和雪崩能量。

某些特殊的拓扑也会改变不同MOS管参数的相关品质,例如,可以把传统的同步降压转换器与谐振转换器做比较。谐振转换器只在VDS (漏源电压)或ID (漏极电流)过零时才进行MOS管开关,从而可把开关损耗降至最低。这些技术被成为软开关或零电压开关(ZVS)或零电流开关(ZCS)技术。由于开关损耗被最小化,RDS(ON)在这类拓扑中显得更加重要。

低输出电容(COSS)值对这两类转换器都大有好处。谐振转换器中的谐振电路主要由变压器的漏电感与COSS决定。此外,在两个MOS管关断的死区时间内,谐振电路必须让COSS 完全放电。

低输出电容也有利于传统的降压转换器(有时又称为硬开关转换器),不过原因不同。因为每个硬开关周期存储在输出电容中的能量会丢失,反之在谐振转换器中能量反复循环。因此,低输出电容对于同步降压调节器的低边开关尤其重要。

开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计注意事项 在电源变压器的设计过程中,工程师们需要严格的计算并完成共模电感设计和数值选取,这直接关系到开关电源变压器的运行精度。在今天的文章中,我们将会就开关电源变压器的共模电感设计展开简要分析,看在电源变压器共模电感设计和计算过程中,都应该注意哪些问题。 在电源变压器的设计和制作过程中,工程师所要进行的共模电感设计,其所需要的基本参数主要有三个,分别是输入电流,阻抗及频率,磁芯选取。先来看输入电流。这一参数值直接决定了绕组所需的线径。在线径的计算和选取时,电流密度通常取值为400A/cm³, 但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。 在计算过程中,开关电源变压器共模电感的阻抗在所给的频率条件下,一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但实际上,线性阻抗问题往往是最容易被人忽视的,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB 衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能 够提供阻抗。因此,电感可以用这一公式来表达,即:Ls=Xx/2 n f

这里还有一个问题需要工程师需要注意,那就是在进行共模电感设计时须注意磁芯材料和所需的圈数问题。首先来看磁芯型号的选取问题,此时如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取。 在确定了电源变压器的磁芯型号之后,接下来的工作就是计算磁芯所能绕最大圈数。通常来说,共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

如果确定开关电源电感值

如果确定开关电源电感值 开关电源电感器是开关电源设备的重要元器件,它是利用电磁感应的原理进行工作的。它的作用是阻交流通直流,阻高频通低频(滤波),也就是说高频信号通过电感线圈时会遇到很大的阻力,很难通过,而对低频信号通过它时所呈现的阻力则比较小,即低频信号可以较容易的通过它。电感线圈对直流电的电阻几乎为零。 本文将阐明为非隔离式开关电源(SMPS)选用电感器的基本要点。所举实例适合超薄型表面贴装设计的应用,像电压调节模块(VRM)和负载点(POL)型电源,但不包括基于更大底板的系统。 图1所示为一个降压拓扑结构开关电源的架构,该构架广泛应用于输出电压小于输入电压的开关电源系统。在典型的降压拓扑结构电路中,当开关(Q1)闭合时,电流开始通过这个开关流向输出端,并以某一速率稳步增大,增加速率取决于电路电感。根据楞次定律,di=E*dt/L,流过电感器的电流所发生的变化量等于电压乘以时间变化量,再除以这个电感值。由于流过负载电阻RL的电流稳定增加,输出电压成正比增大。 在达到预定的电压或电流限值时,开关电源控制集成电路将开关断开,从而使电感周围的磁场衰减,并使偏置二极管D1正向导通,从而继续向输出电路供给电流,直至开关再度接通。这一循环反复进行,而开关的次数由控制集成电路来确定,并将输出电压调控在要求的电压值上。图2所示为在若干个开关循环周期内,流过电感器和其它降压拓扑电路元件上的电压和电流波形。 电感值对于在开关电源开关断开期间保持流向负载的电流很关键。所以必须算出保持降压变换器输出电流所必需的最小电感值,以确保在输出电压和输入电流处于最差条件下,仍能够为负载供应足够的电流。为确定最小的电感值,

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算 作者:陶显芳发布时间:2011-07-04文章来源:华强北·电子市场价格指数浏览量:50466 下面是开关电源设计务必掌握的知识 1、开关电源占空比的选择与计算 2、开关变压器初次级线圈匝数比的计算 希望从事开关电源设计的工程师对此感兴趣 概述:占空比是脉冲宽度调制(PWM)开关电源的调制度,开关电源的稳压功能就是通过自动改变占空比来实现的,开关电源的输出电压与占空比成正比,开关电源输出电压的变化范围基本上就是占空比的变化范围。由于开关电源输出电压的变化范围受到电源开关管击穿电压的限制,因此,正确选择占空比的变化范围是决定开关电源是否可靠工作的重要因素;而占空比的选择主要与开关电源变压器初、次级线圈的匝数比有关,因此,正确选择开关电源变压器初、次级线圈的匝数比也是一个非常重要的因素。 开关电源占空比和开关电源变压器初、次级线圈的匝数比的正确选择涉及到对开关电源变压器初、次级线圈感应电动势的计算。因此,下面我们先从分析开关电源变压器初、次级线圈感应电动势开始。 1.1占空比的定义 占空比一般是指,在开关电源中,开关管导通的时间与工作周期之比,即: (1)式中:D为占空比,Ton为开关管导通的时间,Toff为开关管关断的时间,T为开关电源的工作周期。 对于一个脉冲波形也可以用占空比来表示,如图1所示。 在反激式开关电源中,开关管导通的时候,变压器次级线圈是没有功率输出的,如果把(1)中的D记为D1,(2)式中的D记为D2,则D1、D2有下面关系: 1.2开关变压器初次级线圈的输出波形

图2a是输出电压为交流的开关电源工作原理图。为了便于分析,我们假说变压器初次级线圈的变压比为1:1(即N1=N2,L1=L2),当开关K又导通转断开时,变压器初级、次 级线圈产生感应电动势为: (6)式中:为变压器初级线圈的励磁电流,由此可知,变压器初、次级线圈产生 的反电动势主要是由励磁电流产生的。我们从(5)可以看出,当变压器初、次级线圈的负载电阻R很大或者开路的情况下,变压器初、次级线圈产生的感应电动势峰值是非常高的,如果这个电压直接加到电源开关管两端,电源开关管一定会被击穿。 为了便于分析,我们引进一个半波平均值的概念,我们把Upa、Upa-分别定义为变压器初、次级线圈感应电动势正、负半周的半波平均值。半波平均值就是把反电动势等效成一 个幅度等于Upa或Upa-的方波,如图2b中的Upa-所示。

如何为开关电源选择合适的电感

如何为开关电源选择合适的电感 电感,一直以来都有些许神秘:它可以产生磁场,把磁场和电场联系起来;电感的电流I不能突变,但电流变化率dI/dt可以突变;电感的储能与其流过的电流有关。 铁氧体和铁粉是用于开关电源电感的两种磁芯材料。应用于电源的储能电感通常制成闭环,使得整个磁场包含在电感的内部,因此磁通大小与磁芯的存储能量将表征磁芯材料的特性。 以Buck电路的输出电感为例。该电感的磁芯具有一定的直流分量,适用的材质有:(1)铁粉芯 碾磨的铁粉与其他的合金组成的精细颗粒与绝缘材料涂层构成磁粉芯。铁粉颗粒周围的绝缘颗粒构成了铁粉芯的内在分散气隙。 (2)带气隙的铁氧体磁芯 Buck电路的电感具有一定的直流分量。若不开气隙,铁氧体磁芯极其容易饱和。开气隙后,闭合磁路的磁通将快速增大。由于空气的相对磁导率为1,且磁芯材料的相对磁导率为几千以上,所以,磁芯中的大部分能量将存储在气隙磁通中。 气隙降低了磁芯的有效磁导率,整个B-H曲线会倾斜,增大了饱和时的磁场强度H,磁芯不太容易饱和。图 1为不开气隙和开气隙的B-H曲线。 图 1 电感B-H曲线 通常我们会发现,大多数采用铁氧体的电感设计,其磁芯损耗仅为电感总损耗(线圈加上磁芯损耗)的5%~10%。但是若电感采用铁粉芯,则该值会增加到20%~30%。 一、电感:磁芯的饱和 当流过电感的电流(或磁场强度)大于一定值时,电感的磁芯可能饱和。当其饱和时,其感量会减小,并接近于0。 某反激电路的限流电阻上的电压波形如图 2所示(反激变换器中变压器的初、次级可以看成一对耦合电感)。从图中可以看出流经初级电感的电流波形。当电流增大时,电感逐渐饱和,电感量减小,从而导致梯形电流的波形的斜率增大。

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

开关电源电感的选取

为开关电源选择合适的电感 电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。 杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点: 1. 当电感L 中有电流I 流过时,电感储存的能量为: E=0.5×L×I2 (1) 2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为: V=(L×di)/dt (2) 由此可看出,纹波电流的大小跟电感值有关。 3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt 也将变化;正向电压使电流线性上升,反向电压使电流线性下降。 计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要 从图1 可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV。 纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。 降压型开关电源的电感选择 为降压型开关电源选择电感器时,需要确定最大输入电压、输出电压、电源开关频率、最大

开关电源器件选型

开关电源元器件选型 A:反激式变换器: 1.MOS管:Id=2Po/Vin; Vdss=1.5Vin(max) 2.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=8Vout 3.缺点:就是输出纹波较大,故不能做大功率(一般≦150W),所以输出电容的容量要大. 4.优点:输入电压范围较宽(一般可做到全电压范围90Vac-264Vac),电路简单. 5.最佳控制方法:应选择电流型IC幷采用电流型控制. B:正激式变换器: 6.MOS管:Id=1.5Po/Vin; Vdss=2Vin(max) 7.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=3Vout 8.缺点:成本上升,如要全电压得加PFC,电路稍比反激复杂. 9.优点:纹丝小,功率可做到0~200W. 10.最佳控制方法:应选择电流型IC幷采用电流型控制. C:推挽式变换器: 11.MOS管: Id=1.2Po/Vin; Vdss=2Vin(max) 12.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout 13.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.不太合适离线式. 14.优点: 功率可做到100W~1000W.DC-DC用此电路很好! 15.最佳控制方法:应选择电流型IC幷采用电流型控制. D:半桥式变换器: 16.MOS管: Id=1.5Po/Vin; Vdss=Vin(max) 17.整流: Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout 18.缺点: 成本上升,如要全电压得加PFC,电路稍复杂. 19.优点: 功率可做到100W~500W. 20.最佳控制方法:应选择电流型IC幷采用电流型控制. E:全桥式变换器: 21.MOS管: Id=1.2Po/Vin; Vdss=Vin(max) 22.整流: Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout 23.缺点: 成本上升,如要全电压得加PFC,电路稍复杂. 24.优点: 功率可做到400W~2000W以上. 25.最佳控制方法:应选择电流型IC幷采用电流型控制.

浅谈开关电源输出电感的设计

――DC/DC 电路中电感的选择 原文:Fairchild Semiconductor AB-12:Insight into Inductor Current 下载 翻译:frm (注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。本文还包括对同步DC/DC及异步DC/DC概念的解释。) 本文PDF文档下载 简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示: 通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

开关电源变压器基础知识

开关电源变压器基础知识 开关电源变压器现代电子设备对电源的工作效率、体积 以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁 通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用 ,周围的物体也都会被感应产生磁通。现代磁学研究表明: 切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在

磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。 在电磁场理论中,磁场强度H 的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F 跟电流I 和导线长度的乘积I 的比值,称为通电直导线所在处的磁场强度。或:在真空中垂直于磁场方向的1 米长的导线,通过1 安培的电流,受到磁场的作用力为1 牛顿时,通过导线所在处的磁场强度就是1 奥斯特(Oersted) 。电磁感应强度一般也称为磁感应强度。由于在真空中磁感应强度与磁场强度在数

开关电源中电感的设计

开关电源中电感的设计 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC 电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L(C 是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1 过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式 实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后 一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1 过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2 过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2 所示:

通过上图我们可以看到,流过电感的最大电流为DC 电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流: 其中,ton 是状态1 的时间,T 是开关周期(开关频率的倒数),DC 为状态1 的占空比。 警告:上面的计算是假设各元器件(MOSFET上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。 如果,器件的下降不可忽略,就要用下列公式作精确计算: 同步转换电路: 异步转换电路:其中,Rs 为感应电阻阻抗加电感绕线电阻的阻。Vf 是肖特基二极管的正向压降。R 是Rs加MOSFET 导通电阻,R=Rs+Rm。

开关电源变压器选择

开关电源功率变压器的设计方法 2010-01-25 19:26 1开关电源功率变压器的特性 功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。 图1(A)为加在脉冲变压器输入端的矩形脉冲波,图1(B)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面: 图1脉冲变压器输入、输出波形 (A)输入波形(B)输出波形 (1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间; (2)上升过程的末了时刻,有上冲,甚至出现振荡现象; (3)下降过程的末了时刻,有下冲,也可能出现振荡波形; (4)平顶部分是逐渐降落的。 这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。 图中:RSI——信号源UI的内阻 RP——一次绕组的电阻 RM——磁心损耗(对铁氧体磁心,可以忽略) T——理想变压器 RSO——二次绕组的电阻 RL——负载电阻 C1、C2——一次和二次绕组的等效分布电容 LIN、LIS——一次和二次绕组的漏感 LM1——一次绕组电感,也叫励磁电感 N——理想变压器的匝数比,N=N1/N2 图2脉冲变压器的等效电路 将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感LI包括LIN和LIS,总分布电容C包括C1和C2;总电阻RS包括RSI、RP和RSO;LM1是励磁电感,和前述的LM1相同;RL′是RL等效到一次侧的阻值,RL′=RL/N2,折合后的输出电压U′O=UO/N。 经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。脉冲的上升沿和下降沿包含着各种高频分量,而脉冲的平顶部分包含着各种低频分量。因此在上升、下降和平顶过程中,各元件(L、C等)表现出来的阻抗也不一样,因此我们把这一过程分成几个阶段来分析,分别找出各阶段起主要作用的元件,而忽略次要的因素。例如,当输入信号为矩形脉冲时,可以分3个阶段来分析,即上升阶段、平顶阶段和下降阶段。 (1)上升阶段 对于通常的正脉冲而言,上升阶段即脉冲前沿,信号中包含丰富的高频成分,当

共模电感的参数选择

开关电源EMI滤波器的设计 要使EMI滤波器对EMI信号有最佳的衰减特性,设计与开关电源共模、差模噪声等效电路端接的EMI滤波器时,就要分别设计抗共模干扰滤波器和抗差模干扰滤波器才能收到满意的效果。1抗共模干扰的电感器的设计 电感器是在同一磁环上由两个绕向与匝数都相同的绕组构成。当信号电流在两个绕组流过对,产生的磁场恰好抵消,它可几乎无损耗地传输信号。因此,共模电流可以认为是地线的等效干扰电压Ug所引起的干扰电流。当它流经两个绕组时,产生的磁场同相叠加,电感器对干扰电流呈现出较大的感抗,由此起到了抑制地线干扰的作用。电路如图1所示。 I Bel 信号源至负载RL连接线的电阻为Rcl、Rc2,电感器自感为L1、L2,互感为M,设两绕组为紧耦合,则得到L1 = L2 = M。由于Rcl和RL串联且Rcl vv RL,则可以不考虑Vg,Vg 被短路可以不考虑Vg的影响。其中(Is是信号电流,Ig是经地线流回信号源的电流。由基尔霍夫定律可写出: 吒=址员+島+沖佗2Af>]-址島+沖心一⑷] 0 ■-人[& + 酒U一+ + j和仏) 令Ai ■■ Xt ?= M = £為朕氐 得到 R L X f

式(2)表明负载上的信号电压近似等于信号源电压,即共模电感传输有用信号时几乎不引入衰减。由(1)式得知,共模千扰电流Ig随f: fc的比值增大而减小。当f: fc的比值趋于无穷时,Ig=0,即干扰信号电流只在电感器的两个绕组中流过而不经过地线,这样就达到了抑制共模干扰的作用。所以,可以根据需要抑制的干扰电压频率来设置电感器截止频率。 一般来说,当干扰电压频率f > 5fc时,即Vn: Vg< 0.197,就可认为达到有效抑制地线中心干扰的目的。 2?抗差模干扰的滤波器设计 差模干扰的滤波器可以设计成n型低通滤波器,电路如图2所示。这种低通滤波器主要是设置电路截止频率人的值达到有效地抑制差模传导干扰的目的。

第二部分开关电源中磁元件

第二部分 开关电源中磁元件 第五章 变换器中磁芯的工作要求 在功率变换中,应用了多种磁性元件:如脉冲、功率变压器,交、直流滤波电感,交、直流互感器,EMC 滤波电感以及谐振和缓冲吸收电感等。但就磁芯工作状态主要分为四种,其代表性功率电路—Buck 变换器滤波电感、正激、推挽变压器和磁放大器中磁元件磁芯就属于这四种工作状态. 5.1 Ⅰ类工作状态-Buck 变换器滤波电感磁芯 图5.1(a)所示为输出与输入共地的Buck 变换器的基本电路。输出由R 1和R 2取样,与基准U r 比较、误差放大,然后与三角波比较,输出PWM 信号,去控制功率开关S 的导通时间。假设电路进入稳态,U o 为常数,L 为线性电感。开关S 闭合时,输入电压U i 与输出电压U o 之差加到电感L 上(图5.1(b)),续流二极管D 截止,电感中电流线性增长(图(d)),直至开关打开前,电感存储能量。当开关打开时,电感中电流趋向减少,电感产生一个反向感应电势,试图维持原电流流通方向,迫使二极管D 导通,将电感中的能量传输到输出电容和负载,电感放出能量,电感电流线性下降。电感电流增加量(ΔI =(U i - U o )T on /L )应当等于减少量(U o T of /L ),由此得到U o =T on U i /T =DU i 。 通过改变功率开关的占空度D ,就可以控制每个周期导通期间存储在电感中的能量,从而控制了变换器的输出电压。 图 5.1(d)中,电感电流在整个周期内流通(可以过零或反向),电感这种状态称为电流连续状态。电感电流的平均值,即纹波的中心值等于输出电流I o 。当输出电流下降时,电感电流的变化率没有改变,斜坡的中心值在下降。当输出电流达到变化量的一半时,斜坡的起始端达到零(图5.1(d)中虚线三角波)。这种工作状态称为电感电流临界连续。 如果再继续减少负载电流,即增大负载电阻,输出电压将要增加。负反馈电路使得功率开关导通时间减少,以保持输出电压稳定。虽然电流变化率不变,电流变化量减少。因此,在下一个导通时间到来之前电感电流已下降到 零。电感电流开始断续(图5.2)。此时,为了保持输出电压 稳定,占空度随负载电流变化很大。 在电感电流断续前,一直保持U o =DU i (D =T on /T -占空度)。由于功率开关导通压降和线圈电阻压降随输出电流减 少,导通时间轻微地改变。进入断续以后,U o =DU i 不再成立。 U (b) i (c) t i L (φo (d) 图 5.1 基本Buck 变换器及其波形图 U i 图5.2 电感电流断续波形

开关电源的电感选择和布局布线

开关电源的电感选择和布局布线 开关电源(SMPS,Switched-Mode Power Supply)是一种非常高效的电源变换器,其理论值更是接近100%,种类繁多。按拓扑结构分,有Boost、Buck、Boost-Buck、Charge-pump等;按开关控制方式分,有PWM、PFM;按开关管类别分,有BJT、FET、IGBT等。本次讨论以数据卡电源管理常用的PWM控制Buck、Boost型为主。 开关电源的主要部件包括:输入源、开关管、储能电感、控制电路、二极管、负载和输出电容。目前绝大部分半导体厂商会将开关管、控制电路、二极管集成到一颗CMOS/Bipolar 工艺的电源管理IC中,极大简化了外部电路。其中储能电感作为开关电源的一个关键器件,对电源性能的好坏有重要作用,同时也是产品设计工程师重点关注和调试的对象。随着像手机、PMP、数据卡为代表的消费类电子设备的尺寸正朝着轻、薄、小巧、时尚的趋势发展,而这正与产品性能越强所要的更大容量、更大尺寸的电感和电容矛盾。因此,如何在保证产品性能的前提下,减小开关电源电感的尺寸(所占据的PCB面积和高度)是本文要讨论的一个重要命题,设计者将不得不在电路性能和电感参数间进行折中(Tradeoff)。 任何事物都具有两面性,开关电源也不例外。坏的PCB布局布线设计不但会降低开关电源的性能,更会强化EMC、EMI、地弹(grounding)等。在对开关电源进行布局布线时应注意的问题和遵循的原则也是本文要讨论的另一重要命题。 一开关电源占空比D、电感值L、效率η公式推导 Buck型和Boost型开关电源具有不同的拓扑结构,本文将使用如图1-1、1-2所示的电路参考模型[1]: 图1-1 Buck电路参考模型 参考电路模型默认电感的DCR(Direct Constant Resistance)为零。

开关电源设计中电感的选择

电子变压器与电感网 https://www.360docs.net/doc/6617057400.html,/news/201052.html 开关电源设计中电感的选择 【大比特导读】在开关电源的设计中电感的设计为工程师带来的许多的挑战。 工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必 要的信息。 深入剖析电感电流 ――DC/DC 电路中电感的选择 只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。本文还包 括对同步DC/DC及异步DC/DC概念的解释。 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感 值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的 DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然 这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中,电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输 入电压或GND。 在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通 过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为 “同步(synchronus)”方式。

现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示: 通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

开关电源变压器设计资料完整版

开关电源变压器设计 开关变压器是将DC 电压﹐通过自激励震荡或者IC 它激励间歇震荡形成高频方波﹐通过变 压器耦合到次级,整流后达到各种所需DC 电压﹒ 变压器在电路中电磁感应的耦合作用﹐达到初﹒次级绝缘隔离﹐输出实现各种高频电压﹒ 目的﹕减小变压器体积﹐降低成本﹐使设备小形化﹐节约能源﹐提高稳压精度﹒ N 工频变压器与高频变压器的比较﹕ 工频 高频 E =4.4f N Ae Bm f=50HZ E =4.0f N Ae Bm f=50KHZ N Ae Bm 效率﹕ η=60-80 % (P2/P2+Pm+ P C ) η>90% ((P2/P2+Pm ) 功率因素﹕ Cosψ=0.6-0.7 (系统100W 供电142W) Cosψ>0.90 (系统100W 供电111W) 稳压精度﹕ ΔU%=1% (U20-U2/U20*100) ΔU<0.2% 适配.控制性能﹕ 差 好 体积.重量 大 小 EMI 滤波电路 整流滤波 隔离变压器 整流滤波电路 PWM 控制电路 间隙震荡﹒功率因素改善﹒保 光电 耦合 电路 取样﹒放大 AC AC DC DC SPS 开关电源方框图 IC 分立元件 (典形電路)

开关变压器主要工作方式 一.隔离方式: 有隔离; 非隔离 (TV&TVM11) 二.激励方式: 自激励; 它激励 (F + & IC) 三.反馈方式: 自反馈; 它反馈 (F- & IC) 四.控制方式: PWM: PFM (T & T ON ) 五.常用电路形式: FLYBACK & FORWARD 一.隔离方式: 二.激励方式: P=300V S1=120 S1=110V S2=57V F + 激勵 S3=16V 分 立 元 件 S2 S1 P=300V 220V*√2-VD F - 取樣 分 立元件震蕩 S1=120 S2=12V S1=40V IC P=40V S1=120F+=5V S2=5V S1=85V P=300 S3= ±12V 有隔离:P-S 不共用地 非隔离:P-S 共用地﹐俗稱熱底板 它激励﹕用集成IC 它激励间歇震荡 自激励﹕用变压器F+自激励震荡

估算电感在开关电源中的损耗

估算电感在开关电源中的功耗 开关电源的功耗是多方面的,包括功率MOSFET损耗、输入/输出电容损耗、控制器静态功耗以及电感损耗。本文主要讨论电感损耗。众所周知,电感损耗包括两方面:其一是与磁芯相关的损耗,即传统的铁损;其二是与电感绕组相关的损耗,即通常所谓的铜损。 功率电感在开关电源中作为一种储能元件,开关导通期间存储磁能,开关断开期间把存储的能量传送给负载。磁滞特性是磁芯材料的典型特性,正是它产生电感磁芯的损耗。导磁率越大,磁滞曲线越窄,磁芯功耗越小。 图1 电感功耗的等效模型 电感磁芯中的功耗 电感在一个开关周期内由于磁场强度改变产生的能量损耗是在开关导通期间输入电感的磁能与开关断开期间输出磁能之间的差值。如果用ET代表一个开关周期电感的能量,则:。根据安培定律:和法拉第定律:,上述等式中的ET为:。随着电感电流减小,磁场强度减弱,而磁感应强度从另一回路返回并变小。在此期间,大部分能量传送给负载,而存储能量和传送能量之间的差值即为损失的能量。而磁芯由于磁滞特性引起的功耗是上述能量损耗乘以开关频率。该损耗大小与艬n有关,对于大多数铁氧体材质磁芯而言,n介于2.5~3之间。到目前为止,上述磁芯储能和损耗的推导与结论都基于下列条件:磁芯工作在非饱和区;开关频率在磁芯正常工作范围内。 电感磁芯除了上述的磁滞损耗外,第二种主要损耗是涡流损耗。感应涡流在磁芯中流动将产生I2×R(或V2/R)的功耗。如果把磁芯想象为一个高阻值元件RC,那么,在RC将产生感应电压,根据法拉第定律,,其中AC为磁芯的有效截面积,因此功耗为:,由此可见,磁芯由于涡流导致的功耗与磁芯中单位时间内磁通变化量的平方成正比。另外,由于磁通变化量直接与所加电压成正比,所以,磁芯的涡流功耗与电感电压和占空比成正比,即:,其中VL为电感电压,tAPPLIED为一个开关周期(TP)中开关的导通(ON)或截止(OFF)时间。由于磁芯材料的高阻特性,通常涡流损耗比磁滞损耗小得多,通常数据手册中给出的磁芯损耗包括涡流损耗和磁滞损耗。 测量磁芯的损耗是很困难的事情,因为它包括繁琐的磁感应强度测量和磁滞回路面积估算,多数电感厂家并未提供这些参数。虽然如此,仍可利用这些曲线对磁芯损耗进行估算。这些曲线可从磁芯材料厂商获得,通常以磁感应强度和工作频率为变量给出功率损耗,单位为W/kg或W/cm3。磁芯材料公司Magnetics提供了上述数据,其中给出了磁芯损耗与磁感应强度在各种频率下的关系曲线。如果已知电感采用了某种铁氧体材料磁芯并知道其体积,则可以根据这些关系曲线对其磁芯损耗做出很好的估算。这类曲线是利用双极性变化的磁通,对

开关电源供电方式选择及元器件选用

1. 供电方式的选择 集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电质量,而且应用单台电源供电,当电源发生故障时可能导致系统瘫痪。分布式供电系统因供电单元靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,节约能源,可靠性高,容易组成N+1冗余供电系统,扩展功率也相对比较容易。所以采用分布式供电系统可以满足高可靠性设备的要求。 2. 电路拓扑的选择 开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激式、推挽式、半桥、全桥等八种拓扑。单端正激式、单端反激式、双单端正激式、推挽式的开关管的承压在两倍输入电压以上,如果按60%降额使用,则使开关管不易选型。在推挽和全桥拓扑中可能出现单向偏磁饱和,使开关管损坏,而半桥电路因为具有自动抗不平衡能力,所以就不会出现这个问题。双管正激式和半桥电路开关管的承压仅为电源的最大输入电压,即使按60%降额使用,选用开关管也比较容易。在高可靠性工程上一般选用这两类电路拓扑。 3. 控制策略的选择 在中小功率的电源中,电流型PWM控制是大量采用的方法,它较电压控制型有如下优点:逐周期电流限制,比电压型控制更快,不会因过流而使开关管损坏,大大减小过载与短路的保护;优良的电网电压调整率;迅捷的瞬态响应;环路稳定,易补偿;纹波比电压控制型小得多。生产实践表明电流控制型的50 W开关电源的输出纹波在25mV左右,远优于电压控制型。 硬开关技术因开关损耗的限制,开关频率一般在350kHz以下,软开关技术是应用谐振原理,使开关器件在零电压或零电流状态下通断,实现开关损耗为零,从而可将开关频率提高到兆赫级水平,这种应用软开关技术的变换器综合了PWM变换器和谐振变换器两者的优点,接近理想的特性,如低开关损耗、恒频控制、合适的储能元件尺寸、较宽的控制范围及负载范围,但是此项技术主要应用于大功率电源,中小功率电源中仍以PWM技术为主。 4 元器件的选用 因为元器件直接决定了电源的可靠性,所以元器件的选用非常重要。元器件的失效主要集中在以下四个方面: (1)制造质量问题 质量问题造成的失效与工作应力无关。质量不合格的可以通过严格的检验加以剔除,在工程应用时应选用定点生产厂家的成熟产品,不允许使用没有经过认证的产品。 (2)元器件可靠性问题 元器件可靠性问题即基本失效率的问题,这是一种随机性质的失效,与质量问题的区别是元器件的失效率取决于工作应力水平。在一定的应力水平下,元器件的失效率会大大下降。为剔除不符合使用要求的元器件,包括电参数不合格、密封性能不合格、外观不合格、稳定性差、早期失效等,应进行筛选试验,这是一种非破坏性试验。通过筛选可使元器件失效率降低1~2个数量级,当然筛选试验代价(时间与费用)

如何为开关电源选择合适的电感完整版

如何为开关电源选择合适的电感 中心议题: 电感的特点 降压型开关电源的电感选择 升压型开关电源的电感选择 解决方案: 计算降压型开关电源的电感值 计算升压型开关电源的电感值 电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点: 1. 当电感L中有电流I流过时,电感储存的能量为: E=×L×I2 (1) 2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为:V=(L×di)/dt (2) 由此可看出,纹波电流的大小跟电感值有关。 3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。 计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。

相关文档
最新文档