金属工艺学复习提纲摘要

金属工艺学复习提纲摘要
金属工艺学复习提纲摘要

(一)铸造

一、砂型铸造

合金的铸造性能

流动性——影响充型能力的因素:

流动性的影响因素:

1)合金的种类不同种类的合金,即具有不同的流动性。其中灰铸铁的流动性最好,硅黄铜、铝硅合金次之,而铸钢的流动性最差。

2)化学成分和结晶特征纯金属和共晶成分的合金,凝固是由铸件壁表面向中心逐渐推进,凝固后的表面比较光滑,对未凝固液体的流动阻力较小,所以流动性好。

3 )熔点合金的熔点↑,流动性↓。

4)杂质元素杂质元素与液态合金中其他物质形成的高熔点固态物质,增大了金属液体的粘度,降低合金的流动性。

影响充型能力的因素:流动性,浇注条件:1、浇注温度在保证充型能力的前提下温度应尽量低。生产中薄壁件常采用较高温度,厚壁件采用较低浇注温度。

2、充型压力压力↑,充型能力↑。

铸型填充条件:1、铸型材料金属型变为砂型

2、铸型温度↓冷却速度,↑流动性

3、铸型中的气体和杂质P40

铸件的三种凝固方式:⑴逐层凝固(2)糊状凝固(3)中间凝固

对合金流动性的影响:铸件质量与凝固方式有关,逐层凝固时,合金充型能力强(流动性好),便于防止缩孔、缩松。而糊状凝固时,充型能力差,易产生缩松。

合金流动性比较:纯铁、共晶成分的合金其流动性最好。

铸铁中,流动性随C、Si↑而↑。

收缩——液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因。

缩孔:缩孔总是出现在铸件上部或最后凝固的部位

缩松:宏观缩松多分布在铸件最后凝固的部位。显微缩松则是存在于在晶粒之间的微小孔洞(分布广泛,难以完全避免)。缩松的形成:一般出现在铸件壁的轴线区域、热节处、冒口根部和内浇口附近,也常分布在集中缩孔的下方。

缩孔、缩松的防止措施

a.采用定向凝固的原则

适用于收缩大或壁厚差别大,易产生缩孔的合金铸件,如铸钢、高强度灰铸铁、可锻铸铁等。

b.合理应用冒口、冷铁和补贴等工艺措施

冒口,在铸件厚壁处和热节部位设置冒口,是防止缩孔、缩松最有效的措施。

冷铁,用铸铁、钢、铜等材料制成的激冷物。加大冷却速度,调节凝固顺序。

补贴,在铸件壁上部靠近冒口处增加一个楔型厚度,使铸件壁厚变成朝冒口逐渐增厚的形状,即造成一个向冒口逐渐递增的温度梯度,增大补缩距离。

c.合理确定铸件的浇注位置、内浇道位置及浇注工艺

三者综合应用是消除缩孔缩松的有效措施

变形产生原因:P46

防止铸件变形方法:a ) 采用反变形法b) 进行去应力退火,时效处理:自然时效和人工时效c) 结构设计:尽量避免牵制收缩的结构,使铸件壁厚均匀、形状对称

裂纹产生原因:铸造内应力超过金属的强度极限时,可分为热裂和冷裂

铸件裂纹的防止:减小铸造应力;金属在熔炼过程中,应严格控制有可能扩大金属凝固温度范围元素的加入量及钢铁中的硫、磷含量。

P61第9题

造型方法手工造型——选择造型方法:根据模样特征,可分为:整模造型、分模造型、挖砂造型、假箱造型、活块造型、刮板造型。根据砂箱特征,可分为:两箱造型、三箱造型、脱箱造型、地坑造型、组芯造型;

整模造型主要特点:整体模,平面分型面,型腔在一个砂箱内;造型简单,铸件精度表面质量较好适用范围:最大截面位于一端并为平面的简单铸件的单件、小批生产

分模造型主要特点:模样沿最大截面分为两半,型腔位于上、下两个砂箱,造型简便适用范围:最大截面在中部,一般为对称性铸件,如套、管、阀类零件单件、小批生产

挖砂造型:主要特点:模样为整体,但分型面不是平面,造型时手工挖去阻碍取模的型砂,生产率低,技术水平高适用范围:分型面不是平面的铸件的单件、小批生产

假箱造型主要特点:为省却挖砂操作,在造型前特制一个底胎,然后在底胎上造下箱;底胎可多次使用,不参与浇注适用范围:分型面不是平面的铸件的成批生产

活块造型主要特点:对铸件上妨碍起模的小部分做成活动部分。起模时先取出主体部分,再取出活动部分适用范围:用于妨碍起模部分的铸件的单件、小批生产

刮板造型主要特点:用刮板代替模样造型。节约木材,缩短生产周期,生产率低,技术水平高,精度较差适用范围:用于等截面或回转体大中型铸件的单件、小批生产

脱箱造型主要特点:采用活动砂箱造型,合型后脱出砂箱适用范围:用于小铸件的生产

地坑造型主要特点:在地面砂床中造型,不用砂箱或只用上箱适用范围:用于要求不高的中、大型铸件的单件、小批生产

模样尺寸=铸件尺寸+合金收缩量

铸件尺寸=零件尺寸+加工余量

砂型铸造分型面的选择:P62图2-22 P67表2-9

特种铸造:P93

铸件结构设计:P71表2-11,2-12

加工硬化:冷变形强化(加工硬化)指金属在低温下进行塑性变形时,金属的强度和硬度升高,塑性和韧性下降的现象。回复:指当温度升高时,金属原子获得热能,使冷变形时处于高位能的原子回复到正常排列,消除由于变形而产生的晶格扭曲的过程,可使内应力减少。再结晶:指当温度升高到一定程度时,金属原子获得更高的热能,通过金属原子的扩散,使冷变形强化的结晶构造进行改变,成长出许多正常晶格的新晶粒,新晶粒代替原变形晶粒的过程即为再结晶。只要看概念就行

冷热变形的划分:冷变形:指金属在其再结晶温度以下进行塑性变形。如冷冲压、冷弯、冷挤、冷镦、冷轧和冷拔,能获得较高的硬度及表面质量。

热变形:指金属在其再结晶温度以上进行塑性变形。如锻造、热挤和轧制等,能消除冷变形强化的痕迹,保持较低的塑性变形抗力和良好的塑性。

材料可变形难度顺序(由小到大)铝合金(难度最低)→镁合金→铜合金→碳钢、低碳钢→马氏体不锈钢→奥氏体不锈钢→镍合金→钛合金→铁基高温合金→钴基高温合金(后两者属于耐热钢)

锻造比:锻造比对金属的组织和性能的影响锻造比越大,锻造流线越明显,其力学性能的方向性越明显。一般情况下,增加锻造比,钢的强度在横向和纵向差别不大,而塑性和韧性纵向明显好于横向。可使金属组织细密化,提高锻件的力学性能。但当锻造比过大,金属组织的紧密程度和晶粒细化程度已到极限,故力学性能不再升高,而增加各向异性轧材或锻坯作锻造坯料时,由于坯料已经过热变形,内部组织和力学性能已得到改善,并具有纤维流线组织,应选择较小的锻造比,取1.3~1.5用钢锭作为锻造坯料时,钢锭内部组织不均匀,存在柱状晶和粗大晶粒及较多的缺陷,为消除铸造缺陷,改善性能,并使纤维

分布符合要求,对非合金钢,y

拔≥3,y

≥2.5;合金钢,y为3~4。对铸造缺陷严重,碳化物

粗大的高合金钢,选较大的y,不锈钢y4~6,高速钢y5~12。

自由锻的特点优点:1)金属坯料在抵铁间受压变形时,可朝各个方向自由流动,不受限制。2)自由锻使用工具简单,工艺灵活,不需要昂贵的模具,成本低;

3)可锻造各种重量的锻件,对大型锻件,它是唯一方法;缺点:

1)锻件的形状和尺寸靠锻工的操作技术来保证,故尺寸精度低,加工余量大,金属材料消耗多;2)锻件形状比较简单,生产率低,劳动强度大。故自由锻只适用于单件或小批量生产。

模锻的优点:1)由于有模膛引导金属的流动,获得与模膛形状一致的锻件,锻件的形状可以比较复杂;2)锻件内部的锻造流线比较完整,提高了零件的力学性能和使用寿命。3)锻件表面光洁,尺寸精度高,节约材料和切削加工工时;受设备吨位的限制,模锻件不能太大。4)生产率较高;操作简单,易于实现机械化;5)生产批量越大成本越低。模锻的缺点:1)模锻是整体成形,摩擦阻力大,所需设备吨位大,设备费用高;2)锻模加工工艺复杂,制造周期长,费用高。故只适用于中小型锻件的成批或大批生产。(只需简单了解一下)

模膛根据其功能不同可分为制坯模膛和模锻模膛(1)制坯模膛。用于将形状复杂的模锻件初步锻成近似锻件的模膛。模锻模膛1)预锻模膛。结构比终锻模膛高度大、宽度小、无飞边槽,模锻斜度和圆角大。2)。和锻件图相应部分形状、尺寸一致。模膛周围设飞边槽,通孔锻件需留冲孔连皮。锻模分为单膛锻模、多膛锻模。简单锻件如齿轮坯可设计为单膛

锻模;对弯曲连杆可设计为多膛锻模

终锻模膛中的飞边槽的作用:用以增加金属从模膛中流出的阻力,促使金属更好地充满模膛同时容纳多余的金属。

绘制锻件图: 锻件图是生产和检验锻件及设计锻模的依据。制订锻件图时应考虑如下问题:1)分模面的确定。P120图3-26及解释

2)确定加工余量、公差、余块、模锻斜度、圆角半径、冲孔连皮。P121图3-29

模锻分型面的选择?P124图3-26

自由锻件的结构工艺性

1、零件结构应尽可能简单、对称、平直;避免锥面和斜面应避免零件上的锥形、楔形结构。P123图3-33

2、应避免圆柱面与圆柱面、圆柱面与棱柱面相交。P123 图3-24

3、零件上不允许有加强筋。P124图3-35

4、对横截面尺寸相差很大或形状复杂的零件,应尽可能分别对其进行锻造,然后用螺纹连接。P124图3-36

模锻件的结构工艺性P125 图3-37 图3-38

1)模锻件应具备合理的分模面。

2)仅配合表面设计为加工面,其余为非加工面,与锤击方向平行的非加工面应有模锻斜度,连接面应有圆角。

3)零件外形应简单、平直和对称,截面相差不宜过于悬殊,避免高肋、薄壁、凸起等不利于成形的结构。如图所示的a、b、c均不利成形,而d较好。

4)应避免窄沟、深槽、深孔及多孔结构,以利于充填和模具制造。

5)形状复杂的锻件应采用锻-焊或锻-机械连接组合工艺,以减少余块,简化模锻工艺。

按焊接接头形成特点,焊接可分为熔化焊、压力焊和钎焊三大类。

1)熔焊—将待焊处母材金属熔化以形成焊缝的焊接方法分为电弧焊、气体保护焊、气焊、等离子焊、电渣焊、激光焊;

2)压焊—焊接过程中,必须对焊件施加压力,以完成焊接的方法压焊可分为电阻焊、摩擦焊、超声波焊、冷压焊、锻焊;

3)钎焊—采用比母材金属熔点低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点、低于母材溶化温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接焊件的方法钎焊可分为烙铁钎焊、火焰钎焊、高频钎焊、炉中钎焊、盐浴钎焊、真空钎焊。

1、焊条的组成和作用

焊条是涂有药皮的供焊条电弧焊用的熔化电极,由药皮和焊芯两部分组成。焊芯:传导电流、产生电弧和填充金属药皮:提高电弧燃烧的稳定性、防止空气对熔化金属的有害作用、参与冶金反应,对熔池脱氧和加入合金元素,以保证焊缝金属的化学成分和力学性能。焊条的作用:焊条由焊芯和药皮组成。焊芯在焊接是作为电极传导电流,产生电弧,同时它熔化后液滴过渡到熔池中去可作为填充金属,与熔化的母材熔合后冷凝成焊缝。药皮的作用:1、使电弧容易引燃和保持电弧燃烧的稳定性2、焊接时高温熔化药皮,产生大量的气体及熔渣,隔离空气,包围和覆盖熔池,以保护熔化金属不被氧化。3、加入合金元素可补偿焊接损失的合金成分。

用直流弧焊机焊接时,由于正极和负极上的热量不同,有正接和反接。

正接法:焊钳焊条接电源负极,工件接电源正极。热量高于反接适用范围:焊接厚板

反接法:焊钳焊条接电源正极,工件接电源负极。适用范围:焊接薄板、用碱性低氢钠型焊条

焊接接头的组织和性能:P152

焊接应力与变形的产生:焊接时,焊件不均匀局部加热和冷却是导致焊接应力和变形产生的根本原因

焊接方法选择:P177第6题

金属材料的焊接性:在限定的施工条件下,焊接成按规定设计要求的构件,并满足预订服役要求的能力。P178

焊接性的衡量:一是焊接工艺性的优劣;二是焊接接头在使用过程中的可靠性。?

碳当量:W(C)当量<0.4%时,钢材塑性良好,淬硬倾向不明显,焊接性良好。

W(C)当量=0.4%~0.6%时,钢材塑性下降,淬硬倾向明显,焊接性能相对较差。

W(C)当量>0.6%时,钢材塑性较低,淬硬倾向很强,焊接性不好。

低碳钢塑性好,一般没有淬硬倾向,对焊接热过程不敏感,具有良好的焊接性。

中、高碳钢属于淬火钢,焊接性明显变差。

合理布置焊缝

焊接接头的基本形式

焊接位置:根据焊缝在空间的位置不同,可分为:平焊、横焊、立焊、仰焊平焊位置最好,焊接液滴不会外流,飞溅较少。操作方便,质量易保证。

立焊和横焊焊接液滴有下流倾向,不易操作。

仰焊位置最差,液滴易下滴,操作难度大,不易保证质量。

应尽可能安排平焊位置施焊。

1)焊缝布置应尽量分散,不宜过长。

A不合理b不合理

D合理e合理

2)焊缝的位置应尽量对称布置。

不合理合理合理

不合理合理

3)焊缝的布置不得交叉。

不合理合理

4)应尽量减少构件或焊接接头部件的应力集中,避免尖角焊缝。

不合理合理

5)焊缝应避开最大应力和应力集中的部件。

不合理合理

不合理合理

6)焊缝设计应远离加工表面。

不合理合理

不合理合理

7)焊缝布置应满足焊接时运条角度的需要,便于焊接操作

P188图4-44图4-46

P191 1-b、c

焊接缺陷:

裂纹气孔夹渣

未焊透未熔合

焊缝尺寸,形状不合要求

锻造加热缺陷主要有:氧化、过烧、脱碳和过热

自由锻中常见缺陷:

镦粗—残留铸态组织

裂纹双鼓形弯曲折叠

拔长—平砧坯料

裂纹表面折叠纵向裂纹

冲孔—孔冲偏

走样裂纹

模锻中常见缺陷:

折叠充不满

铸造缺陷

切削运动—在机械加工中,刀具与工件之间的相对运动

1) 主运动:由机床或人力提供的主要运动,用刀具从工件上切除金属层使之变为切屑。特点:速度最高、消耗机床动力最大

2) 进给运动:由机床或人力提供的附加运动,能使工件切削层不断地投入切削过程。

特点:速度较低,消耗功率较小。它可以是直线运动,也可以是旋转运动。

主运动只能有一个,进给运动则可能是一个或几个。

切削速度:在单位时间内工件与刀具沿主运动方向相对移动的距离(m/min 或m/s),即

工件表面相对刀具的线速度。当主运动为旋转运动(如车削、钻削、铣削等)时:V=πdn/1000(m/min)或V=πdn/60?1000(m/s)式中:d—工件加工表面或刀具切削处的最大直径(mm),n—工件或刀具的转速(r/min)。当主运动为往复运动(如刨削)时:V= 2Ln r/1000=(m /min) 式中:L-往复运动行程长度(mm)n r-每分钟往复次数(str/min)

进给量(进给运动速度)在主运动的一个循环或单位时间内,刀具与工件之间沿进给方向相对移动的距离。外圆车削时,用进给量f来表述,单位:mm / r 刨削时,用每一行程多少毫米来表述,单位为mm / str 铣削时,用每齿进给量f z 来表述,单位:mm/z 进给速度v f、进给量f、每齿进给量f z 和刀具齿数Z之间的关系如下:v f= n f = n z f z

背吃刀量(切削深度):指过切削刃选定点在垂直于工作平面方向上测量的吃刀量。

单位为mm,即为待加工表面与已加工表面之间的距离。

例:外圆车削

刀具材料:对刀具材料的基本要求: 较高的硬度,较好的耐磨性。常温硬度一般要求在60HRC 以上;足够的强度和韧度; 较高的耐热性(即热硬性); 较好的工艺性; 良好的导热性和化学稳定性。

常用刀具材料

切屑种类:带状切屑:塑性材料节状切屑:中等硬度材料。粒状切屑:塑性差的材料。崩碎切屑:脆性材料

机床型号及其表示方法

机床类别代号+通用特性代号+组别代号+型别代号+主参数代号+重大改进号

①类别代号

类别:车床钻床镗床磨床铣床刨插床齿轮加工机床

代号: C Z T M、2M、3M X B Y

②通用特性代号

特性:高精度精密自动半自动万能数字程序控制轻型

代号:G M Z B W K Q

③组、系代号:第一组数字表示组别、第二组数字表示型号

④主要参数代号:

代表机床规格大小的一种参数。用主参数的折算值(1/1或1/10)来表示。

⑤重大改进顺序号:

机床性能和结构有重大改进

时,用改进的次序。

分别用“A、B、C….”表示。

CA6140型卧式车床型号中的“A” 是结构特性代号,以区分与C6140型卧式车床主参数相同,但结构不同的车床

车削加工工艺特点

1、易于保证轴、套、盘等类零件各加工表面的位置精度

2、切削过程比较平稳

3、刀具简单

4、适用于有色金属零件的加工

5、具有较高的生产率。工艺范围相当广泛。

车圆锥面

(1)宽刀法

(2)转动小拖板法

(3)偏移尾架法

(4)靠模法

车削的应用

车削加工对象

钻削容易产生“引偏”:钻头弯曲而引起的孔径扩大、孔不圆或孔的轴线歪斜等。防止措施:预钻锥形定心坑;用钻套为钻头导向;钻头的主切削刃刃磨对称

铣削方式——逆铣和顺铣。顺铣更有利于高速切削、提高工件表面的加工质量、有助于工件夹持;但顺铣对消除丝杆与螺母之间的间隙要求较高,并要求工件没有硬皮;在一般情况

下,大多采用逆铣。

外圆面是轴、圆盘、套筒类零件的主要或辅助表面主要方法:1、粗车

2、粗车半精车

3、粗车半精车磨(粗磨或半精磨)

4、粗车半精车粗磨精磨

5、粗车半精车粗磨精磨研磨

6、粗车精车精细车;粗车半精车粗磨精磨

内孔表面加工方案分析

常用有钻、扩、铰、镗、拉、磨、研磨和珩磨等。

1、实体孔

钻- 扩(镗)- 铰、拉、精镗、磨- 珩磨(研磨)

2、铸孔、锻孔- 扩(镗)

平面是盘形、箱体和板形零件的主要表面。加工方法有车、刨、插、拉、铣、磨和光整加

工的研磨及刮研等。主要方法:车、刨、铣- 拉、磨- 研磨(超级光磨)

1、粗刨或粗铣

2、粗铣(或粗刨)- 精铣(或精刨)- 刮研

3、粗铣(刨)- 精铣(刨)- 磨

4、粗铣- 半精铣- 高速精铣

5、粗车- 精车

螺纹表面:1、攻螺纹和套螺纹——精度要求不高的普通螺纹2、车削螺纹——加工精度高,生产率低。3、螺纹梳刀——生产效率较高4、铣削螺纹——生产效率较高,精度一般。可分为盘形螺纹铣刀铣削;梳形螺纹铣刀铣削;铣刀盘旋风铣削。5、磨削螺纹——高精度的螺纹加工。分为单线砂轮磨削和多线砂轮磨削。6、滚压螺纹——在常温下使工件材料产生塑性变形的无屑加工。分为搓丝板滚压和滚丝轮滚压。

常用齿轮:圆柱齿轮、圆锥齿轮和蜗轮等。圆柱齿轮又可分直齿、斜齿和人字齿。成形法(也称仿形法);展成法(也称范成法)。

锯削:手锯=锯弓+锯条

锯条的选择:锯割软材料(如铜、铝合金等)或厚材料时,应选用粗齿锯条。因为软材料塑性好,易填满容屑空间;后者锯屑较多,要求较大的容屑空间。锯割硬材料(如合金钢等)或薄板、薄管时、应选用细齿锯条。因为材料硬,锯齿不易切入,锯屑量少,不需要大的容屑空间;锯薄材料时,锯齿易被工件勾住而崩断,需要同时工作的齿数多,减小每个锯齿承受的力量。

攻螺纹:又称攻丝,用丝锥在工件内圆柱面上加工出内螺纹;

套螺纹,又称套丝、套扣,用板牙在圆柱面上加工外螺纹。

金属工艺学试题及答案(3)

金属工艺学试题及答案 一、填空(每空0.5分,共10分) 1.影响金属充型能力的因素有:金属成分、温度和压力和铸型填充条件。 2.可锻性常用金属的塑性和变形抗力来综合衡量。 3.镶嵌件一般用压力铸造方法制造,而离心铸造方法便于浇注双金属铸件。 4.金属型铸造采用金属材料制作铸型,为保证铸件质量需要在工艺上常采取的措施包括:喷刷涂料、保持合适的工作温度、严格控制开型时间、浇注灰口铸铁件要防止产生白口组织。 5.锤上模锻的锻模模膛根据其功用不同,可分为模锻模膛、制坯模膛两大类。 6.落料件尺寸取决于凹模刃口尺寸,冲孔件的尺寸取决于凸模刃口尺寸。 7.埋弧自动焊常用来焊接长的直线焊缝和较大直径的环形焊缝。 8.电弧燃烧非常稳定,可焊接很薄的箔材的电弧焊方法是等离子弧焊。 9.钎焊可根据钎料熔点的不同分为软钎焊和硬钎焊。 二、简答题(共15分) 1.什么是结构斜度?什么是拔模斜度?二者有何区别?(3分) 拔模斜度:铸件上垂直分型面的各个侧面应具有斜度,以便于把模样(或型芯)从型砂中(或从芯盒中)取出,并避免破坏型腔(或型芯)。此斜度称为拔模斜度。 结构斜度:凡垂直分型面的非加工表面都应设计出斜度,以利于造型时拔模,并确保型腔质量。 结构斜度是在零件图上非加工表面设计的斜度,一般斜度值比较大。 拔模斜度是在铸造工艺图上方便起模,在垂直分型面的各个侧面设计的工艺斜度,一般斜度比较小。有结构斜度的表面,不加工艺斜度。 2.下面铸件有几种分型面?分别在图上标出。大批量生产时应选哪一种?为什么?(3分) 分模两箱造型,分型面只有一个,生产效率高;型芯呈水平状态,便于安放且稳定。 3.说明模锻件为什么要有斜度和圆角?(2分) 斜度:便于从模膛中取出锻件;圆角:增大锻件强度,使锻造时金属易于充满模膛,避免锻模上的内尖角处产生裂纹,减缓锻模外尖角处的磨损,从而提高锻模的使用寿命。 4.比较落料和拉深工序的凸凹模结构及间隙有什么不同?(2分) 落料的凸凹模有刃口,拉深凸凹模为圆角; 落料的凸凹模间间隙小,拉深凸凹模间间隙大,普通拉深时,Z=(1.1~1.2)S 5.防止焊接变形应采取哪些工艺措施?(3分) 焊前措施:合理布置焊缝,合理的焊接次序,反变形法,刚性夹持法。 焊后措施:机械矫正法,火焰加热矫正法 6.试比较电阻对焊和闪光对焊的焊接过程特点有何不同?(2分) 电阻对焊:先加压,后通电;闪光对焊:先通电,后加压。五、判断正误,在括号内正确的打√,错误的打×(每题0.5分,共5分) 1.加工塑性材料时,不会产生积屑瘤。(× ) 2.顺铣法适合于铸件或锻件表面的粗加工。(× ) 3.拉削加工适用于单件小批零件的生产。(× ) 4.单件小批生产条件下,应采用专用机床进行加工。(× ) 5.插齿的生产率低于滚齿而高于铣齿。(√ ) 6.作为定位基准的点或线,总是以具体的表面来体现的。(√ ) 7.轴类零件如果采用顶尖定位装夹,热处理后需要研磨中心孔。(√ ) 8.生产率是单位时间内生产合格零件的数量。(√ ) 9.镗孔主要用于加工箱体类零件上有位置精度要求的孔系。(√ )

南昌大学金属工艺学复习要点(过控专业).docx

《工程材料及热加工工艺基础》复习要领 第一篇工程材料 一、基本概念 晶体、非晶体、晶格、晶胞、晶面、晶向、单晶休、多晶休、晶粒、晶界、结晶、同素界晶转变(重结晶)、过冷度、变质处理(孕育处理)、组元、相、固溶体、金属化合物、机械混合物、固溶强化、共晶反应、共析反应、热脆、冷脆、钢的热处理、化学热处理、索氏体、屈氏体(托氏体)、贝氏体、马氏体、临界冷却速度、红硬性、球化处理、石墨化退火 二、基本知识点 1.评定金属材料各项力学性能(强度、硬度、塑性、韧性等)的具体指标的物理意义及表示符号 2.单晶体与多晶体的区别 3.金属中常见的三种品格类型(分类、原子数、致密度) 4.结品的必要条件:具有一定的过冷度 5.结晶的-?般规律 6.晶粒大小对机械性能的影响及细化晶粒的主要方法 7.三种合金(固溶体,金属化合物,机械混合物)的结构、分类、晶格类型特点及力学性能特点 &铁碳合金基本组织的概念、成分、组织结构和性能特征 9.铁碳合金相图中特性点的物理意义、温度、含碳量 10.铁碳合金相图中的特性线的物理意义 11.铁碳合金的分类 12.碳的含量与铁碳合金力学性能间的关系 13.钢的结品过程及组织转变(会绘制冷却曲线及室温下组织示意图) 14.共晶、共析反应式 15?常用热处理工艺的概念、目的、加热温度范围、冷却方式 16.钢的分类、编号及应用 17.铸铁种类、牌号表示法、性能特点及应用 18.能对简单或典型零件的材料进行选择 第二篇铸造 一、基本概念 充型能力、收缩、定向凝固(顺序凝固)、同时凝固 二、基本知识点 1.影响充型能力的因素及充型能力对铸件质量的影响

2.合金的收缩阶段及其对铸件质量的影响(缩孔、缩松、铸造内应力、变形和裂

金属工艺学复习题及答案

第二部分复习思考题 一、判断题 ()1. 当以很小的刀具前角、很大的进给量和很低的切削速度切削钢等塑性金属时形成的是节状切屑。√ ()2. 粗磨时应选粒度号大的磨粒,精磨时则应选细的磨粒。× ()3. 磨硬材料应选软砂轮,磨软材料应选硬砂轮。√ ()4. 砂轮的组织号越大,磨料所占体积百分比越大。× ()5. 麻花钻起导向作用的是两条螺旋形棱边。√ ()6. 铰孔既能提高孔的尺寸精度和表面粗糙度,也能纠正原有孔的位置误差。×()7. 无心外圆磨削(纵磨)时,导轮的轴线与砂轮的轴线应平行。× ()8. 粗车L/D=4~10的细长轴类零件时,因工件刚性差,宜用一夹一顶的安装方法。× ()9. 镗床只能加工通孔,而不能加工盲孔。× ()10. 拉削加工只有一个主运动,生产率很高,适于各种批量的生产。× ()11. 粗基准即是粗加工定位基准。× ()12. 钨钛钻类硬质合金刀具适合加工脆性材料。× ()13. 车削锥面时,刀尖移动的轨迹与工件旋转轴线之间的夹角应等于工件锥面的两倍。× ()14. 当加工表面、刀具、切削用量中的切削速渡和进给量都不变时,完成的那一部分工序,称为一个工步。√ ()15. 积屑瘤使刀具的实际前角增大,并使切削轻快省力,所以对精加工有利。×()16. 砂轮的硬度是指磨粒的硬度。× ()17. 钻孔既适用于单件生产,又适用于大批量生产。√ ()18. 由于拉刀一次行程就能把该工序中的待加工表面加工完毕,故其生产率很高。√ ()19. 精车时,刃倾角应取负值。× ()20. 在切削用量中,对切削温度影响最大的是进给量。× ()21. 车刀主偏角越大,刀尖散热条件越好。× ()22. 刨刀在切入工件时受到较大的冲击,因此刨刀的前角较小,刀尖圆弧较大。√()23. 精车时,应选较小的背吃刀量、较小的进给量和较低的切削速度。× ()24. 扩孔可以在一定程度上纠正原孔轴线的偏斜。√ ()25. 用中等切削速度切削脆性金属材料容易产生积屑瘤。×

《金属工艺学》考试重点知识缩印(打印版)

塑性加工金属塑性变形 1.加工硬化:在冷变形时,随着变形程度的增加,金属材料的所有强度指标和硬度指标都有所提高,但塑性和韧性有所下降的现象。 2.回复:将冷变形后的金属加热至一定温度后,因原子的活动能力增强,使原子恢复到平衡位置,晶体内残余应力大大减小的现象。 3.再结晶:当温度升高到该金属熔点的0.4倍时,金属原子获得更多的热能,使塑性变形后金属被拉长了的晶粒重新生核、结晶,变为与变形前晶格结构相同的新等轴晶粒的过程。4、冷变形:是金属在再结晶温度以下所进行的变形或加工,如钢的冷拉或冷冲压等;热变形:是金属在再结晶温度以上所进行的变形或加工,如钢的热轧、热锻等。 5.可锻性:材料在锻造过程中经受塑性变形而不开裂的能力。6.锻造比:锻造时变形程度的一种表示方法,通常用变形前后的截面比、长度比、或高度比来表示。7.锻造:自由锻与模锻的生产与应用。与自由锻相比,模锻尺寸精度高,机械加工余量小,锻件的显微组织分布更为合理,可进一步提高零件的使用寿命。模锻生产率高,操作简单,容易实现机械化和自动化。但设备投资大,模锻成本高,生产准备周期长,且模锻件的质量受到模锻设备吨位的限制,因而适用于中小型锻件的成批和大量生产。 1.切削运动:包括主运动和进给运动。朱运动使刀具和工件之间产生相对运动,促使道具前刀面接近工件而实现切削。他的速度最高,消耗功率最大。进给运动使刀具与工件之间附加的相对运动,与主运动配合,即可连续地切削,获得具有所需几何特性的已加工表面。 2.切削三要素:切削速度:切削刃上选定点相对于工件主运动的瞬时速度(m/s);进给量:刀具在紧急运动方向上相对工件的位移量(mm/z);背吃刀量:在通过切削刃上选定点并垂直于该点主运动方向的切削层尺寸平面中,垂直于进给运动放向测量的切削尺寸(mm)。 3.切削层参数:切削层公称横接面积:切削层在切削尺寸平面里的实际横接面积;切削公称宽度:主切削刃截形上两个极限点间的距离;切削层公称厚度:很截面积与公称宽度之比 4.刀具材料基本要求:较高硬度、足够强度和韧性承受切削力和冲击和震动、较好耐磨性、较高耐热性、较好工艺性。常用材料:碳素工具钢、合金工具钢、高速钢、硬质合金及陶瓷材料。5、车刀切削部分组成:前面:道具上切削流过的表面;后面:刀具上与工件上切削中产生的表面相对的表面。切削刃:指刀具前面上拟作切削刃的刃,有主切削刃和副切削刃之分。6、刀具几何角度和作用:主偏角(一般45、60、75、90度)、副偏角(5—15):影响切削层截面的形状和参数,切削分力的变化并和副偏角一起影响已加工表面的粗糙度、前角(5-15)、后角(8-12):减少道具后面与工件表面的摩擦,并配合前角改变切削刃的锋利与强度、刃倾角(负5—+5):影响刀头的强度、切削和排屑方向 5.切削过程:切削塑形金属是,材料受到道具的作用以后,开始产生弹性变形。随着刀具继续切入,金属内部的应力、应变继续加大。当应力达到材料的屈服点时,产生塑形变形。刀具再继续前进,应力进而达到材料的断裂强度,金属材料被挤裂,并沿着刀具的前面流出而成为切屑。 6.切屑种类:带状切屑、节状切屑、崩碎切屑 7.切削力切削功率的计算:P18 8.切屑热的来源:在切屑过程中,由于绝大部分的切削功都转变成热量,所以有大量的热产生,这些热称之为切削热。主要来源:切屑变形所产生的热量;切屑和刀具的前面之间的摩擦所产生的热量;工件与刀具后面之间的摩擦所产生的热量。 9.切屑热的分布:切屑热产生以后,由切屑、工件、刀具及周围的介质传出、各部分传出的比例取决于工件材料、切削速度、刀具材料及刀具几何形状等。车削时的切屑热主要由切屑传出。 10.切屑热对切削的影响:传入切削及介质中的热量越多,对加工越有利;传入刀具的热量虽然不是很多,但由于刀具切削部分体积很小,因此刀具的温度可达到很高。温度升高以后会加速刀具的磨损;传入刀具的热量,可能使工件变形,产生形状和尺寸的误差。 1、铣削的工艺特点:1)生产率较高。2)铣削时容易产生振动。3)刀齿散热条件好。应用:铣削时,主运动是铣刀的回转运动,进给运动是工件的直线运动或曲线运动。铣刀可以用来加工平面、成形面、齿轮、沟槽,还可以进行孔加工,如钻孔、扩孔等。 铣削可分为粗铣、半精铣、精铣。 1、外圆加工方案的分析及其应用: (1)粗车除淬硬钢以外,各种零件的加工都适用。当零件的外圆面要求精度低、表面粗糙度值较大时,只粗车即可。(2)粗车—半精车对于中等精度和粗糙度要求的末淬硬工件的外圆面,均可采用此方案。(3)粗车—半精车—磨(粗磨或半粗磨)此方案最适于加工精度稍高、粗糙度值较小,且淬硬的钢件外圆面,也广泛用于加工未淬硬的钢件或铸件。(4)粗车—半精车—粗磨—精磨此方案的适用范围基本上与(3)相同,只是外圆面要求的精度更高、表面粗糙度值更小,需将磨削分为粗磨和精磨,才能达到要求。(5)粗车—半精车—粗磨—精磨—研磨(或超级光磨或镜面磨削)此方案可达到很高的精度和很小的表面粗糙度值,但不宜用于加工塑性大的有色金属零件。(6)粗车—精车—精细车此方案主要适用于精度要求高的有色金属零件的加工。塑性加工金属塑性变形 1.加工硬化:在冷变形时,随着变形程度的增加,金属材料的所有强度指标和硬度指标都有所提高,但塑性和韧性有所下降的现象。 2.回复:将冷变形后的金属加热至一定温度后,因原子的活动能力增强,使原子恢复到平衡位置,晶体内残余应力大大减小的现象。 3.再结晶:当温度升高到该金属熔点的0.4倍时,金属原子获得更多的热能,使塑性变形后金属被拉长了的晶粒重新生核、结晶,变为与变形前晶格结构相同的新等轴晶粒的过程。4、冷变形:是金属在再结晶温度以下所进行的变形或加工,如钢的冷拉或冷冲压等;热变形:是金属在再结晶温度以上所进行的变形或加工,如钢的热轧、热锻等。 5.可锻性:材料在锻造过程中经受塑性变形而不开裂的能力。6.锻造比:锻造时变形程度的一种表示方法,通常用变形前后的截面比、长度比、或高度比来表示。7.锻造:自由锻与模锻的生产与应用。与自由锻相比,模锻尺寸精度高,机械加工余量小,锻件的显微组织分布更为合理,可进一步提高零件的使用寿命。模锻生产率高,操作简单,容易实现机械化和自动化。但设备投资大,模锻成本高,生产准备周期长,且模锻件的质量受到模锻设备吨位的限制,因而适用于中小型锻件的成批和大量生产。 11.切削运动:包括主运动和进给运动。朱运动使刀具和工件之间产生相对运动,促使道具前刀面接近工件而实现切削。他的速度最高,消耗功率最大。进给运动使刀具与工件之间附加的相对运动,与主运动配合,即可连续地切削,获得具有所需几何特性的已加工表面。 12.切削三要素:切削速度:切削刃上选定点相对于工件主运动的瞬时速度(m/s);进给量:刀具在紧急运动方向上相对工件的位移量(mm/z);背吃刀量:在通过切削刃上选定点并垂直于该点主运动方向的切削层尺寸平面中,垂直于进给运动放向测量的切削尺寸(mm)。 13.切削层参数:切削层公称横接面积:切削层在切削尺寸平面里的实际横接面积;切削公称宽度:主切削刃截形上两个极限点间的距离;切削层公称厚度:很截面积与公称宽度之比 14.刀具材料基本要求:较高硬度、足够强度和韧性承受切削力和冲击和震动、较好耐磨性、较高耐热性、较好工艺性。常用材料:碳素工具钢、合金工具钢、高速钢、硬质合金及陶瓷材料。5、车刀切削部分组成:前面:道具上切削流过的表面;后面:刀具上与工件上切削中产生的表面相对的表面。切削刃:指刀具前面上拟作切削刃的刃,有主切削刃和副切削刃之分。6、刀具几何角度和作用:主偏角(一般45、60、75、90度)、副偏角(5—15):影响切削层截面的形状和参数,切削分力的变化并和副偏角一起影响已加工表面的粗糙度、前角(5-15)、后角(8-12):减少道具后面与工件表面的摩擦,并配合前角改变切削刃的锋利与强度、刃倾角(负5—+5):影响刀头的强度、切削和排屑方向 15.切削过程:切削塑形金属是,材料受到道具的作用以后,开始产生弹性变形。随着刀具继续切入,金属内部的应力、应变继续加大。当应力达到材料的屈服点时,产生塑形变形。刀具再继续前进,应力进而达到材料的断裂强度,金属材料被挤裂,并沿着刀具的前面流出而成为切屑。 16.切屑种类:带状切屑、节状切屑、崩碎切屑 17.切削力切削功率的计算:P18 18.切屑热的来源:在切屑过程中,由于绝大部分的切削功都转变成热量,所以有大量的热产生,这些热称之为切削热。主要来源:切屑变形所产生的热量;切屑和刀具的前面之间的摩擦所产生的热量;工件与刀具后面之间的摩擦所产生的热量。 19.切屑热的分布:切屑热产生以后,由切屑、工件、刀具及周围的介质传出、各部分传出的比例取决于工件材料、切削速度、刀具材料及刀具几何形状等。车削时的切屑热主要由切屑传出。 20.切屑热对切削的影响:传入切削及介质中的热量越多,对加工越有利;传入刀具的热量虽然不是很多,但由于刀具切削部分体积很小,因此刀具的温度可达到很高。温度升高以后会加速刀具的磨损;传入刀具的热量,可能使工件变形,产生形状和尺寸的误差。 1、铣削的工艺特点:1)生产率较高。2)铣削时容易产生振动。3)刀齿散热条件好。应用:铣削时,主运动是铣刀的回转运动,进给运动是工件的直线运动或曲线运动。铣刀可以用来加工平面、成形面、齿轮、沟槽,还可以进行孔加工,如钻孔、扩孔等。 铣削可分为粗铣、半精铣、精铣。 2、外圆加工方案的分析及其应用: (1)粗车除淬硬钢以外,各种零件的加工都适用。当零件的外圆面要求精度低、表面粗糙度值较大时,只粗车即可。(2)粗车—半精车对于中等精度和粗糙度要求的末淬硬工件的外圆面,均可采用此方案。(3)粗车—半精车—磨(粗磨或半粗磨)此方案最适于加工精度稍高、粗糙度值较小,且淬硬的钢件外圆面,也广泛用于加工未淬硬的钢件或铸件。(4)粗车—半精车—粗磨—精磨此方案的适用范围基本上与(3)相同,只是外圆面要求的精度更高、表面粗糙度值更小,需将磨削分为粗磨和精磨,才能达到要求。(5)粗车—半精车—粗磨—精磨—研磨(或超级光磨或镜面磨削)此方案可达到很高的精度和很小的表面粗糙度值,但不宜用于加工塑性大的有色金属零件。(6)粗车—精车—精细车此方案主要适用于精度要求高的有色金属零件的加工。

金属工艺学试题和答案解析

一、简答题 1.将钟表发条拉直是弹性变形还是塑性变形?怎样判别它的变形性质? 2.下列符号表示的力学性能指标的名称和含义是什么? σb、σs、σ0.2、σ-1、δ、αk、 HRC、HBS、HBW 3.什么是同素异构转变?试画出纯铁的冷却曲线,分析曲线中出现“平台”的原因。室温和1100℃时的纯铁晶格有什么不同? 4.金属结晶的基本规律是什么?晶核的形成率和成长速度受到哪些因素的影响? 5.常用的金属晶体结构有哪几种?它们的原子排列和晶格常数各有什么特点?α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn各属何种晶体结构? 6.什么是固溶强化?造成固溶强化的原因是什么? 7.将20kg纯铜与30kg纯镍熔化后缓慢冷却到如图所示温度T1,求此时: (1)两相的成分;(2)两相的重量比; (3)各相的相对重量(4)各相的重量。 8.某合金如下图所示: 标出(1)-(3)区域中存在的相; (2)标出(4)、(5)区域中的组织;

(3)相图中包括哪几种转变?写出它们的反应式。 9. 今有两个形状相同的铜镍合金铸件,一个含Ni90%,一个含Ni50%,铸后自然冷却,问凝固后哪个铸件的偏析较为严重?如何消除偏析? 10. 按下面所设条件,示意地绘出合金的相图,并填出各区域的相组分和组织组分,以及画出合金的力学性能与该相图的关系曲线。 设C、D两组元在液态时能互相溶解,D组元熔点是C组元的4/5 ,在固态时能形成共晶,共晶温度是C组元熔点的2/5,共晶成分为ωD=30%;C组元在D组元中有限固溶,形成α固溶体。溶解度在共晶温度时为ωC=25%,室温时ωC=10%,D组元在C组元中不能溶解;C组元的硬度比D组元高。计算ωD=40%合金刚完成共晶转变时,组织组成物及其百分含量。 11.分析在缓慢冷却条件下,45钢和T10钢的结晶过程和室温的相组成和组织组成。并计算室温下组织的相对量。 12. 试比较索氏体和回火索氏体,托氏体和回火托氏体,马氏体和回火马氏体之间在形成条件、组织形态、性能上的主要区别。

金属工艺学重点知识点

属 工 -艺 学 第 五 版 上 强度:金属材料在里的作用下,抵抗塑性变形和断裂的能力。指标:屈服点(b s)、抗拉强度(b b)塑性:金属材料在力的作用下产生不可逆永久变形的能力。指标:伸长率(S)、断面收缩率( 3 硬度:金属材料表面抵抗局部变形,特别是塑性变形压痕、划痕的能力。 1布氏硬度:HBS (淬火钢球)。HBW (硬质合金球) 指标:-2洛氏硬度:HR (金刚石圆锥体、淬火钢球或硬质和金球) 3韦氏硬度 习题: 1什么是应力,什么是应变? 答:试样单位面积上的拉称为应力,试样单位长度上的伸长量称为应变。 5、下列符号所表示的力学性能指标名称和含义是什么?

答:b b:抗拉强度,材料抵抗断裂的最大应力。 (7 S :屈服强度,塑性材料抵抗塑性变形的最大应力。 6:条件屈服强度,脆性材料抵抗塑性变形的最大应力 7 -1 :疲劳强度,材料抵抗疲劳断裂的最大应力。 S:延伸率,衡量材料的塑性指标。 a k :冲击韧性,材料单位面积上吸收的冲击功。 HRC洛氏硬度,HBS压头为淬火钢球的布氏硬度。HBW压头为硬质合金球的布氏硬度。 过冷度:理论结晶温度与实际结晶温度之差。冷却速度越快,实际结晶温度越低,过冷度越大。纯金属的结晶包括晶核的形成和晶核的长大。 同一成分的金属,晶粒越细气强度、硬度越高,而且塑性和韧性也越好。 原因:晶粒越细,晶界越多,而晶界是一种原子排列向另一种原子排列的过度,晶界上的排列是犬牙交错的,变形是靠位错的变移或位移来实现的,晶界越多,要跃过的障碍越多。 M提高冷却速度,以增加晶核的数目。 J 2在金属浇注之前,向金属液中加入变质剂进行变质处理,以增加外来晶核,还可以采用热处理或塑性加工方法,使固态金属晶粒细化。 3采用机械、超声波振动,电磁搅拌等 合金:两种或两种以上的金属元素,或金属与非金属元素溶合在一起,构成具有金属特性的新物质。组成元素成为组员。 U、固溶体:溶质原子溶入溶剂晶格而保持溶剂晶格类型的金属晶体。 铁碳合金组织可分为:2、金属化合物:各组员按一定整数比结合而成、并具有金属性质的均匀物质 (渗 < 碳体) 3、机械混合物:结晶过程所形成的两相混合组织。

(完整版)金属工艺学题库及答案

金属材料热处理与加工应用题库及答案 目录 项目一金属材料与热处理 (2) 一、单选(共46 题) (2) 二、判断(共 2 题) (4) 三、填空(共15 题) (4) 四、名词解释(共12 题) (5) 五、简答(共 6 题) (5) 项目二热加工工艺 (7) 一、单选(共32 题) (7) 二、判断(共18 题) (8) 三、填空(共16 题) (9) 四、名词解释(共 5 题) (9) 五、简答(共14 题) (10) 项目三冷加工工艺 (13) 一、填空(共 3 题) (13) 二、简答(共 2 题) (13)

项目一 金属材料与热处理 一、单选(共 46 题) 1?金属a —Fe 属于(A )晶格。 A.体心立方 B 面心立方 C 密排六方晶格 D 斜排立方晶格 2?铁与碳形成的稳定化合物 Fe 3C 称为:(C ) A.铁素体 B 奥氏体 C 渗碳体 D 珠光体 3.强度和硬度都较高的铁碳合金是 :( A )° A.珠光体 B 渗碳体 C 奥氏体 D.铁素体 4.碳在丫一Fe 中的间隙固溶体, 称为:( B )° A.铁素体 B 奥氏体 C 渗碳体 D.珠光体 4.硬度高而极脆的铁碳合金是: C )。 A.铁素体 B 奥氏体 C 渗碳体 D.珠光体 5.由丫一Fe 转变成a —Fe 是属于:( D )° A.共析转变 B 共晶转变 C 晶粒变 D.同素异构转变 6.铁素体(F ) 是:( D )。 A.纯铁 B 混合物 C 化合物 D.固溶体 7.金属结晶时, 冷却速度越快,其实际结晶温度将:( B )。 A. 越高 B 越低 C 越接近理论结晶温度 D 固溶体 8.为细化晶粒, 可采用:( B 。 A.快速浇注 B 加变质剂 C.以砂型代金属型 D.固溶体 9.晶体中的位错属于:( C )。 A.体缺陷 B 面缺陷 C 线缺陷 D.点缺 陷 10. 下列哪种是 高级优质钢:( C )。 A.10 号钢 B.T 7 C.T 8 A D.30Cr 11. 优质碳素结构钢“ 4 5”,其中钢的平均含碳量为:( C )。 A.45% B0.O45 % C0.45 % D4.5 % 12. 优质碳钢的钢号是以( A )命名。 A.含碳量 B 硬度 C 抗拉强度 D 屈服极限 13. 优质碳素钢之所以优质,是因为有害成分( B )含量少。 A.碳 B.硫 C.硅 D.锰 14. 碳素工具钢的钢号中数字表示钢中平均含碳量的( C )。 A.十分数 B.百分数 C.千分数 D.万分数 1 5 .碳钢中含硫量过高时,将容易引起( B )。 A.冷脆 B 热脆 C 氢脆 D.兰脆 16.选用钢材应以( C )为基础。 A.硬度 B 含碳量 C 综合机械性能 D 价格 17.属于中碳钢的是(B )° A.20 号钢 B.30号钢 C.60 号钢 D.70 号 钢 18.下列金属中, 焊接性最差的是( D )。 A. 低碳钢 B 中碳钢 C.高碳钢 D.铸铁

广西大学金属工艺学复习重点教学教材

广西大学金属工艺学 复习重点

铸造 1金属工艺学是一门传授有关制造金属零件工艺方法的综合性技术基础课。是2铸造到今天为止仍然是毛坯生产的主要方法。是 3铸造生产中,最基本的工艺方法是离心铸造。否 4影响合金的流动性因素很多,但以化学成分的影响最为显著。是 5浇注温度过高,容易产生缩孔。是 6为防止热应力,冷铁应放在铸件薄壁处。否 7时效处理是为了消除铸件产生的微小缩松。否 8浇注温度越高,形成的缩孔体积就越大。是 9热应力使铸件薄壁处受压缩。是 10铸造中,手工造型可以做到三箱甚至四箱造型。是 二、单选题 1液态合金的流动性是以( 1)长度来衡量的. ①. 螺旋形试样②. 塔形试样 ③. 条形试样④. 梯形试样 2响合金的流动性的最显著的因素是(2 ) ①. 浇注温度②. 合金本身的化学成分 ③. 充型压力④. 铸型温度 3机器造型( 1) ①. 只能用两箱造型②. 只能用三箱造型 ③. 可以用两箱造型,也可以用三箱造型④. 可以多箱造型

4铸件的凝固方式有( 1) ①. 逐层凝固,糊状凝固,中间凝固②. 逐层凝固,分层凝固,中间凝固③. 糊状凝固,滞留凝固,分层凝固④. 过冷凝固,滞留凝固,过热凝固5缩孔通常是在(4) ①. 铸件的下部②. 铸件的中部 ③. 铸件的表面④. 铸件的上部 6(3 )不是铸造缺陷 ①. 缩松②. 冷裂 ③. 糊状凝固④. 浇不足 7浇注车床床身时,导轨面应该(1) ①. 放在下面②. 放在上面 ③. 放在侧面④. 可随意放置 8三箱造型比两箱造型更容易(2 ) ①. 产生缩孔和缩松②. 产生错箱和铸件长度尺寸的不精确 ③. 产生浇不足和冷隔④. 产生热应力和变形 9关于铸造,正确的说法是( 2) ①. 能加工出所有的机械零件②. 能制造出内腔形状复杂的零件 ③. 只能用铁水加工零件④. 砂型铸造可加工出很薄的零件 10关于热应力,正确的说法是(3 ) ①. 铸件浇注温度越高,热应力越大②. 合金的收缩率越小,热应力越大

金属工艺学复习要点

第一篇金属材料材料导论 第一章金属材料的主要性能 第一节金属材料的力学性能 力学性能的定义:材料在外力作用下,表现出的性能。 一、强度与塑性 概念:应力;应变 拉伸实验 F( k· F ?L(mm) ?L e 1.强度: 定义:塑性变形、断裂的能力。 衡量指标:屈服强度、抗拉强度。 (1)屈服点: 定义:发生屈服现象时的应力。 公式:σs=F s/A o(MPa) (2)抗拉强度: 定义:最大应力值。 公式:σb=F b/A o 2.塑性: 定义:发生塑性变形,不破坏的能力。 衡量指标:伸长率、断面收缩率。 (1)伸长率: 定义: 公式:δ=(L1-L0)/L0×100% (2)断面收缩率: 定义: 公式:Ψ=(A0-A1)/A0×100% 总结:δ、Ψ越大,塑性越好,越易变形但不会断裂。

二、硬度 硬度: 定义:抵抗更硬物体压入的能力。 衡量:布氏硬度、洛氏硬度等。 1.布氏硬度:HB (1)应用范围:铸铁、有色金属、非金属材料。 (2)优缺点:精确、方便、材料限制、非成品检验和薄片。 2.洛氏硬度:HRC用的最多 一定锥形的金刚石(淬火钢球),在规定载荷和时间后,测出的压痕深度差即硬度的大小(表盘表示)。 (1)应用范围:钢及合金钢。 (2)优缺点:测成品、薄的工件,无材料限制,但不精确。 总结:数值越大,硬度越高。 第二章铁碳合金 第一节纯铁的晶体结构及其同素异晶转变 一、金属的结晶 结晶:液态金属凝结成固态金属的现象。 实际结晶温度-金属以实际冷却速度冷却结晶得到的结晶温度Tn。一、金属结晶的过冷现象: 金属的实际结晶温度总是低于理论结晶温度,Tn

金属工艺学复习题及答案

一.名词解释 1.强度:金属材料在力的作用下,抵抗塑性形变和断裂的能力。 2.塑性:金属材料在力的作用下产生不可逆永久形变的能力。 3.硬度: 金属材料表面抵抗局部形变,特别是塑性形变,压痕,划痕的能力。4.冲击韧性:金属材料断裂前吸收的形变能量的能力。5.疲劳强度:承受循环应力的零件在工作一段时间后,有时突然发生断裂,而其所承受的应力往往低于该金属材料的屈服点的断裂。6. 同素异构转变:随着温度的改变,固态金属的晶格也随之改变的现象。7.铁素体:碳溶解于X-Fe中形成的固溶体8.奥氏体:碳溶入r-Fe中形成的固溶体。9.珠光体:铁素体和渗碳体组成的机械混合物。10.莱氏体:奥氏体和渗碳体组成的机械混合物为高温莱氏体;高温莱氏体冷却到727C以下时,将转变为珠光体和渗碳体的机械混合物为低温莱氏体。11.退火:将钢加热,保温,然后随炉或埋入灰中使其缓慢冷却的热处理工艺。12.正火:将钢加热到30-50C或Ac cm以上30-50C,保温后在空气中冷却的热处理工艺。13.淬火:将钢加热到Ac3或Ac1以上30-50C,保温在淬火介质中快速冷却,以获得马氏体组织的热处理工艺。14.回火:将淬火的钢重新加热到Ac1以下某温度,保温后冷却到室温的热处理工艺。15.铸造:将液态金属浇注到铸型中,待其冷却凝固,以获得一定形状,尺寸和性能的毛坯或零件的成型方法。16.铸造性能:指金属在铸造成型时获得外形准确,内部健全铸件的能力。 17.铸造工艺图:在零件图上用各种工艺符号及参数表示出铸造工艺方案的图形。18.铸件的浇注位置:指浇注时铸件在型内所处的 空间位置。19.铸件的分型面:指铸型组元间的结合面。20.压力加工:也叫金属塑性加工,金属在外压力的作用下使其变形而获得的所需零件的方法,其包括锻造,冲压,挤压,轧制,拉拔等21.自由锻:只用简单的通用性工具,或在锻造设备的上,下砧间直接使坯料变形而获得所需的集合形状及内部质量锻件的方法。22.模锻:利用锻模使坯料形变而获得锻件的锻造方法。23.板料冲压:使板料经分离或成形而获得制件的工艺。24.26.焊接:通过加热或加压(或两者并用),使工件产生原子间结合的一种连接方法。27. 以连续送进的焊丝作为电极进行焊接的焊接方法。29.钎焊:利用熔点比焊件低的钎料作填充金属,加热时钎料熔化而将工件连接起来的焊接方法。 二. 牌号含义说明 1.Q235:钢种厚度小于16mm时的最低屈服点为235Mpa的碳素结构钢。 2.Q215:钢材厚度小于16mm时最低屈服点为215Mpa的碳素钢。 3.20钢:表示平均含碳量为0.20%的优质碳素结构钢。 4.45钢:表示平均含碳量为0.45%的优质碳素结构钢。 5.T10A:表示平均含碳量为1.0%的高级优质碳素工具钢。 6.T8:表示平均含碳量为0.8%的碳素工具钢。 7.40Cr:含碳量0.004%的Cr合金结构钢。 8.9SiCr:含碳量为0.009%的硫镉合金工具钢。 9.HT250:表示直径30MM单铸试棒最低抗拉强度值为250Mpa的普通灰铸铁。10.KTH300-06:抗拉强度为300Mpa伸长率为6的黑心可锻铸铁。11.KTZ450-06: 抗拉强度为450Mpa伸长率为6的灰铸铁。12.QT800-2:抗拉强度为800Mpa 伸长率为2的球墨铸铁。13.J422焊条:抗拉强度为22钛钙型结构钢焊条。14.J507焊条:抗拉强度为50的低氢钠型结构钢焊条。 三.简答题 1.简述液态金属的结晶过程:开始时,也液态中先出现的一些极小晶体,称为晶核。在这些晶核中,有些是依靠原子自发的聚集在一起,按金属晶体有规律排列而成,这些晶核称为自发晶核。金属的冷却速度越快自发晶核越多。另外,液态中有时有些高熔点杂质形成微小的固体质点,其中某些质点也可以起晶核作用,这些晶核称为外来晶核或非自发晶核。在晶核出现后,液态金属的原子就以他为中心,按一定几何形状不断的排列起来形成晶体。晶体沿着个方向发展的速度是不均匀的,通常按照一次晶轴、二次晶轴……呈树枝状长大。在原有晶体长大的同时,在剩余液态中有陆续出现新晶核,这些晶核也同样长大成晶体,就这样液体越来越少。当晶体长大到与相邻的晶体相互抵触时,这个方向的长大便停止了。当晶体都彼此相遇、液态耗尽时结晶过程结束。 2.简述晶粒大小对力学性能的影响:一般来说,同一成分的金属,晶粒越细起强度、硬度越高,而其塑性和韧性也越好。 3.试分析含碳量为0.45%的钢从高温到低温过程中的组织转变,并用铁碳状态图加以说明:液态----液态奥氏体----奥氏体----奥氏体+铁素体------珠光体+铁素体。 4.试分析含碳量为1.0%的钢从高温到低温过程的组织转变,并用铁碳合金状态图加以说明。液态----液态奥氏体----奥氏体----奥氏体+铁素体------珠光体+铁素体。 5.简述退火和正火的目的:完全退火能降低硬度,改善切削加工性;正火将钢进行重结晶,从而解决铸钢件、锻件的粗大晶粒和组织不均问题。 6.简述淬火和回火的目的:淬火时为了获得马氏体组织;回火的目的是消除淬火内应力以降低钢的脆性,防止产生裂纹同时也使钢获得所需的力学性能。 7.简要分析铸造生产的特点:1.可制成形状复杂、特别是具有复杂内腔的毛坯。2.适应范围广。3.铸造可以直接利用成本低廉的费机件和切削,设备费用较低。 8.试举出5种特种铸造方法:熔模铸造,消失模铸造,金属型铸造,压力铸造和离心铸造。 9.合金的流动性不良容易在铸件中形成什么缺陷:合金的流动性越不好,充型能力越弱,越不便于浇注出轮廓清晰、薄而复杂的铸件。同时不利于非金属夹杂物和气体的上浮和排出,还不利于对合金冷凝过程所产生的收缩进行补缩。

金属工艺学(邓文英)经典知识点总结

铸造将液态金属浇注到具有与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法 液态合金的充型能力液态合金充满铸型型腔,获得形状完整、轮廓清晰铸件的能力 缩孔它是集中在铸件上部或最后凝固部位容积较大的孔洞。缩孔多呈倒圆锥形,内表面粗糙,通常隐藏在铸件的内层,但在某些情况下,可暴露在铸件的上表面,呈明显的凹坑。 缩松分散在铸件某区域内的细小缩孔,称为缩松。当缩松与缩孔的容积相同时,缩松的分布面积要比缩孔大得多。缩松的形成原因也是由于铸件最后凝固区域的收缩未能得到补足,或者,因合金呈糊状凝固,被树枝状晶体分隔开的小液体区难以得到补缩所致。 热应力它是由于铸件的壁厚不均匀、各部分的冷却速度不同,以致在同一时期内铸件各部分收缩不一致而引起的。 机械应力它是合金的固态收缩受到铸型或型芯的机械阻碍而形成的内应力 热裂热裂是在高温下形成的裂纹。其形状特征是:缝隙宽、形状曲折、缝内呈氧化色 结晶:金属的结晶就是金属液体转变为晶体的过程,亦即金属原子由无序到有序的排列过程。 热处理:就是将钢在固态下,通过加热、保温和冷却,以改变钢的组织,从而获得所需性能的工艺方法。 冷裂冷裂是在低温下形成的裂纹。其形状特征是:裂纹细小、呈连续直线状,有时缝内呈轻微的氧化色 可锻铸铁可锻铸铁又称为玛铁。它是将白口铸铁经石墨化退火而形 成的一种铸铁。 球墨铸铁球墨铸铁是上世纪40年代末发展起来的一种铸造合金, 它是向出炉的铁水中加入球化剂和孕育剂而得到的球状石墨铸铁。 起模斜度为了使模样(或型芯)便于从砂型(或芯盒)中取出,凡 垂直于分型面的立壁在制造模样时,必须留出一定的倾斜度(图2-36), 此倾斜度称为起模斜度。 熔模铸造用易熔材料制成模样,然后在模样上涂挂耐火材料,经硬 化之后,再将模样熔化以排出型外,从而获得无分型面的铸型。由于 模样广泛采用蜡质材料来制造,故又常将熔模铸造称为“失蜡铸造”。 金属型铸造将液态合金浇人金属铸型、以获得铸件的一种铸造方法。由于金属铸型可反复使用多次(几百次到几千次),故有永久型铸造之称 压力铸造简称压铸。它是在高压下(比压约为5~150MPa)将液态或半液态合金快速地压人金属铸型中,并在压力下凝固,以获得铸件的方法 离心铸造将液态合金浇人高速旋转(250~1500 r/min)的铸型,使金属液在离心力作用下充填铸型并结晶 利用金属在外力作用下所产生的塑性变形,来获得具有一定形状、尺寸和力学性能的原材料、毛坯或零件的生产方法,称为金属压力加工,又称金属塑性加工。轧制金属坯料在两个回转轧辊的孔隙中受压变形,以获得各种产品的加工方法。拉拔金属坯料被拉过拉拔模的模孔而变形的加工方法。 挤压金属坯料在挤压模内被挤出模孔而变形的加工方法。 锻造金属坯料在抵铁或锻模模膛内变形而获得产品的方法。

金属工艺学重点知识点样本

金 属 工 艺 学 第 五 版 上 册纲要

强度:金属材料在里作用下,抵抗塑性变形和断裂能力。指标:屈服点(σs)、抗拉强度(σb)。 塑性:金属材料在力作用下产生不可逆永久变形能力。指标:伸长率(δ)、断面收缩率(ψ)硬度:金属材料表面抵抗局部变形,特别是塑性变形压痕、划痕能力。 1布氏硬度:HBS(淬火钢球)。HBW(硬质合金球) 指标:2洛氏硬度:HR(金刚石圆锥体、淬火钢球或硬质和金球) 3韦氏硬度 习题: 1什么是应力,什么是应变? 答:试样单位面积上拉称为应力,试样单位长度上伸长量称为应变。 5、下列符号所示力学性能指标名称和含义是什么? 答:σb:抗拉强度,材料抵抗断裂最大应力。 σs:屈服强度,塑性材料抵抗塑性变形最大应力。 σ0.2:条件屈服强度,脆性材料抵抗塑性变形最大应力 σ-1:疲劳强度,材料抵抗疲劳断裂最大应力。 δ:延伸率,衡量材料塑性指标。 αk:冲击韧性,材料单位面积上吸取冲击功。 HRC:洛氏硬度,HBS:压头为淬火钢球布氏硬度。HBW:压头为硬质合金球布氏硬度。 过冷度:理论结晶温度与实际结晶温度之差。冷却速度越快,实际结晶温度越低,过冷度越大。 纯金属结晶涉及晶核形成和晶核长大。 同一成分金属,晶粒越细气强度、硬度越高,并且塑性和韧性也越好。 因素:晶粒越细,晶界越多,而晶界是一种原子排列向另一种原子排列过度,晶界上排列是犬牙交错,变形是靠位错变移或位移来实现,晶界越多,要跃过障碍越多。

1提高冷却速度,以增长晶核数目。 2在金属浇注之前,向金属液中加入变质剂进行变质解决,以增长外来晶核,还可以采用热解决或塑性加工办法,使固态金属晶粒细化。 3采用机械、超声波振动,电磁搅拌等 合金:两种或两种以上金属元素,或金属与非金属元素溶合在一起,构成具备金属特性新物质。构成元素成为成员。 1、固溶体:溶质原子溶入溶剂晶格而保持溶剂晶格类型金属晶体。铁碳合金组织可分为: 2、金属化合物:各成员按一定整数比结合而成、并具备金属性质 均匀物质(渗碳体) 3、机械混合物:结晶过程所形成两相混合组织。

金属工艺学重点知识点

金属工艺学第五版上册纲要b)。σ强度:金属材料在里的作用下,抵抗塑性变形和断裂的能力。指标:屈服点(s)、抗拉强度(σψ)塑性:金属材料在力的作用下产生不可逆永久变形的能力。指标:伸长率(δ)、断面收缩率(硬度:金属材料表面抵抗局部变形,特别是塑性变形压痕、划痕的能力。1布氏硬度:HBS (淬火钢球)。HBW(硬质合金球) 指标:2洛氏硬度:HR(金刚石圆锥体、淬火钢球或硬质和金球) 3韦氏硬度 习题: 1什么是应力,什么是应变? 答:试样单位面积上的拉称为应力,试样单位长度上的伸长量称为应变。 5、下列符号所表示的力学性能指标名称和含义是什么? :抗拉强度,材料抵抗断裂的最大应力。bσ答: s:屈服强度,塑性材料抵抗塑性变形的最大应力。σ 0.2:条件屈服强度,脆性材料抵抗塑性变形的最大应力σ -1:疲劳强度,材料抵抗疲劳断裂的最大应力。σδ:延伸率,衡量材料的塑性指标。 k:冲击韧性,材料单位面积上吸收的冲击功。α HBW:压头为硬质合金球的布氏硬度。:洛氏硬度,HBS:压头为淬火钢球的布氏硬度。HRC过冷度:理论结晶温度与实际结晶温度之差。冷却速度越快,实际结晶温度越低,过冷度越大。纯金属的结晶包括晶核的形成和晶核的长大。同一成分的金属,晶粒越细气强度、硬度越高,而且塑性和韧性也越好。原因:晶粒越细,晶界越多,而晶界是一种原子排列向另一种原子排列的过度,晶界上的排列是犬牙交错的,变形是靠位错的变移或位移来实现的,晶界越多,要跃过的障碍越多。1提高冷却速度,以增加晶核的数目。 2在金属浇注之前,向金属液中加入变质剂进行变质处理,以增加外来晶核,还可以采用热处理或塑性加工方法,使固态金属晶粒细化。 3采用机械、超声波振动,电磁搅拌等 合金:两种或两种以上的金属元素,或金属与非金属元素溶合在一起,构成具有金属特性的新物质。组成元素成为组员。

金属工艺学知识点总结(2)

第一篇金属材料的基本知识 第一章金属材料的主要性能 金属材料的力学性能又称机械性能,是金属材料在力的作用所表现出来的性能。 零件的受力情况有静载荷,动载荷和交变载荷之分。用于衡量在静载荷作用下的力学性能指 标有强度,塑性和硬度等;在动载荷和作用下的力学性能指标有冲击韧度等;在交变载荷作用下的力学性能指标有疲劳强度等。 金属材料的强度和塑性是通过拉伸试验测定的。 P6低碳钢的拉伸曲线图 1,强度 强度是金属材料在力的作用下,抵抗塑性变形和断裂的能力。 强度有多种指标,工程上以屈服点和强度最为常用。 屈服点:δs是拉伸产生屈服时的应力。 产生屈服时的应力=屈服时所承受的最大载荷/原始截面积 对于没有明显屈服现象的金属材料,工程上规定以席位产生0.2%变形时的应力,作为该材 料的屈服点。 抗拉强度:δb是指金属材料在拉断前所能承受的最大应力。 拉断前所能承受的最大应力=拉断前所承受的最大载荷/原始截面积 2,塑性 塑性是金属材料在力的作用下,产生不可逆永久变形的能力。 常用的塑性指标是伸长率和断面收缩率。 伸长率:δ试样拉断后,其标距的伸长与原始标距的百分比称为伸长率。 伸长率=(原始标距长度-拉断后的标距长度)÷拉断后的标距长度×100% 伸长率的数值与试样尺寸有关,因而试验时应对所选定的试样尺寸作出规定,以便进行比较。同一种材料的δ5 比δ10要大一些。 断面收缩率:试样拉断后,缩颈处截面积的最大缩减量与原始横截面积的百分比称为断面收 缩率,以ψ表示。 收缩率=(原始横截面积-断口处横截面积)÷原始横截面积×100% 伸长率和断面收缩率的数值愈大,表示材料的塑性愈好。 3,硬度 金属材料表面抵抗局部变形(特别是塑性变形、压痕、划痕)的能力称为硬度。 金属材料的硬度是在硬度计上测出的。常用的有布氏硬度法和洛氏硬度法。 1,布氏硬度(HB) 是以直径为D的淬火钢球HBS或硬质合金球HBW为压头,在载荷的静压力下,将压头压 入被测材料的表面,停留若干秒后卸去载荷,然后采用带刻度的专用放大镜测出压痕直径d,并依据d的数值从专门的表格中查出相应的HB值。 布氏硬度法测试值较稳定,准确度较洛氏法高。是测量费时,且压痕较大,不适于成品检验。2,洛氏硬度(HR) 是将压头(金刚石圆锥体、淬火钢球或合金球)施以100N的初始压力,使压头与试样始终 保持紧密接触。然后,向压头施加主载荷,保持数秒后卸除主载荷,以残余压痕尝试计算其 硬度值。实际测量时,由刻度盘上的指针直接指示出HR值。 洛氏硬度法测试简便、迅速,因压痕小、不损伤零件,可用于成品检验。其缺点是测得的硬 度值重复性较差,需在不同部位测量数次。 3,韧性

相关文档
最新文档