聚丙烯

聚丙烯
聚丙烯

聚丙烯生产工艺主要是液相本体法(小本体)和连续式液相本体法(Basell、

三井油化、阿莫科)。用于丙烯聚合的主催化剂为四氯化钛,加有载体、活化剂、第三组份等。目前用的催化剂为络合II型和高效催化剂(N、DQ、Cs型),由于聚丙烯是一种以丙烯为单体聚合制得的有高分子功能材料(通用合成树脂),其

性能决定于聚合过程,也决定于原料纯度和杂质含量等。聚丙烯的一些主要性能,如结晶度、等规指数、灰分、熔体流动速率和拉伸强度等与聚合用的催化

剂有很大关系。聚合反应的副反应就是丙烯在催化剂的作用下,生成无规则的

低分子聚合物,它主要受催化剂自身的性能影响,也受聚合形式的影响。

1.4分析原料丙烯杂质成分及其影响

1.4.1杂质成分

我国聚丙烯原料的来源一般是催化裂化产物分离的丙烯,也有石油裂解气

分离的丙烯。虽然以炼厂丙烯为原料时,气体分离精馏装置可使乙烷、乙烯、

丙烷、炔烃和二烯烃等杂质含量符合高效催化剂聚合时的要求,但由于其分离

丙烯中还含有一定量的硫(尤其是C0S)、CO、CO2、H2O、AS和O2等杂质,从而使聚丙烯催化剂中毒而活性下降,影响装置的正常生产,同时也导致聚丙烯

产品一些主要性能,如结晶度、等规指数、灰分、熔体流动速率和拉伸强度等

受到较大影响,因此,原料丙烯的净化显得十分重要。

1.4.2杂质的影响

1.4.

2.1 H2O的影响

H2O,属于极性组分,它的存在对催化剂的影响是极其有害的。

在其它杂质含量合格且不变的情况下,在不同的Al/Ti、Al/C3H6条件下,丙烯中水分含量对聚合的影响也不相同。水分的影响可以通过它与主催化剂及

活化剂三乙基铝发生的化学反应加以解释[27]:

TiC14+H2O→ Ti(OH)4+ HCl

Al(C2H5)3+3H2O→ Al(OH)3+C3H6

1.4.

2.2 O2的影响

O2对聚合反应的影响比水严重,特别是当氧的体积分数在20×10 以上时,随着氧的体积分数的增加,产品等规度明显下降。高效催化剂较络一II型催化剂对氧更敏感,因为前者TiC14为负载型,含量低,活性高。TiC1被氧化是消

耗性的,生成了无聚合活性的TiO和TiC14[28]。

4TiCl+O2→2TiOCl2+2TiCl4

2TIC12+ O2→TiC14+TiO2

1.4.

2.3硫的影响[29-31]

丙烯中的硫包括有机硫和无机硫两种,硫是丙烯中极其有害的杂质,不管是有机硫还

丙烯聚合的反应速率常用下式表示:

RP=kP[C*][M]

式中RP为反应速率;kP为聚合反应速率常数;[C*]为活性中心浓度;[M]为丙烯单体浓度。

从上式可以看出,丙烯的反应速率是与反应速率常数、活性中心浓度以及

丙烯单体浓度成正比。聚合反应速率随时间而变化,先增加后衰减,最终达到

稳态。

动力学受催化剂和聚合条件的影响,如催化剂的化学物理结构和催化剂的

性能、催化剂和活化剂的比例及浓度、氢浓度、温度、搅拌速度等。

催化剂体系的复杂性以及非均相性使得准确的分析动力学参数非常困难。

对于不同类型的催化剂,它们的反应速率常数有很大区别,因此它们的聚合反

应速率也有很大区别。

2.4分析原料丙烯杂质成分及其影响

1.4.1杂质成分

我国聚丙烯原料的来源一般是催化裂化产物分离的丙烯,也有石油裂解气

分离的丙烯。虽然以炼厂丙烯为原料时,气体分离精馏装置可使乙烷、乙烯、

丙烷、炔烃和二烯烃等杂质含量符合高效催化剂聚合时的要求,但由于其分离

丙烯中还含有一定量的硫(尤其是C0S)、CO、CO2、H2O、AS和O2等杂质,从而使聚丙烯催化剂中毒而活性下降,影响装置的正常生产,同时也导致聚丙烯

产品一些主要性能,如结晶度、等规指数、灰分、熔体流动速率和拉伸强度等

受到较大影响,因此,原料丙烯的净化显得十分重要。

1.4.2杂质的影响

1.4.

2.1 H2O的影响

H2O,属于极性组分,它的存在对催化剂的影响是极其有害的。

在其它杂质含量合格且不变的情况下,在不同的Al/Ti、Al/C3H6条件下,丙烯中水分含量对聚合的影响也不相同。水分的影响可以通过它与主催化剂及

活化剂三乙基铝发生的化学反应加以解释[27]:

TiC14+H2O→ Ti(OH)4+ HCl

Al(C2H5)3+3H2O→ Al(OH)3+C3H6

1.4.

2.2 O2的影响

O2对聚合反应的影响比水严重,特别是当氧的体积分数在20×10 以上时,随着氧的体积分数的增加,产品等规度明显下降。高效催化剂较络一II型催化

剂对氧更敏感,因为前者TiC14为负载型,含量低,活性高。TiC1被氧化是消耗性的,生成了无聚合活性的TiO和TiC14[28]。

4TiCl+O2→2TiOCl2+2TiCl4

2TIC12+ O2→TiC14+TiO2

1.4.

2.3硫的影响[29-31]

丙烯中的硫包括有机硫和无机硫两种,硫是丙烯中极其有害的杂质,不管是有机

硫还表2-1聚合级丙烯规格

聚丙烯(PP)

分子式 ┌...........CH3.┐ │..........│.....│ ┼CH2—CH—┼ └...................┘n 聚丙烯(PP)系采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。聚合工艺生产方法有:溶剂聚合法(淤浆法)、液相本体聚合法、气体本体聚合法和溶液聚合法4种。但主要是溶剂法(淤浆法)聚合为主,其等规度在95%以上,分子量约8~15万。 1.性能 (1)物理性能聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~0.91克/立方厘米,是目前所有塑料中最轻的品牌之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万。成型性好,但因收缩率大(为1%~2.5%),厚壁制品易凹陷,对一些尺寸精度较高零件,还难于达到要求。制品表面光泽好,易于着色。 (2)力学性能聚丙烯的结晶性高,结构规整,因而具有优良的力学性能,其屈服、拉伸、压缩强度和硬度、弹性等都比HDPE高,但在室温及低温下,由于本身的分子结构规整度高,所以冲力强度较差,分子量增大时,冲击强度也随之增大,但成型加工性能变差。聚丙烯有突出的抗弯曲疲劳强度,如用PP注塑—体活动铰链,能承受七千万次开闭的折迭弯曲而无损坏痕迹,它的耐摩擦性能也较好,干摩擦系数与尼龙相似,但在油润滑时,其摩擦性能显然不如尼龙,PP只能用来制作PV值较低的以及不受冲击载荷的齿轮和轴承。在表面效应方面,如在其制品表面压花、雕刻等,则比任何其它热塑性塑料都容易。聚丙烯制品缺口特别敏感。因而在设计模具时必须注意避免尖角存在,否则会容易产生应力集中,影响产品的使用寿命。 (3)热性能聚丙烯具有良好的耐热性。它熔点为164~170℃,制品能在100℃以上的温度进行消毒灭菌。在不受外力作用时,150℃也不变形,在90℃的抗应力松弛性能良好,它的脆化温度为-35℃,在低于-35℃的温度下会发生脆裂,耐寒性不如聚乙烯,若用石棉纤维和玻璃纤维增强后,有较高的热变形温度、尺寸稳定性、低温冲击性能。 (4)化学稳定性聚丙烯的化学稳定性很好,除能被浓硫酸及浓硝酸侵蚀外,对其他各种化学试剂都比较稳定,但是低分子量的脂肪烃、芳香烃和氯化烃等能使聚丙烯软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高。所以,它适合于作各种化工管道和配件,防腐效果良好。 (5)电性能聚丙烯的高频绝缘性能良好,由于它几乎不吸水,放绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。(6)耐候性聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂脂、碳黑或类似的乳白填料等则可改善其耐老化性能。

塑料材料-聚丙烯(PP)的基本物理化学特性及典型应用介绍

聚丙烯(PP)的介绍 聚丙烯概述 聚丙烯采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。聚丙烯的英文名称为Polypropylene,简称PP,俗称百折胶。聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,以下介绍的聚丙烯主要为等规聚丙烯。而无规聚丙烯在室温下是一种非结晶的、微带粘性的白色蜡状物,分子量低(3000~10000),结构不规整缺乏内聚力,应用较少。 聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。然而,通过添加冲击改性剂,可以提高其抗冲击性能。 一、聚丙烯的特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙

相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。(5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。 (6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 二、聚丙烯的用途 (1)薄膜制品:聚丙烯薄膜制品透明而有光泽,对水蒸汽和空气的渗透性小,它分为吹膜薄膜、流延薄膜(CPP)、双向拉伸薄膜(BOPP)等。 (2)注塑制品:可用于汽车、电气、机械、仪表、无线电、纺织、国防等工程配件,日用品,周转箱,医疗卫生器材,建筑材料。 (3)挤塑制品:可做管材、型材、单丝、渔用绳索。打包带、捆扎绳、编织袋,纤维,复合涂层,片材,板材等。吹塑中空成型制品各种小型容器等。 (4)其它:低发泡、钙塑板,合成木材,层压板,合成纸,高发泡可作结构泡沫体。 三、聚丙烯的成型加工 聚丙烯的成型加工性好,成型的方法很多,如注塑、吹塑、真空热成型、涂覆、旋转成型、熔接、机加工、电镀和发泡等,并可在金属表面喷涂。其中注塑成型的比例大,注塑温度在180~200 之间,注塑压力在68.6~137.2MPa,模具温度为40~60℃。预干燥温度在80℃左右。应避免PP 长时间与金属壁接触。 聚丙烯的二次加工性很好,其印刷性比聚乙烯好,照相凸版,胶版、平凹板等印刷方法均可使用,要获得良好的良好的耐热、耐油、耐水等要求的印刷性能,须经电晕放电处理等再行印刷。 四、聚丙烯的改性 聚丙烯可通过填充、增强、共混、共聚、交联来改性。如添加碳酸钙、滑石粉、无机矿物质等填料,可提高刚性、硬度、耐热性和尺寸稳定性;添加玻璃纤维、石棉纤维、云母、玻璃微珠等可提高拉伸强度,并可改善抗蠕变性、低温抗冲击性;添加弹性体和橡胶等可提高冲击性能、透明性等等。 均聚PP和共聚PP的介绍 1. PP均聚物 聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 1.1 化学和性质

聚丙烯材料改性研究

聚丙烯材料改性研究 摘要:利用共混的方法,针对聚丙烯制品在实际应用中出现韧性差,易燃烧的缺点,重点研究了增塑剂POE 不同的量对聚丙烯抗冲击强度的影响,以及氢氧化镁对聚丙烯燃烧性能的影响。本次试验采用了高混机对所用原料进行共混,再将共混的原料放入双螺杆挤出机中挤出造粒,然后将制成的粒料利用注射机制作我们所需的的标准样条,最后对标准样条测试抗冲击强度和氧指数。结果显示,POE 增塑剂的量越多,则对聚丙烯的韧性改善更好,氢氧化镁由于加的量比较少,对聚丙烯的阻燃作用不明显。 关键词:聚丙烯;改性;造粒;增塑;阻燃 1前言 聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotactic polypropylene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯(syndiotactic polypropylene)三种。甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。工业产品以等规物为主要成分。聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。 采用相容剂技术和反应性共混技术对PP 进行共混改性是当前PP 共混改性发展的主要特点。它能在保证共混材料具有一定的拉伸强度和弯曲强度的前提下大幅度提高PP 耐冲击性。相容剂在共混体系中可以改善两相界面黏结状况,有利于实现微观多相体系的稳定,而宏观上是均匀的结构状态。反应型相容剂除具有一般相容剂的功效外,在共混过程中还能在两相之间产生分子链接,显著提高共混材料性能。 PP/弹性体二元共混体系虽有很好的韧性效果,但往往降低了材料的强度和刚度,耐热性能也有所降低。在二元共混体系中加入有增容作用或协同效应的物质,形成多元共混体系,则其综合性能可得到进一步提高。为了提高增韧PP 的硬度、热变形温度及尺寸稳定性,可使用经偶联剂活化处理的填料或增强材料进行补强。例如采用弹性体/无机刚性粒子/PP 三元复合增韧体系实现PP 的增韧增强,提高材料的综合性能,并且具有较低的成本。 溴系阻燃剂效率高、用量少,对材料的性能影响小,并且溴系阻燃剂价格适中。与其它类型的阻燃剂相比,溴系阻燃剂效能/价格比更具有优越性,我国供出口电子电气类产品中70%~80%都用此类阻燃剂。但是,近年来欧盟一些国家认为溴系阻燃剂燃烧时会产生有毒致癌的多溴代苯并恶瑛(PBDD)和多溴代二苯并呋喃(PBDF)。欧盟出台了禁令,在欧盟国家销售的所有电子电气设备,不能含有多溴联苯及多溴二苯醚。阻燃剂的种类众多,其用量和性能都各自不同,需要在不同的情况下选用不同的阻燃剂。现如今,聚丙烯的阻燃剂正向着高效、低烟、绿色、环保和低成本的方向发展。所以本次实验采用比较绿色的阻燃剂氢氧化镁。 本次实验采用POE 对聚丙烯增韧;氢氧化镁对聚丙烯进行阻燃改性,由于加入氢氧化镁的量太多,挤出机挤出较困难,所以同时加入少量三氧化二锑(Sb 2O 3)来减少氢氧化镁用量, 降低加工难度。 2.实验 2.1配方设计

聚丙烯改性

聚丙烯纤维的表面改性 学院:同济大学浙江学院 姓名:董瀚 学号:090736 摘要:结合聚丙烯( PP) 纤维分子结构特点、表面特性以及在水泥基材料应用中存在的问题, 研究了等离子处理方法对聚丙烯纤维表面的改性技术。 关键词:聚丙烯纤维; 表面改性;等离子处理 Research Progress in Surface Modification Technology of PP Fiber ABSTRACT:In this article, we discussed the molecule structure and surface characteristics of PP fiber and the problems whenthey were used in cement matrix material. The surface modification technology of PP fiber was also researched with corona treatment with coupling agent. KEYWORDS:polypropylene fiber; surface modification;corona treatment 1 前言 近年来, 聚丙烯( PP) 纤维在抗裂要求较高的混凝土工程中得到迅速的推广应用, 其出色的阻裂效果已得到试验及工程的证实。但同时也存在一些致命缺点: 表面光滑; 表面能低; 分子链上不含任何活性基团, 而且表面疏水, 以致于纤维在水泥基材料中不易分散; 与水泥基材的物理化学粘接性能较差等,严重制约了其在水泥基材料中的应用。因此对纤维表面进行适当的改性, 提高其在水泥基材料基体中的分散性和界面结合力是聚丙烯纤维扩大应用的关键所在。本文主要介绍等离子处理方法(塑性开裂性能的缺陷)。 2 PP 纤维的结构和性能 聚丙烯是一种结构规整的结晶型聚合物, 为乳白色, 无味, 无毒, 质轻, 是聚烯烃的一种, 密度为0190~ 0. 91g/ cm3, 不溶于水, 熔点为165 ℃ , 燃点为590 ℃; 耐热性能良好; 聚丙烯几乎不吸水, 耐蚀性能良好, 与大多数化学品, 如酸、碱和有机溶剂接触不发生作用; 物理机械性能良好, 抗拉强度330 ~414MPa, 极限伸长率200% ~ 700% , 弹性模量为3.92~ 4. 90GPa; 耐光性能差【1】。 聚丙烯纤维是聚丙烯切片经纺丝、拉伸工艺制成的纤维级产品, 其抗拉强度、极限伸长率以及弹性模量随制作工艺不同而变化较大【2】。聚丙烯纤维虽然具有很好的力学性能, 耐化学侵蚀, 但也存在一些致命缺点, 分子不带有极性基团、表面呈化学惰性和憎水性、在水泥基材料的应用中存在与基材的粘结性和抗蠕变性能较差的缺点。 众所周知, 水泥基材料耐久性的重要地位并不亚于强度和其它性能, 而耐久性不足最终都归结为材料开裂。在水泥基材料中掺入高弹性模量的钢纤维, 其作用主要是阻止硬化材料破坏时的裂缝扩展, 使硬化材料在开裂后仍能保持一定的抗拉强度。与钢纤维相比, 聚丙烯纤维的掺入能有效的抑制早期( 塑性期和硬化初期) 水泥基材料由于离析、泌水、收缩等因素形成的原生裂隙的发生和发展, 减少原生裂隙的数量和尺寸。因此, 聚丙烯纤维和钢纤维的阻裂效应是不同的, 它们分别改善了不同时期水泥基材料的性能。在一些对水泥基材料裂缝要求严格的工程中, 掺用聚丙烯纤维则有可能获得更为满意的效果, 因钢纤维在材料开裂后方能发挥阻裂效应,有些场合并无实际意义, 而水泥基材料在早期易发生塑性开裂性能的缺陷, 却可通过掺入聚丙烯纤维得到解决和改善。

聚丙烯合成工艺的研究

聚丙烯合成工艺的研究 摘要中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,已经基本上形成了溶剂法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局,本文主要介绍了世界5大类聚丙烯生产工艺,着重介绍了液相本体法聚丙烯工艺流程及控制条件。 Abstract Industrial production of polypropylene in China began in the 20th century, 70's, after 30 years of development, has been basically formed a solvent, liquid bulk - Gas Law, intermittent liquid bulk, gas phase, and other production processes simultaneously,the coexistence of large and small scale production patterns, the paper introduces the world's five major categories of polypropylene production process, focusing on the liquid flow Polypropylene and control conditions 中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,已经基本上形成了溶剂法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局。现在中国的大型聚丙烯生产装置以引进技术为主,中型和小型聚丙烯生产装置以国产化技术为主。 聚丙烯,英文名称:Polypropylene,日文名称:ポリプロピレン分子式:C3H6nCAS 简称:PP由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotaeticPolyProlene)、无规聚丙烯(atacticPolyPropylene)和间规聚丙烯(syndiotatic PolyPropylene)三种。目前,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法和气相法和本体法-气相法组合工艺5大类。具体工艺主要有BP公司的气相Innovene工艺、Chisso公司的气相法工艺、Dow公司的Unipol工艺、Novolene气相工艺、Sumitomo气相工艺、Basell公司 的本体法工艺、三井公司开发的Hypol 工艺以及Borealis公司的Borstar工艺等。 世界5大类聚丙烯生产工艺概述 1 淤浆法工艺 淤浆法工艺(Slurry Process)又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison 工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco工艺、日本三井油化工艺以及索维尔工艺等。这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要

国内大石化聚丙烯装置介绍 (1)

国内大石化聚丙烯生产方法介绍 聚丙烯生产方法介绍 目前,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法和气相法和本体法-气相法组合工艺5大类。 (1)三井油化的Hypol工艺。Hypol工艺采用釜式液相本体-气相组合的工艺技术,使用TK-Ⅱ高效载体催化剂,催化剂活性>2万gPP/gcat,可不脱灰、不脱无规物。PP的等规度≥98%,粒度分布窄,可生产宽范围的PP。Hypol聚丙烯工艺于1984年在千叶工厂的两条4万吨/年的生产线上首次投产。世界采用此工艺的生产装置及在建装置23套,总生产能力为200万吨/年。该工艺生产的聚丙烯产品品种多、牌号全、白度高、光学性能好、挥发性和灰分含量低、产品质量优异,不需进一步处理就能达到全部质量要求。 (2)Basell公司的Spheripol工艺。Spheripol工艺采用环管液相本体-气相组合工艺技术,使用GF-2A、FT-4S、UCD-104等10种高效载体催化剂,催化剂活性达4万gpp/gcat,产品等规度为90%-99%,可不脱灰、不脱无规物。该工艺采用新的催化剂和新添加剂加入技术,开发出无造粒的Spheripol工艺技术。Spheripol工艺能生产很宽范围的PP产品,包括均聚物、无规共聚物、三元共聚物、多相抗冲击共聚物和乙烯含量大于25%的有高抗冲击性的共聚物。Spheripol工艺的催化剂粒径大而圆且均匀,所以生成的聚合物颗粒大,呈粒形,粒度分布窄。另外环管反应器内的物料流速高,生成的粉料表观密度大且表面光滑,不易被气流吹走,为密相流化床反应器的应用创造了条件。全世界采用此技术的生产装置43套,总生产能力600万吨/年以上,包括在建装置总生产能力>1 000万吨/年。我国齐鲁石化、上海石化、无顺乙烯、茂名石化、天津联化、中原、独山山、大连、华北油田、大庆炼化等单位都采用该工艺进行生产。 (3)联碳公司的Unipol工艺。Unipol气相流化床工艺,使用Shell公司的SHAC高效催化剂,催化剂活性达2-2.5万gpp/gcat。省掉了催化剂纯化、脱灰和脱无规物工序,工艺流程短,无废液排出,pp等规度可达99%。此工艺技术简单、经济、灵活,但生产稳定性差、产品形状不规则。全世界采用此技术的生产装置及在建装置总生产能力已增到500万吨/年,仅次于Spheripol工艺,最大单线生产能力可达32万吨/年。 (4)Amoco气相工艺。Amoco气相工艺采用卧式搅拌床气相反应器,反应器容积可达79 m2。桨式搅拌使物料以活塞流形式流动,产品切换快,聚合反应热靠丙烯蒸发除去,使用超高活性载体钛系球形催化剂,催化剂活性达4万gpp/gcat,PP等规度达99%,生产过程不脱灰、不脱无规物,可生产均聚物、无规共聚物,亦能生产高刚性和高抗冲强度的共聚物,产品质量好,生产成本低。由于采用浆式搅拌,物料以活塞流形式流动,不需要大的循环,因此耗电量少,不需蒸汽,操作可靠。 (5)巴斯夫公司的Novolen气相工艺。Novolen气相工艺采月带双螺带搅拌立式反应器,物料在湍流状态下流动,催化剂均匀分散在粉末床中,第一个反应器生产均聚物和无规共聚物,第二个反应器生产抗冲共聚物。由于它采用搅拌混合形式,物料在聚合釜中的停留时间难以控制均匀,使产品分子量变宽,产品中Ti、C1离子和灰分增高,催化剂活性较低。该工艺优点是涌程短,投资少。从1990年改用高活性催化剂后省去了脱氯处理,增加了生产能力,最大单线生产能力25万吨/年,世界用此技术的总生产能力已达到380万吨/年。

聚丙烯(PP)塑料的分类情况大全

聚丙烯(PP)塑料的分类情况大全 聚丙烯是所有塑料范围中个别用量最大宗的一类别,也是应用范围最广的一类,可以 基材不同做分类,在分类内仍可以不同的熔融流率定规格,甚至可依个别商品需要添加额 外添加剂再区定出用途规范,例如:单聚合物中,MFR:12 左右可用于一般射出成品, 也可生产复丝纤维,更可特意制造宽广分子量分布去改善纤维织布的后段加工性;同时也 可添加滑剂及抗相黏剂以增加开口性方便塑料袋成品的要求。因此便延伸出众多规格,但 大体物性差不多,在非特意主用途之外是彼此有替代性。这里尝试以基材之不同做分类供 参考,并逐一解说。 1.一般级(HOMOPOLYMER) 单聚合物,大陆称为均聚,系纯丙烯聚合而成的原料。 2.耐冲击级(IMPACT COPOLYMER) 系单聚合物添加乙烯丙烯橡胶,冲击强度高低主 要看橡胶含量高低,耐寒程度好坏主要看乙烯含量高低。各原料厂商制程不同,最高乙烯 含量也不同。 3.透明级(RANDOM COPOLYMER) 随机共聚合物,系丙烯添加乙烯共聚合,乙烯不 规则散布在聚合物中,主要减少聚合物的结晶度进而改善透明性。 4.高结晶级(HIGH ISOTACTICITY or HIGH CRYSTALLINITY) 减少PP聚合物中错位 结构的含量,相对就提高规则性结构含量,也就提高结晶度。主要改善原料的刚性、热变 性温度、表面硬度、抗刮性及光泽性。当然再添加增核剂也会有助于上述物性的增进 5.热封级(TERPOLYMER) 是随机共聚合物的延伸,一般丙烯含乙烯(非EPR)含量最 高在3.5%,但也有制程可添加至5%,乙烯含量越高产品越柔软,热变型温度、软化点、热封温度越低,有时为了要增加乙烯含量要藉助丁二烯或其它第三成份成为三共聚合物以 达上述物性要求。 6.合金级(ALLOY) 不同的塑料原料高比例的混合皆可谓合金级,例如PP添加LDPE 可改善柔软性及冲击强度,在加工上也可减少颈缩及增加平整性,在成型也可减低坠料现象。PP加EPR加HDPE可维系刚性,减少高EPR含量造成的白化现象,改善冲击强度。 7.复合材料(COMPOUNDING) 不同材料混合谓之复合材料,譬如添加玻璃纤维、各类无机物矿粉、有机物木粉、纸屑或谷物微片,在PP材料内以改善各种物性。矿粉又包括:滑石粉、碳酸钙、硫酸钡、云母、碳黑、碳纤维及溴化物等。 8.橡胶(RUBBER) 橡胶,TPR(热可塑性橡胶)与TPE(热可塑性弹性体),有时很难界分,而各种界定说法都有,大部份的橡胶都可与PP相混合,除EPR系列外,也很难界定混合 是定位在合金或复合材料项内。一般常与PP混合的橡胶有EPR及EPDM,适合与PP直 接混料的产牌有CATALLOY、PLASTOMER、ENGAGE、TAFMER、KRATON及SANTOPLENE等。 9.特殊规格(SPECIALS) 未含盖在前项类的都可归入此类,例如:高熔融强度原料(HMS、High Melt Strength)可用在发泡材内改善表面气密性提高发泡效果,也可减少板材 成型的坠料现象。

高熔体强度聚丙烯的研究解析

高熔体强度聚丙烯的研究简介概述1 PP Mont-ecati年由意大利蒙特卡迪尼(万。195710~50聚丙烯(PP),分子量一般为)公司实现工业化生产。聚丙烯为白色蜡状材料,外观与聚乙烯相近,但密度比聚ni℃左右,热性能好,在通用树脂中是唯一能在水165乙烯小,透明度大些,软化点在℃,具有优异的介电性能。溶解性-10~20130℃下消毒的品种,脆点中煮沸,并能在相近。作为一种通用塑料,聚丙烯具有较好的综合性能,聚丙烯的成PE能及渗透性与型收缩率较聚乙烯小,具有良好的耐应力开裂性。因而被广泛应用于制造薄膜、电绝缘体、容器、包装品等,还可用作机械零件如法兰、接头、汽车零部件、管道等,聚丙烯还可以拉丝成纤维。在近年来所举的通用塑料工程塑料化技术中,聚丙烯作为首机械强度和硬度较低以及成PP也存在低温脆性、选材料不断地引起了人们的重视。但型收缩率大、易老化、而热性差等缺点。因此在应用范围上,尤其是作为结构材料和年代中期国内外就采用化学或物理改性方工程塑料应用受到很大的限制。为此,从70的缺口冲击强度和低温韧性方面进PP进行了大量的研究开发特别是针对提高法对PP行了多种增强增韧改性研究开发。常见的改性方法有共聚改性、共混改性和添加成核剂等。 1.1 PP生产方法和种类 中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,生产技术、工艺也趋于多样化,已经基本上形成了淤浆法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局。中国的大型聚丙烯生产装置以引进技术为主,中型和小型聚丙烯生产装置以国产化技术为主。由最初的浆液工艺发展到目前广泛使用的液相本体法和气相法,液相本体法因其不使用稀释剂、流程短、能耗低,现已显示出后来居上的优势。 (1)淤浆法:在稀释剂(如己烷)中聚合,是最早工业化的方法; (2)液相本体法:在70℃和3MPa的条件下,在液体丙烯中聚合; (3)气相法:在丙烯呈气态条件下聚合。 - 2 - )和间规IPP根据甲基排列位置聚丙烯可分为等规聚丙烯()、无规聚丙烯(APP 聚丙烯(SPP)三种。甲基无秩序的排列在分子主链的两甲基排列在分子主链的同一侧称等规聚丙烯,侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的,其余为无规或间规聚丙烯。工业产品以等规聚丙烯树脂中,等规结构含量约为95%物为主要成分。通常为半透明无色固体,无臭无毒,由于结构规整而高度结晶化,故熔点可高达167℃,耐热、耐腐蚀,制品可用蒸汽消毒,密度小,是最轻的通用塑料。 PP的特点1.2 ℃)、低透明度、低光泽度、低刚性,冲击强100PP材料有较低的热变形温度(℃。由于结晶度较高,这种材料150度随着乙烯含量的增加而增大,维卡软化温度为不存在环境应力开裂问题,无毒、无味、密度小、的表面刚度和抗划痕特性很好。PP℃左右使用。具有良好的介强度、刚度、硬度、耐热性均优于低压聚乙烯,可在100电性能和高频绝缘性且不受湿度影响,但低温时变脆,不耐磨、易老化。

聚丙烯资料

聚丙烯生产技术知识与讲解资料 一、工艺原理及工艺流程 1、反应机理 生产高效聚丙烯产品的装置是液相本体法聚丙烯装置,设计是采用高效催化剂为主催化剂,三乙基铝为活化剂,同时加入第三组分(二苯基二甲氧基硅烷简称DDS),氢气,加热增压反应生成的高效聚丙烯。主催化剂与活化剂形成的络合物具有定向能力,能使丙烯分子上的甲基受催化剂作用而在一定方向主链上有规则排列得到坚韧的高结晶度的聚合物。该反应属于配位阴离子反应,聚丙烯产品的等规度高低与所用催化剂有关,活化剂三乙基铝与主催化剂TiCl4/MgCl2·ED形成聚合活性中心,同时起到消除粉料中有害杂质的作用,加入DDS是为了在生 产反应中提高聚丙烯的等规度。 2、丙烯聚合反应 丙烯聚合反应可简单表示为:nC3H6 — ( CH2――CH)— n ︱ CH3 3、影响聚合反应的因素 1)原料杂质对聚合反应的影响

水份的影响 由于高效催化剂中TiCl4和活化剂Al(C2H5)3化学性质很活泼,能与水发生剧烈反应,当丙烯中H2O含量>20ppm时,反应时明显受到影响,当H2O>100ppm时,聚合反应基本不发生或清汤,但当H2O <20ppm以下时,聚丙烯等规度随水含量增加而略有提高。这是因为H2O能抢先使催化剂中低定向能力的活性中心失活。 氧的影响 氧对聚合反应的影响比水严重,特别是氧含量在20ppm以上时,随氧含量的增加,产品等规度下降明显。 硫的影响 硫是丙烯中极有害的杂质,不论是无机硫还是有机硫对反应都是有危害的。尤其是COS、CS2能使聚合反应链终止,使用高效催化剂,当S>10ppm以上时,反应明显受影响,催化剂活性下降,单釜产量降低,粉料中有小塑化块。当硫含量达一定程度,造成堵釜无法正常生产。 催化剂加入量的影响 每个反应釜加入的催化剂量,应视聚合釜的加料量及催化剂的活性而定,在其它条件不变时,催化剂加入量增多,则丙烯的转化率和聚丙烯的等规度有所提高,但随着催化剂量的增加,则催化剂得率相对降低。催化剂量过高,可能引起爆聚,形成塑化结块,严重时使聚合釜超

聚丙烯改性技术的研究进展

聚丙烯改性技术的研究进展 五大通用塑料中,聚丙烯(PP)发展历史虽短,却是发展最快的一种。与其他通用塑料相比,PP具有较好的综合性能,例如:相对密度小,有较好的耐热性,维卡软化点高于HDPE和ABS,加工性能优良;机械性能如屈服强度、拉伸强度及弹性模量均较高,刚性和耐磨都较优异;具有较小的介电率,电绝缘性良好,耐应力龟裂及耐化学药品性能较佳等。但由于PP成型收缩率大、脆性高、缺口冲击强度低,特别是在低温时尤为严重,这大大限制了PP的推广和应用。为此,从上世纪70年代中期,国内外就对PP改性进行了大量的研究,特别是在提高PP的缺口冲击强度和低温韧性方面,目前已成为国内外研究的重点和热点。 1 橡胶增韧PP 橡胶或热塑性弹性体以弹性微粒状分散结构增韧塑料,已被证实是增韧效果较为明显的一种方法。由于PP具有较大的晶粒,故在加工时球晶界面容易出现裂纹,导致其脆性。通过掺人各种含有柔性高分子链的橡胶或弹性体,可大幅度提高PP的冲击强度,改善低温韧性。传统的PP增韧剂有三元乙丙橡胶(EPDM)、二元乙丙橡胶(EPR)、苯乙烯与丁二烯类热塑性弹性体(SBS)、顺丁橡胶(BR)、丁苯橡胶(SBR)等,其中以EPDM或EPR取效果最好。 1.1 PP/乙丙橡胶共混体系 PP与乙丙橡胶都含有丙基,溶度参数相近,根据相似相容原理,它们之间应具有较好的相容性。由于乙丙橡胶具有高弹性和良好的低温性能,因此与PP 共混可改善PP的冲击性能和低温脆性。 李蕴能等研究了乙丙橡胶心P共混物的性能,得出结论:在相同橡胶含量下,增韧共聚PP的效果远优于增韧均聚PP,且增韧效果与橡胶的种类有关。通常情况下,EPR的增韧效果优于EPDM。通过实验发现,当橡胶含量为30%时,增韧效果最好;不同结晶度的EPR对PP的增韧效果也不一样,结晶度越低,其增韧效果越好。 刘晓辉等对不同PP心Pr)M共混物的力学性能进行了研究。结果表明:(1)随着体系中EPDM加入量的增多,材料的冲击强度明显上升,当EPDM含量为30%左右时,冲击强度出现极值;(2)冲击强度的提高和变化与EPDM在PP中的形态和分布有关;(3)EPDM的加入对共混晶体结构有影响,但晶体结构上的差

pp材料介绍

PP材料概述 PP塑料,化学名称:聚丙烯 英文名称:Polypropylene(简称PP) 比重:0.9-0.91克/立方厘米成型收缩率:1.0-2.5% 成型温度:160-220℃ PP为结晶型高聚物,常用塑料中PP最轻,密度仅为0.91g/cm3(比水小)。通用塑料中,PP的耐热性最好,其热变形温度为80-100℃,能在沸水中煮。PP有良好的耐应力开裂性,有很高的弯曲疲劳寿命,俗称“百折胶”。PP的综合性能优于PE料。PP产品质轻、韧性好、耐化学性好。PP的缺点:尺寸精度低、刚性不足、耐候性差、易产生“铜害”,它具有后收缩现象,脱模后,易老化、变脆、易变形。 日常生活中,常用的保鲜盒就是由PP材料制成。 成型特性: 1.结晶料,吸湿性小,易发生融体破裂,长期与热金属接触易分解. 2.流动性好,但收缩范围及收缩值大,易发生缩孔.凹痕,变形. 3.冷却速度快,浇注系统及冷却系统应缓慢散热,并注意控制成型温度.料温低温高压时容易取向,模具温度低于50度时,塑件不光滑,易产生熔接不良,流痕,90度以上易发生翘曲变形 4.塑料壁厚须均匀,避免缺胶,尖角,以防应力集中. PP 的工艺特点 PP在熔融温度下有较好的流动性,成型性能好,PP在加工上有两个特点:其一:PP熔体的粘度随剪切速度的提高而有明显的下降(受温度影响较小);其二:分子取向程度高而呈现较大的收缩率。 PP的加工温度在200-300℃左右较好,它有良好的热稳定性(分解温度为310℃),但高温下(270-300℃),长时间停留在炮筒中会有降解的可能。因PP的粘度随着剪切速度的提高有明显的降低,所以提高注射压力和注射速度会提高其流动性,改善收缩变形和凹陷。模温宜控制在30-50℃范围内。PP熔体能穿越很窄的模具缝隙而出现披锋。PP在熔化过程中,要吸收大量的熔解热(比热较大),产品出模后比较烫。PP料加工时不需干燥,PP的收缩率和结晶度比PE低。 聚丙烯(PP)性能概述与横向比较 PP与其它几种主要的通用塑料的性能比较 塑料种类PP PE PVC PS ABS 密度最小小于水较大略高于水略高于水 刚性较好差好好好 收缩率一般差好好好 韧性低温下差好差差好 强度较高低较高高高 耐热性好一般差较差较差 化学稳定性好好好好好 耐候性差差一般一般较差 毒性无毒无毒可以无毒无毒无毒

聚丙烯常用性质

聚丙烯(PP)系采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。聚合工艺生产方法有:溶剂聚合法(淤浆法)、液相本体聚合法、气体本体聚合法和溶液聚合法4种。但主要是溶剂法(淤浆法)聚合为主,其等规度在95%以上,分子量约8~15万。 (1)物理性能聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~0.91克/立方厘米,是目前所有塑料中最轻的品牌之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万。成型性好,但因收缩率大(为1%~2.5%),厚壁制品易凹陷,对一些尺寸精度较高零件,还难于达到要求。制品表面光泽好,易于着色。 (2)力学性能聚丙烯的结晶性高,结构规整,因而具有优良的力学性能,其屈服、拉伸、压缩强度和硬度、弹性等都比HDPE高,但在室温及低温下,由于本身的分子结构规整度高,所以冲力强度较差,分子量增大时,冲击强度也随之增大,但成型加工性能变差。聚丙烯有突出的抗弯曲疲劳强度,如用PP注塑—体活动铰链,能承受七千万次开闭的折迭弯曲而无损坏痕迹,它的耐摩擦性能也较好,干摩擦系数与尼龙相似,但在油润滑时,其摩擦性能显然不如尼龙,PP只能用来制作PV值较低的以及不受冲击载荷的齿轮和轴承。在表面效应方面,如在其制品表面压花、雕刻等,则比任何其它热塑性塑料都容易。聚丙烯制品缺口特别敏感。因而在设计模具时必须注意避免尖角存在,否则会容易产生应力集中,影响产品的使用寿命。 (3)热性能聚丙烯具有良好的耐热性。它熔点为164~170℃,制品能在100℃以上的温度进行消毒灭菌。在不受外力作用时,150℃也不变形,在90℃的抗应力松弛性能良好,它的脆化温度为-35℃,在低于-35℃的温度下会发生脆裂,耐寒性不如聚乙烯,若用石棉纤维和玻璃纤维增强后,有较高的热变形温度、尺寸稳定性、低温冲击性能。 (4)化学稳定性聚丙烯的化学稳定性很好,除能被浓硫酸及浓硝酸侵蚀外,对其他各种化学试剂都比较稳定,但是低分子量的脂肪烃、芳香烃和氯化烃等能使聚丙烯软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高。所以,它适合于作各种化工管道和配件,防腐效果良好。 (5)电性能聚丙烯的高频绝缘性能良好,由于它几乎不吸水,放绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。 (6)耐候性聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂脂、碳黑或类似的乳白填料等则可改善其耐老化性能。

我国聚丙烯行业概况研究

我国聚丙烯行业概况研究 1、行业概况 (1)聚丙烯简介 聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯、无规聚丙烯和间规聚丙烯三种。聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物, 是目前所有塑料中最轻的品种之一,成型性好,制品表面光泽好,耐热、耐腐蚀,制品 可用蒸汽消毒是聚丙烯的突出优点。 聚丙烯的用途比较广泛,主要有注射成型制品,如周转箱、容器、手提箱、汽车部 件(仪表盘、挡泥板、通风管、风扇、保险杠等)、家用电器部件、医疗器械(一次性 针筒)、器械(洗碗机门衬垫、干燥机通风管、洗衣机框架及机盖、冰箱门衬垫等)、日用消费品(草坪和园艺设备如剪草机和喷水器等)和家具;挤出制品,如制成纤维或薄 膜;热成型制品,如一次性食品容器;其他用于食品包装的吹塑制品,如酸乳容器、热 灌装饮料瓶、玩具等。

聚丙烯行业全产业链简要流程图 (2)聚丙烯行业现状 我国聚丙烯工业化生产始于1971年,当时中国化工企业从英国、日本、美国、意 大利等多家引进聚丙烯工艺装置。进入80 年代,中国化工企业利用炼厂催化裂化装置 的丙烯,通过采用国产自行开发的技术和催化剂,建设了一批小规模聚丙烯装置。90 年代以来,中国聚丙烯的发展加快,利用蒸汽裂解装置和炼厂的丙烯建设了20 多套聚丙烯装置,长期以来聚丙烯行业出现中石化和中石油两大集团产能独大的情形。近年来,随着甲醇制烯烃工艺、丙烷脱氢等工艺技术的发展,聚丙烯用丙烯来源出现多元化态势,另外随着多家民营或合资资本的介入,中国聚丙烯生产企业的结构发生了较大的变化。 根据金联创资讯统计,截至2018 年末,中国聚丙烯产能达到2,258 万吨/年,2014-2018年均复合增长率为8.22%。从聚丙烯来源来看,油制聚丙烯约占57%,煤

聚丙烯的材料性能资料

中英名称 中文名称 (聚丙烯)[1] 英文名称 Polypropylene 性能特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。 它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。 (2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下, 由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性, 如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。 (5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。(6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 PP聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~0.91g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。PP聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。

聚丙烯树脂介绍

聚丙烯树脂介绍 聚丙烯最突出的性质是多面性,它能适合于许多加工方法和用途。它的价值和多面性主要来自于优良的耐化学品性能、在大宗热塑性塑料中最低的密度和最高的熔点、适中的成本。根据高分子链立体结构不通,聚丙烯有三个品种:等规聚丙烯(IPP),间规聚丙烯(SPP)和无规聚丙烯(APP)。 化学和性能 聚丙烯(简称PP)与聚乙烯(PE)不同之处在于,前者每隔一个碳原子上就有一个甲基,这起到使链硬化的作用。除非这些甲基处于链的同一侧位置上,聚合物不会结晶。在Natta和Ziegler(互相独立地)开发出立体定向催化剂之前,只能生产出软且粘连的无规立构聚丙烯。商业塑料的硬度和耐溶齐小胜源自结晶性。PP的链比PE的硬,因而PP有较高的熔化温度和抗张强度,但结晶度较低。PP均聚物的熔点约为330°F,取决于加热速度和热历史。 在PP链上间隔地插入乙烯(无规共聚),链会变得更缺乏规则和更柔软,从而降低聚合物的结晶度、模量、熔点和熔点锐度。典型的无规共聚物是比较透明的,熔点在293—305°F范围内。当乙烯含量升高时,聚合物的结晶度越来越低,最后变成乙烯一丙烯橡胶(EPR)。 另一类重要的共聚物是抗冲击非均相共聚物。这些产品是由橡胶(有时为PE)在均聚物基体中聚合而制得的。所用橡胶通常为EPR,它生成一个与均聚物基体分离的相态,形成有光雾。半透明的外观。这些材料并非真正的嵌段共聚物,因为其中的橡胶相可被溶剂所革取。用EPR与PP共混可得类似的产品,抗冲击共聚物具有和均聚体物相似的熔点。 分子量和分子量分布在PP加工过程中很重要。在446T和4.75磅负荷下的熔体流动是熔体粘度的一个指数,该指数与重均分子量相关。商品聚丙烯的熔体流动有低至0.25克/10分钟到高达800克/10分钟。分子量分布用重均分子量与数均分子量的比值来表示,高结晶度PP的这个比值可以高达11;而用作熔吹织物的PP则可低至2.l。这个比值在纤维纺丝过程中极为重要,而且影响到挤压、挤出物胀大、模塑内应力和定向过程。 象大多数聚合物一样,聚丙烯会氧化,特别是在熔化加工过程中。就PP而论,采取清除攻击叔氢的自由基来保护聚合物。对于在高温下长期使用的PP,则采用复杂的多组分稳定剂体系;对于限制气味或味道的场合,稳定体系必须非常简单。如果用于防阳光(紫外线)可加入炭黑或用专门的稳定方法。 普通PP的抗张强度为34.5MPa,弯曲模量约为1723MPa。有抗张强度为100 MPa,弯曲模量为9650MPa的玻璃填充级PP。矿物填充级PP的弯曲模量可高达约4480MPa,但抗张强度增加不多。在低于一75°F时仍保持延展性。抗张强度低至18 6MPa和弯曲模量低至689MPa的抗冲击共聚物已经不是最近出现的品种了。现代聚合反应过程能生产出可填补聚丙烯与烯烃橡胶之间空白的材料。

相关文档
最新文档