物理化学发展史

一般认为,物理化学作为一门学科的正式形成,是从1877年德国化学家 Ostwald和荷兰化学家 Van't Hoff 创刊的《物理化学杂志》开始的。从这一时期到20世纪初,物理化学以化学热力学的蓬勃发展为其特征。

热力学第一定律和热力学第二定律被广泛应用于各种化学体系,特别是溶液体系的研究。Gibbs对多相平衡体系的研究和Van't Hoff对化学平衡的研究,Arrehnius提出电离学说,Nernst发现热定理都是对化学热力学的重要贡献。

1906年,Lewis提出处理非理想体系的逸度和活度概念以及测定方法,化学热力学的全部基础已经具备。劳厄和Brag对X射线晶体结构分析的创造性研究,为经典的晶体学向近代结晶化学的发展奠定了基础。Arrehnius关于化学反应活化能的概念,以及bodenstein 和Nernst关于链反应的概念,对后来化学动力学的发展也都作出了重要贡献。

20世纪20~40年代是结构化学领先发展的时期,这时的物理化学研究已深入到微观的原子和分子世界,改变了对分子内部结构的复杂性茫然无知的状况。

1926年,量子力学研究的兴起,不但在物理学中掀起了高潮,对物理化学研究也给以很大的冲击。尤其是在1927年,海特勒和伦敦对氢分子问题的量子力学处理,为1916年Lewis提出的共享电子对的共价键概念提供了理论基础。1931年Pauling和Slater把这种处理方法推广到其他双原子分子和多原子分子,形成了化学键的价键方法。1932年,Muliken 和Hond在处理氢分子的问题时根据不同的物理模型,采用不同的试探波函数,从而发展了分子轨道方法。

价键法和分子轨道法已成为近代化学键理论的基础。Pauling等提出的轨道杂化法以及氢键和电负性等概念对结构化学的发展也起了重要作用。在这个时期,物理化学的其他分支也都或多或少地带有微观的色彩,例如由Hinshelwood和谢苗诺夫两个学派所发展的自由基链式反应动力学,Debye和Huckel的强电解质离子的互吸理论,以及电化学中电极过程研究的进展——氢超电压理论。

第二次世界大战后到60年代期间,物理化学以实验研究手段和测量技术,特别是各种谱学技术的飞跃发展和由此而产生的丰硕成果为其特点。

电子学、高真空和计算机技术的突飞猛进,不但使物理化学的传统实验方法和测量技术的准确度、精密度和时间分辨率有很大提高,而且还出现了许多新的谱学技术。光谱学和其他谱学的时间分辨率和自控、记录手段的不断提高,使物理化学的研究对象超出了基态稳定分子而开始进入各种激发态的研究领域。

光化学首先获得了长足的进步,因为光谱的研究弄清楚了光化学初步过程的实质,促进了对各种化学反应机理的研究。这些快速灵敏的检测手段能够发现反应过程中出现的暂态中间产物,使反应机理不再只是从反应速率方程凭猜测而得出的结论。这些检测手段对化学动力学的发展也有很大的推动作用。

先进的仪器设备和检测手段也大大缩短了测定结构的时间,使结晶化学在测定复杂的生物大分子晶体结构方面有了重大突破,青霉素、维生素B12、蛋白质、胰岛索的结构测定和脱氧核糖核酸的螺旋体构型的测定都获得成功。电子能谱的出现更使结构化学研究能够从物体的体相转到表面相,对于固体表面和催化剂而言,这是一个得力的新的研究方法。

20世纪60年代,激光器的发明和不断改进的激光技术。大容量高速电子计算机的出现,以及微弱信号检测手段的发明孕育着物理化学中新的生长点的诞生。

20世纪70年代以来,分子反应动力学、激光化学和表面结构化学代表着物理化学的前沿阵地。研究对象从一般键合分子扩展到准键合分子、范德瓦耳斯分子、原子簇、分子簇和非化学计量化合物。在实验中不但能控制化学反应的温度和压力等条件,进而对反应物分子的内部量子态、能量和空间取向实行控制。

在理论研究方面,快速大型电子计算机加速了量子化学在定量计算方面的发展。对于许多化学体系来说,薛定谔方程已不再是可望而不可解的了。福井谦一提出的前线轨道理论以及伍德沃德和霍夫曼提出的分子轨道对称守恒原理的建立是量子化学的重要发展。

物理化学还在不断吸收物理和数学的研究成果,例如20世纪70年代初,普里戈金等提出了耗散结构理论,使非平衡态理论研究获得了可喜的进展,加深了人们对远离平衡的体系稳定性的理解。

中国物理化学发展史

中国物理化学的发展历史,以1949年中华人民共和国成立为界,大致可以分为两个阶段。在30~40年代,尽管当时物质条件薄弱,但老一辈物理化学家不仅在化学热力学、电化学、胶体和表面化学、分子光谱学、X射线结晶学、量子化学等方面做出了相当的成绩,而且培养了许多物理化学方面的人才。

1949年以后,经过几十年的努力,在各个高等学校设置物理化学教研室进行人才培养的同时,还在中国科学院各有关研究所和各重点高等学校建立了物理化学研究室,在结构化学、量子化学、催化、电化学、分子反应动力学等方面取得了可喜的成绩。

物理化学的研究内容

一般公认的物理化学的研究内容大致可以概括为三个方面:

化学体系的宏观平衡性质以热力学三个基本定律为理论基础,研究宏观化学体系在气态、液态、固态、溶解态以及高分散状态的平衡物理化学性质及其规律性。在这一情况下,时间不是一个变量。属于这方面的物理化学分支学科有化学热力学、溶液、胶体和表面化学。

化学体系的微观结构和性质以量子理论为理论基础,研究原子和分子的结构,物体的体相中原子和分子的空间结构、表面相的结构,以及结构与物性的规律性。属于这方面的物理化学分支学科有结构化学和量子化学。

化学体系的动态性质研究由于化学或物理因素的扰动而引起体系中发生的化学变化过程的速率和变化机理。在这一情况下,时间是重要的变量。属于这方面的物理化学分支学科有化学动力学、催化、光化学和电化学。

帖子地址:https://www.360docs.net/doc/6818772519.html,/t695774p1 转载请注明本帖地址。

※ 来源:考研论坛(存档) https://www.360docs.net/doc/6818772519.html,

分析化学发展史

分析化学发展史 摘要]分析化学始于一些分析检验的实践活动。商品生产和交换的发展,促进了分析检验工作。 16世纪,化学反应广泛地应用于湿法分析。18世纪中叶,重量分析法使分析化学由单纯的定性分析迈 入了定量分析的时代。到了19世纪,定性分析趋于完善,定量分析的各种方法也相继出现并不断发展。 分析化学真正成为一门独立的学科是在20世纪初,被称之为经典分析化学。20世纪以来,在经典化学 不断充实、完善的同时,仪器分析也迅猛发展,并且在分析化学中占据越来越重要的地位。[关键词]化学分析;仪器分析 在化学还没有成为一门独立学科的中世纪,甚至古代,人们已开始从事分析检验的实践活动。这一实践活动来源于生产和生活的需要。如为了冶炼各种金属,需要鉴别有关的矿石;采取天然矿物做药物治病,需要识别它们。这些鉴别是一个由表及里的过程,古人首先注意和掌握的当然是它们的外部特征。如水银又名“流珠”,“其状如水似银”,硫化汞名为“朱砂”、“丹砂”等都是抓住它们的外部特征。人们初步对不同物质进行概念上的区别,用感官对各种客观实体的现象和本质加以鉴别,就是原始的分析化学。 在制陶、冶炼和制药、炼丹的实践活动中,人们对矿物的认识便逐步深化,于是便能进一 步通过它们的一些其他物理特性和化学变化作为鉴别的依据。如中国曾利用“丹砂烧之成水银”来鉴定硫汞矿石。随着商品生产和交换的发展,很自然地就会产生控制、检验产品的质量和纯度的需求,于是产生了早期的商品检验工作。在古代主要是用简单的比重法来确定一些溶液的浓度,可用比重法衡量酒、醋、牛奶、蜂蜜和食油的质量。 到了6世纪已经有了和我们现在所用的基本相同的比重计了。商品交换的发展又促进了货币的流通,高值的货币是贵金属的制品,于是出现了货币的检验,也就是金属的检验。古代的金属检验,最重要的是试金技术。在我国古代,关于金的成色就有“七青八黄九紫十赤”的谚语。在古罗马帝国则利用试金石,根据黄金在其上划痕颜色和深度来判断金的成色。 16世纪初,在欧洲又有检验黄金的所谓“金针系列试验法”,这是简易的划痕试验法的进一步发展。16世纪,化学的发展进入所谓的“医药化学时期”。关于各地各类矿泉水药理性能的研究是当时医药化学的一项重要任务,这种研究促进了水溶液分析的兴起和发展。1685年,英国著名物理学家兼化学家R·波义耳(Boyle,1627-1691)编写了一本关于矿泉水的专著《矿泉的博物学考察》,相当全面地概括总结了当时已知的关于水溶液的各种检验方法和检定反应。波义耳在定性分析中的一项重要贡献是用多种动、植物浸液来检验水的酸碱性。波义耳还提出了“定性检出极限”这一重要概念。这一时期分析检验法的多样性、可靠性和灵敏性,并为近代分析化学的产生做了准备。 18世纪以后,由于冶金、机械工业的巨大发展,要求提供数量更大、品种更多的矿石,促进了分析化学的发展。这一时期,分析化学的研究对象主要以矿物、岩石和金属为主,而且这种研究从定性检验逐步发展到较高级的定量分析。其中干法的吹管分析法曾起过重要作用。此法是把要化验的金属矿样放在一块木炭的小孔中,然后以吹管将火焰吹到它上面,一些金属氧化物便熔化并会被还原为金属单质。但这种方法能够还原出的金属种类并不多。到了18世纪中

应用化学就业方向

应用化学就业方向 (一): 应用化学专业主要方向:就业行业包括教育、材料、军工、汽车、军队、电子、信息、环保、市政、建筑、建材、消防、化工、机械等行业。部门包括:各级质量监督与检测部门、科研院所、设计院所、教学单位、生产企业、省级以上的消防总队等。 主要课程:无机化学、分析化学、有机化学、高等数学、物理化学、高分子化学、精细化学、化学工程基础、化工制图、结构化学、化工原理。 应用化学就业前景分析 应用化学是研究如何将当今化学研究成果迅速转化为实用产品的应用 型专业.应用化学与人类的衣、食、住、行及当今所有高新技术,都有着密切的关系,是21世纪重点发展的技术领域,所以本专业具有广阔的发展天地和发展前景.由于所学的知识比较广泛,毕业生将会具有较强的适应潜力和较广泛的选取范围.化工企业、贸易公司和政府机关中的口岸、海关、商检、公安和环保等部门,也都十分需要应用化学人才的加入.此外,毕业生在选取就读研究生或出国留学等方式继续深造时余地较大. 用化学是研究如何将当今化学研究成果迅速转化为实用产品的应用型 专业。应用化学与人类的衣、食、住、行及当今所有高新技术,都有着密切的关系,是21世纪重点发展的技术领域,所以本专业具有广阔的发展天地和发展前景。由于所学的知识比较广泛,毕业生将会具有较强的适应潜力和较广泛的选取范围。化工企业、贸易公司和政府机关中的口岸、海关、商检、公安和环保等部门,也都十分需要应用化学人才的加入。此外,毕业生在选取就读研究生或出国留学等方式继续深造时余地较大。 化学向其他学科的渗透趋势在21世纪将会更加明显。更多的化学工作者会投身到研究生命、研究材料的队伍中去,并在化学与生物学、化学与材料的交叉领域大有作为。因此应用化学不仅仅是开发基本化工原料、无机材

精密和超精密加工的应用和发展趋势

精密和超精密加工的应用和发展趋势 [摘要]本文以精密和超精密加工为研究对象,对世界上精密和超精密加工的应用和发展趋,势进行了分析和阐释,结合我国目前发展状况,提出今后努力方向和发展目标。 【关键词】精密和超精密加工;精度;发展趋势 精密和超精密制造技术是当前各个工业国家发展的核心技术之一,各技术先进国家在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。 美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在20世纪50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件¢2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。 在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。 日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,是以民品应用为主要对象。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。 我国的精密、超精密加工技术在20世纪70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超

应用化学专业简介

应用化学专业简介 培养目标 本专业主要培养具备化学的基础知识、基本理论和较强实验技能,相关的工程技术知识和基本技能,能在石油、化工、制药等行业从事生产、质量检验、新产品应用及开发等工作,适应社会主义现代化建设事业需要的,德、智、体、美全面发展的高级技术应用型人才。 就业领域 毕业生主要在石油、化工、制药、环保及相关行业从事以下工作: 1.各种原料及成品的分析测试 2.化工、石油炼制等生产操作、技术和质量管理 3.石油产品的调配、分析与营销 4.精细化学品、油田化学剂的研制与开发 5.分析仪器的维护和保养,化验室的技术与质量管理 6.分析仪器营销 主要课程 分析化学、有机化学、物理化学、化工原理、石油产品分析与应用、油田化学原理与技术、化工设备和仪表、精细合成单元反应 新增课程 石油炼制、化工设备与仪表、化工仿真实习、石油商品学、精细化工概论、工业分析 主要课程介绍 1.无机化学:化学反应中有关平衡、氧化还原、周期率、物质结构等基本理论,元素和化合物的基本知识,化学反应的基本规律。 2.有机化学:有机物的命名、结构、物理性质和化学性质、实际应用。有机化合物的典型反应及重要合成方法,各类有机化合物相互转变的基本规律,有机化合物结构与性质关系。 3.分析化学:化学定量分析方法,包括酸碱滴定、配位滴定、氧化还原滴定、沉淀滴定、重量分析以及吸光光度法的基本原理、结果计算和实际应用。 4.物理化学:学习化学变化基本规律,内容包括化学热力学、化学动力学、电化学、统计热力学、表面化学及胶体化学初步。 5.高分子化学:高分子研究对象、聚合物分类、自由基均聚与共聚、阳离子聚合、阴离子聚合、缩合聚合等的基本原理、反应动力学以及实施方法。 6.仪器分析:紫外光谱法、红外光谱法、原子吸收光谱法、电位分析法、气相色谱法和液相色谱法的基本原理、分析方法及实际应用,相关仪器操作技术。7.化工原理:将复杂的化工工艺过程抽象为数量有限的单元操作,学习化工单元操作中的基本原理、典型设备及其计算。

精密与超精密加工技术现状与发展趋势1

精密与超精密加工技术现状与发展趋势 论文 专业:机械工程学院 姓名: 学号:

A bstract: The content and the definition of precise and ultraprecise matching technique is discussed detail. T he latest development of the technology is introduced. Current status of the technology. New structures of machine tools, ultraprecise detection, blunder compensation techniques and scanning tunnel microscopes (STM) are overviewed. Finally, the developing trends of the technology are prospected. Some suggestions are made on carrying out researches in the field according to real situations in china. Key words: 精密加工,超精密加工,现状,发展趋势 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 1.1砂带磨削 用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 1.2精密切割 也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 1.3珩磨 用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

拉瓦锡与近代化学革命

拉瓦锡与近代化学革命 拉瓦锡与近代化学革命 摘要: 分析了十八世纪化学革命产生的的背景,阐述了燃烧氧化学说的伟大意义及其在化学发展史上的地位,并探讨了拉瓦锡的科学思想和研究方法。 关键词:拉瓦锡; 燃烧氧化学说;化学革命; 燃素说 十八世纪的法国爆发了两种大革命,一种是政治大革命,一种是化学革命.两种革命,拉瓦锡都卷入其中.在政治大革命中,他被指控为罪人而丢了脑袋;但在化学革命中,他却成了旗手.他建立的燃烧氧化学说,被称为“史无前例的化学革命”. 1.化学革命的背景 任何一种革命,总有它的背景,化学革命也不例外.它的发生,首先取决于自身的矛盾运动.十八世纪中期,愈来愈多的物质被发现,日益复杂的实验现象相继出现,极大地丰富了人们对物质世界和化学变化的认识,也使原来试图解释一切的“燃素说”变得难圆其说了,为此,法国的拉瓦锡、施塔贝尔和贝岩、荷兰的伯尔哈费、俄国的罗蒙诺索夫等化学家纷纷向“燃素说”发出了质疑和批判. 施塔贝尔在他的《教义—实验化学》一书中指出“燃素说”的自相矛盾;更尖锐批判“燃素说”的是拉瓦锡,他说:“化学家从燃素说只能得出模糊的要素,它十分不确定,因此可以用来任意解释事物.有时这一要素是有重量的,有时又没有

重量;有时它是自由之火,有时又说它与土素相化合成火;有时说它能穿过容器器壁的微孔,有时又不能;它能同时解释碱性和非碱性、透明性和不透明性、有色和无色。它真是个变色虫,每时每刻都在改变它的面貌.” 要真正认识燃烧的本质,必须首先弄清空气的组成和氧气在燃烧中的作用.1772年和1774年,瑞典的舍勒和英国的普里斯特列分别用不同的方法制取了氧气并研究了其性质,但他俩却笃信“燃素说”,把氧气称为“火空气”和“脱燃素气体”.虽然舍勒和普里斯特列没有真正认识到氧气在燃烧中的作用,但却为拉瓦锡的燃烧氧化学说理论提供了决定性的证据.恩格斯说:“在化学中,燃素说经过百年的实验工作提供了这样一些材料,借助于这些材料,拉瓦锡才能在普里斯特列制出的氧气中发现了幻想的燃素的对立物,因而推翻了全部的燃素说.”①所以在客观上,“燃素说”论者关于氧气的发现,为埋葬“燃素说”自身奠定了一块最牢固的基石.虽然“燃素说”是一个错误的学说,而正是由于其形成和本身的矛盾性,才吸引了一大批拥护者和反对者去争论、去思索、去不断进行新的实验,从而加速了人们对燃烧现象本质的揭示. 燃烧氧化学说的建立,在一定程度上还依赖于十八世纪分析化学的发展及其成就。十八的世纪的欧洲出现了许多象德国的马格列夫、瑞典的贝格曼等优秀的分析化学家,他们在广泛地进行定性分析的基础上,将定量分析用于提纯、分离新物质和探索复

2009年上海市白猫杯应用化学与技能竞赛(初中组)

2009年上海市“白猫杯”应用化学与技能竞赛(初中组) 浦东新区初赛获奖名单 一等奖 邹璐阳建平实验学校宋雨琦浦东外国语学校纪伟杰高桥-东陆中学侯思齐华师大张江实验中学庄乐怡建平实验学校戴静杰建平西校 韩勖嘉建平西校高梦扬建平西校史玮炀建平西校 陈振昊建平西校张尔嘉建平西校张思捷建平西校 赵天齐建平西校李劲建平西校阎方良建平西校 黄贇浩建平西校徐雨豪建平西校张洁建平西校 李矩金苹果学校吴不为金苹果学校尹田田金苹果学校 魏力华金苹果学校严婉婷进才北校李骁驰进才北校 张天意进才北校张义为进才北校刘爽罗山中学 乐慧英罗山中学董韬罗山中学陆溢超罗山中学 唐奕诚罗山中学张悦川浦东模范中学朱元浦东模范中学 沈晨璐浦东模范中学黄天馨浦东模范中学高一圣三林北校 黄嘉晨洋泾东校龚卉婷洋泾东校叶子张江集团学校 徐萌艺张江集团学校柯楚阳张江集团学校王晨霖张江集团学校 陈嘉伦致远中学俞韵如致远中学杨依伦致远中学 侯慕凡致远中学陆嘉琦致远中学 二等奖 陈佳雨建平实验学校陈洋建平西校方佳璐建平西校 杨宇铭建平西校周禹卿建平西校黄予涵金苹果学校 申欣然进才北校袁虞闽进才北校陆欣悦侨光中学 陈志雄新陆中学丁月天张江集团学校朱政张江集团学校傅思辉致远中学郑凌云高行中学丁哲迥建平实验学校李明洋建平实验学校孙泱建平实验学校张嘉诚建平实验学校魏一舟建平西校赵天宇建平西校宋张裕进才北校 王轶明罗山中学夏浩洋浦东模范中学颜文杰浦东模范中学惠蕙张江集团学校张沁园张江集团学校张成致远中学 张晨凇致远中学戴晟恺建平西校徐霖建平西校 周凯翔建平西校胡尧堃进才北校蒋进进才北校 杨宇辰进才北校张焱婷罗山中学田诗豪张江集团学校赵梓云张江集团学校徐诚昊致远中学徐郑龙致远中学 周长浩建平实验学校庄若云建平实验学校樊胜杰建平西校 洪叶瀚建平西校黄天成建平西校王加煜建平西校 王宇玥金苹果学校张泽冰罗山中学冯倩妍上海市实验中学胡佳蕴张江集团学校邱晨珵张江集团学校何宁宇建平西校 倪峥嵘建平西校武乐璋建平西校张泽宇建平西校 董文烁金苹果学校陆心怡进才北校施跇进才北校 王沁心进才北校许容华进才北校张彤进才北校

精密加工的发展史及趋势

精密加工的发展史及趋势 往往大家一提到超精密这个词,就会觉得它很神秘,但同任何复杂的高新技术一样,经过一段时间的熟悉和掌握,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是这样。实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。 超精密加工的关键在于设备,这一点无可质疑,但由于超精密加工设备非常昂贵,因此用户购买时会面临很大的风险,因此,用户往往对它的要求也很高,希望它有更多的功能,能做更多的模具,这反过来也会促使它的价格更加昂贵。因此,我们在开发设备的初期,就采取了与其他厂家不同的思考方式,我们考虑的是如何尽量降低设备的成本,使超精密加工技术能容易地被用户接受并且普及开来,从使用的角度去开发更好用、更廉价的超精密设备。 目前,超精密加工设备主要用来加工一些超精密的光学零部件,例如光学镜头,各种非球面镜和球面镜(数码相机,手机中常常用到)等。根据加工对象的需要,将机床做得更小,以提高加工精度,是我们开发超精密加工设备的理念。 --FTC社长中川威雄先生 一、精密加工的发展史及趋势的机理 1、砂带研磨 砂带研磨是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具削加工的范畴,有生产率高、表面质量好,使用范围广等特点。国外在砂带材料及制作工艺上取得了很大的成就,有了适应于不同场合的砂带系列,生产出通用和专用的砂带磨床,而且自动化程度不断

提高(己有全自动和自适应控制的砂带磨床),但国内砂带品种少,质量也有待提高,对机床还处于改造阶段。 砂带研磨的特点及应用如以下: ①、CBN的硬度比普通磨料高很多。特别是适合加工硬度高,韧性大,高温,强度高,热导性率低的材料,其金属磨除率也是金刚石的10倍。 ②、CBN磨具的磨削性能十分优异,不仅能够胜任难磨材料的加工,提高生产效率,而且有利于严格控制工件的形状和尺寸精度,还能有效提高磨削质量,显著提高磨削后工具的表面完整性,因而提高了零件的疲劳强度,延长了使用寿命,增加了可靠性。 ③、CBN磨具磨损少,使用周期长,磨削比较高,使用合理可获得良好的经济效果。 ④、CBN磨具使用时,形状和尺寸变化极为缓慢,更适用于CBN 数控加工中心高精度零件。 ⑤、能长时间保持锋利的切削力,故磨削力较小,有利于零件的精度和光洁度的提高,还可以减少机床的动力消耗。 ⑥、磨削温度较低,可以大大提高工件的表面质量,避免零件出现裂纹、烧伤、组织变化等弊病,改善加工表面应力状况,有利于零件使用寿命的延长。 ⑦、普通磨料砂带在人工使用过程中产生大量粉尘,对人体健康有害,长期使用会引发矽肺病。 2、精密切削 也称金刚石刀具切削(SPDT),是用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般加工精密要高1---2个等级。例如用精密车削加工的液压马达转子柱塞孔圆柱度为0.5~1μm,红外反光镜的表面粗糙度Ra0.01~0.02μm,还具有较好的光学性质[1]。从成本上看,用精密切削加工的光学反射镜,与过去用镀铬经磨削加工的产品相比,成本大约是后者的一半或几分之一。但许多因素对精密切削的效果有影响,所以要

“化学”简介、含义、起源、历史与发展

化学 化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久又富有活力的学科。它的成就是社会文明的重要标志。从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,有赖于科学技术的进步,而化学的贡献在其中起了重要的作用。 化学是重要的基础科学之一,在与物理学、生物学、天文学等学科的相互渗透中,不仅本身得到了迅速的发展,同时也推动了其他学科和技术的发展。例如,核酸化学的研究结果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他天体的化学成分的分析,得出了元素分布的规律,发现了星际空间简单化合物的存在,为天体演化和现代宇宙学提供了实验数据,创建了地球化学和宇宙化学。化学的重大成就,还丰富了自然辩证法的内容,推动了唯物主义哲学思想的发展。 化学的历史发展 原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。火──燃烧──就是一种化学现象。掌握了火以后,人类开始熟食;逐步学会了制陶、冶铜、炼铁;以后,又懂得了酿造、染色等等。这些由天然物质加工改造而成的制品,成为古代文明的标志。在这些生产实践的基础上,萌发了古代化学知识。 古人曾根据物质的某些性质对物质进行分类,并企图追溯其本源及其变化规律。公元前4世纪或更早,中国提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成,而五行则是由阴阳二气相互作用而成的。此说为朴素的唯物主义自然观,用“阴阳“这个概念来解释自然界两种对立和互相消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说为中国炼丹术的理论基础之一。公元前4世纪,希腊也提出与五行学说类似的火、风、土、水四元素说和古代原子论。这些朴素的元素思想,即为物质结构及变化理论的萌芽。后来在中国出现了炼丹术,到了公元前2世纪的秦汉时代,炼丹术已颇为盛行,大致在公元7世纪传到阿拉伯国家,与古希腊哲学相融合而形成阿拉伯炼金术,阿拉伯炼金术于中世纪传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。英文中化学一字(chemistry)的字根chem,即来源于中世纪的拉丁文炼金术(alchemia)。 炼丹术的指导思想是深信物质能转化,试图在炼丹炉中夺造化之功,人工合成金银或修炼长生不老之药,有目的地将各类物质搭配烧炼,进行实验。为此设计了研究物质变化用的各种器皿,如升华器、蒸馏器、研钵等,也创造了各种实验方法,如研磨、混合、溶解、结晶、灼烧、熔融、升华、密封等。与此同时,进一步分类研究了各种物质的性质,特别是相互反应的性能。这些都为近代化学的产生奠定了基础,许多器具和方法经过改造后仍然在今天的化学实验室中沿用。炼丹家在实验过程中发明了火药,发现了若干元素(如汞、锌、砷、锑、磷等),制成了某些合金(如黄铜、白铜),还制出和提纯了许多化合物,如明矾等。这些成果我们至今仍在利用。 16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转向生活和实际,更进而注意对物质化学变化本身的研究。在元素的科学概念建立之

物理化学发展史

物理化学发展史——早期溶液理论和今日中学化学 很荣幸今天能为大家介绍物理化学发展史,物理化学博大精深,很有内涵,所以我耍个机灵,取了早期溶液理论的发展这一节,同时谈一谈今日中学化学对溶液理论的研究和教学实践。首先我想谈一谈物理化学,既然叫物理化学,那他一定和物理有点关联,例如空气湿度多大时我们能够观察到雾的现象?早晨的露珠为什么呈现球形?天上云层很厚实,为什么不下雨?人工降雨的原理到底是什么?等等这些物理现象,其实都属于物质的性质,而物理化学其实是研究物质性质和化学反应原理的学科。 自1887年奥斯特沃尔德和范霍夫合办了德文《物理化学杂志》,这门学科获得了快速的发展,今天物理化学的发展程度当然已经超乎人们的想象,具体包括化学热力学、化学动力学,电化学,光化学,表面化学,胶体化学,结构化学,量子化学,催化理论等等分支。应该说,物理化学以热力学、动力学和量子力学为基础。日本化学史家山岗望提出,物理化学学发端于拉瓦锡时代,本生进一步将物理学的实验方法应用到化学研究上,把物理学原理用来解释化学现象则是从范霍夫开始的。这段时间大致与两次工业革命的兴起重叠,也就是说,物理化学建立在产业革命兴起的大背景下,期间涌现了无数大牛,更有麦克斯韦,玻尔兹曼,普朗克这三尊神。例如麦克斯韦,以电磁理论闻名于世的物理大神,为化学做出的贡献在我看来要更加惊人。请看这两个数,一个热力学K,一个是动力学K,这两个K为什么长这么像?类似的还有克劳修斯克拉博隆方程,如果我把ΔG和ΔEa都用能量E表示,你会发现形式上和麦克斯韦能量分布积分式惊人的相似。这三位确定了热运动的本质,确定了热力学第二定律的适用范围,明确地给出了熵与微观状态数的数学关系。有意思的是文科里面更喜欢谈熵,伟大的科幻小说家阿西莫夫以熵增定律为主题写了科幻史上我认为是最好的一篇——最后的问题。 好言归正传,关于溶液理论,就必须提物理化学三剑客:阿伦尼乌斯,范霍夫和奥斯特沃尔德,三人之间的性格可以说迥异,又来自三个不同国家但对稀溶液的研究将他们的命运深深的绑定,三人友谊可以说是科学史上一段佳话。 故事要从溶液的依数性说起。首先是关于溶液渗透压的发现。最早观察到渗透现象的是法国物理学家诺勒。1748年他为了改进酒的制作时曾作过一个实验:把酒精装满一个玻璃圆筒,用猪膀胱膜封住,然后把圆筒全部浸进水中。他发现膀胱膜向外膨胀,即发现水通过膜渗透进了圆筒,最后膀胱膜竟被撑破。但他并未意识到这就是渗透压造成的。最早对渗透压进行半定量研究的则是法国生理学家杜特罗夏在1830年左右进行的。他用一个钟罩形的玻璃容器,下面用羊皮纸封住,从上面插进一支长玻璃管,容器中分别放入各种不同浓度、不同物质的溶液,然后把它浸入水槽中。于是观察到玻璃管内液面上升,浓度越大,水柱越高,两者成正比。这时候他意识到:这个压力是由于外面的水通过羊皮纸向溶液方向迁移而产生的。他给这种现象命名为“渗透”,该术语来源于希腊文“wσμos”,意思是“推进”。1848年,德国化学家K.维洛尔特(Karl Vierordt)证实了他的这一结论。但由于动物膜既可让溶剂分子也可让溶质分子渗透,只是速度不同,所以测得的渗透压力只是暂时的,不稳定的,而且与溶剂、溶质的渗透相对速度有关,因此测得的渗透压也只是粗略的,而且由于这类半透膜不够坚固,经受不住浓溶液的很大的渗透压。 1867年,德国生理化学家特劳贝让亚铁氰化铜或丹宁-明胶沉积在多孔陶瓷上,制出了真正只让水分子透过的膜,范霍夫称它为半透膜。这种膜非常牢固,能够经受几百个大气压的渗透压。1884年德国植物学家普菲弗便利用这种半透膜研究植物的枯萎状况,对蔗糖溶液的渗透压进行了广泛的定研究,得到了准确的数据。 这些实验结果激起了范霍夫对渗透压进行理论探讨的热情。他从浦菲弗的数据得知,含有一克蔗糖中加水,水加的越多,渗透压越小,但一定是一个常数,与波义耳定律对气体的

超精密加工技术的发展与展望资料

精密与特种加工技术 结课论文 题目:超精密加工技术的发展与展望指导教师:沈浩 学院:机电工程学院 专业:机械工程 姓名:司皇腾 学号:152085201020

超精密加工技术的发展与展望 摘要:超精密加工是多种技术综合的一种加工技术,是获得高形状精度、表面精度和表面完整性的必要手段。根据当前国内外超精密加工技术的发展状况,对超精密切削、磨削、研磨以及超精密特种加工及复合加工技术进行综述,简单地对超精密加工的发展趋势进行预测。精密加工技术发展方向是:向高精度、高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展。本世纪的精密加工发展到超精密加工历程比较复杂且难度大,目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。环保也是机械制造业发展的必然趋势。 关键词:加工精度;超精密加工技术;超精密特种加工;纳米技术;复合加工 【引言】 精密加工和超精密加工代表了加工精度发展的不同阶段,往往我们一提到超精密这个词,就会觉得它很神秘,但同任何复杂的高新技术一样,经过一段时间的熟悉和掌握,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是这样。实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。 通常按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工。在不同的历史阶段,不同的科学技术水平下,对超精密加工有不同的定义,由于生产技术的不断发展,划分的界限不断变化。过去的超精密加工对今天来说可能已经是普通加工了,所以对其划分的界限是相对的,而且在具体数值上至今没有确切的界限。现阶段通常把被加工零件的尺寸精度和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术称为超精密加工技术[1],也可以理解为超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程,其精度从微米到亚微米,乃至纳米。超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向[2]。 超精密加工技术综合应用了机械技术发展的新成果及现代光电技术、计算机技术、测量技术和传感技术等先进技术。同时,作为现代高科技的基础技术和重要组成部分,它推动着现代机械、光学、半导体、传感技术、电子、测量技术以及材料科学的发展进步。超精密加工在现代武器和一些尖端产品制造中具有举足轻重的地位,是其它一些加工方法无可替代的,它不仅可以应用于国防,而且可以广泛地应用于比较高端的民用产品中,是衡量一个国家科学技术发展水平的重要标志。 1、超精密加工技术的发展历史 精密超精密加工技术的起源从一定意义上可以上溯到原始社会:当原始人类学会了制作具有一定形状且锋利的石器工具时,可以认为出现了最原始的手工研

初三化学史入门教学

初三化学史入门教学 教学目标 1.知识与技能初步了解化学发展史,了解炼丹术和炼金术,了解我国近代化学的启蒙者徐寿对化学发展的影响。 2.过程与方法通过故事、史料认识化学的重要性,了解化学的发展过程。 3.情感态度与价值观激发学生了解化学、关注化学、学好化学、热爱化学、报效祖国。教学方法提供史料→教师引导→讨论归纳→激发兴趣→培养学科素养教具准备投影仪、史料胶片、物质样品课时安排 1课时教学过程引入新课:同学们,从今天开始我们又要学习一门新的课程,那就是化学。化学是研究什么的呢?怎样才能学好化学?这门学科有趣 味吗?这门学科是怎么发展的呢?下面我们就学习化学发 展史。板书:初三化学史入门教学引言:在学习化学发展史以前,首先请同学们听三个有趣的故事。第一个故事是发生在1994年的美国某地。那天,大学里面一座大楼失火了。“呜,呜,……”消防车问讯赶来。这时一件奇怪的事情发生了,大楼门口警卫森严,不许消防队员进去。“火烧眉毛了,还不许我们进去?”消防队员着急的问。“不行,没有国防部的证明,谁都不许进!”原来,大楼里面的科学家们正在极端秘密地研究一种化学元素──铀。为什么研究铀要那么保密呢?第二个故事发生在1781年,英国有位著名的化学家叫普利斯特里,他很喜欢给朋友表演化学魔术。

每当有朋友来到他的实验室参观时,他便拿出一个空瓶子,给大家表演。可是,当他把瓶口移近蜡烛的火焰时,忽然发出“啪”的一声巨响。朋友们吓了一跳,有的甚至钻到桌子底下去。原来,瓶子里事先装进氢气和氧气,点火会发出爆炸声。一次,他表演完“拿手好戏”后,在收拾瓶子时,注意到瓶子上有水。经过反复实验,他终于发现,氢气燃烧后变成了水。第三个故事发生在1890年。在庆祝德国化学会成立25周年的大会上,著名化学家凯库勒,讲述了自己怎样解决了有机化学史上一大难题。“那时侯,我住在伦敦,日夜思索着苯分子的结构是什么样的。我徒劳地工作了几个月,毫无收获。一天,我坐马车回家,由于过度劳累,在摇摇晃晃的马车上睡着了。我作了一个梦,一条蛇首尾相连,变成一个环。我从梦中惊醒,当天晚上,在梦的启发下,我终于画出了苯分子的环式结构,解决了有机化学史上的一大难题。” 提问:同学们听完了这三个故事,有什么感想呢?板书:一、从三个故事看化学发言:对同学们的发言有针对性的点评。讲述:故事一从一个很小的侧面说明化学是何等的重要。美国在1945年研制出第一颗原子弹,当年的8月6日和9日分别在日本的广岛和长崎投下了两颗原子弹,引起世人瞩目。我国在1964年10月16日在西北上空爆炸了第一颗原子弹,1967年6月17日第一颗氢弹研制成功,从而结束了我国没有核弹的历史。故事二说明研究化学一定

应用化学专业介绍及就业前景汇编

应用化学专业简介 应用化学专业偏重于应用,是研究如何将当今化学研究成果迅速转化为实用产品的应用型专业。 应用化学培养目标 本专业培养具备化学的基本理论、基本知识相较强的实验技能,能在科研机构、高等学校及企事业单位等从事科学研究、教学工作及管理丁作的高级专门人才。 应用化学专业培养要求 本专业学生主要学习化学方面的基础知识、基本理论、基本技能以及相关的工程技术知识,受到基础研究和应用基础研究方面的科学思维和科学实验训练,具有较好的科学素养,具备运用所学知识和实验技能进行应用研究、技术开发和科技管理的基本技能。 应用化学毕业生具备的专业知识与能力 1.掌握数学、物理等方面的基本理论和基本知识; 2.掌握无机化学、分析化学(含仪器分析)、有机化学、物理化学、化学工程及化工制图的基础知识、基本原理和基本实验技能; 3.了解相近专业的-般原理和知识; 4.了解国家关于科学技术、化学相关产品、知识产权等方面的政策、法规; 5.了解化学的理论前沿、应用前景、最新发展动态,以及化学相关产业发展状况; 6.掌握中外文资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能

力。 就业方向与前景 毕业生主要在精细化工相关企事业单位、商贸公司从事技术开发、产品研制、生产管理、生产监督、环境监测、质量检验、技术服务等工作。还可到相关行业从事化学品的应用研发、安全管理、质量检测等工作。 就业前景分析(按应用化学专业相关职位统计) 据统计,应用化学专业就业前景最好的地区是:上海。在"物理学类"中排名第3 。 应用化学专业主要方向:就业行业包括教育、材料、军工、汽车、军队、电子、信息、环保、市政、建筑、建材、消防、化工、机械等行业。部门包括:各级质量监督与检测部门、科研院所、设计院所、教学单位、生产企业、省级以上的消防总队等。 主要课程:无机化学、分析化学(含仪器分析)、有机化学、高等数学、物理化学(含结构化学)、高分子化学、精细化学、化学工程基础、化工制图、结构化学、化工原理。 应用化学就业前景分析 应用化学是研究如何将当今化学研究成果迅速转化为实用产品的应用型专业.应用化学与人类的衣、食、住、行及当今所有高新技术,都有着密切的关系,是21世纪重点发展的技术领域,所以本专业具有广阔的发展天地和发展前景.由于所学的知识比较广泛,毕业生将会具 有较强的适应能力和较广泛的选择范围.化工企业、贸易公司和政府机关中的口岸、海关、商检、公安和环保等部门,也都非常需要应用化学人才的加入.此外,毕业生在选择就读研究生

化学发展简史

化学发展的五个时期 自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器,都是化学技术的应用。正是这些应用,极大地促进了当时社会生产力的发展,成为人类进步的标志。今天,化学作为一门基础学科,在科学技术和社会生活的方方面面正起着越来越大的作用。从古至今,伴随着人类社会的进步,化学历史的发展经历了哪些时期呢? 1.远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。 2.炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。英语的chemistry 起源于alchemy,即炼金术。chemist至今还保留着两个相关的含义:化学家和药剂师。这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。 3.燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。

化学热力学的发展简史

化学热力学的发展简史 姓名:xx 学号:xx 1 引言 化学热力学是物理化学中最早发展起来的一个分支学科,主要应用热力学原理研究物质系统在各种物理和化学变化中所伴随的能量变化、化学现象和规律,依据系统的宏观可测性质和热力学函数关系判断系统的稳定性、变化的方向和限度。化学热力学的基本特点是其原理具有高度的普适性和可靠性.对于任何体系,化学热力学性质是判断其稳定性和变化方向及程度的依据。也就是说,相平衡、化学平衡、热平衡、分子构象的稳定性、分子间的聚集与解离平衡等许多重要问题都需要用化学热力学的原理和方法进行判断和解决。化学热力学的研究范畴决定了它与化学乃至化学学科以外的其他学科具有很强的交叉渗透性。化学热力学在化学学科的发展中发挥着不可替代的重要作用,与其他学科的发展相互促进。热力学的历史始于热力学第一定律,100多年来,化学热力学有了很大的发展和广阔的应用。 2 化学热力学的筑基 化学热力学的主要理论基础是经典热力学。19世纪上半叶,作为物理学的巨大成果,“能”的概念出现了; 人们逐渐认识到热只是能的多种可互相转换的形式之一,科学家意识到了统治科学界百年之久的“热质说”是错误的,于是热力学应运而生。19世纪中叶,人们在研究热和功转换的基础上,总结出热力学第一定律和热力学第二定律,解决了热能和机械能转换中在量上的守恒和质上的差异。1873-1878年,吉布斯进一步总结出描述物质系统平衡的热力学函数间的关系,并提出了相律。20世纪初,能斯特提出了热定理,使“绝对熵”的测定成为可能。为了运用热力学函数处理实际非理想系统,1907 年,路易斯提出了逸度和活度的概念%至此,经典热力学建立起完整的体系。 2.1 Hess定律 俄国的赫斯很早就从化学研究中领悟了一些能量守恒的思想。1836年,赫斯向彼得堡科学院报告: “经过连续的研究,我确信,不管用什么方式完成化合,由此发出的热总是恒定的,这个原理是如此之明显,以至于如果我不认为已经被

2014年上海市“白猫杯”青少年应用化学与技能竞赛(初赛)高中组试卷

2014年上海市“白猫杯”青少年应用化学与技能竞赛(初赛)高中组试卷

2014年上海市“白猫杯”青少年应用化学与技能竞赛(初赛) 高中组试卷 参赛者须知: 1.答题时间为90 分钟。迟到超过15分钟者不得进场。开赛后前45分钟内不得离场。规定时间到,立即把试卷整理好放置在桌面上(背面向上),迅速离场。 2.竞赛答案全部书写在试卷纸上,应使用黑色或蓝色的钢笔或圆珠笔答题,凡用红色笔或铅笔所书写的答案一概作废无效。 3.姓名、准考证号码和学校名称等必须填写在试卷上方指定的位置,写在它处者按废卷处理。 4.允许使用非编程计算器及直尺等文具。 5.本试卷共6页(其中4页是试卷纸,2页是答题纸),满分为100分。 6.答题须用相对原子质量请从下表中查找。有效数字根据题目要求确定。 1

2 H 1.008 He 4.003 Li 6.941 Be 9.012 B 10.81 C 12.01 N 14.01 O 16.00 F 19.00 Ne 20.18 Na 22.99 Mg 24.31 Al 26.98 Si 28.09 P 30.97 S 32.07 Cl 35.45 Ar 39.95 K 39.10 Ca 40.08 Sc 44.96 Ti 47.88 V 50.94 Cr 52.00 Mn 54.94 Fe 55.85 Co 58.93 Ni 58.69 Cu 63.55 Zn 65.39 Ga 69.72 Ge 72.61 As 74.92 Se 78.96 Br 79.90 Kr 83.80 Rb 85.47 Sr 87.62 Y 88.91 Zr 91.22 Nb 92.91 Mo 95.94 Tc [98] Ru 101.1 Rh 102.9 Pd 106.4 Ag 107.9 Cd 112.4 In 114.8 Sn 118.7 Sb 121.8 Te 127.6 I 126.9 Xe 131.3 Cs 132.9 Ba 137.3 La-L u Hf 178.5 Ta 180.9 W 183.8 Re 186.2 Os 190.2 Ir 192.2 Pt 195.1 Au 197.0 Hg 200.6 Tl 204.4 Pb 207.2 Bi 209.0 Po [210] At [210] Rn [222] Fr [223] Ra [226] Ac-L a 一、选择题 (每小题有1 ~ 2个正确答案,请把你认为正确的答案填在答题纸的相应 位置内,共28分) 1.表面活性剂是从20世纪50年代开始随着石油工业的飞速发展而兴起的一种新型化学品,是精细化工的重要产品。几乎渗透一切经济领域。被称为 A .工业血液 B .工业味精 C .工业粮食 D .工业催化剂 2.小张同学查阅资料后可知:叠氮酸(HN 3)与醋酸酸性相似。请根据小张同学查得资料分析下列叙述中错误的是 A .HN 3水溶液中微粒浓度大小顺序为:c(HN 3)>c(H +)>c(N 3-)>c(OH -) B .HN 3与NH 3作用生成的叠氮酸铵是共价化合物 C .NaN 3水溶液中离子浓度大小顺序为:c(Na +)>c(N 3 -) >c(OH -)>c(H + ) D .N 3-与CO 2是等电子体 3.保护环境是每一个公民的责任。下列做法:①推广使用无磷洗涤剂,②城市生活垃圾分类处理,③推广使用一次性木质筷子,④推广使用清洁能源,⑤过量使用化肥、农药,⑥推广使用无氟冰箱。其中有利于保护环境的是

相关文档
最新文档