46黑体辐射普朗克能量子假设

普朗克黑体辐射公式推导

普朗克黑体辐射公式推 导 The document was finally revised on 2021

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态: 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。 实验得到: 1. Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: ννννρνd T C C d )/ex p(231-=

Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 ννπνρνd kT C d Jeans Rayleigh 2 38= -公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是 4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以 给定的频率 v 振荡; (2)黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为 Planck 辐射定律 h 为普朗克常数,h=s j .10 626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为 ).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏α αk C 2,1=

普朗克黑体辐射公式推导(精.选)

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。 实验得到: 1.Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在 高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而 实 验测得的黑体辐射的能量密度是4 T E σ=,该 式 叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为) .(),(wt r K i k k e C t r -=αβψ, 为常系数振方向,表示两个互相垂直的偏ααk C 2,1= 每一个简振模在力学上等价于一个自由度,记频率在( )νννd +,内的自由度数为()ννd g ,

普朗克和能量子概念

普朗克和能量子概念 -----纪念能量子概念诞生100周年 张战杰万陵德 (河南师范大学物理与信息工程学院,河南,新乡,453002) 摘要:本文简述了普朗克生平经历,回顾他提出能量子概念这一伟大发现过程,分析他科学研究的方法及其“悲剧”,以此来纪念这位伟大的、正直的物理学家,以期对今后科研工作有借鉴意义。 关键词:普朗克能量子概念 1900年12月14日,德国物理学家M.普朗克(Max Planck)向柏林物理学会提出了能量子假说,冲击了经典物理学的基本概念,使人类对微观领域的奇特本质有了进一步的认识,对现代物理学的发展产生了重大的革命性的影响。100年过去了,人类即将进入更加辉煌灿烂的21 世纪,此时我们回顾能量子的诞生过程,来表达对普朗克这位伟大的、正直的、饱经忧患的卓越物理学家无限的崇敬和仰慕之情。 一、生平简介 普朗克1858年4月23日出生于德国的基尔。普朗克从孩提时代就热爱物理。在小学里,他的老师说:“想象一下,一个工人举起一块重石,奋力顶住它,把它放在屋顶上,他做功的能量没有消失。多年以后,也许有一天,石头掉下来砸了某人的头。”还是孩子的普朗克被这个物理中能量守恒定律的例子震惊了,就像某个人被落下的石头砸着了那样令人难忘,使他萌生了以后成为一个物理学家的想法。1867年考入古典马可西米连大学预科学校。在数学家赫尔曼·米勒尔的悉心指导下,普朗克显露了数学方面的才能。米勒尔还教他天文学和力学。入大学之前,面临着专业的选择,他曾一度徘徊于音乐、语言学和科学之间,后来几经斟酌,终于选择了科学。 1874年10月,普朗克进入慕尼黑大学学习物理和数学。1877年转入柏林大学,在亥姆霍兹和基尔霍夫指导下学习,并于1879年取得博士学位。他在克劳修斯著作的影响下,从事热力学研究。1880年,普朗克成为慕尼黑大学的物理学讲师,1885年被基尔大学聘为理论物理学副教授。1889年,在基尔霍夫去世后,普朗克到柏林大学继任基尔霍夫的职位,担任新设立的理论物理学的科学讲座教学任务,1892年提升为正教授,一直到1926年退休为止。 普朗克早期研究热力学,随后又研究力学、光学和电磁学。1900年提出能量子假说,在此基础上,计算出玻耳兹曼常数和普朗克常数的数值。1918年因“发现能量子而对物理学的发展做出杰出贡献”荣膺最为显赫的诺贝尔物理学奖。由于成就显著,普朗克获得了许多科学上的荣誉和地位。1894年起成为普鲁士科学院院士,1912年起担任该院数学和自然科学部终身秘书。1926年普朗克被选为英国皇家学会的外国会员,并获得该会的科普莱奖章,美国物理学会也曾聘请他为名誉会员。1928年,当他70 岁大寿时,兴登堡总统赠他一枚德国银鹰盾牌,1930年又被任命为柏林威廉皇家研 _____________________ 作者简介:张战杰(1971-),男,河南洛阳人,河南师范大学物理与信息工程学院教育硕士。

黑体辐射公式的推导

普朗克和瑞利-金斯黑体辐射公式的推导 1 引言 马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机)。维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。 这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔(也就是构成物质的原子)内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。

2 公式推导 2.1 普朗克公式和瑞利-金斯公式的推导 黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体。黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε?== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)= 则(1)式可分解为三个方程: 22 2 22 222200 0x y z d X k X dx d Y k Y dy d Z k Z dz ?+=???+=???+=?? 其中2222x y z k k k ωμε++= 得(1)式的驻波解为: 112233(,,)(cos sin )(cos sin )(cos sin ) x x y y z z u x y z c k x d k x c k y d k y c k z d k z =+++由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n ?=?及0D E ?=可得:

普朗克黑体辐射量子理论

普朗克的假设 在热力学中,黑体(Black body),是一个理想化的物体,它能够吸收外来的全部电磁辐射,并且不会有任何的反射和透射。随着温度上升,黑体所辐射出来的电磁波则称为黑体辐射。

“紫外灾难”:在经典统计理论中,能量均分定律预言黑体辐射的强度在紫外区域会发散至无穷大,这和事实严重违背 马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机。)。维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。 这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释

光电效应而提出的光子概念还要至少早五年。然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。 爱因斯坦的光电子假设

普朗克公式

普朗克公式的那些事 材料科学与工程学院材料物理张培学号:1043011023 19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。为了解决经典物理学19世纪末面临的“紫外灾难”,普朗克吸收了维恩公式和瑞利-金斯公式的长处,利用热力学理论和熵能关系,于1900年10月19日“猜测”出了普朗克公式,经鲁本斯实验验证完全正确,很好地解决了前人的黑体辐射理论与实验结果的矛盾。b5E2RGbCAP 物理学中,普朗克黑体辐射定律<也简称作普朗克定律或黑体辐射定律)<英文:Planck's law, Blackbody radiation law)是用于描述在任意温度下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。这里辐射率是频率的函数: p1EanqFDPw 这个函数在时达到峰值。 如果写成波长的函数,在单位立体角内的辐射率为

注意这两个函数具有不同的单位:第一个函数是描述单位频率间隔内的辐射率,而第二个则是单位波长间隔内的辐射率。因而和并不等价。它们之间存在有如下关系:DXDiTa9E3d 通过单位频率间隔和单位波长间隔之间的关系,这两个函数可以相互转换: 下表中给出了函数中每一个物理量的意义和单位: 物理量 含义 国际单位制 厘M-克-秒制 辐射率,在单位时 间内从单位表面积和单 位立体角内以单位频率 间隔或单位波长间隔辐 射出的能量 焦耳·秒-1·M -2·球面度 -1·赫兹-1,或焦耳·秒-1·M -2·球面度- 1·M -1 尔格·秒-1·厘M-2·赫兹-1·球面度-1 频率 赫兹 (Hz> 赫兹 波长 M (m> 厘M 开尔文 普朗克常数 焦耳·秒 (J·s> 尔格·秒 厘M /秒 尔格/开 尔文 (erg/K>

黑体辐射定律

基尔霍夫热辐射定律 基尔霍夫热辐射定律(Kirchhoff热辐射定律),德国物理学家古斯塔夫·基尔霍夫于1859年提出的传热学定律,它用于描述物体的发射率与吸收比之间的关系。 简介一般研究辐射时采用的黑体模型由于其吸收比等于1(α=1),而实际物体的吸收比则小于1(1>α>0)。基尔霍夫热辐射定律则给出了实际物体的辐射出射度与吸收比之间的关系。 ?M为实际物体的辐射出射度,M b为相同温度下黑体的辐射出射度。 而发射率ε的定义即为 所以有ε=α。 所以,在热平衡条件下,物体对热辐射的吸收比恒等于同温度下的发射率。 而对于漫灰体,无论是否处在热平衡下,物体对热辐射的吸收比都恒等于同温度下的发射率。 不同层次的表达式 对于定向的光谱,其基尔霍夫热辐射定律表达式为 对于半球空间的光谱,其基尔霍夫热辐射定律表达式为 对于全波段的半球空间,其基尔霍夫热辐射定律表达式为 ?θ为纬度角,φ为经度角,λ为光谱的波长,T为温度。 参考文献

?杨世铭,陶文铨。《传热学》。北京:高等教育出版社,2006年:356-379。 ?王以铭。《量和单位规范用法辞典》。上海:上海辞书出版社 普朗克黑体辐射定律 普朗克定律描述的黑体辐射在不同温度下的频谱 物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律)(英文:Planck's law, Blackbody radiation law)是用于描述在任意温度T下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。这里辐射率是频率 的函数[1]: 这个函数在hv=2.82kT时达到峰值[2]。 如果写成波长的函数,在单位立体角内的辐射率为[3]

普朗克黑体辐射公式推导

量子力学结课论文: 对普朗克黑体辐射公式的推证及总结

摘要:黑体辐射现象是指当黑体(空腔)与内部辐射处于平衡时,腔壁单位面积所发射出的辐射能量与它所吸收的辐射能量相等。实验得出的平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状和组成物质无关。基于能量量子化的假设,普朗克提出了与实验结果相符的黑体辐射能量公式: ρv dν=8πhν3 3 ? 1 e hv kT?1 普朗克的理论很好地解释了黑体辐射现象,并且突破了经典物理学在微观领域内的束缚,打开了人类认识光的微粒性的途径[1]。本文主要介绍了普朗克公式的推导过程及其能量假设并将普朗克对黑体辐射的解释做了总结。 关键词:黑体辐射能量量子化普朗克公式麦克斯韦-玻尔兹曼分布 1.普朗克的量子化假设: 黑体以hν为能量单位不连续地发射和吸收频率为ν的光子的能量. 且能量单位hν称为能量子,h为普朗克常量(h=6.62606896×10?34J?S) 2.普朗克公式的推导过程: 2.1任意频率ν下的辐射能量:

假设有一处于平衡状态的黑体,其内有数量为N 的原子可吸收或发出频率为ν的光子,其中N g 为这些原子中处在基态的原子数,N e 为处在激发态(此处指可由基态原子受频率为ν的光子激发达到的能态)的原子数,n 为频率为ν的光子平均数。则由统计力学中的麦克斯韦-玻尔兹曼公式[2]知: N e ∝N e ?E e N g ∝ N e ?E g 由此可得 N e N g =e ?Ee ?Eg =e ?h ν(2.1.1) 平衡状态下,体系内原子在两能级间相互转化的速率相等,且其速率正比于转化的概率和该状态下的原子数目。结合爱因斯坦系数关系[3]可得:N g n=N e (n+1)(2.1.2) 结合(2.1.1),可解得:n =1 e h νkT ?1(2.1.3) 则该状态下光子总能量为: ε0= nhv =hv e h νkT ?1 (2.1.4) 2.2 v ~v +d v 频率段中可被体系接收的频率数目 设所求黑体为规整的立方体,其长,宽,高分别为L x ,L y ,L z 。体积为V 0。不妨先讨论一维情况: 体系线宽为L ,则L 必为光子半波长的整数倍,设其波数为K ,有

普朗克量子论

普朗克量子论 胡紫薇20154934 软件1504班 现代文明全部都是建立在量子理论的基础之上。尽管量子力学是为了描述远离我们日常生活经验的抽象原子世界而创立的,但是它对日常生活的影响无比巨大。没有量子力学作为工具,就不可能有化学、生物、医学以及其他很多学科的巨大进展,作为量子力学的重要产物的电子学革命将我们带入了计算机时代。同时,光子学的革命也将我们带入信息时代。 马克斯?普朗克提出量子概念100多年了,在他关于热辐射的经典论文中,普朗克假定振动系统的总能量不能连续改变,而是以不连续的能量子形式从一个值跳到另一个值。能量子的概念太激进了普朗克后来将它搁置下来。随后,爱因斯坦在1905年,认识到光量子化的潜在意义。不过量子的观念太离奇了,后来几乎没有根本性的进展。现代量子理论的创立则是崭新的一代物理学家花了20多年时间建立的。 量子物理实际上包含两个方面。一个是原子层次的物质理论量子力学:正是它我们才能理解和操纵物质世界;另一个是量子场论,它在科学中起到一个完全不同的作用。 普朗克将他的量子假设应用到辐射体表面振子的能量上,如果没有新秀阿尔伯特?爱因斯坦,量子物理恐怕要至此结束。1905年,他毫不犹豫的断定,如果振子的能量是量子化的,那么产生光的电磁场的能量也应该是量子化的。尽管麦克斯韦理论以及一个多世纪的权威性实验都表明光具有波动性,爱因斯坦的理论还是蕴含了光的粒子性行为。随后十多年的光电效应实验显示仅当光的能量到达一些离散的量值时才能被吸收,这些能量就像是被一个个粒子携带着一样。光的波粒二象性取决于你观察问题的着眼点,这是始终贯穿于量子物理且令人头痛的实例之一,它成为接下来20年中理论上的难题。

普朗克黑体辐射公式推导

普朗克黑体辐射公式推 导 -CAL-FENGHAI.-(YICAI)-Company One1

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态: 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。 实验得到: 1. Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: ννννρνd T C C d )/ex p(231-=

Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 ννπ νρνd kT C d Jeans Rayleigh 238= -公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是 4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以给定的频率 v 振荡; (2)黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为 Planck 辐射定律 h 为普朗克常数,h=s j .10 626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为 ).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏α αk C 2,1= 每一个简振模在力学上等价于一个自由度,记频率在( )νννd +,内的自由度数为()ννd g ,

量子力学之父普朗克的故事

量子力学之父普朗克的故事 人物传记来源:精品学习网2015-03-03 15:49 历史上最有影响的人当然是说法不一,仁者见仁,智者见智,美国学者迈克尔·哈特进行的历史上最具影响力100人排名,他分别细心挑选一百个人物评功论过,排名定位,让我们来看看普朗克的故事。 量子力学之父普朗克的故事 1900年德国科学家马克斯·普朗克提出了一个大胆的假说,在科学界一鸣惊人。这一假说认为幅射能(即光波能)不是一种连续不断的流的形式,而是由小微粒组成的。他把这种小微粒叫做量子。普朗克的假说与经典的光学说和电磁学说相对立,使物理学发生了一场革命,使人们对物质性和放射性有了更为深刻的了解。 普朗克于1858年出生在德国的基尔市。他先后就读于柏林大学和慕尼黑大学,二十一岁时在慕尼黑大学获得物理学博士学位。他一时曾在慕尼黑大学和基尔大学任教,1889年任柏林大学教授,直到1928年70岁退休为止。 和其他几位科学家一样,普朗克对黑体幅射问题也很感兴趣,黑体幅射是描述给绝对黑体加热来做电磁幅射的术语(绝对黑体是不反射任何光而完全吸收所遇见光的物体)。实验物理学家们甚至在普朗克着手研究这个问题之前就对这样的物体幅射做过认真的测量。普朗克取得的第一项成就是提出了一个用来正确描绘黑体幅射的相当复杂的代数公式。这个代数式完美地概述了实验数据,在今天理论物理学上仍常常使用。但是却有一个问题:公认的物理学定律预示存在着一个完全不同的公式。 普朗克对这个问题沉思默想,终于提出了一个崭新的学说:幅射能只能以普朗克称为量子这个基本单位的整倍数形式幅射出来。根据普朗克学说,一个光量子的大小取决于光的频率(即颜色)且与一个物理量成正比。普朗克把这个物理量缩写为h,现在被称为普朗克常数。普朗克假说与当时流行的物理概念完全对立,但是他却利用这一假说在理论上准确地推导了正确的黑体幅射公式。 普朗克假说具有彻底的革命性。因此若不是他以顽固保守的物理学家而著称,他的假说无疑会被当作一种荒诞的思想而弃之一边。虽然这一假说听起来很离奇,但是在这种特殊情况下却推导出了正确的公式。 当初大多数物理学家(包括普朗克本人在内)都认为这一假说不过是适应面很窄的一个数学假设。但是几年以后表明普朗克的概念还能应用于除黑体幅射以外的许多各种不同的物理现象。1905年爱因斯坦用这一概念解释光电效应,1913年尼尔斯·玻尔在他的原子结构学说中也使用了这一概念。1918年普朗克获得诺贝尔奖。他的学说基本正确而且在物理学理论方面具有根本重要的意义。 普朗克坚决反对纳粹分子,这使他在希特勒时代的处境十分危险。他的次子有一次参与一伙军官暗杀希特勒的密谋,但因刺杀未遂于1945年初被处以死刑。普朗克于1947年去世,终

紫外灾难和普朗克的量子假说

§1.紫外灾难和普朗克的量子假说 一 紫外灾难 1.背景 1800年,天文学家赫歇尔(Herschel)用滤色片观察太阳光透过的热效应时发现,在红外区有一种产生明显热效应的辐射,从而发现了红外线。第二年,里特和沃拉斯顿发现了紫外辐射。1821年,塞贝克发现温差电并用于测量温度。1830年诺比利发明了热辐射测量仪。还有许多物理学家对热辐射的性质、辐射能量与辐射源的关系、辐射能量按波长的分布曲线等进行了大量研究,并逐渐认识到光谱、热辐射、光辐射是统一的。 1881年,美国人兰利(Langley)发明了热辐射计,可以很灵敏的测量辐射能量,并测出能量随波长变化的曲线,如图,从曲线可以很明显的看到能量最大值随温度的增高向短波方向转移。 兰利的能量分布曲线 1859年底,基尔霍夫提出:物体的发射本领e(λ,T)和吸收本领α(λ,T)的比值,等于物体处于辐射平衡时的表面亮度E(λ,T)。即: )T ,(E ) T ,()T ,(e λλαλ= 并指出这一比值对所有物体都是一样的,与辐射物体的性质无关。实际上,E(λ,T)反映的是在不同温度下辐射按波长分布的函数,它是一个与物体性质无关的普适函数。 1860年,基尔霍夫又提出绝对黑体的概念:在任何温度下都能全部吸收落在它上面的一切辐射。显然,当吸收本领α=1时,物体的发射本领就是辐射的普适函数。绝对黑体的表面亮度E(λ,T)可以用平衡辐射时的能量密度ρ(ν,T)来表示。 )T ,(c )T ,(E νρπν8= ρ(ν,T)的探求可以从实验和理论两个方面去解决。 1879年,德国物理学家斯特藩(Joseph Stefan)总结出一条经验规律:黑体表面单位面积上在单位时间内发射出的总能量与它的绝对温度的四次方成正比,即:W=σt 4 。 1884年,玻尔兹曼根据电磁学和热力学理论,利用统计方法的结果(压强等于能量密度的1/3),从理论上导出了这一结果。 1893年,德国物理学家维恩(Wilhelm Wien)根据多普勒效应和斯特藩-玻尔兹曼定律,导出了维恩位移定律: λm· T = 常数 表明黑体辐射能量强度最大的波长λm 和绝对温度T 成反比。 1895年,维恩首先指出,绝对黑体可以用一个带有小孔的辐射空腔来实现。 1896年,卢默尔(Lummer)和普林斯海姆(Pringsheim)实现了空腔辐射,为黑体辐射强度的定量测量提供了重要手段。 2.维恩定律 1896年,德国物理学家维恩通过半理论半经验的方法,得到一个辐射能量分布公式: T /A e B )T ,(νννρ-=3 ρ是辐射能密度,ν是频率,T 是温度。 1899年普朗克把电磁理论用于热辐射和谐振子的相互作用,并通过熵的运算得到了同样的结果。这样,就使维恩分布定律获得了普遍性意义。

4.1普朗克黑体辐射理论

4.1普朗克黑体辐射理论 【学习目标】 1.了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。 2.了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。 3.了解能量子的概念。 【学习过程】 一、黑体与黑体辐射 1.热辐射:我们周围的一切物体都在辐射__________,这种辐射与__________有关,所以叫热辐射。2.黑体 如果某种物体能够____________入射的各种波长的电磁波而不发生________,这种物体就是绝对黑体,简称黑体。 3.黑体辐射:黑体虽然不反射___________,却可以_________________电磁波。 注意:①一般物体的辐射与__________、____________、_______________有关,但黑体辐射电磁波的强度按波长的分布只与黑体的______________有关。 ②绝对黑体不存在,是理想化的模型 二、黑体辐射的实验规律 1.辐射强度按波长分布与温度的关系 特点:随温度的升高 ①各种波长的辐射强度都在_____________; ②辐射强度的最大值向_____________方向移动。 2.经典物理学所遇到的困难 (1)维恩的经验公式:__________符合,____________不符合。 (2)瑞利-金斯公式:___________符合,_____________荒唐。 3.超越牛顿的发现 1900年10月,_______________在德国物理学会会议上提出黑体辐射公式与实验结果非常吻合。 三、能量子 (1)普朗克的假设: 组成黑体的振动着的带电微粒能量只能是某一最小能量值ε的__________, 这个不可再分的最小能量值ε叫做__________。 (2)能量子公式: ε=hν,其中ν是电磁波的频率,h称为______________,h=6.62607015×10-34J·s。 (3)能量的量子化: 在微观世界中能量是量子化的,或者说是微观粒子的能量是________的。

普朗克黑体辐射公式推导修订稿

普朗克黑体辐射公式推 导 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态: 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。 实验得到: 1. Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: ννννρνd T C C d )/ex p(231-=

Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 ννπνρνd kT C d Jeans Rayleigh 2 38= -公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是 4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以 给定的频率 v 振荡; (2)黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为 Planck 辐射定律 h 为普朗克常数,h=s j .10 626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为 ).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏α αk C 2,1=

黑体辐射普朗克公式推导

黑体普朗克公式推导 1. 空腔内的光波模式数 在一个由边界限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波。这种驻波称为电磁波的模式或光波模式,以k 为标志。 设空腔为立方体,如下图 x 图1 立方体空腔 沿三个坐标轴方向传播的波分别应满足的驻波条件是 ??? ? ? ? ??? =?=?=?222λλλq z n y m x (1) 式中m 、n 、q 为正整数。 将x x k λπ 2= 代入(1)式中,有 x m k x ?= π 则在x 方向上,相邻两个光波矢量的间隔为: x x m x m k x ?=?--?= ?π ππ)1( 同理,相邻两光波矢在三个方向的间隔为:

??? ? ? ? ????=??=??=?z k y k x k z y x πππ (2) 因此每个波矢在波矢空间所占的体积元为 V z y x k k k z y x 3 3 ππ= ???= ??? (3) x k y 图2 波矢空间 在波矢空间中,处于k 和k d 之间的波矢k 对应的点都在以原点为圆心、k 为半径、k d 为厚度的薄球壳内,这个球壳的体积为 ()k k k k k d 4d 3 4 34233πππ=-- (4) 式中k =k 、k d d =k 。 根据(1)式的驻波条件,k 的三个分量只能取正值,因此k d 和k d 之间的、可以存在于V 中的光波模式在波矢空间所占的体积只是上述球壳的第一卦限,所以 2 d 8d 422k k k k V k ππ== (5) 由(3)式已知每个光波矢的体积元,则在该体积内的光波模式数为 V k k V V M k 2 23 d /2ππ== (6)

§16-1黑体辐射 普朗克的能量子假说概述

第十六章从经典物理到量子物理 杨振宁在《爱因斯坦对理论物理学的影响》一书中指出:在20世纪初,发生了三次概念上的革命,它们深刻地改变了人们对物理世界的了解,这就是狭义相对论(1905年)、广义相对论(1916年)和量子力学(1925年)。

1) 微观粒子:对象线度小 活动范围小 3) 粒子的能量、角动量等物理量分立取值,完全脱离了经典物理的模式 量子力学研究对象的特点 2) 粒子除了具有粒子性 还具有明显的波动性

分子的热运动将导致物体向外不断地发射电磁波。这种辐射因与温度有关,故称为热辐射。 辐射的波长分布随温度而变化。 温度越高,发射的能量越大,发射的电磁波的波长越短。 §16-1 黑体辐射 普朗克的能量子假说 固体在温度升高时颜色的变化 1400 K 800 K 1000 K 1200 K 一、热辐射的基本概念 1.热辐射现象

2.热辐射的基本性质 热辐射是所有物体(气体、液体、固体)在任何温度下都具有的本领。 热辐射发射的电磁波是连续光谱。 但各种波长的强度不同。 3.平衡热辐射 物体辐射的能量等于在同一时间内所吸收的能量,物体达到热平衡,称为平衡热辐射。此时物体具有固定的温度。

二、热辐射的物理描述 1.单色出射度M λ(T) 温度为T 的物体,在单位时间内从单位面积上发射的波长在λ到λ+dλ范围内的辐射能量dMλ,与dλ的比值为Mλ(T),即单色辐出定义dM λ 度.单位为W/m3 单色辐出度Mλ(T)与物体的温度和辐射波长有关;和发射体材料及表面情况有关。

2.辐出度 物体在单位时间内从单位面积上所辐射出的各种波长电磁波的能量总和称为物体的辐出度. 在一定温度T 时,物体的辐射出射度和单色辐出度的关系为 ?∞ =0d )()(λλT M T M ?∞ =0 )()(ν νd T M T M 或 辐出度和温度有关;和发射体材料及表面情况有关。

量子论理念和普朗克

量子论理念和普朗克 广为人知的另一朵“乌云”热辐射实验引发了物理学的又一次革命,量子力学诞生了. 1.普朗克量子论一切物体都发射并吸收电磁波.物体发射电磁波又称热辐射,温度越高辐射的能量越多,辐射中短波成分比例越大.完全吸收电磁辐射的物体发射电磁辐射的本领也最强,这种理想的物体称为黑体.科学家开始研究黑体辐射电磁波的能量与黑体温度以及电磁波波长的关系,从实验上得出了著名的黑体辐射定律.1879 年,斯特蕃总结出黑体辐射总能量与黑体温度4次方成正比的关系:E 一a洲.1884年这一关系得到玻耳兹曼从电磁理论和热力学理论的证明. 1893 年发表的维恩分布定律更是引起了物理学界的注意.假设电磁辐射由组成黑体的谐振子发出,按照经典理论,谐振子的能量可以连续地变化,电磁波的能量也是可以连续变化的,但是理论结果与实验定律相矛盾.普朗克认为维恩的推导过程不大令人信服,假设太多,似乎是凑出来的.1900年,普朗克提出了量子理论:黑体中的振子具有的能量是不连续的,它们发射或吸收的电磁波的能量也是不连续的.如果发射或吸收的电磁辐射的频率为*,则发射或吸收的辐射能量只能是加的整倍数,h 为普适常量,称为普朗克常量.普朗克的量子理论成功地解释了黑体辐射定律,这种能量不连续变化的概念,是对经典物理概念的革命,普朗克的理论预示着物理观念上革命的开端.

瑞利看到维恩分布定律在长波方向的偏离,感到有必要提醒人们:在高温和长波的情况下,麦克斯韦一玻耳兹曼的能量均分原理似乎仍然有效.于是他假设在辐射空腔中,电磁谐振的能量按自由度平均分配,由此得出uOC扩T或u戊汇’T, 这个结果要比维恩辐射公式更能反映高温下长波辐射的情况.1905年,瑞利和金斯得到一孚、 T,这个公式称为瑞利 一金斯定律?它代表了能量均分原理在黑体辐射问题上的运用. 普朗克很快找到一个公式,把代表短波方向的维恩公式和代表长波方向的实验结果综合在一起:u 一以一尹习这就是普朗克辐射定律?鲁本斯得知这一公式后,渊把自己的实验结果和理论曲线进行比较,发现完全符合.于是,两人就在190 年10 月19 日向德国物理学会作了报告.普朗克的题目叫“维恩光谱方程的改进”,报告了他得到的经验公式.作为理论物理学家,普朗克当然不满足于找到一个经验公式.经过两三个月的努力,他终于在190。年底用一个能量不连续 的谐振子假设,按照玻耳兹曼的统计方法,推出了黑体辐射公式.普朗克的能量不连续谐振子假设也叫能量子假设,这个假设的提出对物理学有划时代的意义.但是,坚持经典理论的物理学家还大有人在,怀疑和非难接踵而来.1911 年,埃伦费斯特用“紫外灾难”来形容经典理论的困境.其实,物理学面临的不是危机而是一场伟大的革命.黑体辐射的研究为量子理论的建立打响了第一炮.1887 年赫兹发现了光电效应,1902 年光电效应现象中的许多问题难以用

黑体辐射定律

黑体辐射定律 黑体辐射定律-概述 黑体辐射定律 黑体辐射定律,也简称作普朗克定律或黑体辐射定律(Planck's law, Blackbody radiation law)是用于描述在任意温度下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。这里辐射率是频率ν的函数: 式中:

I———辐射率(焦耳·秒-1·米-2·球面度 -1·赫兹-1)v———频率(赫兹) T———黑体的温度(开尔文) h———普朗克常数(焦耳·秒-1) c———光速(米/秒) k———玻尔兹曼常量(焦耳/开尔文) 这个函数在时达到峰值。 如果写成波长的函数,在单位立体角内的辐射率为 注意这两个函数具有不同的单位:第一个函数是描述单位频率间隔内的辐射率,而第二个则是单位波长间隔内的辐射率。因而I(ν,T)和I(λ,T)并不等价。它们之间存在有如下关系: 通过单位频率间隔和单位波长间隔之间的关系,这两个函数可以相互转换。 黑体辐射定律-历史错误 普朗克的“黑体辐射定律”创定在不同温度下,此定律在绝大多数情况下都成立,但如何在极微小的距离中稳定控制物体,达成能量传导的测试有极高的困难度。百多年来,科学家始终无法突破。而普朗克也对此定律在微距物体间是否仍成立,持保留态度。在讨论普朗克黑体辐射定律的历史时都犯了严重的错误。尽管这些错误概念在四十多年前就已经被物理学史的研究者们指出,事实证明它们依然难以被消除。部分原因可能在于,普朗克最初量子化能量的动机并不是能用三言两语就能够道清的,这里面的原因在现代人看来相当复杂,因而

不易被外人所理解。丹麦物理学家Helge Kragh曾发表过一篇文章清晰地阐述了这种错误是如何发生的。 紫外灾难 紫外灾难在经典统计理论中,能量均分定理预言黑体辐射的强度在紫外区域会发散至无穷大,这和事实严重违背首先是尽管普朗克给出了量子化的电磁波能量表达式,普朗克并没有将电磁波量子化,这在他1901年的论文以及这篇论文对他早先文献的引用中就可以看到。他还在他的著作《热辐射理论》(Theory of Heat Radiation)中平淡无奇地解释说量子化公式中的普朗克常数(现代量子力学中的基本常数)只是一个适用于赫兹振荡器的普通常数。真正从理论上提出光量子的第一人是于1905年成功解释光电效应的爱因斯坦,他假设电磁波本身就带有量子化的能量,携带这些量子化的能量的最小单位叫光量子。1924年萨特延德拉·纳特·玻色发展了光子的统计力学,从而在理论上推导了普朗克定律的表达式。 发展动机 另一错误概念是,普朗克发展这一定律的动机并不是试图解决“紫外灾难”。“紫外灾难”这一名称是保罗·埃伦费斯特于1911年提出的,从时间上看这比普朗克定律的提出要晚十年之久。紫外灾难是指将经典统计力学的能量均分定理应用于一个空腔中的黑体辐射(又叫做空室辐射或具空腔辐射)时,系统的总能量在紫外区域将变得发散并趋于无穷大,这显然与实际不符。普朗克本人从未认为能量均分定理永远成立,从而他根本没有觉察到在黑体辐射中有任何“灾难”存

物理学史7.2 普朗克的能量子假设

7.2普朗克的能量子假设 §5.4中讲到普朗克在黑体辐射的维恩公式和瑞利公式之间寻求协调统一,找到了与实验结果符合极好的内插公式,迫使他致力于从理论上推导这一新定律。 关于这个过程,普朗克后来回忆道①: “即使这个新的辐射公式证明是绝对精确的,如果仅仅是一个侥幸揣测出来的内插公式,它的价值也只能是有限的。因此,从10月19日提出这个公式开始,我就致力于找出这个公式的真正物理意义。这个问题使我直接去考虑熵和几率之间的关系,也就是说,把我引到了玻尔兹曼的思想。” 这里指的熵和几率的关系就是玻尔兹曼对热力学第二定律所作的统计解释。普朗克不同意统计观点,曾经跟玻尔兹曼有过论战。他认为,几率定律每一条都有例外,而热力学第二定律则普遍有效,所以他不相信这一统计解释。 但是,普朗克从热力学的普遍理论,经过几个月的紧张努力,没有能直接推出新的辐射定律。最后,只好“孤注一掷”用玻尔兹曼的统计方法来试一试。 玻尔兹曼的方法首先要求把能量分成一份一份,分给有限个数的谐振子,就象分配给单个的分子原子那样。设能量E划分为P个相等的小份额ε(能量元),即 E=Pε 这些能量元ε在N个谐振子中可以按不同的比例分给单个谐振子。假设有W 种分配方案(也叫配容数),根据排列组合法则,可得: 由于N、P均》1,利用斯特林(Stirling)公式,lnx!=xlnx-x,得: W=(N+ P)N+P/N N P P (7 -1) 配容数W就是几率。玻尔兹曼早在1877年就由分子运动论认识到熵S与几率的对数成正比,(参看§2.8)。将(7-1)式取对数,得: lnW=N+Pln(N+P)-NlnN-PlnP.

相关文档
最新文档