基于AT89S51单片机的数字温度测量及显示系统设计

基于AT89S51单片机的数字温度测量及显示系统设计
基于AT89S51单片机的数字温度测量及显示系统设计

常州机电职业技术学院

毕业设计

作者:王可学号:41021103

系部:电气工程系

专业:电机与电器

题目:基于AT89S51单片机的数字温度测量及显示系统设计

指导者:莫莉萍

评阅者:

年月

毕业设计中文摘要

毕业设计外文摘要

目录

第1章系统的总体设计................................................................................................. - 4 - 1.1 设计背景................................................................................................................ - 5 - 1.2 电路的总体工作原理............................................................................................ - 5 - 第2章方案论证............................................................................................................. - 7 - 2.1 题目分析................................................................................................................ - 7 -

2.1.1 具体指标......................................................................................................... - 7 -

2.1.2 具体控制要求................................................................................................. - 7 - 2.2 温度传感器的选择................................................................................................ - 7 - 2.3 显示器的选择........................................................................................................ - 9 - 2.4 单片机的选择........................................................................................................ - 9 - 第3章系统的硬件设计............................................................................................... - 12 - 3.1 单片机最小系统的设计...................................................................................... - 12 - 3.2 温度传感电路设计.............................................................................................. - 13 - 3.3 温度控制电路的设计.. (12)

3.4 键盘电路的设计 (14)

3.5 显示电路的设计.................................................................................................. - 17 - 第4章系统的软件设计............................................................................................... - 18 - 4.1 系统的主程序设计.............................................................................................. - 18 - 4.2 中断程序的设计.................................................................................................. - 18 - 第5章系统的控制 (20)

5.1 温控电路及报警电路的控制 (20)

5.2 LCD显示电路的控制 (21)

5.3 使用说明 (21)

第6章全文总结 (22)

6.1 经济效益分析 (22)

6.2 社会效益分析 (22)

致谢 (21)

参考文献........................................................................................................................... - 22 -

第1章系统的总体设计

1.1 设计背景

温度控制广泛应用于人们的生产和生活中,人们使用温度计来采集温度,通过人工操作加热、通风和降温设备来控制温度,这样不但控制精度低、实时性差,而且操作人员的劳动强度大。即使有些用户采用半导体二极管作温度传感器,但由于其互换性差,效果也不理想。在某些行业中对温度的要求较高,由于工作环境温度不合理而引发的事故时有发生。对工业生产可靠进行造成影响,甚至操作人员的安全。为了避免这些缺点,需要在某些特定的环境里安装数字温度测量及控制设备。本设计由于采用了新型单片机对温度进行控制,以其测量精度高,操作简单。可运行性强,价格低廉等优点,特别适用于生活,医疗,工业生产等方面的温度测量及控制。

本设计是一个数字温度测量及控制系统,能测柜内的温度,并能在超限的情况下进行控制、调整,并报警。保证环境保持在限定的温度中。

1.2 电路的总体工作原理

温度控制系统采用AT89S51八位机作为微处理单元进行控制。采用4X4键盘把设定温度的最高值和最低值存入单片机的数据存储器,还可以通过键盘完成温度检测功能的转换。温度传感器把采集的信号与单片机里的数据相比较来控制温度控制器。

系统框图如图1.1:

图1.1 系统框图

根据系统的设计要求,选择DS18B20作为本系统的温度传感器,选择单片机AT89S51为测控系统的核心来完成数据采集、处理、显示、报警等功能。选用数字温度传感器DS18B20,省却了采样/保持电路、运放、数/模转换电路以及进行长距离传输时的串/并转换电路,简化了电路,缩短了系统的工作时间,降低了系统的硬件成本。

该系统的总体设计思路如下:温度传感器DS18B20把所测得的温度发送到AT89S51单片机上,经过51单片机处理,将把温度在显示电路上显示,本系统显示器为点阵字符LCD,1602液晶模块。检测范围5摄氏度到60摄氏度。本系统除了显示温度以外还可以设置一个温度值,对所测温度进行监控,当温度高于或低于设定温度时,开始报警并启动相应程序(温度高于设定温度时,风扇开;当温度低于设定温度时,加热器开)。

中央微处理器AT89S51:AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80S51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。

此外,AT89S51设计和配置了振荡频率,并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式。AT89S51单片机综合了微型处理器的基本功能。按照实际需要,同时也考虑到设计成本与整个系统的精巧性,所以在本系统中就选用价格较低、工作稳定的AT89S51单片机作为整个系统的控制器。

第2章 方案论证

本章主要对毕业设计的题目进行了分析,根据要实现的功能,综合比较几种设计方法,提出了实现系统功能的最佳方案。 2.1 题目分析

本设计是一个数字温度控制系统,能测量温度,并能在超限的情况下进行控制、调整,并报警。 2.1.1 具体指标

正常工作温度范围: 5℃~60℃ 温度误差:<1℃ 2.1.2 具体控制要求

根据设计的要求,要利用温度传感器实时温度。当温度高于设定的温度时(60℃),打开降温装置进行调整使温度在设定的范围内。当温度低于设定的温度时(5℃),打开升温装置进行调整使温度在设定的范围内。同时要求能设定温度。毕业设计的主要任务是能对温度进行自动的检测和控制。设计中采用单片机来控制温度,因此要有温度的采集电路,键盘显示电路,温控电路,报警电路等几个部分。

要实现系统的设计要用到的知识点有单片机的原理及其应用,温度传感器的原理和应用,及键盘和显示电路的设计等。 2.2 温度传感器的选择 2.2.1 采用模拟集成温度传感器

集成传感器是采用硅半导体集成工艺而制成的,因此亦称硅传感器或单片集成温度传感器,它是将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出功能的专用IC 。模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控温,不需要进行非线性校准,外围电路简单。 图2-1是AD590用于测量热力学温度的基本应用电路。因为流过AD590的电流与热力学温度成正比,当电阻R 1和电位器R 2的电阻之和为1kΩ时,输出电压O V 随温度的变化为1mV/K 。但由于AD590的增益有偏差,电阻也有误差,因此应对电路进行调整。调整的方法为:把AD590放于冰水混合物中,调整电位器R 2,使

V =273.2mV 。或在室温下(25℃)条件下调整电位器,使

V =273.2+25=298.2(mV )。但这样

调整只可保证在0℃或25℃附近有较高精度。

AD590把被测温度转换为电流再通过放大器和A/D 转换器,输出数字量送给单片机进

行温度控制。

图2.1 基于AD590测温基本应用电路

2.2.2 采用数字单片智能温度传感器

智能温度传感器(亦称数字温度传感器)是微电子技术、计算机技术和自动测试技术(ATE)的结晶。目前,已开发出多种智能温度传感器系列产品。智能温度传感器内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU). 智能温度传感器的总线技术也实现了标准化、规范化,所采用的总线主要有单线(1-WIRE)总线、I2C总线、SMBUS总线和SPI总线。温度传感器作为从机可通过专用总线接口与主机进行通信。智能温度控制器是在智能温度传感器的基础上发展而成的。典型产品有DS18B20,智能温度控制器适配各种微控制器,构成智能化温控系统;它们还可以脱离微控制器单独工作,自行构成一个温控仪。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出,其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为 -55℃~+125℃,在-10℃~+85℃范围内,精度为0.5℃。DS18B20的精度较差

为±0.2℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量。如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。

DALLAS半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的“DS1820”体积更小、更经济、更灵活。使您可以充分发挥“一线总线”的长处。DS18B20、DS1822“一线总线”数字化温度传感器。

由于DS18B20将温度传感器、信号放大调理、A/D转换、接口全部集成于一芯片,与单片机连接简单、方便,与AD590相比是更新一代的温度传感器,所以温度传感器采用DS18B20。

2.3 显示器的选择

2.3.1 LED显示器

采用传统的七段数码LED显示器。LED虽然价格便宜,但在现代的许多仪表、各种电子产品中逐渐被LCD所取代。

2.3.2 LCD液晶屏

采用LCD液晶屏进行显示。LCD液晶显示器是一种低压、微功耗的显示器件,只要2~3伏就可以工作,工作电流仅为几微安,是任何显示器无法比拟的,同时可以显示大量信息,除数字外,还可以显示文字、曲线,比传统的数码LED显示器显示的界面有了质的提高。在仪表和低功耗应用系统中得到了广泛的应用。优点为:

1 显示质量高,由于液晶显示器的每一个点收到信号后就一直保持那种色彩和亮度恒定发光,因此液晶显示器的画质高而且不会闪烁。

2 数字式接口,液晶显示器都是数字式的,和单片机的接口简单操作也很方便。

3 功率消耗小,相比而言液晶显示器的主要功耗在内部电极和驱动IC上,因而耗电量比其他器件要小很多。

虽然LCD显示器的价格比数码管要贵,但它的显示效果好,是当今显示器的主流,所以采用LCD 作为显示器。

2.4 单片机的选择

2.4.1 采用凌阳单片机

随着单片机功能集成化的发展,其应用领域也逐渐地由传统的控制,扩展为控制处理、数据处理以及数字信号处理(DSP,Digital SignalProcessing)等领域。凌阳的16位单片机就是为适应这种发展而设计的。它的CPU内核采用凌阳最新推出的μ’nSP?(Microcontroller and Signal Processor)16位微处理器芯片(以下简称μ’nSP?)。围绕μ’nSP?所形成的16位μ’nSP?系列单片机(以下简称μ’nSP?家族)采用的是模块式集成结构,它以μ’nSP?内核为中心集成不同规模的ROM、RAM和功能丰富的各种外设接口部件。μ’nSP?内核是一个通用的核结构。除此之外的其它功能模块均为可选结构,亦即这种结构可大可小或可有可无。借助这种通用结构附加可选结构的积木式的构成,便可形成各种不同系列派生产品,以适合不同的应用场合。这样做无疑会使每一种派生产品具有更强的功能和更低的成本。

利用凌阳单片机有一定的好处凌阳的优势是硬件性能,抗干扰能力强,但凌阳单片机我们没有系统的学习,这对于刚接触单片机的我们来说不是很容易上手,其价格也要比89S51昂贵一些,因此我们并没有将其作为首选。

2.4.2 采用AT89S51单片机

由于单片机技术在各个领域正得到越来越广泛的应用,世界上许多集成电路生产厂家相继推出了各种类型的单片机,在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术及高可靠性和高性能价格比,迅速占领了工业测控和自动化工程应用的主要市场,成为国内单片机应用领域中的主流。

单片机的诞生标志着计算机正式形成了通用计算机系统和嵌入式计算机系统两个分支。通用计算机系统主要用于海量高速数值运算,不必兼顾控制功能,其数据总线的宽度不断更新,从8位、16位迅速过渡到32位、64位,并且不断提高运算速度和完善通用操作系统,以突出其高速海量数值运算的能力,在数据处理、模拟仿真、人工智能、图像处理、多媒体、网络通信中得到了广泛应用;单片机作为最典型的嵌入式系统,由于其微小的体积和极低的成本,广泛应用于家用电器、机器人、仪器仪表、工业控制单元、办公自动化设备以及通信产品中,成为现代电子系统中最重要的智能化工具。因此,单片机的出现大大促进了现代计算机技术的飞速发展,成为近代计算机技术发展史上一个重要里程碑。

由于MCS系列单片机集成了几乎完善的中央处理单元,处理功能强,中央处理单元中集成了方便灵活的专用寄存器,这给我们利用单片机提供了极大的便利。单片机把微型计算机的主要部件都集成在一块芯片上,使得数据传送距离大大缩短,运行速度更快,可靠性更高,抗干扰能力更强。由于属于芯片化的微型计算机,各功能部件在芯片中的布局

和结构达到最优化,工作也相对稳定。51的优点是价钱便宜,I/O口多,程序空间大。因此,测控系统中,使用51单片机是最理想的选择。单片机属于典型的嵌入式系统,所以它是低端控制系统最佳器件。单片机的开发环境要求较低,软件资源十分丰富,开发工具和语言也大大简化。单片机的典型代表是Intel公司在20世纪80年代初研制出来的MCS51系列单片机。MCS51单片机很快在我国得到广泛的推广应用,成为电子系统中最普遍的应用手段,并在工业控制、交通运输、家用电器、仪器仪表等领域取得了大量应用成果。

以MCS-51技术核心为主导的单片机已成为许多厂家、电气公司竞相选用的对象,并以此为基核,推出许多与MCS51有极好兼容性的CHMOS单片机,同时增加了一些新的功能,所以用AT89S51。

第3章 系统的硬件设计

3.1 单片机最小系统的设计

目前的单片机开发系统只能够仿真单片机,却没有给用户提供一个通用的最小系统。由设计的要求,只要做很小集成度的最小系统应用在一些小的控制单元。其应用特点是:

(1)全部I/O 口线均可供用户使用。

(2)内部存储器容量有限(只有4KB 地址空间)。 (3)应用系统开发具有特殊性

图 3.1 最小系统图

单片机最小系统如图3.1所示,其中有4个双向的8位并行I/O 端口,分别记作P0、P1、P2、P3,都可以用于数据的输出和输入,P3口具有第二功能为系统提供一些控制信号。时钟电路用于产生MCS-51单片机工作所必须的时钟控制信号,内部电路在时钟信号的控制下,严格地按时序指令工作。MCS-51内部有一个用于构成振荡器的高增益反向放大器,该高增益反向放大器的输入端为芯片的引脚XTAL1,输出端为XTAL2。这两个引脚跨接石英晶体振荡器和微调电容,就构成了一个稳定的自激振荡器。电路中的微调电容通常选

择为30pF 左右,该电容的大小会影响到振荡器频率的高低、振荡器的稳定性和起振的快速性。晶体的振荡频率为12MHz 。

把EA 脚接高电平,单片机访问片内程序存储器,但在PC 值超过0FFFH (4Kbyte 地址范围)时,将自动转向执行外部程序存储器内的程序。

MCS-51的复位是由外部的复位电路来实现。采用最简单的外部按键复位电路。按键自动复位是通过外部复位电路的来实现的.我们选用时钟频率为12MHz ,C1取47μf 。 3.2 温度传感电路设计

DS18B20的性能特点:

采用单总线专用技术,既可通过串行口线,也可通过其它I/O 口线与微机接口,无须经过其它变换电路,直接输出被测温度值(9位二进制数,含符号位)

测温范围为-55℃-+125℃,测量分辨率为0.0625℃ 内含64位经过激光修正的只读存储器ROM 适配各种单片机或系统机

用户可分别设定各路温度的上、下限 内含寄生电源。

DS18B20内部结构主要由四部分组成:64位光刻ROM ,温度传感器,非挥发的温度报警触发器TH 和TL ,高速暂存器。DS18B20的管脚排列如图3.2所示。

图 3.2 DS18B20管脚图

在硬件上,DS18B20与单片机的连接有两种方法,一种是VCC 接外部电源,GND 接地,I/O 与单片机的I/O 线相连;另一种是用寄生电源供电,此时UDD 、

GND 接地,I/O 接单片机I/O 。无论是内部寄生电源还是外部供电,I/O 口线要接5K Ω左右的上拉电阻.我们采用的是第一种连接方法,如图3.3所示:把DS18B20的数据线与单片机的13管脚连接,再加上上拉电阻。

I/

图 3.3 温度传感电路图

DS18B20有六条控制命令,如表3.1所示:

表3-1 DS18B20控制命令

CPU 对DS18B20的访问流程是:先对DS18B20初始化,再进行ROM 操作命令,最后才能对存储器操作,数据操作。DS18B20每一步操作都要遵循严格的工作时序和通信协议。如主机控制DS18B20完成温度转换这一过程,根据DS18B20的通讯协议,须经三个

步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM 指令,最后发送RAM 指令,这样才能对DS18B20进行预定的操作。 3.3 温度控制电路的设计

图 3.4 温度控制电路

实际电路如图3.4所示,通过键盘设定温度的上下限。把实际测量的温度和设定的上下限进行比较,来控制P0.0、P0.1、P0.7端口的高低电平。把P0.0、P0.1、P0.7端口分别与三极管的基极连接来控制温度和报警。当测量的温度超过了设定的最高温度,P2.2由高电平变成低电平,就相当于基极输入为“0”,这时三极管导通推动小风扇和控制电路工作,反之,当基极输入为“1”时,三极管不导通,报警器和控制电路都不工作。只要控制单片机的P0.0、P0.1、P0.7口的高低电平就可以控制模拟电路的工作。 3.4 键盘电路的设计

如图3.6所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;液晶显示器上显示每个按键的“0-F ”序号。对应的按键的序号排列如图3.5所示:

9012

图 3.5 按键的序号排列图

图3.6中微处理单元是AT89S51单片机,X1和X2接12M的两脚晶振,接两个30PF的起振电容,J1是上拉电阻.单片机的P1口8位引脚与行列式键盘输出脚相连,控制和检测行列式键盘的输入.行线通过上拉电阻接到+5V上,无按键按下时,行线处于高电平状态,有键按下时,行线的电平状态将由与此行线相连接的列线的电平决定.键盘输入的信息主要进程是:

1 CPU判断是否有键按下.

2 确定是按下的是哪个键.

3 把此键所代表的信息翻译成计算机可以识别的代码或者其他的特征符号.

3.5 显示电路的设计

液晶显示器是一种将液晶显示器件,连接器件,集成电路,PCB线路板,背光源,结构器件装配在一起的组件。

根据显示内容和方式的不同可以分为,数显LCD,点阵字符LCD,点阵图形LCD 在此设计中我们采用点阵字符LCD,这里采用常用的2行16个字的1602液晶模块。

1602采用标准的14脚接口,其中:

第1脚:VSS为地电源第2脚:VDD接5V正电源

第3脚:V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度

第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

第5脚:RW为读写信号线,高电平时进行读操作,低电平时进行写操作。当RS和RW共同为低电平时可以写入指令或者显示地址,当RS为低电平RW为高电平时可以读忙信号,当RS为高电平RW为低电平时可以写入数据。

第6脚:E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。

第7~14脚:D0~D7为8位双向数据线。

第15~16脚:空脚。

图 3.7 液晶显示电路图3 ES2 4 ES2

第4章系统的软件设计

4.1 系统的主程序设计

主程序是系统的监控程序,在程序运行的过程中必须先经过初始化,包括键盘程序,中断程序,以及各个控制端口的初始化工作。流程图如 4.1 所示。系统在初始化完成后就进入温度测量程序,实时的测量当前的温度并通过显示电路在LCD上显示。程序中以中断的方式来重新设定温度的上下限。根据硬件设计完成对温度的控制。按下4*4键盘上的A键可以设定温度上限,按下B键可以设定温度下限。系统软件设计的总体流程图

图 4.1 系统总体设计流程图

4.2 中断程序的设计

MCS-51单片的中断系统有5个中断请求源,用户可以用关中断指令“CLR EA”来屏蔽所有的中断请求,也可以用开中断指令“SET EA”来允许CPU接收中断请求。在本设计中我们选用INTO来作为中断请求源。

INT1—外部中断请求0,由INTO引脚输入,中断请求标志为IE0。

ORG 0000H

LJMP MAIN

ORG 0003H (中断入口地址)

JMP INT0

ORG 0038H(主程序的起始地址)

MAIN: (主程序)

MCS-51响应中断后,就进入中断服务程序,中断程序的基本流程图如下图

图 4.2 中断服务程序基本流程

第5章系统的控制

本章对系统的硬件控制进行概述。分别对温度控制电路,报警电路及LCD 液晶显示电路进行说明。

5.1 温控电路及报警电路的控制

单片机的P0.0、P0.1、P0.7分别与三极管的基极连接来控制控制温度(图5.1)和报警(图5.2)。利用面包板搭了一个PNP9012的偏置电路电路如图4-4。基极输入为“0”时,这时三极管导通推动报警器和控制电路工作,当基极输入为“1”时,三极管不导通,报警器和控制电路都不工作。只要控制单片机的P0.0、P0.1、P0.7口的高低电平就可以控制模拟电路的工作。

图 5.1 硬件控制电路9012

接口实验报告-基于51单片机的脉搏温度测试系统-

摘要 接口实验报告 题目:脉搏波体温自动采集系统院(系):电子工程与自动化学院 专业:仪器仪表工程 学生姓名: 学号: 指导老师:李智 职称:教授 20 年8月28日 I

摘要 本文介绍了一种基于51单片机的心率体温采集系统。首先介绍了51系列单片机的内部相关配置、工作原理以及编程方法,其次介绍了温度传感器PT100的相关测温方法以及通过红外光电传感器TCRT5000对射的方法来抓取人体脉搏信号。此次设计的电路部分主要包括:传感测量电路、放大电路、滤波整形电路、AD转换电路、控制电路、电源供电电路等。上位机为通过VC编程界面。通过上位机按键控制,将PT100及TCRT5000输入的微弱信号进行放大整形,最后AD采集转换传送给单片机,在上位机界面上显示相关体温及心率信息。 本次硬件设计基于比较稳定可行、低成本的设计思想,软件设计采用模块化的设计方法,并且详细分析了红外传感器TCRT5000应用于心率测量上以及PT100应用于温度测量上的原理及优点,阐述了其他各配合电路的组成与工作特点,并且通过仿真进行电路的可行性验证,最后完成实物电路的设计,使得本次课题的预期结果得以实现。 关键词:51单片机;传感器;仿真;AD转换

Abstract Abstract This paper introduced a heart rate and body temperature acquisition system that based on 51 single chip microcomputer. First the internal configurations of 51 single chip microcomputer are introduced. And the paper also tell how 51 single chip microcomputer works and how can we program on it. Then the method of using temperature sensor PT100 to get body temperature is introduced, and we use infrared photoelectric sensor TCRT5000 to get the pulse signal of human body.The design of the circuit mainly comprises sensing circuit, amplifying circuit, filtering and shaping circuit, AD converting circuit, counting and displaying circuit, controlling circuit, power supplying circuit and so on. When the keyboard is pressed, the system starts to get signal. The small signal from PT100 and TCRT5000 will be amplified and shaped. Then ad converter will change the analog signal into digital signal and send to 51 single chip microcomputer. At last LCD1602 will display the information of body temperature and heart rate. Keywords: Piezoelectric sensors;control circuit;counters;Multisim2001 simulation software control circuit. III

智能型温度测量控制系统

河北农业大学 毕业论文﹙设计﹚开题报告 题目智能型温度测量控制系统-开题报告 学生姓名学号 所在院(系)信息工程学院 专业班级通信工程2010140 指导教师 2014年02月23日

题目基于单片机的温度控制系统设计 一、选题的目的及研究意义 温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用,是工业对象中主要的被控参数之一。在单片机温度测量系统中的关键是测量温度、控制温度和保持温度。在日常生活中,也可广泛实用于地热、空调器、电加热器等各种家庭室温测量及工业设备温度测量场合。随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。这次毕业设计选题的目的主要是让生活在信息时代的我们,将所学知识应用于生产生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。通过对温度控制通信系统的设计、制作、了解信息采集测试、控制的全过程,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。培养研发能力,通过对电子电路的设计,初步掌握在给定条件和要求的情况下,如何达到以最经济实用的方法、巧妙合理地去设计工程系统中的某一部分电路,并将其连接到系统中去。提高查阅资料、语言表达能力和理论联系实际的技能。 当今社会温度的测量与控制系统在生产与生活的各个领域中扮着越来越重要的角色,大到工业冶炼,物质分离,环境检测,电力机房,冷冻库,粮仓,医疗卫生等方面,小到家庭冰箱,空调,电饭煲,太阳能热水器等方面都得到了广泛的应用,温度控制系统的广泛应用也使得这方面研究意义非常的重要。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。应用领域非常的广泛,①冷冻库,粮仓,储罐,电信机房,电力机房,电缆线槽等测温和控制领域。 ②轴瓦,缸体,纺机,空调等狭小空间工业设备测温和控制。③汽车空调,冰箱,冷柜以及中低温干燥箱等。④太阳能供热,制冷管道热量计量,中央空调分户热能计量等。温度是一种最基本的环

51单片机测温程序

#include #include #define uint unsigned int #define uchar unsigned char uinti,numone,numtwo,temp; ucharqian,bai,shi,ge,xiaoshu; sbitdq=P2^2; sbitdula=P2^6; sbitwela=P2^7; uchar code list[]={ 0x3f , 0x06 , 0x5b , 0x4f , 0x66 , 0x6d ,0x7d , 0x07 , 0x7f , 0x6f , 0x77 , 0x7c , 0x39 , 0x5e , 0x79 , 0x71,0x80 }; unsigned char code listone[] = {0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; void delay(uint z) { uintx,y; for(x=100;x>0;x--) for(y=z;y>0;y--); } voiddelayone(unsigned char i)

{ while(--i); } /****************************************** 此延时函数针对的是12Mhz的晶振 delay(0):延时518us 误差:518-2*256=6 delay(1):延时7us (原帖写"5us"是错的)delay(10):延时25us 误差:25-20=5 delay(20):延时45us 误差:45-40=5 delay(100):延时205us 误差:205-200=5 delay(200):延时405us 误差:405-400=5*/ voidshuma(uchar temp) { shi=temp/100; ge=temp%100/10; xiaoshu=temp%10; dula=1; P0=list[shi]; dula=0; P0=0xff; wela=1; P0=0xfe;

基于单片机的温度测量系统设计(DOC)

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

基于NTC热敏电阻的温度测量与控制系统设计(论文)

题目名称:基于NTC热敏电阻的温度测量与控 制系统设计 摘要:本系统由TL431精密基准电压,NTC热敏电阻(MF-55)的温度采集,A/D和D/A转换,单片机STC89C51为核心的最小控制系统,LCD1602的显示电路等构成。温度值的线性转换通过软件的插值方法实现。该系统能够测量范围为0~100℃,测量精度±1℃,并且能够记录24小时内每间隔30分钟温度值,并能够回调选定时刻的温度值,能计算并实时显示24小时内的平均温度、温度最大值、最小值、最大温差,且有越限报警功能。由于采用两个水泥电阻作为控温元件,更有效的增加了温度控制功能。 关键词: NTC TL431 温度线性转换 Abstract: The system is composed of TL431 as precise voltage,the temperature acauisition circuit with NTC thermistors (MF-55), the transform circuit of A/D and D/A, the core of the minimum control system with STC89C51, 1the display circuit usingLCD1602, etc. Get the temperature of the linear transformation by the software method. The range of the measure system is 0 ~ 100 ℃, measurement accuracy + 1 ℃.It can record 24 hours of each interval temperature by per 30 minutes selected of temperature.The time can be calculated and real-time display within 24 hours of the average temperature, maximum temperature and minimum temperature, maximum value, and each temperature sensor has more all the way limit alarm function. Due to the two cement resistance as temperature control components, the more effective increase the temperature control function. Keyword: NTC TL431 temperature linear conversion

51单片机最小系统电路介绍

51单片机最小系统电路介绍 单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。 单片机最小系统晶振Y1也可以采用6MHz或者,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。 单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好 口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k。其他接口内部有上拉电阻,作为输出口时不需外加上拉电阻。 设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。计数值N乘以机器周期Tcy就是定时时间t。 " 设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。在每个机器周期的S5P2期间采样T0、T1引脚电平。当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。 标识符号地址寄存器名称 P3 0B0H I/O口3寄存器 PCON 87H 电源控制及波特率选择寄存器 SCON 98H 串行口控制寄存器 SBUF 99H 串行数据缓冲寄存器 TCON 88H 定时控制寄存器 TMOD 89H 定时器方式选择寄存器 TL0 8AH 定时器0低8位 - TH0 8CH 定时器0高8位 TL1 8BH 定时器1低8位 TH1 8DH 定时器1高8位

基于AT89C51单片机的测温系统

引言 本文主要介绍了一个基于AT89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程,并介绍了利用C语言编程对DS18B20的访问,该系统可以方便的实现实现温度采集和显示,使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量。数字温度计与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用STC89C52单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LED数码管实现温度值显示。 .

一、设计要求 通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,C语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。 以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为0.5摄氏度。温度显示采用3位LED数码管显示,两位整数,一位小数。具有键盘输入上下限功能,超过上下限温度时,进行声音报警。 二、基本原理 原理简述:数字温度传感器DS1820把温度信息转换为数字格式;通过“1-线协议”,单片机获取指定传感器的数字温度信息,并显示到显示设备上。通过键盘,单片机可根据程序指令实现更灵活的功能,如单点检测、轮转检测、越数字温度传感器的温度检测及显示的系统原理图如图DS1820限检测等。基于 图 2.1 基于DS1820的温度检测系统框图 三:主要器件介绍(时序图及各命令序列,温度如何计算等) 系统总体设计框图 由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 测温电路设计总体设计框图如图所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 .. . 测温电路设计总体设计框图图3.11.控制模块 AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公

温度检测显示系统设计

毕业设计 设计题目温度监测显示系统设计 系部信息工程系 专业电子信息工程 班级电子0601 学号063001020001 姓名宋天诗 指导老师王珊珊 温度检测显示系统 一、设计要求 1.以传感器,单片机,数码管等元器件,设计一个温度检测系统,并通过显示器件,显示出温度数据。 2.熟练应用protel99,运用protel99设计温度检测显示系统。

3.理解温度检测系统的原理。 二、总体概要设计 本系统是以温度传感器、数码管和单片机为核心元器件建立起来的温度检测显示系统。通过对单片机和传感器的研究,通过A/D转换器的应用,使本系统实现了温度信号到模拟信号再到数字信号的转换。设计中还使用了译码器74LS47、数码管、稳压管等元器件。 温 度 传感器 单片机数码管采集后 的数据 处理后 的数据 检测 温度 图1 系统总体框图 本设计主要包含温度检测和显示电路两个部分。 1.温度检测部分 主要由温度传感器、运算放大器和A/D转换器三部分组成。 温度传感器LM134产生的输入信号由运算放大器ICL7650后,A/D转换器MC14433将运算放大器输出的模拟信号转换成数字信号输入80C51单片机,由于MC14433 的 A/D转换结果是动态分时输出的BCD码,Q0~Q3和DS1~DS4 都不是总线式的。因此,MCS-51 单片机只能通过并行I/O 接口或扩展I/O 接口与其相连。 温度信号检测通道的总增益是由温度传感器、运放和A/D转换器三个环节的增益 做决定。在本设计中,前两个环节的增益是固定的,只用电位器 r W作为整个输入通道的增益环节。这样有利于整个设计的调试。 2.显示电路 本设计采用动态扫描输入法,由单片机8051输出数码管段选信号,经译码器驱动器芯片74LS47驱动后数码管发光显示。 三、各单元模块设计与分析 1.温度传感器 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、 显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 LM134是一种新型的硅集成温度传感器,它不同于一般诸如热敏电阻、温差电偶以及半导体PN结等传统的温度传感器。它是根据下述原理设计而成的,即工作在不同电流密度下的两只相同晶体管,其基、射结的结电压之差△V_(be)与绝对温度T严格成正比。因而该器件的突出优点是在整个工作温区范围内(-55℃~+125℃)输出电流几乎与被测温度成线性关系,这样,就可省去非线性校正网络,使用简便。此外,它还具有下列特点: (1)起始电压低(低于1.5V),而器件耐压较高,因而电源电压适用范围宽(在3~40V之间)。 (2)灵敏度高(1μA/K),输出信号幅度大。一般情况下,不必加中间放大就可直接驱动检测系统,例如双积分型A/D转换器5G14433或ICL7106等。从而消除了中间环节所引入

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

基于51单片机的温度警报器的设计

西安文理学院物理与机械电子工程学院课程设计任务书

目录 摘要 (3) 1 引言 (3) 1.1课题背景 (3) 1.2研究内容和意义 (5) 2 芯片介绍 (5) 2.1 DS18B20概述 (5) 2.1.1 DS18B20封装形式及引脚功能 (6) 2.1.2 DS18B20内部结构 (6) 2.1.3 DS18B20供电方式 (9) 2.1.4 DS18B20的测温原理 (10) 2.1.5 DS18B20的ROM命令 (11) 2.2 AT89C52概述 (13) 2.2.1单片机AT89C52介绍 (13) 2.2.2功能特性概述 (13) 3 系统硬件设计 (13) 3.1 单片机最小系统的设计 (13) 3.2 温度采集电路的设计 (14) 3.3 LED显示报警电路的设计 (15) 4 系统软件设计...................................................15 4.1 流程图........................................................15 4.2 温度报警器程序.................................................16 4.3 总电路图..................................................... 19 5总结 (20)

摘要 随着时代的进步和发展,温度的测试已经影响到我们的生活、工作、科研、各个领域,已经成为了一种非常重要的事情,因此设计一个温度测试的系统势在必行。 本文主要介绍了一个基于AT89C52单片机的数字温度报警器系统。详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现温度的采集和报警,并可以根据需要任意上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当做温度处理模块潜入其他系统中,作为其他主系统的辅助扩展。DS18B20与AT89C52结合实现最简温度报警系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机;温度检测;AT89C52;DS18B20; 1 引言 1.1课题背景 温度是工业对象中主要的被控参数之一,如冶金、机械、食品、化工各类工业生产中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的温度处理要求严格控制。随着科学技术的发展,要求温度测量的范围向深度和广度发展,以满足工业生产和科学技术的要求。 基于AT89C51单片机提高了系统的可移植性、扩展性,利于现代测控、自动化、电气技术等专业实训要求。以单片机为核心设计的温度报警器,具有安全可靠、操作简单方便、智能控制等优点。 温度对于工业生产如此重要,由此推进了温度传感器的发展。温度传感器主要经过了三个发展阶段[1]: (1)模拟集成温度传感器。该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。此种传感器具有功能单一(仅测量温度)、

单片机最小系统制作方案(适合初学者)

教学】单片机最小系统制作方案(适合初学者) 在写本单片机教程前,先自我介绍一下,我今年刚28岁,从事单片机教学二年。教学经验不足,写的不好,还请谅解,但是,我一定会尽力的。同时也希望大家能把我当朋友,共同进退。 本人喜欢上网,不喜欢运动,所以比较胖。我很喜欢在房间里做自己想做的事,如做网站,并建有自己的网站:〖教师吧〗:https://www.360docs.net/doc/712167387.html,保证长期有效。QQ是569 43772,E-MAIL:99xsw@https://www.360docs.net/doc/712167387.html, 单片机最小系统制作 一、确定任务 开发单片机最小系统 二、任务分析: 该系统具有的功能: (1)具有2位LED数码管显示功能。 (2)具有八路发光二极管显示各种流水灯。 (3)可以完成各种奏乐,报警等发声音类实验。 (4)具有复位功能。 三、功能分析 (1)两位LED数码管显示功能,我们可以利用单片机的P0口接两个数码管来现这个功能;(2)八路发光二极管显示可以利用P1口接八个发光二极管实现这个功能; (3)各种奏乐、报警等发声功能可以采用P2.0这个引脚接一蜂鸣器来实现。 (4)利用单片机的第9脚可以设计成复位系统,我们采用按键复位;利用单片机的18、19脚可以设计成时钟电路,我们利用单片机的内部振荡方式设计的。 四、设计框图

五、硬件电路设计 根据本系统的功能,和单片机的工作条件,我们设计出下面的电路图。

六、元件清单的确定: 数码管:共阴极2只(分立) 电解电容:10UF的一只 30PF的电容2只 220欧的电阻9只 4.7K的电阻一只 1.2K的电阻一只 4.7K的排阻一只, 12MHZ的晶振一只 有源5V蜂名器一只 AT89S51单片机一片 常开按钮开关1只 紧锁座一只(方便芯取下来的,绿色的) 发光二极管(5MM红色)8只 万能板电路版15*17CM S8550三极管一只 4.5V电池盒一只,导线若干。 七、硬件电路的焊接 按照原理图把上面的元件焊接好,详细步骤省略。 八、相关程序编写 针对上面的电路原理图,设计出本系统的详细功能: (1)、第一个发光二极管点亮,同时数码管显示“1”。 (2)、第二个发光二极管点亮,同时数码管显示“2”。 (3)、依次类推到第八个发光二极管点亮,同时数码管显示“8”。以上出现的是流水灯的效果

基于AT89C51单片机的温度传感器

基于AT89C51单片机的温度传感器 目录 摘要.............................................................. I ABSTRACT........................................................... I I 第一章绪论 (1) 1.1 课题背景 (1) 1.2本课题研究意义 (2) 1.3本课题的任务 (2) 1.4系统整体目标 (2) 第二章方案论证比较与选择 (3) 2.1引言 (3) 2.2方案设计 (3) 2.2.1 设计方案一 (3) 2.2.2 设计方案二 (3) 2.2.3 设计方案三 (3) 2.3方案的比较与选择 (4) 2.4方案的阐述与论证 (4) 第三章硬件设计 (6) 3.1 温度传感器 (6) 3.1.1 温度传感器选用细则 (6) 3.1.2 温度传感器DS18B20 (7) 3.2.单片机系统设计 (13)

3.3显示电路设计.................................错误!未定义书签。 3.4键盘电路设计................................错误!未定义书签。 3.5报警电路设计.................................错误!未定义书签。 3.6通信模块设计.................................错误!未定义书签。 3.6.1 RS-232接口简介..............................错误!未定义书签。 3.6.2 MAX232芯片简介.............................错误!未定义书签。 3.6.3 PC机与单片机的串行通信接口电路.............错误!未定义书签。 第四章软件设计..................................错误!未定义书签。 4.1 软件开发工具的选择..........................错误!未定义书签。 4.2系统软件设计的一般原则.......................错误!未定义书签。 4..3系统软件设计的一般步骤......................错误!未定义书签。 4.4软件实现....................................错误!未定义书签。 4.4.1系统主程序流程图.........................错误!未定义书签。 4.4.2 传感器程序设计...........................错误!未定义书签。 4.4.3 显示程序设计.............................错误!未定义书签。 4.4.4 键盘程序设计.............................错误!未定义书签。 4.4.5 报警程序设计.............................错误!未定义书签。 4.4.6 通信模块程序设计.........................错误!未定义书签。 第五章调试与小结..................................错误!未定义书签。致谢...............................................错误!未定义书签。参考文献...........................................错误!未定义书签。附录...............................................错误!未定义书签。系统电路图.......................................错误!未定义书签。系统程序.........................................错误!未定义书签。

温度检测显示及报警装置设计与制作

目录 第一章绪论 (1) 1.1课题背景与意义 (1) 1.2设计题目介绍 (1) 1.3设计目的 (1) 1.4设计内容和要求 (1) 第2章设计原理 (3) 2.1系统总体框架设计 (3) 2.2系统硬件设计 (3) 2.2.1温度传感器DS18B20电路 (3) 2.2.2蜂鸣器报警电路 (4) 2.2.31602液晶显示显示电路 (5) 2.2.4复位电路 (5) 2.3系统软件设计 (6) 第3章系统调试及结果分析 (8) 3.1硬件调试 (8) 3.2软件调试 (8) 3.3结果分析 (9) 参考文献 (10) 附录 (11) 附录一系统原理图 (11)

第一章绪论 1.1课题背景与意义 温度是一个基本的物理量,在工业生产和实验研究中,如机械、食品、化工、电力、石油、等领域,温度常常是表征对象和过程状态的重要参数,是各门学科研究中经常遇到和必须测量的物理量。本质上讲,温度就是衡量物体冷热程度的物理量,是物体分子热运动平均动能的标准。它是国际单位制规定的七个基本单位之一。温度概念的建立以及温度的测量都是以热平衡为基础的,当两个冷热程度不同的物体接触后就会产生导热换热,换热结束后,两物体处于热平衡状态,此时它们具有相同的温度,这就是温度最基本的性质。因此对温度进行准确测量和有效控制已成为人们在科学研究和生产实践中面临的重要课题之一。 1.2设计题目介绍 设计并开发能自动测温并具有显示和报警系统的温度测量控制系统,要求以18b20做为温度测量传感器,以数码管、点阵、1602、全彩TFT屏做为温度等信息显示装置,以蜂鸣器为报警装置,能实现实时温度显示、温度上下限设定、温度上下限报警等功能。 1.3设计目的 测控系统技术是自动控制理论和微型计算机原理和接口等技术在工业生产过程中实现自主测量自动控制的专门技术,其以自动控制理论为基础,以电子技术、传感器原理、计算机原理及接口等课程内容为辅助,通过对测控系统的设计实践环节培养学生理论应用能力、总结归纳能力以及自我学习能力,从而进一步提高学生工程实践能力和创新意识的培养。 1.4设计内容和要求 (1)单片机开发仪提供的18B20温度传感器做为温度采集传感器。对温度进行实时采集。 (2)本组(第三组)使用1602液晶屏做为信息显示装置。

基于单片机的温度测量控制系统设计

基于单片机的温度测量控制系统设计

目录 1引言 (2) 1.1问题的提出…………………………………………………………… (2) 1.1.1什么是温度控制…………………………………………………………… (2) 1.2设计目的…………………………………………………………… (2) 2设计方案 (3) 2.1硬件设计方案…………………………………………………………… (3) 2.2软件设计方案…………………………………………………………… (3) 3硬件设计 (5) 3.1主控制部分AT89S51的设计方案 (5) 3.2温度采集模块…………………………………………………………… (7) 3.3显示模块…………………………………………………………… (7) 4软件设计 (9) 4.1温度采集…………………………………………………………… (9) 4.2键盘输入…………………………………………………………… (10) 4.3 LCD显

示…………………………………………………………… (11) 5总结 (12) 6参考文献 (15) 附录1设计原理图 (14) 附录2设计程序 (15)

1引言 1.1问题的提出 温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。 1.1.1什么是温度控制 温度控制系统由温控器和热电偶组成,热电偶检测温度并转换成电信号传给温控器,温控器根据所设定的温度发出控制信号,温度高于设定温度上限停止加热系统或开启降温系统,低于设定温度下线停止降温系统或开启加热系统。 1.2设计目的 本设计以AT89C51单片机为核心的温度控制系统的工作原理和设计方法。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。由键盘输入预设温度,比较实际环境温度与预设温度再由单片机做出相应的处理已以达到温度控制的目的。

51单片机_最小系统免费下载

单片机是一门实践性较强的技术,很多初学者在学习单片机技术开发的时候往往一头雾水,不知何从下手。为此,笔者结合自己使用单片机多年的经验,特意设计了单片机开发所需的Study-c 整机和硬件套件,并结合套件精心编写了单片机从入门到精通系列教程。通过讲述单片机原理、电路设计、应用开发软件工具、编写实验实例让读者全面接触单片机技术。教程编排上由浅入深,循序渐进,内容力求完整、实用、趣味并存,使读者在轻松愉快的学习过程中逐步提高单片机软硬件综合设计水平。 一、内容提要 本讲主要向大家介绍51 系列单片机的最小系统的实现并通过编写程序来实现对单片机IO 口的输出控制。以点亮外部连接的LED(发光二极管)为例,简要的介绍单片机的原理、最小系统的组成,并通过简单的C51 程序设计来讲述编译软件Keil的使用并下载Hex 文件烧写单片机。 二、原理简介 在了解原理之前,首先让我们思考一个问题,什么是单片机,单片机有什么用?这是一个有意思的问题,因为任何人都不能给出一个被大家都认可的概念,那到底什么是单片机呢?普遍来说,单片机又称单片微控制器,是在一块芯片中集成了CPU(中央处理器)、RAM(数据存储器)、ROM(程序存储器)、定时器/ 计数器和多种功能的I/O(输入/ 输出)接口等一台计算机所需要的基本功能部件,从而可以完成复杂的运算、逻辑控制、通信等功能。在这里,我们没必要去找到明确的概念来解析什么是单片机,特别在使用C 语言编写程序的时,不用太多的去了解单片机的内部结构以及运行原理等。从应用的角度来说,通过从简单的程序入手,慢慢的熟悉然后逐步深入精通单片机。 在简单了解了什么是单片机之后,然后我们来构建单片机的最小系统,单片机的最小系统就是让单片机能正常工作并发挥其功能时所必须的组成部分,也可理解为是用最少的元件组成的单片机可以工作的系统。对51 系列单片机来说,最小系统一般应该包括:单片机、时钟电路、复位电路、输入/ 输出设备等(见图1)。 图1 单片机最小系统框图 三、电路详解 依据上文的内容,设计51 系列单片机最小系统见图2。

相关文档
最新文档