声超常材料与声隐身斗篷

声超常材料与声隐身斗篷
声超常材料与声隐身斗篷

隐身技术的发展及应用

隐身技术的发展及应用 摘要:介绍隐身技术带来了军事装备的变革,并探讨有源和无源隐身原理,并重点介绍了无源隐身中利用理想对消特性、频率差将破坏相干性、相位差的影响、幅度差的影响,以规避雷达对目标的检测。 接着分析了隐身技术的现状及其原理,分别从可见光隐身技术、声波隐身技术、雷达隐身技术、激光隐身技术及红外辐射隐身技术方面介绍了当前所采用隐身技术的原理、方法及其应用。通过采用可见光、红外及激光隐身兼容技术,更好的达到隐身的效果,即可得隐身兼容技术才是隐身技术的发展方向。 隐身技术迅猛发展,新的隐身方法和技术应运而生。仿生技术、等离子体隐身技术、“微波传播指示”技术及智能隐身技术丰富和扩展了隐身技术的领域。在新的隐身方法中,重点介绍了等离子体隐身技术这一典型事例,通过介绍其原理、方法,以及在军事装备上的应用,以便我们把握这一隐身技术的发展方向。 隐身材料的开发和利用一直是隐身技术发展的重要内容,是飞机等隐身兵器实现隐身的基石,接下来介绍了正在研制开发的新型隐身材料:宽频带吸波剂、高分子隐身材料、纳米隐身材料、手征材料、结构吸波材料及智能隐身材料。新的隐形材料的研制,必将推动隐身技术迈向新的台阶。 隐身技术与反隐身技术的发展,是相互制约、相互促进的,无论哪一方有新的突破,都将引起另一方的重大变革。最后,我们探讨了当今反隐身技术的发展,以及探讨反隐身技术的方法:采用长波低频雷达探测技术、采用激光雷达探测技术、采用光电探测技术、采用数据融合技术、采用自动化和智能化技术。希望隐身技术和反隐身技术,这对矛和盾,能够加快我国的武器装备现代化的进程。 关键词:有效散射截面积(RCS)无源及无源隐身技术等离子体技术

声表面波滤波器原理和应用

声表面波滤波器原理及应用 1.声表面波滤波器(SAWF)的结构和工作原理 声表面波滤波器(SAWF)是利用压电材料的压电效应和声特性来工作的。具有压电效应的材料能起到换能器的作用,它可以将电能转换成机械能,反之亦然。压电效应包括正压电效应和反压电效应。所谓正压电效应是指压电材料受力变形产生电荷,因而产生电场的效应,即由机械能转换为电能,反压电效应是指压电材料在外加电场的作用下,产生机械形变的效应,也即由电能转换为机械能。 声表面波滤波器(SAWF)的结构如图2—12所示。这种滤波器的基片是由压电材料(如铌酸锂或石英晶体)制成,在基片上蒸镀两组“叉指电极”,一般由金属薄膜用光刻工艺刻成。左侧接信号源的一组称为发送换能器,右侧接负载的一组称为接收换能器,图中a、b分别为电极宽度和极间距离,W为相邻叉指对的重叠长度,称为“叉指孔径”。当交变的电信号u s 加到发送换能器的两个电极上时,通过反压电效应,基片材料就会产生弹性形变,这个随信号变化的弹性波,即“声表面波”,它将沿着垂直于电极轴向(图中x方向)向两个方向传播,一个方向的声表面波被左侧的吸声材料吸收,另一方向的声表面波则传送到接收换能器,由正压电效应产生了电信号,再送到负载R L。但叉指换能器的形状不同时,滤波器对不同频率信号的传送与衰减能力就会不一样。

图2—12 声表面波滤波器结构示意图 为了简便起见,仅分析“均匀”型叉指换能器的频率特性。所谓“均匀”型就是指图2—12中各叉指对的参数a、b、W 都相同,设换能器有n+1个电极,并把换能器分为n节或N个周期(N=n/2),各电极将激发出相同数量的声表面波,声表面波的波长由指装点基的宽度a和间隔b决定,声表面波的频率与传播速度有关,其自然谐振频率(或机械谐振频率)为 v是声表面波的传播速度,约为3×103m/s,比光速小很多,比声速高9倍多。在f0一定,速度v低时(a+b)就可以小,所以声表面波器件的尺寸可以做得很小,但f0很低,则(a+b)就增大,SAWF的尺寸就增大,因此它适合工作在高频或超高频段。 叉指换能器的尺寸决定后,换能器的f0就固定了,当外加信号的频率等于f0时,换能器各节电极所激发的声表面波同相叠加,振幅最大,即所激发出的声表面波幅值最大;当外加信号的频率偏离f0时,换能器各节电极所激发的声表面波振

隐身材料的研究进展及存在问题

隐身斗篷的研究进展及存在问题 摘要:隐身斗篷,由硅纳米材料制造而成,利用该特殊材料折射或吸收大部分光线,从而达到隐形的目的。本文主要总结归纳现如今应用于隐身斗篷的各种主要材料,详细论述了基于超材料特殊电磁特性的隐身技术,简单介绍部分材料应用原理。 关键词:影身斗篷,超材料,限元分析软件,均匀介质 1. 隐身斗篷的应用前景 隐形斗篷我其实是在电影Harry Potter 中第一次知道,它常被哈利拿来干一些从霍格华兹魔法学校里偷跑出来如此的事情。现实中科学家们也一直在研究它。在不远的将来,隐身斗篷将会真的存在于现实世界中了。而且隐身斗篷的应用前景非常广。隐身技术在外科手术,军事航空等多个领域中获得广泛的应用。例如, “地震斗篷”——能够让冲击波、暴风浪或者海啸在所遮蔽的物体面前变成“瞎子”,进而达到保护建筑物的目的。同时为提高战场生存能力, 隐身技术越来越多地应用于军用装备上。随着军用探测技术的不断进步, 对军用装备隐身性能的要求不断提高, 传统的隐身技术已经不能满足要求。 2. 隐身材料及其隐身原理 2.1 超材料 众所周知,介电常数和磁导率是用于描述物质电磁特性的基本物理量,决定着电磁波在物质中的传播特性。迄今为止,自然界中天然物质的介电常数和磁导率均大于或等于1。2000年,Smith 等人利用金属铜的开环共振器和导线组成2 维周期性结构,首次在实验室制造出微波频段具有负介电常数和负磁导率的介质材料,引起科学界的轰动。随后,双负材料、单负材料、手性材料、理想磁导体和理想电导体等材料成为科学研究的热点,并将这些材料统称为超材料(metamaterials)。由于超材料具有一系列特殊的电磁特性,因而具有广阔的应用前景。 2.1.1超材料椭圆柱电磁斗篷 文献[1] 利用有限元分析软件Comsol Multip hysics 分析了超材料介电常数偏差、磁导率偏差 和损耗对电磁斗篷场分布的影响,并讨论了在电 磁斗篷内放置不同电磁特性的物体后斗篷外电 场分布的变化。 图1 为TE 波辐射下超材料椭圆柱电磁斗篷 的计算模型。超材料椭圆柱是沿z 轴放置的无限 长空心柱,其横截面为xOy 平面,椭圆中心为坐标 原点,内外径短轴分别为a 和b ,长轴分别为ka 和 kb ,其中, k 为长轴与短轴之比,仿真时取k = 6 , a =0. 1 m ,b = 0. 2 m 。在图1 所示的左边完全匹配 层( PML) 的内表面施加沿z 轴方向电流,激励起 沿x 轴方向(水平) 传播的频率为2 GHz 的TE 波。计算区域四周是PML 吸收层,斗篷内外均为空气。 通过文献[1]计算可知,超材料介电常数和磁导率空间分布如图2所示。图2 (a) 为介电常数分量在xOy 平面上的空间分布,由图可以看出,在x = 0 或y = 0 的平面上 xx 最小,同时在两图1 TE 波辐射下超材料椭圆柱电磁斗篷的计

隐身材料的应用与研究前景

隐身材料的应用与研究前景 摘要:探讨了隐身材料的种类与现状和存在问题,未来研究及发展方向等,介绍了雷达隐身、红外隐身等几种常见的隐身技术,分析未来隐身技术的发展趋势 关键词:隐身材料隐身技术 正文: 隐身材料是隐身技术的重要组成部分,在装备外形不能改变的前提下,隐身材料(stealth material)是实现隐身技术的物质基础。武器系统采用隐身材料可以降低被探测率,提高自身的生存率,增加攻击性,获得最直接的军事效益。因此隐身材料的发展及其在飞机、主战坦克、舰船、箭弹上应用,将成为国防高技术的重要组成部分。对于地面武器装备,主要防止空中雷达或红外设备探测、雷达制导武器和激光制导炸弹的攻击;对于作战飞机,主要防止空中预警机雷达、机载火控雷达和红外设备的探测,主动和半主动雷达、空对空导弹和红外格斗导弹的攻击。为此,常需要雷达、红外和激光隐身技术。 隐身材料的分类 隐身材料按频谱可分为声、雷达、红外、可见光、激光隐身材料。按材料用途可分为隐身涂层材料和隐身结构材料。 1.雷达吸波材料 雷达吸波材料是最重要的隐身材料之一,它能吸收雷达波,使反射波减弱甚至不反射雷达波,从而达到隐身的目的。如日本研制的一种由电阻抗变换层和低阻抗谐振层组成的宽频带高效吸波涂料,其中变换层由铁氧体和树脂混合组成,谐振层由铁氧体导电短纤维和树脂组成,在1~20吉赫的雷达波段上吸收率达20分贝以上。雷达吸波材料中尤以结构型雷达吸波材料和吸波涂料最为重要,国外目前已实用的主要也是这两类隐身材料。雷达吸波涂料主要包括磁损性涂料、电损性涂料。 (1)磁损性涂料磁损性涂料主要由铁氧体等磁性填料分散在介电聚合物中组成。目前国外航空器的雷达吸波涂层大都属于这一类。这种涂层在低频段内有较好的吸收性。美国Condictron公司的铁氧体系列涂料,厚1mm,在2~10GHz内衰减达10~12dB,耐热达500℃;Emerson公司的Eccosorb Coating 268E厚度1.27mm,重4.9kg/m2,在常用雷达频段内(1~16GHz)有良好的衰减性能(10dB)。磁损型涂料的实际重量通常为8~16kg/m2,因而降低重量是亟待解决的重要问题。 (2) 电损性涂料电损性涂料通常以各种形式的碳、SiC粉、金属或镀金属纤维为吸收剂,以介电聚合物为粘接剂所组成。这种涂料重量较轻(一般可低于4kg/m2),高频吸收好,但厚度大,难以做到薄层宽频吸收,尚未见纯电损型涂层用于飞行器的报道。90年代美国Carnegie-Mellon大学发现了一系列非铁氧体型高效吸收剂,主要是一些视黄基席夫碱盐聚合物,其线型多烯主链上含有连接二价基的双链碳-氮结构,据称涂层可使雷达反射降低80%,比重只有铁氧体的1/10,有报道说这种涂层已用于B-2飞机。 2.复合型红外隐身材料 复合型红外隐身材料主要有涂料型隐身材料、多层隐身材料和夹芯材料。

隐身材料

隐身材料 0 前言 1 雷达隐身材料 1.1 涂敷型吸波材料 1.2 结构型吸波材料 2 红外隐身材料 2.1 控制比辐射率 2.2 控制温度 3 激光隐身材料 3.1 激光隐身原理 3.2 激光隐身材料技术 3.3 激光隐身材料的发展 4 多波段复合兼容隐身材料 4.1 雷达/ 红外兼容隐身材料 4.2 红外/ 激光兼容隐身材料 4.3 雷达/ 激光兼容隐身材料 4.4 雷达/ 红外/ 激光兼容隐身材料 5 隐身材料发展前沿 5.1 纳米隐身材料 5.1.1 纳米材料的特性 5.1.2 纳米复合隐身材料的隐身机理 5.1.3 纳米复合隐身材料的复合新技术5.2 智能隐身材料 5.2.1 可见光智能隐身材料 5.2.2 红外智能隐身材料 5.2.3 智能蒙皮

5.2.4 智能隐身材料的发展趋势 6 展望 0 前言 2011年1月11日,中国歼20隐形战斗机进行首次升空试飞,受到世界关注,也引起了人们对隐身技术的兴趣。随着现代各种光电磁探测技术的迅猛发展,传统的作战武器所受到的威胁越来越严重。绝大多数重型武器(飞机、坦克、火炮、军舰、导弹、航天器)主要是金属装置,最易被各种光电磁热探测,隐身技术作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段,已经成为海、陆、空立体化现代战争中最重要、最有效的突防战术技术手段,材料的隐身手段显得尤为重要,并受到世界各国的高度重视。 世界各军事强国都在积极发展隐身技术, 隐身兵器发展计划推陈出新, 新一代隐身兵器不断涌现。美国的隐身技术发展较快, 目前居世界领先地位, 其中 F-117A、B-2、F-22等隐身飞机代表着当今世界隐身兵器先进水平; 正在研制的一大批隐身武器, 如联合攻击战斗机(JSF)、M计划(旨在提高海军舰艇隐身性能的秘密计划)、AGM-137三军防区外隐身攻击导弹等都将具备良好的隐身性能。俄罗斯早在1984年开始研制的米格1.42多用途隐身战斗机(MFI)可与美国的 F-22相媲美, 1.44隐身战斗机优于F-22, LFI和S-54 与美国的联合攻击战斗机( JSF)相当。另外, 法国、德国、日本、意大利等都有各自研制隐身武器的秘密计划, 武器种类包括攻击机、装甲战车、军舰、高超音速攻击导弹、无人航天器

声表面波简介

声表面波简介 声表面波技术是六十年代末期才发展起来的一门新兴科学技术,它是声学和电子学相结合的一门边缘学科。由于声表面波的传播速度比电磁波慢十万倍,而且在它的传播路径上容易取样和进行处理,因此,用声表面波去模拟电子学的各种功能,能使电子器件实现超小型化和多功能化。同时,由于声表面波器件在甚高频和超高频波段内以十分简单的方式提供了其它方法不易得到的信号处理功能,因此,声表面波技术在雷达、通信和电子对抗中得到了广泛的应用。 声表面波是沿物体表面传播的一种弹性波。早在九十多年前,人们就对这种波进行了研究。1885 年,瑞利根据对地震波的研究,从理论上阐明了在各向同性固体表面上弹性波的特性。但由于当时的科学技术水平所限,这种弹性表面波一直没有得到实际上的应用。直到六十年代,由于半导体平面工艺以及激光技术的发展,出现了大量人造压电材料为声表面波技术的发展提供了必要的物质和技术基础。 1949 年,美国贝尔电话实验室发现了LiNbO3单晶。1964 年产发表了激发弹性表面波平面结构换邹器的专利。特别应该指出的是,1965 年,怀特(R . M.white)和沃尔特默(F.W.voltmer )在应用物理杂志上发表了题为“一种新型表面波声-电换能器― 叉指换能器”的论文,从而取得了声表面波技术的关键性突破。 声表面波器件的基本结构和工作原理 声表面波器件是在压电基片上制作两个声一电换能器―叉指换能器。所谓叉指换能器,就是在压电基片表面上形成形状像两只手的手指交叉状的金属图案,它的作用是实现声一电换能。声表面波器件的工作原理是,基片左端的换能器(输入换能器)通过逆压电效应将愉入的电信号转变成声信号,此声信号沿基片表面传播,最终由基片右边的换能器(输出换能器)将声信号转变成电信号输出。整个声表面波器件的功能是通过对在压电基片上传播的声信号进行各种处理,并利用声一电换能器的待性来完成的。 声表面波技术有如下的特点: 第一,声表面波具有极低的传播速度和极短的波长,它们各自比相应的电磁波的传播速度的波长小十万倍。在VHF 和UHF 绳段内,电磁波器件的尺寸是与波长相比拟的。同理,作为电磁器件的声学模拟声表面波器件,它的尺寸也是和信号的声波波长相比拟的。因此,在同一频段上,声表面波器件的尺寸比相应电磁波器件的尺寸减小了很多,重量也随之大为减轻。例如,用一公里长的微波传愉线所能得到的延迟,只需用传输路径为1 。m 的声表面波延迟线即可完成。这表声表面波技术能实现电子器件的超小型化。 第二,由于声表面波系沿固体表面传播,加上传播速度极慢,这使得时变信号在给定瞬时可以完全呈现在晶体基片表面上。于是当信号在器件的输入和输出端之间行进时,就容易对信号进行取样和变换。这就给声表面波器件以极大的灵活性,使它能以非常简单的方式去.完成其它技术难以完成或完成起来过于繁重的各种功能。比如脉冲信号的压缩和展宽,编码和译码以及信号的相关和卷积。一个实际例子是1976 年报道的一个长为一英寸的声表面波卷积器,它具有使两个任意模拟信号进行卷积的功能,而它所适应的带宽可达100MHz ,时带宽积可达一万。这样一个卷积器可以代替由几个快速傅里叶变换(FFT )链作成的数字卷积器,即实际上可以代替一台专用卷积计算机。此外,在很多情况下,声表面波器件的性能还远远超过了最好的电磁波器件所能达到的水平。比如,用声表面波可以作成时间-带宽乘积大于五千的脉冲压缩滤波器,在UHF 频段内可以作成Q 值超过五万的谐振腔,以及可以作成带外抑制达70dB 、频率达1 低Hz 的带通滤波器。 第三,由于声表面波器件是在单晶材料上用半导体平面工艺制作的,所以它具有很好的一致性和重复性,易于大量生产,而且当使用某些单晶材料或复合材料时,声表面波器件具有极高的温度稳定性。 第四,声表面波器件的抗辐射能力强,动态范围很大,可达100dB 。这是因为它利用的是晶体表面的弹性波而不涉及电子的迁移过程。

简介隐身涂料的分类和应用技术

简介隐身涂料的分类和应用技术 编号2015的国产第四代战斗机歼-20进行首次试飞。 2014年12月19日下午,最新一架编号2015的国产第四代战斗机歼-20首飞成功。这与2013号歼-20首飞成功相 距不到一月。据悉,中国目前已曝光6架歼-20,而2014年一年时间内,从2011号到2015号(2014号尚未公开亮相),4架歼-20成功首飞,说明歼-20项目进展顺利,而2015号歼-20的出现将进一步加快歼-20服役的脚步。与此同时,随着中国歼-20成为继美国的F-22、俄罗斯的T-50之后的又一个隐形战机家族成员,隐身涂料也成为大家津津乐道的话题。 这里所说的隐身并不是科幻作品中的“隐身”,而是军事术语中指控制目标的可观测性或控制目标特征信号的技 巧和技术的结合。随着科学技术的发展,隐身技术的应用日益广泛。隐身技术是为了减少飞行器的雷达、红外线、光电、目视等观测特征而在设计中采用的专门技术,采用隐身技术是为了飞行器在突防时不易被敌方探测器发现,从而增强攻击的突然性,提高飞机的生存力和作战效能。 目前,最具挑战性的隐身技术是隐身涂料的开发与应用。隐身涂料作为一种最方便、最经济、极强适应性的隐身技术已经在航空航天、军事装备上得到广泛应用。近年来,美、英、俄、法等军事强国纷纷投入巨资加大隐身涂料的开

发力度。显而易见,隐身涂料的发展不仅标志着一个国家科学领域的进步,而且关系到国防力量的巩固,现阶段存在巨大的生存和发展空间。https://www.360docs.net/doc/7d2184693.html, 隐身涂料是固定涂覆在武器系统结构上的隐身材料,按其功能可分为雷达隐身涂料、红外隐身涂料、可见光隐身涂料、激光隐身涂料、声纳隐身涂料和多功能隐身涂料。隐身涂层要求具有:较宽温度的化学稳定性;较好的频带特性;面密度小,重量轻;粘结强度高,耐一定的温度和不同环境变化。https://www.360docs.net/doc/7d2184693.html, 雷达隐身涂料https://www.360docs.net/doc/7d2184693.html, 雷达发射的电磁波碰到金属材料时易感应生成同频电磁流并建立电磁场,向雷达二次辐射能量。雷达隐身技术的研究主要集中在结构设计和吸波材料两个方面。在材料隐身设计中,有两个关键问题:一是如何让入射波能够最大限度地进入材料内部而不被表面反射;二是如何让进入材料内部的电磁波能够迅速地被材料吸收衰减。雷达隐身涂料就要最大限度地消除被雷达勘测到的可能性。目前,应用于各种武器装备的吸波涂料比较多,下面简要介绍几种。 铁氧体吸波涂料 包括镍锌铁氧体、锰锌铁氧体、锂锌铁氧体、锂钛铁氧体和钡系铁氧体等,是发展最早、应用最广的涂料品种。由于强烈的铁磁共振吸收和磁导率的频散效率,铁氧体吸收材

隐身材料发展历史综述和应用前景展望

1.绪论 1.1前言 随着无线电技术和雷达探测技术的迅速发展,电子和通信设备向着灵敏、密集、高频以及多样化的方向发展,这不仅引发电磁波干扰、电磁环境污染,更重要的是导致电磁信息泄漏,军用电子设备的电磁辐射有可能成为敌方侦察的线索。为消除或降低导弹阵地的电磁干扰、减少阵地的电磁泄漏,需要大大提高阵地在术来战争中的抗电磁干扰及生存能力。高放能、宽频带的电磁波吸波/屏蔽材料的研究开发意义重大。 吸波材料是一种重要的军事隐身功能材料,它的基本物理原理是,材料对入射电磁波进行有效吸收,将电磁波能量转化为热能或其他形式的能量而消耗掉。该材料应该具备两个特性,即波阻抗匹配性和衰减特性。波阻抗匹配特性即入射电磁波在材料介质表面的反射系数最小,从而尽可能的从表面进人介质内部;衰减特性指进入材料内部的电磁波被迅速吸收。损耗大小,可用电损耗因子和磁损耗因子来表征。对于单一组元的吸收体,阻抗匹配和强吸收之间存在矛盾,有必要进行材料多元复合,以便调节电磁参数,使它尽可能在匹配条件下,提高吸收损耗能力。吸波材料按材料的吸波损耗机理可分为电阻型、电介质和磁介质型。吸波材料的性能主要取决于吸波剂的损耗吸收能力,因此,吸波剂的研究一直是吸波材料的研究重点。 1.2隐身材料定义 随着人们生活水平的提高,各种电器的频繁使用,使我们周围的电磁辐射日益增强,电磁污染成为世界环境的第五害,严重的危害了人类的身体健康。电磁辐射对人的作用有5种:热效应、非热效应、致癌、致突变和致畸作用。因此,在建筑空间中,各类电子,电器以及各种无线通信设备的频繁使用,无时无刻不产生电磁辐射,电磁污染已经引起人们的广泛关注。 电磁吸波材料即隐身材料最早在军事上隐身技术中应用。隐身材料是实现武器隐身的物质基础。武器系统采用隐身材料可以降低被探测率,提高自身的生存率,增加攻击性,获得最直接的军事效益。因此隐身材料的发展及其在飞机、主战坦克、舰船、箭弹上应用,将成为国防高技术的重要组成部分。对于地面武器

声表面波器件工艺原理-9倒装焊工艺原理

九,声表器件倒装焊工艺原理 序:倒装芯片(FC)技术,是在芯片的焊接区金属上制作凸焊点,然后将芯片倒扣在 外壳基座上,以实现机械性能和电性能的连接,由于FC是通过凸焊点直接与底座相连,因此与其它互连技术相比,FC具有最高的封装密度、最小的封装尺寸(线焊可焊的最小陶瓷外壳为3×3mm,而FC可以作到芯片级)、最好的高频性能(电感小)、最小的高度、最轻的重量,以及产品高可靠、生产高工效等。倒装焊工艺:主要由UBM的形成、凸点的制作、倒装焊接三部分组成。 (一)UBM的形成: 当凸焊点材料与芯片上的焊接区金属不能很好浸润粘附时(或接触电阻大,或热匹配差,或两种材料间易形成会导致键合强度降低的金属间化合物),需要在凸焊点与芯片压焊块之间置入一层既能与芯片焊接区金属良好粘附、又能与凸焊点良好浸润、还能有效阻挡两者之间相互反应扩散的金属膜(UBM),因我们无法找到可同时满足上述要求的材料,所以通常UBM由多层金属膜组成。(说明:与凸点连接的还有底座上相应的焊接点,由于在底座制作时该部位已镀有多层金属,能满足要求,固在此不于讨论。) 1,对UBM的各层要求及材料选择: 1)粘附层:要求与铝膜及钝化层间的粘附性好,低阻接触,热膨涨系数接近,热应力小。常选用材料有:Cr、Ti、Ti-W、Al、V等,因它们与Al浸润性很好,固该层可较薄。2)扩散阻挡层:能有效阻挡凸焊点材料与铝间的相互扩散,以免形成不利的金属间化合物,特别是金凸焊点,在高温下与铝可生成Al2Au、AlAu、AlAu2、Al2Au5等脆性金属间化合物及在接触处相互扩散形成空洞,导致键合强度降低甚至失效。该层常用材料有:Ti、Ni、Cu、Pd、Pt、Ti-W等。(当用软焊料如PbSn作凸点时,由于其回流时会吃掉浸润层,直接与阻挡层接触;此时阻挡层应足够厚,且与凸点相浸润,不反应产生有害物) 3)浸润层:要求一方面能和凸焊点材料良好浸润,可焊性好,且不会形成不利于键合 的金属间化合物;另一方面还能保护粘附层和阻挡层金属不被氧化、粘污。该层常选用薄的金膜、金的合金膜或较厚的铜膜(用于焊料凸焊点)。 2,UBM的制作: 1)UBM的组合选择:对于金凸焊点,常选用的UBM为:Cr/Ni/Au、Ti/Ni/Au、Ti/Pt/Au、Ti-W/Au等;对于PbSn凸焊点,常选用的UBM有:Ti-W/Cu、Ti-W/Au/Cu、Cr/Cr-Cu/Cu、Al/Ni-V/Cu、Ti/Cu、Ti-W/Cu/化学镀Ni等。 2)UBM的制作方法:UBM的制作是凸焊点制作的关键工艺,其质量好坏直接影响凸焊点质量、倒装焊接的成功率和封装后凸焊点的可靠性。由于UBM是多层金属,为防止薄膜间形成氧化膜夹层,对UBM的制作基本上都是采用溅射或电子束蒸发,在高真空腔内一次完成(当需要制作厚金属膜时,则采用电镀或化学镀)。为防止多层金属腐蚀时造成凸点脱落,可采用剥离技术(电镀法制凸点除外),既可解决腐蚀不易控制,又可简化工艺,提高芯片凸点可靠性;这对换能器裸露于芯片表面的声表器件尤其适宜。 (二)凸焊点制作: 1,凸焊点常用材料: 要具有电阻率小、延展性好、化学性能稳定等特点,同时凸点(包括UBM)材料还要能承受器件在加工、使用、老化、可靠性实验等过程中所需承受的条件。 1)Au:由于金浸润性好,延展性好,内应力小,接触电阻小,化学性能稳定,因此是 高频、高可靠器件常用的凸点材料。现在已可作节距为20μ,直径为20μ,高为15μ的金凸点。对小尺寸、高密度的金凸点的制作主要是用厚金电镀技术,低密度的金凸点可用金丝球焊切尾制作。目前国内无氰电镀金凸点剪切强度已达11.8 mg/μm2,高度容差±1.4μm(优于美国公司标准:剪切强度>8.7mg/μm2,高度容差:管芯内±1.5μm,圆片内±2.5μm)。

超电磁材料在隐身技术中的应用

超电磁材料在隐身技术中的应用 电气工程学院通信1101班邹光宗 20114400126 摘要:阐述传统隐身技术的理念和超电磁材料的基本概念与基本特性,超电磁材料是一种具有天然材料所不具备的超常物理性质的人工复合结构或复合材料,其性质往往不主要决定于构成材料的成分与本征性质,而决定于其中的人工结构。分析、说明了超电磁材料隐身技术的基本原理、设计思路与理解方法。指出了目前超电磁材料隐身技术的研究进展,最后得出未来超电磁材料应用于隐身技术具有良好潜在应用前景的结论。 关键词:超电磁;隐身技术;负折射;电磁吸收;介质 引言:电磁波隐身的效果取决于3个方面,即高明的空气动力学设计、优秀的吸波材料和周到而先进的电子学装备,多年来人们遵守“隐身不是无形,而是难于探测和跟踪”的隐身理念。传统的吸波材料是电阻性或磁阻性的无源电磁波吸收原理,电磁波在介质中转换为热能,而达到波的吸收目的,如Salisbury吸收屏,Juamann多层吸收器以及基于磁性材料的微波吸收体。在平面吸收技术方面,多层金属薄膜、多层结构、铁氧体技术及其综合、阻抗加载技术等相继得到研究与不同程度的应用;应用金属薄膜的电阻特性与多层复合结构,采用频率选择表面等技术设计出多工作频率或特定工作频段的微波吸收体。 1、研究目的 自1980年起,美国人产生了使用“飞翼”的思想,即既无机身也无机尾,由于去掉了反射雷达波的边、角、突出表面,并配合使用碳化纤维与塑料合成的复合材料,雷达散射截面RCS可大大降低。1997年Tennant提出了一种新的方法来减小电磁波从平面表面的反射,称为相位开关屏(phase.switched screen)技术旧o;将微波器件引入微波吸收器的设计中,开创了可控吸收设计的思路,得到了很有吸引力的研究结果,微波吸收器件的小型化技术、集成化技术和自适应技术是其发展特点。近年来,俄罗斯、美国也不同程度地研究和应用等离子体隐身技术。目前研究人员争相研究超电磁材料,开发、利用其负折射等一些特性来进行隐身理论研究与设计。在西方电影《哈利波特》里,主角有一个可以用来隐身的斗篷,穿上后躲在里面,肉眼将无法看到。预计在不久的将来,人们将可能应用超电磁材料制作出这种隐身斗篷,并应用到飞机、军舰等军事等领域。 2、研究现状 近年来,发表的众多文献说明了超电磁材料隐身技术的研究进展。”,2006 06—21 出版的《科学》杂志,米自托格兰圣安得鲁大学的理论物理学家里奥哈次,与伦敦帝国学院的J B Pendry教授.分别在这一期顶尖学术刊物上发表论文.阐述他们对“隐身斗篷”理论基础的计算原理。英国的这2位科学家.各自假设电磁波如流水般在隐身材料表面流过.完全不受到隐丁其中的物体的干扰,据此推导出“隐身斗篷”材料所需具备的光学参数,隐身斗篷的雏形悄然出现。4个月后的《科学》杂志,美国杜克大学的史密斯教授小组再次发表论文向世人宣告微波隐身材料的诞生。他们运用J B Pcndry教授的理论巧妙设计了符合计算结果的隐身材料。作他们的实验中.采用铜金属与玻璃纤维.创造了一卷甜甜圈似的圆环材料。探测器所得到的信号表示,微波经过圆环.恍若无物地会聚到圆环的另一侧,如若清泉石上流,汇聚于百岩另一侧一般.不留痕迹。2007—01—05,德国科学家在《科学》杂志±发表一种银基网状材料研究成果.该项研究成果代表着当时超电磁材料的研究水平,迈出了制造”

隐身技术现状及发展趋势

隐身技术现状及发展趋势 摘要:介绍了隐身技术的重要性以及各种各样的隐身技术的原理及方法,对未来隐身技术的发展做了一些较为深入的探讨和详细大胆的预测,并就隐身技术做出一些总结。 一、隐身技术的概述 自1989年美国入侵巴拿马时首次使用F2117隐身战斗机后,隐身技术日益引起世界各国军界的高度重视。在海湾战争中,各种隐身兵器的精彩表演,尤其是F2117又一次的不凡战绩,令世界各强国对隐身技术刮目相看。海湾战争后,美、俄等军事强国都加强了对隐身技术的研究,隐身技术因此也获得了长足的发展,被广泛应用于各种武器装备,如隐身战斗机、隐身轰炸机、隐身舰船、隐身导弹等。 随着现代科学技术的不断发展,针对飞行器、舰船等作战装备的探测技术日益完善。现在,各个军事强国在本土都有强大的雷达网,空中有预警机,在太空还有战略预警系统。这些系统通过链路构成一张强大的预警网络,对飞机,舰船甚至是导弹的生存都构成了严重的威胁。所以,武器装备的隐身性能已经成为考量整体战斗力的重要指标。具有隐身性的装备,既拥有了在战场上赖以生存的法宝,又使得自己在进攻中处于主动的一方,加大了攻击的突然性。在讲究快速反应的现代战场,隐身技术已经成

为决定战争胜负的关键因素。 隐身技术按照战斗平台分,可以分为飞行器隐身,舰船隐身,导弹隐身。 按照隐身的方式手段主要为雷达隐身,并辅之以红外、光学和声波隐身,其中雷达隐身是现代隐身技术的重中之重。红外隐身在导弹突防中应用较为广泛。而随着反潜技术的发展,潜艇的声波隐身则是至关重要的一环。 二、雷达隐身技术的关键 若用一句话概括雷达隐身技术,就是采取各种手段减小装备的雷达散射截面(Radar Cross Section,一下简称RCS)。所谓目标的雷达散射截面RCS,就是定量表征目标散射强弱的物理量。目标的雷达散射截面RCS,越小,雷达接收能量越小,因而使敌方侦察雷达难于对己方目标作出正确的判断,从而达到隐形目的。 RCS不是目标的几何截面积,而是一个与目标产生同等回波的金属圆球的等效截面积,几何截面积、材质和形状对雷达的反射率和反射的方向性都对雷达截面积有影响,所以雷达反射面积可以比几何截面积大,也可以比几何截面积小,就好像在黑夜里手电照射下,一块小镜子可以远比一个蒙面黑衣大汉显眼。作为参照,美国的F-15 的RCS为405 平方米,B-1B 为1.02 平方米,SR-71 为0.014 平方米,F-22 为0.0065 平方米,F-117 为

隐身技术

隐身技术科技前沿 【摘要】隐身技术是当今世界战略防御中十分重要的一项科学技术。文章粗略的介绍了隐身技术、隐身材料的分类、原理,以及现在的发展应用,以及未来的发展。 【关键词】隐身技术,隐身材料,分类,战略,应用,前景。 【引言】在如今的科技领域,隐身技术和隐身材料发展越来越受到各国重视,隐身武器也是不断出现。隐身技术到底是怎样的,在这里就来粗浅研究一下。 【正文】 1.隐身技术 1.1隐身技术定义 隐形技术俗称隐身技术,准确的术语应该是“低可探测技术”。即通过研究利用各种不同的技术手段来改变己方目标的可探测性信息特征,最大程度地降低对方探测系统发现的概率,使己方目标,己方的武器装备不被敌方的探测系统发现和探测到。 1.2隐身技术分类 隐身技术包括:雷达隐形、红外隐形、磁隐形、声隐形和可见光隐形等。 1.3隐身技术的主要技术途径 采用独特的外形设计和吸波、透波材料,以降低飞机对雷达波的反射;降低飞机发动机喷气的温度或采取隔热、散热措施,减弱红外辐射。 雷达波吸收技术 雷达是利用无线电波发现目标及位置的装置,其工作原理是雷达的发射机不断产生高频脉冲形成微波波束,当波束遇到目标物时,其中一小部分反射回来被吸收后,就会显示目标物的距离、方向、高度及图像等。雷达为了能发现目标,要求有强的目标反射,而回波强度将取决于目标尺寸与工作波长之比。如何使雷达失去监视作用呢?一方面采用散射、干涉等手段破坏雷达所发散的波束,如通过设计飞机独特外形使电磁波散射。另一方面采用能够吸收雷达波的复合材料和吸波涂料等隐身材料。 红外控制技术 该技术是为了逃避红外传感器发现目标,采用的主要方法是降低飞机的红外辐射。具体措施为,降低发动机的喷口排气温度和改变喷口方向,使发动机排气更干净,烟道气更淡;采用喷气或气动雾化式装置,使燃油充分燃烧,以减少红外喷泄;在燃油中加入添加剂如二茂铁及其衍生物,提高燃烧速度,充分利用热能,减少排气中的红外辐射;在飞机表面涂盖放射性同位素如钋等,使放射出的高能粒子在飞机周围形成等粒子屏以达到屏蔽和吸收红外辐射等。 2.隐身材料 2.1隐身材料定义 隐身材料可以降低被探测率,提高自身的生存率,是隐身技术的重要组成部分。

新材料在军工方面的研究现状和发展趋势

新材料在军工方面的研究现状和发展趋势 摘要:随着现代军事科技的不断发展,促使各国对武器装备的性能提出了更高的要求。由于军用新材料能够满足武器材料强韧化、轻量化、多功能化和高效化的发展要求,促使军工新材料的研究十分繁荣。本文主要综述了国内外军用结构新材料和功能新材料的研究进展,并对未来军用新材料的研究趋势进行了总结。 关键词:军用新材料,钛合金,高强度钢,纳米隐身材料,磁性材料 1 前沿 新材料是指那些新出现或正在发展中的具有传统材料所不具备的优异性能的材料。新材料的研制、开发与应用不仅构成对高技术发展的推动力,而且也成为衡量一个国家科技水品的高低的重要标志。因此,新材料是技术革命与创新的基石,是社会现代化的先导。现代高新技术对新材料的依赖越来越多,这使得发达国家和发展中国家都争相将新材料列为高新技术优先发展的领域和关键技术,各国都采取各种措施,力争抢占新材料技术的“制高点”[1]。 新材料的出现一方面对经济有着巨大的促进作用,自从20世纪80年代以来,新材料在整个世界贸易中所占的比例逐年递增,而且还促进了与新材料相关产业的飞速发展。因为有了新材料做基础,信息、生物工程、新能源、激光、海洋开发和空间技术作为促进生产、振兴经济、增强综合国力的高技术群和高知识密集型产业能够繁荣发展[1]。由此可见,新材料是未来经济发展的支柱性力量。另一方面,新材料的出现和应用又为国防安全提供了保证。国防科一直都是高、精、尖技术的集合,新材料是高技术的先导和基础。纳米材料出现使微型武器出现在战场,先进高分子材料出现使洲际导弹的出现成为可能,新型锂离子电池材料的出现让“无人机”出现在人们的视野,而非晶软磁合金材料大大提高了一些精密武器的工作环境。由此可见,新材料也是军事工业发展的重要促进力量,是新型武器装备的物质基础, 也是当今世界军事领域的关键技术。所以,对新材料在军工方面的研究现状总结和发展趋势的展望,对促进我国军事工业的发展有重大意义。 2 军用结构材料 军用新材料按材料性能和用途可分为结构材料和功能材料两大类, 主要应用于航空工业、航天工业、兵器工业和船舰工业中。结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀和抗辐射等性能要求, 目前在军事领域应用的结构材料主要有以下几类。

隐身材料与技术重点

1.隐身技术,准确的术语应该是“低可探测技术( Low Observability technology)” , 简称为 “LO技术”。广义上讲可包括:雷达隐身、红外隐身、电磁隐身、声隐身和可见光隐等。 2.按材料用途可分为隐身涂层材料和隐身结构材料。 3.电磁屏蔽材料是依赖材料中导电或导磁组分的高导电性或高导磁性。 4.电磁波屏蔽和吸收材料都是为了降低材料对电磁波的透射作用。电磁屏蔽材料对电磁波 的作用原理是反射和吸收。吸波材料对电磁辐射的作用原理是吸收。 5.趋肤深度(skin depth)定义为电磁波从进入良导体媒质至场强振幅衰减为表面值的1/e倍 时所传输的距离,以δ表示。结论:(a) 对于高频电磁波,良导体的导电率很大,所以趋肤深度很小;(b) 金属对高频电磁波具有很好的反射作用。 6.(1) 比吸收率(SAR):单位质量(m)的生物组织中所感应的电场能量值(W),表示为: SAR =W m (W/kg) (2) 安全剂量:通过热效应的临界比吸收率采用加权安全系数后得到的新的参数,用相 关的外部场强值来衡量。 7.屏蔽效能的大小取决于反射衰减与吸收衰减数值的大小。在金属屏蔽体内,衰减系数与金属材料的电导率以及磁导率有关。 反射衰减是由于电磁感应而产生的新的电磁场所引起: ? 电磁感应在金属表面会产生感应电流,由此会产生一个新的电磁场。当新产生的电磁场与原来电磁场的方向相反时,就会产生一定的抵消作用,造成电磁场能量的衰减,称为反射衰减。? 屏蔽材料与其周围介质的阻抗相差越大,则反射衰减就越大。 8.就隐身材料的组成而言,其基本组成只有两部分:基体(matrix)和吸 波剂(absorber)。其中,吸波剂为隐身材料性能的决定因素。吸波剂的本征物理特性、结构、形貌、粒度以及聚集态等都对提高材料的损耗性能和拓宽有效吸收频段起着关键作用。(1电磁参数2吸收剂密度3吸收剂粒度4吸收剂形状5工艺性能6环境稳定性) 9.物质在电磁场作用下会表现出极化、磁化和传导效应,其分别可以用介电常数ε、磁导率和和电导率σ来表征。 10.电磁波吸收剂按照材料的损耗机理可以分为三类:电阻型(电损耗型)、电介质型(介电损耗型)和磁介质型(磁损耗型)。 电阻型常用:炭黑(CB)、金属粉、碳化硅、石墨、碳纤维(CF)等。 电介质型常用:钛酸钡(BTO)、导电高分子、二氧化锰、二氧化钛等。 磁介质型常用:铁氧体(Ferrite)、羰基铁(CI)、多晶铁纤维等,超细金属粉。 11.炭黑的导电性与其自身特性有关,主要表现为三个方面:结构性、比表面积和表面化学活性。 12.复合材料的体积电阻率发生突变时炭黑的填充率,称为炭黑在基体中的渗滤阈值。 13.导电高分子属于双损耗介质:电损耗和介电损耗。导电高分子材料电导率的影响因素:? (a) 聚合物基体(PE、PP、PS、PVC、PV A、ABS);? (b) 材料的制备工艺(挤出、纺丝、抽丝);? (c) 导电介质的种类(金属粉、纤维、炭黑、碳纤维、镀金属纤维);? (d) 导电介质浓度;? (e) 导电介质形态(颗粒、纤维);? (f) 制备过程中的助剂(增塑剂、偶联剂)。 14.吸声材料按照吸收原理可分为两类:多孔吸声材料、共振吸声材料。 多孔吸声原理:?多孔吸声材料内部含有大量互相连通的微孔或缝隙,孔洞细小且在材料内部均匀分布; ? 当声波入射至材料表面时,一部分被反射,一部分则进入材料内部微孔中; ? 在声波的传播过程中,引起空气振动,与孔洞发生摩擦; ? 由于粘滞性和热传导性,将声能转换为热能消耗掉。 ? 声波经反射后,一部分透射到空气中,一部分又反射回材料内部;

声表面波器件工艺原理-3光刻工艺原理

三,声表器件光刻工艺原理: 目录: (一)光刻胶:1,正性光刻胶2,负性光刻胶3,光刻胶的性质 (二)光刻工艺原理(湿法): 1,匀胶:1)匀胶方法2)粘附性3)光刻胶的厚度4)膜厚均匀性5)对胶面要求6)注意事项 2,前烘:1)前烘目的2)对前烘温度和时间的选择3)前烘方法 3,暴光:1)暴光目的2)暴光技术简介3)暴光条件选择4)暴光不良原因 4,显影:1)显影目的2)显影方法3)影响显影质量的因素4)常见问题5)其它 5,坚膜:1)坚膜目的2)坚膜方法3)问题讨论 6,腐蚀:1)腐蚀目的2)腐蚀因子3)腐蚀方法4)影响因素5)注意事项 7,去胶:1)去胶目的2)去胶方法3)注意事项 8,问题分析:1)光刻分辨率2)控制光刻线宽的方法3)浮胶4)毛刺及钻蚀5)小岛6)针孔 9,小结(光刻各工序需控制的工艺参数) (三)光刻工艺原理(干法)简介: 1,干法腐蚀原理:1)等离子体腐蚀2)离子腐蚀3)反应离子腐蚀 2,干法工艺:1)干法显影2)铝的干法刻蚀3)干法去胶 (四)金属剥离工艺简介:1)剥离工艺特点2)剥离技术3)有关问题 (五)微细光刻技术简介:1)抗蚀剂2)暴光技术3)刻蚀技术4)问题及原因 序: 光刻是SAW器件制造的关键工艺,是一种复印图象同化学腐蚀相结合的综合技术。它先采用照相复印的方法,将光刻版上的图形精确的复印在涂有感光胶的金属膜层上,然后利用光刻胶的保护作用,对金属层进行选择性化学腐蚀,从而在金属层上得到与光刻版相应的图形,并要求图形线条陡直、无钻蚀、无断条和连指等。影响光刻质量的因素很多,除暴光技术外,还有掩膜版、金属膜、光刻胶等的质量以及操作技术和环境条件等。实践表明,光刻质量对器件性能有很大影响,是生产中影响成品率的关键因素。 (一) 光刻胶:按光化学反应的不同,光刻胶大体可分为正性光刻胶和负性光刻胶两类。1,正性光刻胶: 它的特点是原来的胶膜不能被某些溶剂溶解,当受适当波长光照射后发生光分解反应,切断树脂聚合体主链和从链之间的联系,使其变为可溶性物质。因此当用正胶光刻时,可在基片表面得到与光刻版遮光图案完全相同的光刻胶图形,方向相差180度。正性胶分辨率较高,对一些常用金属表面有较好粘附性;但与负胶相比,其稳定性和抗蚀能力较差。目前常用的正性胶为DQN和PMMA。 1)DQN:DQN是一种近紫外NUV(365、435nm)光刻胶,主要由感光剂DQ、基体 材料N和溶剂组成。通常使用的基体材料是酸催化酚醛树脂,具有良好的成膜性和耐磨性,能溶于碱溶液和许多普通溶剂;感光剂DQ(邻叠氮醌化合物)如同基体材料N在碱溶液中溶解的抑制剂,当在基体N中加入20-50%的DQ,混合物(光刻胶)将变为不可溶;溶剂是用来溶解感光剂和基体材料、同时又易挥发的液体,由于溶剂的用量决定光刻胶的黏度(黏度也与温度有关),从而影响光刻胶的涂敷厚度,而厚度又与光聚合反应所需暴光量有关,与胶膜的分辨率有关,所以对溶剂用量的控制也十分重要。 DQN感光机理是,经近紫外光照射,感光剂发生分解,并重新组合为乙烯酮,乙烯酮和空气中的水气反应,产生酸性基,酸性基可与碱性溶液发生中和反应,使不溶性光刻胶可溶

第二章 声表面波与器件的制作2

第二章 声表面波与器件制作 本章中,我们主要介绍声表面波(SAW)的基本特性和基本类型,压电基片的选择,叉指换能器(IDTs)的特征以及声表面波器件的制作方法。 2.1 引言 压电效应是指在晶体上施加压力时产生电势差的现象。压电晶体在外力的作用下发生形变时,某些表面会出现异号电荷,而在压电晶体上加一电场时,晶体不仅产生极化,而且会产生应变和应力。压电材料的几何应变与施加电场成比例。从1880年居里兄弟发现压电效应以来,压电学已经成为现代科学技术中的一个非常重要的领域。而作为压电学发展的一个重要分支,在二十世纪六十年代中期美国的怀特等人提出用叉指换能器在压电基片上激励和检测声表面波的方法之后,声表面波器件的研究得到了很大的发展。 2.2 SAW 的介绍 在各向同性固体中传播的声波,根据质点的偏振方向可以分为两大类,一类是质点振动垂直于传播方向的波称之为横波,一类是质点振动平行于传播方向的波称之为纵波。二者的速度取决于材料的弹性常数,即 横波速度 1/2s (/)υ=μρ (2.1) 纵波速度 1/2 L 2()λ+μυ=ρ (2.2) 各向同性材料的弹性常数,称为拉密常数;ρ是材料密度。从式子中可以看到,横波通常要比纵波慢。 在各向异性固体材料如压电晶体中,质点振动方向和声波传播方向的关系并非如此简单。一般来说,质点振动方向既不垂直也不平行于声波传播方向,而是有三个互相垂直的偏振方式。其中偏振方向较为接近传播方向的波称为“准纵波”,两个偏振方向较为接近垂直于传播方向的偏振波称之为“准横波”。这三种波的速度各不相同,其中准纵波速度最快,而两个准横波的速度比较慢,其中较快的一个称为“准快横波”,较慢的一个称为“准慢横波”。同时波前的法线方向亦即波的相速度方向与波的能流方向并不一定相同,

相关文档
最新文档