氦比重瓶法测孔隙度

氦比重瓶法测孔隙度
氦比重瓶法测孔隙度

POROSITY DETERMINATION WITH HELIUM PYCNOMETRY AS A METHOD TO CHARACTERIZE WATERLOGGED WOODS AND THE EFFICACY OF THE CONSERVATION TREATMENTS*

I.D.DONATO and https://www.360docs.net/doc/757666028.html,ZZARA

Dipartimento di Chimica ‘Stanislao Cannizzaro’,Universitàdegli Studi di Palermo,Viale delle Scienze—Edi?cio 17,

90128Palermo,Italy

The helium pycnometer allows us to measure the cell-wall density of dry woods and the basic density of wood samples soaked with water and/or a consolidant solution if a non-volatile solvent is used.These parameters were correlated to the porosity,which for degraded water-logged wood is related to the maximum water content.Moreover,this has revealed the possibility of investigating,by means of accurate cell-wall density determination,the ef?cacy of several consolidants in the treatment of waterlogged woods.

KEYWORDS:HELIUM PYCNOMETRY,POROSITY,DENSITY,WATERLOGGED WOOD,

CONSOLIDATION

INTRODUCTION

Many properties of archaeological wood,particularly those involving deterioration,sorption,penetrability,swelling and strain-related phenomena,are probably dependent on the porosity of the wood,which,in turn,depends on cell-wall and basic densities (Capretti et al .2008).Thus,accurate measurements of these physical parameters are essential for a correct determination of such properties.Several conventional methods have been successfully applied for determination of the physical and chemical properties of waterlogged archaeological woods (Capretti et al .2008;Pizzo et al .2010).The concept of density is very simple,and the mass and volume of a body would seem to be among the easiest physical parameters to measure.Actually,for a porous,hygroscopic,polymeric material,the measurement of the volume is extremely controversial.This is particularly true in the determination of basic and cell-wall densities of wood.For determina-tion of the basic density,the volume is measured by either of two techniques.The volume of samples with a proper geometrical shape is obtained from the characteristic dimensions measured by means of a calliper,whereas for samples with an irregular shape,the volume is obtained by means of a Regnault pycnometer,employing mercury as a reference liquid.The measure of the cell-wall volume in order to determine the cell-wall density is more dif?cult.

Gas pycnometry,based on the Boyle–Mariotte law of the volume–pressure relationship,is an effective tool to determine the volume of porous materials because it does not possess the limitations of other testing methods (Tamari 2004),such as the problem of air entrapment.In gas pycnometry the main approximation in the estimation of the sample volume is the non–ideal gas behaviour and its adsorption on to the solid material.Nevertheless,experimental results (Weber and Bastick 1968)and modern simulations of gas adsorption on solids (Neimark and Ravikovitch 1997;Talu and Myers 2001)have demonstrated that helium can reasonably be considered as an ideal and non-adsorbing gas at room temperature (300K)and low pressure (<0.5MPa).A gas

*Received 12July 2011;accepted 7November 2011

bs_bs_banner

Archaeometry 54,5(2012)906–915doi:10.1111/j.1475-4754.2011.00657.x

?University of Oxford,2012

Porosity determination with helium pycnometry907 pycnometer,using pure helium,was employed in this work to measure the cell-wall density of degraded waterlogged wood after dehydration,and of wood?nds preserved with enforcing materials after exsiccation.Moreover,helium pycnometry could be used to measure the basic density when a wood sample soaked with water and/or a consolidant solution of a non-volatile solvent is used.

The primary purpose of this study was to:

(a)correlate the Maximum Water Content(MWC%)(Florian1990,8)with the porosity of degraded waterlogged wood;

(b)test the modi?cations of the cell-wall density of softwood and hardwood dehydrated archaeo-logical?nds;and

(c)study the effects on the porosity of several chemicals used as strengtheners for degraded woods.

EXPERIMENTAL

Materials

Poly(ethylene)glycols(PEG4000,PEG1500and PEG600),hydroxypropylcellulose(Klucel, M

=80kDa)and a-d-glucopyranosyl-a-d-glucopyranoside(TREA)are from Sigma.The w

acetone was a J.T.Baker product.Colophony(from Phase)is a complex mixture essentially composed of isomers of abietic acid(90%)and the corresponding esters,aldehydes and alcohols (10%).Rosin100?(from Bresciani s.r.l.)is a chemically modi?ed colophony(stabilized ester of pentaerythritol).Vinavil8020S?is a commercial copolymer(vinyl acetate and vinyl versate) from Mapei SpA.The densities of the pristine consolidants and their solutions used for the consolidation treatments are given in Table1.

Wood samples and characterization

Wood samples were collected from?ndings related to the ancient vegetation coeval with the ancient ships of Pisa(Italy)from that archaeological site.They are dated from the seventh century

Table1Densities of dried consolidants and their solutions at25°C

Density of solution Density of dried consolidant

(g cm–3)(g cm–3)

20%PEG4000+2%TREA in water 1.042 1.20,*1.58?

20%PEG1500+2%TREA in water 1.064 1.20,*1.58?

20%PEG600+2%TREA in water 1.044 1.20,*1.58?

7%Klucel in water 1.009? 1.27

60%colophony in acetone0.970 1.08

60%Rosin100in acetone0.957 1.07

7%Vinavil8020S in acetone0.8170.93

*PEG.

?TREA.

?The temperature is30°C.

?University of Oxford,2012,Archaeometry54,5(2012)906–915

908I.D.Donato and https://www.360docs.net/doc/757666028.html,zzara

bc to the second century ad(Giachi et al.2011).Samples of waterlogged wood were character-ized according to the procedure of the Italian standard UNI11205:2007(see UNI2007).The identi?cation of wood taxa was done by means of optical microscopy on thin sections along the three characteristic directions of wood;from this analysis and the comparison with the taxonomic tables UNI11118:2004(see UNI2004),the wood samples were classi?ed as softwood(Larix decidua Mill.,Pinus nigra Arnold and Pinus pinaster Aiton)and hardwood(Arbutus unedo L., Ulmus cf.minor,Fagus sylvatica L.and Quercus sp.caducifolia).

Wood treatments

The wood desalination was performed by washing samples with deionized water at25°C;the procedure was halted when the conductivity was?10m S cm–1:

(a)Waterlogged archaeological wood was consolidated after desalination by impregnation carried out by immersing the samples in a solution of water-soluble polymers(PEGs+TREA or

)measurements were utilized to follow the evolution of the process Klucel).Refractive index(n

D

of impregnation.The impregnation was considered complete when the refractive index of the solutions in which the sample was immersed approached the concentration value of the impreg-nating mixture before its use,within the limits of the measurement error.Drying after treatment was carried out by freeze-drying(–45°C,10–4atm).The latter operation was performed by using

a Heto FD2.5freeze-dryer.

(b)Different samples of waterlogged archaeological wood were consolidated by immersion in acetone solutions of:(60wt%)colophony,(60wt%)Rosin100and(7wt%)Vinavil8020S.In

)mea-this case,the impregnation water was replaced by acetone,and the refractive index(n

D surements were used to follow the kinetics of the process.Finally,acetone-?lled samples were immersed in the consolidating solutions.The diffusion of these solutions into wood was followed by measuring the variation of the consolidant concentration with time through viscosity mea-surements.Flow-time was measured at constant temperature by means of a Ubbelohde-type capillary micro-viscosimeter,equipped with an optical sensor and an A VS440automatic unit from Schott-Ger?te.A second impregnation step was carried out after the?rst one,and in some cases the temperature was increased in order to speed up the process.

After treatment,each sample was placed into a box at room temperature(25°C and1atm)to slowly remove the acetone;the box was opened periodically to let the acetone vapours out (Giachi et al.2010).

Methods

The Accupyc1330Micromeritics gas pycnometer,which used99.995%pure helium,was employed to determine the volume of the samples by measuring the pressure change of helium in a calibrated volume.The apparatus had a10cm3cell,well suited for the small available quantities of many of the studied materials.Standards for the volume calibration(balls purchased from Micromeritics,V

=6.371684cm3)were used at25°C.

cal

The experiments were performed by using the cell with a75%?lling ratio.The results showed that density values and standard deviations(corresponding to the10repetitions for each analysis) decreased with the number of purges.The repeatability of the technique was investigated by conducting three independent analyses on the same sample.The measurements were performed on the same day with a new sample for each analysis,because of the possible evolution of the product during purges and measurements.The pressure was considered constant if the rate was

?University of Oxford,2012,Archaeometry54,5(2012)906–915

0.34mbar min –1.The variation in the pycnometer density,due to the operating parameters,can affect the accuracy of the result up to 0.01g cm –3.Before each cell-wall density measurement,the wood samples (dried at 105°C and freeze-dried,or air dried at 25°C)were kept in a desiccator for 2h under vacuum.

RESULTS AND DISCUSSION

Waterlogged degraded archaeological wood

Within the ?eld of cultural heritage,wood plays a relevant role.These ?nds can survive better in wet environments where microbial and fungal activities are limited,as in the case of underwater shipwrecks.In such environments,anaerobic bacteria are primarily responsible for the depletion of wood (Bj?rdal and Nilsson 2000,2008).Waterlogged woods are characterized and classi?ed based on physical,chemical and biological parameters,by analysis of the wood structure and by optical and electron microscopy.The water content and density are the physical parameters most frequently determined,in order to obtain a rapid classi?cation of decay for waterlogged wood (Florian 1990,8).

The maximum water content (MWC%)is determined as follows:

MWC mass of water in wet wood sample oven-dry mass o %=×()100f wood sample ()(1)

The wet wood sample is dried at (10512)°C to constant mass (accurate to 0.0001g);the mass of water is determined from the difference in the mass of the sample before and after the drying treatment.

The basic density (d b )was calculated from oven-dry mass and water-saturated volume;this method is appropriate for degraded waterlogged woods.The basic density of archaeological wood is constrained between the value for identical sound taxon and zero as the wood approaches total destruction.In other words,the density deviation from the value of sound wood is a measure of the extent of deterioration.

The cell-wall density (d cell-wall )was based on oven-dry weight and dry volume,namely the volume occupied by the cell wall.The porosity of wood (Z %)is related to the cavity volume (V c )and to the volume of the water-saturated sample (V total ).Moreover,(V cell-wall )is the volume of the cell wall.The following equations correlate these parameters:

V V V c total cell-wall =?()

(2)Z V V V d d %=×?()=×?()

1001001total cell-wall total b cell-wall (3)

Mercury intrusion porosimetry (MIP)is used,in general,to evaluate the pores’volume and their size distribution.However,this instrument cannot be used for porosity measurement of water-logged woods,because of the necessary high pressure,which leads to compression of wood and consequently to the collapse of a number of pores or voids.Instead,the accurate determination of the cell-wall density and,therefore,of the porosity is made possible by using the gas pycnometer.At present,the instrument considered to give the closest approximation to the true density of the cell wall is the helium pycnometer.The accuracy is due to the fact that helium penetrates into the smallest pores and crevices,approaching the real volume.The use of this instrument for cell-wall density determination offers the advantage of being easy to use and

Porosity determination with helium pycnometry 909

?University of Oxford,2012,Archaeometry 54,5(2012)906–915

rapid,especially with a fully automated apparatus.The accuracy and the reproducibility of the technique are suf?cient to reveal minute variations.

For each wood sample,MWC%,d

b and d

cell-wall

were determined at25°C,and the porosity,

Z%,was calculated from the density values shown in equation(3).These quantities are reported in Table2.The investigated waterlogged woods are very degraded,as the calculated

values of MWC%show,in agreement with results from the holocellulose-to-lignin ratio reported elsewhere(Pizzo et al.2010).The d

b

values,experimentally determined by using the helium pycnometer,are related to those of MWC:high water contents are linked to a

low basic density of decayed waterlogged woods.The d

cell-wall

values for each sample vary.

They differ from the literature values for sound woods(d

cell-wall

=1.50or1.53g cm–3)and for

waterlogged woods(d

cell-wall

=1.48g cm–3),as reported by Jensen and Gregory(2006).From a more accurate analysis of the results,it emerges that the taxon and the degree of deteriora-

tion can affect the structure of the cell wall;indeed,the d

cell-wall

values are in the range from 1.41to1.38and from1.37to1.50g cm–3,for archaeological softwoods and hardwoods, respectively.

The softwoods contain more lignin than hardwoods,and lignin has the lowest speci?c gravity (1.30g cm–3)compared to cellulose(1.54g cm–3)and hemicellulose(1.53g cm–3)(Pfriem et al.

2009).The d

cell-wall

values of waterlogged woods are markedly dependent on the nature of degradation of the cell-wall components.Biological and chemical degradation cause depoly-merization of the polysaccharide matrix against a limited degradation of the lignin fraction; this explains why the cell-wall values approach the lignin value upon increasing degradation.

A multi-analytical study of degradation of lignin in waterlogged wood reported that lignin from archaeological wood can also be altered,leading to a higher amount of free phenol units compared to lignin from sound wood of the same species taken as a reference(Colombini et al. 2009).A loss of cellulose and hemicellulose and the modi?ed lignin caused the formation of water-?lled cavities and resulted in a porous and fragile structure.

Table2The taxa and physical characteristics of the waterlogged wood samples

Taxa MWC%d

b d

cell wall

Z%

(g cm–3)(g cm–3)s10.1

s10.01s10.01

Softwood

European larch,Larix decidua Mill.5460.16 1.4088.7 European larch,Larix decidua Mill.5050.18 1.4187.2 Stone pine,Pinus pinaster Aiton6890.13 1.3890.6 Stone pine,Pinus pinaster Aiton5590.16 1.3888.4 Austrian black pine,Pinus nigra Arnold3750.22 1.4183.4 Austrian black pine,Pinus nigra Arnold3900.22 1.3984.2 Hardwood

Strawberry tree,Arbutus unedo L.7040.13 1.3490.3 Elm,Ulmus cf.minor5490.17 1.3687.5 Elm,Ulmus cf.minor4790.19 1.4186.5 Oak,Quercus sp.caducifolia4710.19 1.4486.8 European beech,Fagus sylvatica L.6780.14 1.3789.8 910I.D.Donato and https://www.360docs.net/doc/757666028.html,zzara

?University of Oxford,2012,Archaeometry54,5(2012)906–915

The MWC%values are strictly correlated with the cavities present in the samples for both the hardwoods and the softwoods.The MWC%determination based on both gravimetry and thermogravimetry (Donato et al .2010;Cavallaro et al .2011a)provides an immediate evaluation of the water content entrapped in the wood cavity and therefore gives insights on the state of degradation of the wood.The porosity values calculated using the helium pycnometer are reliable because helium may easily penetrate even in the smallest cavities of the cell wall.Eventual differences between the porosity values obtained in wet and dry conditions might be ascribed to different structure assumed by the cell wall and different water and helium penetration,which is larger for the inert gas.

The evaluation of porosity is of basic importance,since it is a key parameter in the proper choice of compounds to be used as protective and/or consolidating agents.A progressive substi-tution of water with suitable strengthening materials can preserve the physical features of archaeological ?nds.It is also possible to determine the porosity of the treated woods.The Z %values determined before and after the consolidation treatment are indicative of the effectiveness of the consolidation process.Waterlogged wood strengtheners

Treatment with polymers soluble in water Archaeological degraded wood samples were impreg-nated by immersion in aqueous solutions of mixtures of 20%PEGs (polyethylene glycol of various molecular weights)and 2%TREA.Recent studies showed that TREA causes a dramatic decrease of the ordered structure of water molecules in its solutions due to breaking of hydrogen bonds (Gallina et al .2006),and this was considered to facilitate the removal of water molecules during drying (Italiano 2004).Other specimens from the same degraded waterlogged woods were impregnated with 7%aqueous Klucel solutions.The Klucel can interact with all the components of wood (cellulose,hemicelluloses and lignin)and can cover the cavities with a protective and stabilizing ?lm.The aqueous Klucel has been used successfully in the strengthening of degraded waterlogged wood (Donato and Agozzino 2004)and for preparing protective ?lms (Cavallaro et al .2011b).

The mass of the lyophilized samples,and the volumes of impregnated samples,determined with the helium pycnometer,were used to calculate d b ,d cell-wall *and Z %of the treated samples.The taxa,MWC%,d b ,d cell-wall *,Z %and its change (D Z %)before and after the various strengthening treatments are collected in Table 3.It has to be noted that in the case of consolidated woods,d cell-wall *refers to the density of the cell wall plus the consolidant encrusting the cell wall.D Z was a minimum for the wood specimens treated with aqueous Klucel solution.For (PEG +TREA)-treated samples,the largest change of porosity was found with PEG 600,followed by PEG 1500and then PEG 4000,for both the hardwoods and the softwood (Fig.1).The in?uence of the PEG’s molecular dimensions on the porosity of treated wood samples decreases as the MWC%increases.The nature of the taxon,MWC%and the PEG’s molecular dimensions are the parameters that drive the entrance of the strengthener into the degraded wood structure.In our case,the diffusion of the consolidant mixture is the relevant process,and therefore the viscosity,the size of the molecules and the amount of water sorbed/bound to the impregnation molecule play a role (Eaton and Hale 1993,392).The viscosities of the polymer solutions are 4.66mPa s,2.40mPa s and 1.63mPa s,for PEG 4000,PEG 1500and PEG 600,respectively.Low molecular mass and small steric hindrance polymers can penetrate more easily into the smallest crevices of the cellular structure.The Klucel solutions,owing to their high viscosity and to the large molecular dimensions of the polymer,diffuse into the cellular structure with dif?https://www.360docs.net/doc/757666028.html,parison of the porosity values

Porosity determination with helium pycnometry 911

?University of Oxford,2012,Archaeometry 54,5(2012)906–915

before and after the treatment with Klucel allowed the evaluation of the performance of the soaking process.The observed small decrease in the porosity may be an indication of the ?lm-forming ability of the polymer on the cell wall.The SEM and TEM images showed that Klucel stabilizes the cellular structures,possibly through the formation of bonds between the cellulose ether and the components of the wooden matrix.Analysis of relaxation curves and imaging proved that water absorption is a reversible process and,as a consequence of all the above,we can af?rm that Klucel is a good protective agent (Maccotta et al .2004).

Treatment with polymers soluble in acetone In Table 4,the taxa,MWC%and the d cell-wall values with relative standard deviations are reported for samples of waterlogged woods dried at (10512)°C,treated with acetone,acetone solution of colophony,Rosin 100or Vinavil 8020S and after acetone evaporation.The data are given in Figure 2for a better comparison.It was not possible to measure d b for impregnated samples,because any common method used to determine the volume could not be applied to treated samples.Speci?cally,it was dif?cult to obtain a proper sample,so that the volume could not be calculated from external dimensions measured using a calliper.On the other hand,the Regnault pycnometer was not appropriate because of the rather large cavity size,from which Hg can percolate.Helium pycnometry could not be used for the

Table 3Densities and porosity of waterlogged woods before and after consolidation

Taxa MWC%

d cell-wall (g cm –3)d b (g cm –3)Z%D Z%

s 10.01s 10.01s 10.1

Dried at 10512°C

Oak,Quercus sp.caducifolia 471 1.440.1986.8–Elm,Ulmus cf.minor

549 1.360.1787.5–Stone pine,Pinus pinaster Aiton 689 1.380.1390.6–Strawberry tree,Arbutus unedo L.704 1.340.1390.3–20%PEG 4000+2%TREA Oak,Quercus sp.caducifolia 1.240.4067.719.1Elm,Ulmus cf.minor

1.290.3969.817.7Stone pine,Pinus pinaster Aiton 1.300.3970.020.6Strawberry tree,Arbutus unedo L. 1.270.357

2.417.920%PEG 1500+2%TREA Oak,Quercus sp.caducifolia 1.260.5060.326.5Elm,Ulmus cf.minor

1.340.4169.42

2.6Stone pine,Pinus pinaster Aiton 1.300.4168.522.1Strawberry tree,Arbutus unedo L. 1.230.3472.317.920%PEG 600+2%TREA Oak,Quercus sp.caducifolia 1.270.5755.131.7Elm,Ulmus cf.minor

1.310.4169.023.0Stone pine,Pinus pinaster Aiton 1.280.4168.02

2.6Strawberry tree,Arbutus unedo L. 1.240.3671.019.37%Klucel

Oak,Quercus sp.caducifolia 1.370.3078.18.7Elm,Ulmus cf.minor

1.370.248

2.5 5.0Stone pine,Pinus pinaster Aiton 1.400.3078.612.0Strawberry tree,Arbutus unedo L.

1.41

0.20

85.8

4.5

912I.D.Donato and https://www.360docs.net/doc/757666028.html,zzara

?University of Oxford,2012,Archaeometry 54,5(2012)906–915

determination of the volume of the impregnated samples because the ?ow of He promoted the removal of acetone (high vapour pressure)from the specimen impregnated with the acetone solution of the strengthener,resulting in a continuous variation of the measured volume.Thus,it was not possible to determine d b and therefore the porosity of the specimen after consolidation.The d cell-wall data (Fig.2),compared at different MWC%values,showed that the treatment with acetone leads to values of cell-wall density higher than dehydration in the oven at 105°C.Clearly,a reduction of the volume occupied by the wooden structure has occurred:the highest d cell-wall value,found for Pinus ,could be the result of dissolution in acetone of the resins that,as is well known,are present in softwoods.The consolidation with the Vinavil 8020S yields cell-wall

5101520253035ΔZ

Quercus sp. caducifolia

(MWC% = 471)

Ulmus cf. minor (MWC% = 549)Pinus pinaster (MWC% = 689)

Arbutus unedo L .(MWC% = 704)

20%PEG 4000 + 2% TREA 20%PEG 1500 + 2% TREA 20%PEG 600 + 2% TREA 7% Klucel

Figure 1The change in porosity after treatments with aqueous solution of PEG +TREA or Klucel for different wood samples.

Table 4Comparison of cell-wall densities between woods that are dried,dried from acetone and dried after

treatment with different consolidant in acetone solution

Taxa MWC%

d cell-wall ,dried at 105°C d cell-wall ,dried from aceton

e d cell-wall *,treated with colophony d cell-wall *,treated with d cell-wall *,treated with (g cm –3)(g cm –3)(g cm –3)Rosin 1008020S s 10.01s 10.01s 10.01

(g cm –3)(g cm –3)s 10.01

s 10.01

Stone pine,Pinus pinaster Aiton

559 1.38 1.46 1.23 1.18 1.37Elm,Ulmus cf.minor 479 1.41 1.46 1.23 1.19 1.34European beech,Fagus sylvatica L.

676

1.37

1.40

1.21

1.18

1.32

Porosity determination with helium pycnometry

913

?University of Oxford,2012,Archaeometry 54,5(2012)906–915

density values that are slightly smaller than those for acetone,even if their trend with MWC is identical.This may indicate that the consolidating agent essentially affords a ?lm-forming effect.Colophony and modi?ed Rosin (both at 60wt%in acetone)lead to a decrease in cell-wall densities associated with an increase of the volume of the cell structure and then to an encrusting effect,which promotes the consolidation.In particular,Rosin 100seems to be an effective strengthener:the chemical nature,conformation,steric effect and extent of the involved interac-tions all play a role in the success of the consolidating treatment.This result is in agreement with a recent literature ?nding (Giachi et al .2011).

CONCLUSION

This work was aimed at studying the densities and porosity of wood samples with different taxa and degradation states before and after the treatments with several natural and synthetic consol-idants.The cell wall and basic densities of wood samples have been measured.The effects of consolidants for waterlogged wood have been investigated and,in particular,it was found that colophony and modi?ed Rosin lead to an increase in the volume of the cell structure,and then to an encrusting effect,that promotes the consolidation.Measurements carried out on a series of PEGs with different molecular weights showed that the parameters driving the entrance of the strengthener are the taxon,the MWC%and the consolidant molecular dimensions.Therefore,density and porosity measurements are presented as parameters to give insights into the most ef?cient consolidant procedure.These measurements could be preliminary to SEM and TEM investigations on the ef?ciency of the consolidant.

REFERENCES

Bj?rdal,C.G.,and Nilsson,T.,2000,Depth of burial,an important factor in controlling bacterial decay of waterlogged

archaeological poles,International Biodeterioration &Biodegradation ,45,15–26.

1.81.61.41.21.00.80.6d c e l l -w a l l (g c m -3)

0.40.20

Pinus pinaster (MWC% = 689)

Ulmus cf. minor (MWC% = 549)Fagus sylvatica L. (MWC% = 676)

dried

Colophony Rosin 100Vinavil 8020S

dried from acetone Figure 2The cell-wall density after treatments for different wood samples.

914

I.D.Donato and https://www.360docs.net/doc/757666028.html,zzara

?University of Oxford,2012,Archaeometry 54,5(2012)906–915

Porosity determination with helium pycnometry915 Bj?rdal,C.G.,and Nilsson,T.,2008,Reburial of shipwrecks in marine sediments:a long-term study on wood degradation,Journal of Archaeological Science,35,862–72.

Capretti,C.,Macchioni,N.,Pizzo,B.,Galotta,G.,Giachi,G.,and Giampaola,D.,2008,The characterization of waterlogged archaeological wood:the three roman ships found in Naples(Italy),Archaeometry,50,855–76. Cavallaro,G.,Donato,D.I.,Lazzara,G.,and Milioto,S.,2011a,A comparative thermogravimetric study of waterlogged archaeological and sound woods,Journal of Thermal Analysis and Calorimetry,104,451–7.

Cavallaro,G.,Donato,D.I.,Lazzara,G.,and Milioto,S.,2011b,Films of halloysite nanotubes sandwiched between two layers of biopolymer:from the morphology to the dielectric,thermal,transparency,and wettability properties,Journal of Physical Chemistry C,115,20491–8.

Colombini,M.P.,Lucejko,J.J.,Modugno,F.,Orlandi,M.,Tolppa,E.L.,and Zoia,L.,2009,A multi-analytical study of degradation of lignin in archaeological waterlogged wood,Talanta,80,61–70.

Donato,D.I.,and Agozzino,P.,2004,Composti polimerici per il consolidamento di legni degradati,Science and Technology for Cultural Heritage,13,71–81.

Donato,D.I.,Lazzara,G.,and Milioto,S.,2010,Thermogravimetric analysis:a tool to evaluate the ability of mixtures in consolidating waterlogged archaeological woods,Journal of Thermal Analysis and Calorimetry,101,1085–

91.

Eaton,R.A.,and Hale,M.D.C.,1993,Wood:decay,pests,and protection,Chapman&Hall,New York.

Florian,E.,1990,Scope and history of archaeological wood,in Archaeological wood:properties,chemistry,and preservation(eds.R.M.Rowell and R.J.Barbour),American Chemical Society,Washington,DC.

Gallina,M.E.,Sassi,P.,Paolantoni,M.,Morresi,A.,and Cataliotti,R.S.,2006,Vibrational analysis of molecular interactions in aqueous glucose solutions,temperature and concentration effects,Journal of Physical Chemistry B, 110,8856–64.

Giachi,G.,Capretti,C.,Donato,D.I.,Macchioni,N.,and Pizzo,B.,2011,New trials in the consolidation of waterlogged archaeological wood with different acetone-carried products,Journal of Archaeological Science,38,2957–67. Giachi,G.,Capretti,C.,Macchioni,N.,Pizzo,B.,and Donato,D.I.,2010,A methodological approach in the evaluation of the ef?cacy of treatments for the dimensional stabilization of waterlogged archaeological wood,Journal of Cultural Heritage,11,91–101.

Italiano,S.,2004,Consolidamento dei reperti lignei provenienti da siti sommersi,Master’s thesis,Materiali e tecniche diagnostiche nel settore dei beni culturali.

Jensen,P.,and Gregory,D.J.,2006,Selected physical parameters to characterize the state of preservation of archaeo-logical wood:a practical guide for their determination,Journal of Archaeological Science,33,551–9. Maccotta,A.,Perzia,P.,Donato,D.I.,De Maria,M.,and Costanzo,E.,2004,Preliminary1H MRI study on waterlogged wood strengthened with Klucel,in WOAM conference‘The9ICOM—CC’,Copenhagen,9,649–56.

Neimark,A.V.,and Ravikovitch,P.I.,1997,Calibration of pore volume in adsorption experiments and theoretical models,Langmuir,13,5148–60.

Pfriem,A.,Zauer,M.,and Wagenführ,A.,2009,Alteration of the pore structure of spruce(Picea abies(L.)Karst.)and maple(Acer pseudoplatanus L.)due to thermal treatment as determined by helium pycnometry and mercury intrusion porosimetry,Holzforschung,33,94–8.

Pizzo,B.,Giachi,G.,and Fiorentino,L.,2010,Evaluation of the applicability of conventional methods for the chemical characterization of waterlogged archaeological wood,Archaeometry,52,656–67.

Talu,O.,and Myers,A.,2001,Molecular simulation of adsorption:Gibbs dividing surface and comparison with experiment,AIChE Journal,47,1160–8.

Tamari,S.,2004,Optimum design of the constant-volume gas pycnometer for determining the volume of solid particles, Measurement Science and Technology,15,549–58.

UNI,2004,UNI11118:2004,Beni culturali—Manufatti lignei criteri per la identi?cazione delle specie legnose, archeologiche ed archeobotaniche—Linee guida per la caratterizzazione,UNI,Milan.

UNI,2007,UNI11205:2007,Beni culturali—Legno di interesse archeologico ed archeobotanico—Linee guida per la caratterizzazione,UNI,Milan.

Weber,J.,and Bastick,M.,1968,In?uence de la température sur la détermination de la masse volumique de divers carbones par pycnométrie dans l’helium,Bulletin de la SociétéChimique de France,7,2702–6.

?University of Oxford,2012,Archaeometry54,5(2012)906–915

比重瓶法测物体密度

实验1 比重瓶法测物体密度 密度是物体的基本属性之一,各种物质具有确定的密度值,它与物质的纯度有关,工业上常通过物质的密度测定来做成份分析和纯度鉴定。 1实验目的 (1)掌握用比重瓶法测定物体密度的原理,学会使用物理天平和比重瓶; (2)学习仪器的读数方法,并能根据有效数字的概念正确记录实验数据; (3)学习不确定度估算和实验结果表示的方法。 2实验仪器 物理天平,比重瓶(100ml),量杯、小玻璃珠,蒸馏水(简称水),盐水,细金属条,吸水纸,电吹风(公用)。 3仪器介绍 3.1物理天平 3.1.1物理天平的构造 图1-1为物理天平的外形。在横梁bb’的中 点O和两端B、B′共有三个刀口。中间刀口O 安置在支柱H顶端的玛瑙刀架上,作为横梁的 支点,在两端的刀口B和B′上悬挂两个称盘P 和P′。横梁下部装有一读数指针J。支柱H上 止动旋钮K可以使横梁升降。平衡螺母E和E′ 用于天平空载时调平衡。横梁上有20个刻度和 可移动的游码D。游码向右移动一个刻度,相当 图1-1 物理天平 于在右盘中加0.05g的砝码。 3.1.2天平的主要技术参数 (1)最大称量(最大载荷):最大称量是天平允许称衡的最大质量。 (2)分度值与灵敏度:分度值(旧称感量)是天平平衡时,为使天平指针从标度尺的平衡位置偏转一个分度,在一盘中所需添加的最小质量。分度值的倒数是灵敏度。3.1.3天平的操作和操作规程 (1)了解所用天平的技术参数。 (2)调整天平:调节天平的底部调平螺丝,利用圆形水准器,使天平支柱垂直,刀口架水平。 (3)调整零点:天平空载时,将游码先置梁左端零刻线,旋动止动钮K,支起横梁,启动天平,观察指针J的摆动情况。当J在标尺S的中线两边摆幅相等时,则天平平衡。

18.3土的比重试验(比重瓶法)试验

土的比重试验(比重瓶法)试验实施细则 根据现行规范《公路土工试验规程》JTG E40-2007,制定本土的比重试验(比重瓶法)试验实施细则。 一、仪器设备要求: 1. 比重瓶、 2. 天平、 3. 恒温水槽、 4. 砂浴、 5. 真空抽气设备、 6. 温度计。 二、操作方法与步骤 1、将比重瓶烘干,将15g 烘干土装入100mL 比重瓶内(若用50mL 比重瓶,装烘干土约12g ),称量。 2、为排出土中空气,将已装有干土的比重瓶,注蒸馏水至瓶的一半处,摇动比重瓶,土样侵泡20h 以上,再将瓶在砂浴中煮沸,煮沸时间自悬沸腾时算起,砂及低液限黏土应不少于30min ,高液限黏土应不少于1h ,使土粒分散。注意沸腾后调节砂浴温度,不使土液溢出瓶外。 3、如系长颈比重瓶,用滴管调整液面恰至刻度处(以弯月面下缘为准),擦干瓶外及瓶内壁刻度以上部分的水,称瓶、水、土总质量。如系短颈比重瓶,将纯水注满,使多余水分自瓶塞毛细管中溢出,将瓶外水分擦干后,称瓶、水、土总质量,称量后立即测出瓶内水的温度,准确至0.5℃。 4、根据测得的温度,从已绘制的温度与瓶、水总质量关系曲线中查得瓶水总质量。如比重瓶体积事先未经温度校正,则立即倾去悬液,洗净比重瓶,注入事先煮沸过且与试验时同温度的蒸馏水至同一体积刻度处,短颈比重瓶则注水至满,按本试验3步骤调整液面后,将瓶外水分擦干,称瓶、水总质量。 5、如系砂土,煮沸时砂粒易跳出,允许用真空抽气法代替煮沸法排出土中空气,其余步骤与本试验3、4相同。 6、对含有某一定量的可溶盐、不亲性胶体或有机质的土,必须用中性液体(如煤油)测定,并用真空抽气法排出土中气体。真空压力表读数宜为100kPa ,抽气时间1-2h (直至悬液内无气泡为止),其余步骤同本实验3、4相同。 7、本试验称量应准确至0.001g 。 结果整理: 用蒸馏水测定时,按下式计算比重: wt 2 1G m m m m G s s s ?-+= 式中:G s —土的比重,计算至0.001; m s —干土质量(g ); m 1—瓶、水总质量(g ); m 2—瓶、水、土总质量(g ); G wt —t℃时蒸馏水的比重(水的比重可查物理手册),准确至0.001.

土粒密度(比重瓶法) 土壤容重 孔隙度测定

土粒密度的测定(比重瓶法) 严格而言,土粒密度应称为土壤固相密度或土粒平均密度,用符号ρs 表示。其含义是: s s s V m = ρ 绝大多数矿质土壤的ρs 在 2.6g·cm -3~2.7 g·cm -3之间,常规工作中多取平均值 2.65 g·cm -3。这一数值很接近砂质土壤中存在量丰富的石英的密度,各种铝硅酸盐粘粒矿物的密度也与此相近。土壤中氧化铁和各种重矿物含量多时则ρs 增高,有机质含量高时则ρs 降低。 文献中传统常用比重一词表示ρs ,其准确含义是指土粒的密度与标准大气压下4℃时水的密度之比又叫相对密度((d s =ρs ·ρw -1)。一般情况下,水的密度取1.0 g·cm -3,故比重在数值上与土粒密度ρs 相等,但量纲不同,现比重一词已废止。 测定原理 将已知质量的土样放入水中(或其他液体),排尽空气,求出由土壤置换出的液体的体积。以烘干土质量(105℃)除以求得的土壤固相体积,即得土粒密度。 仪器和设备 天平(感量0.001g );比重瓶(容积50mL );电热板;真空干燥器;真空泵;烘箱。 操作步骤 1、称取通过2mm 筛孔的风干土样约10g (精确至0.001g ),倾入50mL 的比重瓶内。另称10.0g 土样测定吸湿水含量,由此可求出倾入比重瓶内的烘干土样重m s 。 2、向装有土样的比重瓶中加入蒸馏水,至瓶内容积约一半处,然后徐徐摇动比重瓶,驱逐土壤中的空气,使土样充分湿润,与水均匀混合。 3、将比重瓶放于砂盘,在电热板上加热,保持沸腾1h 。煮沸过程中经常要摇动比重瓶,驱逐土壤中的空气,使土样和水充分接触混合。注意,煮沸时温度不可过高,否则易造成土液溅出。 4、从砂盘上取下比重瓶,稍冷却,再把预先煮沸排除空气的蒸馏水加入比重瓶,至比重瓶水面略低于瓶颈为止。待比重瓶内悬液澄清且温度稳定后,加满已经煮沸排除空气并冷却的蒸馏水。然后塞好瓶塞,使多余的水自瓶塞毛细管中溢出,用滤纸擦干后称重(精确到0.001g ),同时用温度计测定瓶内的水温t 1(准确到0.1℃),求得m bws1。 5、将比重瓶中的土液倾出,洗净比重瓶,注满冷却的无气水,测量瓶内水温t 2。加水至瓶口,塞上毛细管塞,擦干瓶外壁,称取t 2时的瓶、水合重(m bw2)。若每个比重瓶事先都经过校正,在测定时可省去此步骤,直接由t 1在比重瓶的校正曲线上求得t 1时这个比重瓶的瓶、水合重m bw1,否则要根据m bw2计算m bw1。 6、含可溶性盐及活性胶体较多的土样,须用惰性液体(如煤油、石油)代替蒸馏水,用真空抽气法排除土样中的空气。抽气时间不得少于0.5h ,并经常援动比重瓶,直至无气泡逸出为止。停止抽气后仍需在干燥器中静置15min 以上。 7、真空抽气也可代替煮沸法排除土壤中的空气,并且可以避免在煮沸过程中由于土液

土工试验2比重,颗粒分析方法

土的比重试验 ●土粒比重是土的三大基本物理性指标(比重、密度、含水率)之一 ●它是换算土的六个基本物理性计算指标和评价土类的重要依据之一 ●无量纲量。 比重的定义 ●《现代科学技术词典》将材料的比重定义为: ●材料的密度和其标准材料密度之比。 ●这一定义更具有科学性和一般性。 ●土粒比重是土粒在温度105~110℃下烘至恒量时的质量与同体积4℃时纯水质量的 比值 ●从而有如下土粒比重Gs的表达式 ●通常所说土的比重就是指土粒的比重。 比重瓶法 1目的和适用范围 ●颗粒小于5mm的土用比重瓶法测定。 ●根据土的分散程度、矿物成分、水溶盐和有机质的含量又分别规定用纯水和中性液体测 定。 ●排气方法也根据介质的不同分别采用煮沸法和真空抽气法。 2仪器设备 ● 2.1比重瓶:容量100(或50)mL。 ●比较试验表明,瓶的大小对比重结果影响不大,但因100mL的比重瓶可以多取些试 样,使试样的代表性和试验的精度提高,所以建议采用100mL的比重瓶,但也允许 采用50mL的比重瓶。 ● 2.2天平:称量200g,感量0.001g。 ● 2.3恒温水槽:灵敏度±1℃。

● 2.4砂浴。 ● 2.5真空抽气设备。 ● 2.6温度计:刻度为0~50℃,分度值为0.5℃。 ● 2.7其他:如烘箱、蒸馏水、中性液体(如煤油)、孔径2mm及5mm筛、漏斗、滴管等。 2.8比重瓶校正 ●比重瓶校正一般有两种方法: ●称量校正法和计算校正法。 ●前一种方法精度比较高,后一种方法引入了某些假设,但一般认为对比重影响 不大。 ●本试验以称量校正法为准。 ● 1.将比重瓶洗净、烘干,称比重瓶质量,准确至0.001g。 ● 2.将煮沸后冷却的纯水注入比重瓶。 ●对长颈比重瓶注水至刻度处 ●对短颈比重瓶应注满纯水,塞紧瓶塞,多余水分自瓶塞毛细管中溢出。 ●调节恒温水槽至5℃或10℃,然后将比重瓶放入恒温水槽内,直至瓶内水温稳定。 ●取出比重瓶,擦干外壁,称瓶、水总质量,准确至0.001g。 ● 3. 以5℃级差,调节恒温水槽的水温,逐级测定不同温度下的比重瓶、水总质量,至 达到本地区最高自然气温为止。 ●每级温度均应进行两次平行测定,两次测定的差值不得大于0.002g,取两次测值的平均 值。 ●绘制温度与瓶、水总质量的关系曲线。

(完整版)土的比重试验(比重瓶法).docx

土的比重试验 比重瓶法 目的和适用范围:本试验法适用于粒径小于5mm 的土。 仪器设备:比重瓶、天平、恒温水槽、砂浴、真空抽气设备、温度计 操作步骤: 1、将比重瓶烘干,将15g 烘干土装入 100mL 比重瓶内(若用50mL 比重瓶,装 烘干土约 12g),称量。 2、为排出土中空气,将已装有干土的比重瓶,注蒸馏水至瓶的一半处,摇动比 重瓶,土样侵泡 20h 以上,再将瓶在砂浴中煮沸,煮沸时间自悬沸腾时算起,砂及低液限黏土应不少于30min,高液限黏土应不少于1h,使土粒分散。注意沸腾后调节砂浴温度,不使土液溢出瓶外。 3、如系长颈比重瓶,用滴管调整液面恰至刻度处(以弯月面下缘为准),擦干瓶 外及瓶内壁刻度以上部分的水,称瓶、水、土总质量。如系短颈比重瓶,将纯水 注满,使多余水分自瓶塞毛细管中溢出,将瓶外水分擦干后,称瓶、水、土总质 量,称量后立即测出瓶内水的温度,准确至0.5℃。 4、根据测得的温度,从已绘制的温度与瓶、水总质量关系曲线中查得瓶水总质 量。如比重瓶体积事先未经温度校正,则立即倾去悬液,洗净比重瓶,注入事先 煮沸过且与试验时同温度的蒸馏水至同一体积刻度处,短颈比重瓶则注水至满, 按本试验 3 步骤调整液面后,将瓶外水分擦干,称瓶、水总质量。 5、如系砂土,煮沸时砂粒易跳出,允许用真空抽气法代替煮沸法排出土中空气, 其余步骤与本试验3、4 相同。 6、对含有某一定量的可溶盐、不亲性胶体或有机质的土,必须用中性液体(如

煤油)测定,并用真空抽气法排出土中气体。真空压力表读数宜为100kPa,抽气时间 1-2h(直至悬液内无气泡为止),其余步骤同本实验3、4 相同。 7、本试验称量应准确至0.001g。 结果整理: 用蒸馏水测定时,按下式计算比重: G s m s G wt m s m1m2 式中: G s—土的比重,计算至0.001; m s—干土质量( g); m1—瓶、水总质量( g); m2—瓶、水、土总质量( g); G wt—t℃时蒸馏水的比重(水的比重可查物理手册),准确至0.001.精密度和允许差: 本试验必须进行二次平行测定,取其算上平均值,以两位小数表示,其平行差值不得大于 0.02。

土工比重(比重瓶法)试验记录表

陕蒙高速公路 土工比重(比重瓶法)试验记录表 合同段 取样地点 试验方法编号 试验日期 使用范围 试 样编号 温度 (℃) 液体 比重 (g/cm 3 ) 比重瓶质量(g) 瓶、干土总质量(g) 干土质量(g) 瓶、液总质量(g) 瓶、液、土总质量(g) 与干土通 体积液体 质量(g) 比重 (g/cm 3) 平均比重 (g/cm 3) 试验结果 试验 复核 监理工程师 美文欣赏 ------------------------------------------------------------------------------------------装 订 线------------------------------------------------------------------------ 监理独立抽检

1、走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。秋天,虽没有玫瑰的芳香,却有秋菊的淡雅,没有繁花似锦,却有硕果累累。秋天,没有夏日的激情,却有浪漫的温情,没有春的奔放,却有收获的喜悦。清风落叶舞秋韵,枝头硕果醉秋容。秋天是甘美的酒,秋天是壮丽的诗,秋天是动人的歌。 2、人的一生就是一个储蓄的过程,在奋斗的时候储存了希望;在耕耘的时候储存了一粒种子;在旅行的时候储存了风景;在微笑的时候储存了快乐。聪明的人善于储蓄,在漫长而短暂的人生旅途中,学会储蓄每一个闪光的瞬间,然后用它们酿成一杯美好的回忆,在四季的变幻与交替之间,散发浓香,珍藏一生! 3、春天来了,我要把心灵放回萦绕柔肠的远方。让心灵长出北归大雁的翅膀,乘着吹动彩云的熏风,捧着湿润江南的霡霂,唱着荡漾晨舟的渔歌,沾着充盈夜窗的芬芳,回到久别的家乡。我翻开解冻的泥土,挖出埋藏在这里的梦,让她沐浴灿烂的阳光,期待她慢慢长出枝蔓,结下向往已久的真爱的果实。 4、好好享受生活吧,每个人都是幸福的。人生山一程,水一程,轻握一份懂得,将牵挂折叠,将幸福尽收,带着明媚,温暖前行,只要心是温润的,再遥远的路也会走的安然,回眸处,愿阳光时时明媚,愿生活处处晴好。 5、漂然月色,时光随风远逝,悄然又到雨季,花,依旧美;心,依旧静。月的柔情,夜懂;心的清澈,雨懂;你的深情,我懂。人生没有绝美,曾经习惯漂浮的你我,曾几何时,向往一种平实的安定,风雨共度,淡然在心,凡尘远路,彼此守护着心的旅程。沧桑不是自然,而是经历;幸福不是状态,而是感受。 6、疏疏篱落,酒意消,惆怅多。阑珊灯火,映照旧阁。红粉朱唇,腔板欲与谁歌?画脸粉色,凝眸着世间因果;未央歌舞,轮回着缘起缘落。舞袖舒广青衣薄,何似院落寂寞。风起,谁人轻叩我柴扉小门,执我之手,听我戏说? 7、经年,未染流殇漠漠清殇。流年为祭。琴瑟曲中倦红妆,霓裳舞中残娇靥。冗长红尘中,一曲浅吟轻诵描绘半世薄凉寂寞,清殇如水。寂寞琉璃,荒城繁心。流逝的痕迹深深印骨。如烟流年中,一抹曼妙娇羞舞尽半世清冷傲然,花祭唯美。邂逅的情劫,淡淡刻心。那些碎时光,用来祭奠流年,可好? 8、缘分不是擦肩而过,而是彼此拥抱。你踮起脚尖,彼此的心就会贴得更近。生活总不完美,总有辛酸的泪,总有失足的悔,总有幽深的怨,总有抱憾的恨。生活亦很完美,总让我们泪中带笑,悔中顿悟,怨中藏喜,恨中生爱。 9、海浪在沙滩上一层一层地漫涌上来,又一层一层地徐徐退去。我与你一起在海水中尽情的戏嬉,海浪翻滚,碧海蓝天,一同感受海的胸怀,一同去领略海的温情。这无边的海,就如同我们俩无尽的爱,重重的将我们包裹。 10、寂寞的严冬里,到处是单调的枯黄色。四处一片萧瑟,连往日明净的小河也失去了光彩,黯然无神地躲在冰面下恹恹欲睡。有母女俩,在散发着丝丝暖意的阳光下,母

土粒比重测量方案

土粒比重实验方案 一、实验名称 比重瓶法测量洗盐后土体土粒比重实验 二、实验目的 获得土样的土粒比重 三、实验仪器 1、比重瓶:容积100mL或50mL,分长颈短颈两种。本次实验拟采用100mL 短颈比重瓶。 2、恒温水槽:准确度应为±1?C。 3、天平:称量200g,最小分度值0.001g。 4、温度计 5、纯水 6、砂浴 四、实验步骤 1、试样准备 将待测土样洗盐后置于烘干箱烘干,取出烘干土样研碎后再次置于烘干箱内烘干。 1、比重瓶校准按照下列步骤进行: a.重瓶洗净烘干,置于干燥器内,冷却后称量,准确至0.001g。 b.将煮沸后的纯水注满短颈比重瓶,塞紧瓶塞,多余水从瓶塞毛细管中溢出。将比重瓶放入恒温水槽直至瓶内液体温度稳定,取出比重瓶擦干外壁,称量瓶、水总质量,准确至0.001g,测定恒温水槽水温,准确至0.5?C。 c.调节数个恒温水槽内的温度,温差为5?C,测定不同温度下的瓶、水总质量。每个温度时均应进行两次平行测定两次测定的差值不得大于0.002g,取两次测值的平均值。绘制温度与瓶、水总质量关系曲线。

2、将比重瓶洗净烘干,称烘干试样15g装入比重瓶,称量瓶和试样的总质量,准确至0.001g。 3、向比重瓶注入半瓶纯水,摇动比重瓶,并放在砂浴上煮沸1h。 4、将煮沸后的纯水装入有试样悬液的比重瓶,将比重瓶注满,塞紧瓶塞,多余水分自瓶塞毛细管中溢出。将比重瓶置于恒温水槽内至温度稳定,且上部悬液澄清。取出比重瓶擦干瓶外壁,称比重瓶、水、试样总质量准确至0.001g,并测定瓶内水温,准确至0.5?C 5、从步骤1获得的温度与瓶、水总质量的关系曲线查得该温度下的瓶、水总质量。 五、数据处理 m d——烘干土试样质量

比重瓶法测物体密度

比重瓶法测物体密度

实验1 比重瓶法测物体密度 密度是物体的基本属性之一,各种物质具有确定的密度值,它与物质的纯度有关,工业上常通过物质的密度测定来做成份分析和纯度鉴定。 1实验目的 (1)掌握用比重瓶法测定物体密度的原理,学会使用物理天平和比重瓶; (2)学习仪器的读数方法,并能根据有效数字的概念正确记录实验数据; (3)学习不确定度估算和实验结果表示的方法。 2实验仪器 物理天平,比重瓶(100ml),量杯、小玻璃珠,蒸馏水(简称水),盐水,细金属条,吸水纸,电吹风(公用)。 3仪器介绍 3.1物理天平 1

1

(1)了解所用天平的技术参数。 (2)调整天平:调节天平的底部调平螺丝,利用圆形水准器,使天平支柱垂直,刀口架水平。 (3)调整零点:天平空载时,将游码先置梁左端零刻线,旋动止动钮K,支起横梁,启动天平,观察指针J的摆动情况。当J在标尺S的中线两边摆幅相等时,则天平平衡。如不平衡,反旋K,放下横梁,调节平衡螺母E和E′,反复调节,使天平平衡,消除零点误差。 (4)称衡:将待测物置左盘,砝码置右盘,增减砝码(配合游码),使天平平衡。 (5)读数:复位,记下砝码和游码读数。把待测物体从盘中取出,砝码放回砝码盒,游码放回零位,称盘摘离刀口,天平复原。 3.1.1为保护天平,必须遵守以下操作规程 (1)天平的负载不得超过其称量,以免损坏刀口和压弯横梁。 (2)在调节天平、取放物体、取放砝码以 1

2 及不用天平时,都必须将天平止动,以免损坏刀口。只有在判断天平是否平衡时才将天平启动。天平启动、止动时动作要轻,止动时最好在天平指针接近标尺中线刻度时进行。 (3)待测物体和砝码要放在称盘正中。砝码不要直接用手拿取,而要用镊子夹取。称量完毕、砝码必须放回盒内固定位置,不要随意乱放。 (4)天平的各部件以及砝码都要注意防锈蚀。 3.1.2 两臂长度不等的误差消除 天平两臂不等长,将带来系统误差,可用复称法来消除。 设L 左、L 右分别代表横梁左右两臂的长度,物体的质量为M ,先把待测物体放于左盘,M 1克砝码放于右盘,使天平平衡。则有: 1=ML M L 左右 (1-1) 然后将物体放于右盘,M 2砝码放于左盘,使

土粒比重试验方法主要技术应用和控制

土粒比重试验方法主要技术应用和控制 摘要:土粒比重试验方法的应用直接决定着土的比重指标值,影响工程的土类评价。本文主要对土粒比重试验方法的主要技术应用和控制做了经验分析。 关键词:土粒比重;比重瓶法;浮力法;试验技术 Abstract: The application of soil particle proportion test method directly determines the proportion of the value of index of soil, soil types affect project evaluation. This paper focuses on the test methods of soil particle proportion of main technical application and control to do empirical analysis. Key words: soil particle proportion; Pycnometric method; buoyancy method; test technology 中图分类号: TU411 土粒比重是土的三大基本物理性指标(比重、密度、含水率)之一,它是换算土的六个基本物理性计算指标和评价土类的重要依据之一,土粒比重试验方法的应用直接决定着土的比重指标值,影响工程的土类评价。本文将就土粒比重试验方法的主要技术应用和控制做一经验分析。 一、比重试验的主要试验方法选择 土粒密度是指土的固体部分的单位体积的质量。土的固体部分质量可用精密天秤测得。相应之土粒的体积一般应用排除与土粒同体积之液体的体积方法测得。通常用比重瓶法测定土粒的体积,此法适用于粒径小于5mm或者含有少量5mm颗粒的土。比重试验的浮力法适用于粒径大于或等于5mm的土,且其中粒径大于或等于20mm的土质量应小于总土质量的10%。颗粒大于5mm的砾石、碎石等粗粒,颗粒本身有孔隙存在[1]。孔隙又分封闭的与开敞的两部分。浸水时开敞部分为水所填充,封闭部分水不能浸入。大于20mm粗粒较多时,采用本方法将增加试验设备,室内使用不便。因此,规定粒径大于5mm的试样中大于或等于20mm颗粒含量小于10%时用浮力法。 根据土的分散程度、矿物成分、水溶盐和有机质的含量又分别规定用纯水和中性液体测定。排气方法也根据介质的不同分别采用煮沸法和真空抽气法。在用比重法测定土粒体积时,必须注意所排除的液体体积确能代表固体颗粒的真实体

比重瓶法土样比重测定

比重瓶法土样比重测定 一. 目的 指导检测人员按规程正确操作,采用比重瓶法测定土样的比重,确保检测结果科学、准确。 二.检测参数及执行标准 1.检测参数:土样比重。 2.执行标准:GB/T50123-1999《土工试验方法标准》 三.适用范围 用于工业与民用建筑、水利、交通等各类工程的地基土及回填土。 比重瓶法适用于粒径小于5mm的各类土;浮称法适用于粒径等于、大于5mm的各类土,且其中粒径大于20mm的土质量应小于总土质量的10%;虹吸筒法适用于粒径等于、大于5mm的各类土,且其中粒径大于20mm的土质量等于、大于于总土质量的10%。 四.职责 检测员必须执行国家标准,按照作业指导书操作,随时记录,编制检测报告,并对数据负责。 五.样本大小及抽样方法 根据设计要求每单位工程至少取三个点;对1000m2以上工程,每100m2至少应取一个点。3000m2以上工程,每300m2至少应取一个点。每一独立基础下至少应有1点,基槽每20延米应有1点。 六.仪器设备 1.比重瓶(GC551) 2.恒温水槽(GC561) 09.52.2—1

比重瓶法土样比重测定 3.砂浴(GC571) 4.天平(JYT-10/JC531) 5.温度计(HX151) 6.纯水 七.环境条件 室内常温下进行试验。 八.检测步骤及数据处理 1. 将比重瓶烘干。烘干试样15 g(当用50ml的比重瓶时,称烘干试样10 g)装入比重瓶,称试样和瓶的总质量,准确至0.001g。 2. 向比重瓶内注入半瓶纯水,摇动比重瓶,并放在砂浴上煮沸,煮沸时间自悬液沸腾起砂土不应少于30min,粘土、粉土不得少于1h。沸腾后应调节砂浴温度,比重瓶内悬液不得溢出。对砂土宜用真空抽气法;对含有可溶盐、有机质和亲水性胶体的土必须用中性液体(煤油)代替纯水,采用真空抽气法排气,真空表读数宜接近当地一个大气负压值,抽气时间不得少于1h。 注用中性液体不能用煮沸法 3.将煮沸经冷却的纯水(或抽气后的中性液体)注入装有试样悬液的比重瓶。当用长颈比重瓶时注纯水至刻度处,当用短颈比重瓶时应将纯水注满,塞紧瓶塞,多余的水分自瓶塞毛细管中溢出,将比重瓶置于恒温水槽内至温度稳定,且瓶内上部悬液澄清。取出比重瓶,擦干瓶外壁,称比重瓶、水、试样总质量(m bws),准确至0.001g;并应测定瓶内的水温,准确至0.5℃。 09.52.2—2

比重瓶法

实验名称:比重瓶法测定聚合物的密度 比重瓶法是测定聚合物密度的方法之一。聚合物的密度是聚合物的重要参数。聚合物结晶过程中密度变化的测定,可研究结晶度和结晶速率;拉伸、退火可以改变取向度和结晶度,也可通过密度来进行研究;对许多结晶性聚合物其结晶度的大小对聚合物的性能、加工条件选择及应用都有很大影响。聚合物的结晶度的测定方法虽有X射线衍射法、红外吸收光谱法、核磁共振法、差热分析、反相色谱等等,但都要使用复杂的仪器设备。而用比重瓶法从测得的密度换算到结晶度,既简单易行又较为准确。 一、实验原理: 基于“阿基米德原理”。将待测粉末浸入对其润湿而不溶解的浸液中,抽真空除气泡,求出粉末试样从已知容量的容器中排出已知密度的液体,就可计算所测粉末的真密度。 真密度ρ计算式为:ρ=(ms-m0)/{(ms-m0)-(msl-ms)}* ρl 式中:m0——比重瓶的质重,克; ms—— (比重瓶+粉体)的质重,克; msl—— (比重瓶+液体)的质重,克; ρl——测定温度下浸液密度;克/厘米3; ρ——粉体的真密度,克/厘米3; 二、实验器材 1. 真空装置:由比重瓶、真空干燥器、真空泵、真空压力表、三通阀、缓冲瓶组成 2. 温度计:0~100℃,精度0.1℃; 3. 分析天平:感量0.001克; 4. 烧杯:300 ml; 5. 烘箱、干燥器。 实验过程 1、称量事先洗净、烘干的比重瓶的重量m。。 2、用四分法缩分待测试样。

3、在比重瓶内,装入一定量的试样,精确称量比重瓶和试样重量ms。 4、将蒸馏水注入装有试样的比重瓶内,至容器容量的2/3处为止,放入真空干燥器内。 5、启动真空泵,抽气15~20分钟。 6、从真空干燥器内取出比重瓶,向瓶内加满蒸馏水并称其重量msl。 7、洗净该比重瓶,然后装满浸液,称其重量。 思考题 1.如要测定一个样品密度,还可以用什么方法测定? 2. 聚丙烯晶区和非晶区的密度分别为0.95和0.85,根据测得的密度求聚丙烯的结晶度?

土的比重试验

土的比重试验标准化管理部编码-[99968T-6889628-J68568-1689N]

土的比重试验 比重瓶法 目的和适用范围:本试验法适用于粒径小于5mm的土。 仪器设备:比重瓶、天平、恒温水槽、砂浴、真空抽气设备、温度计 操作步骤: 1、将比重瓶烘干,将15g烘干土装入100mL比重瓶内(若用50mL 比重瓶,装烘干土约12g),称量。 2、为排出土中空气,将已装有干土的比重瓶,注蒸馏水至瓶的一半处,摇动比重瓶,土样侵泡20h以上,再将瓶在砂浴中煮沸,煮沸时间自悬沸腾时算起,砂及低液限黏土应不少于30min,高液限黏土应不少于1h,使土粒分散。注意沸腾后调节砂浴温度,不使土液溢出瓶外。 3、如系长颈比重瓶,用滴管调整液面恰至刻度处(以弯月面下缘为准),擦干瓶外及瓶内壁刻度以上部分的水,称瓶、水、土总质量。如系短颈比重瓶,将纯水注满,使多余水分自瓶塞毛细管中溢出,将瓶外水分擦干后,称瓶、水、土总质量,称量后立即测出瓶内水的温度,准确至0.5℃。 4、根据测得的温度,从已绘制的温度与瓶、水总质量关系曲线中查得瓶水总质量。如比重瓶体积事先未经温度校正,则立即倾去悬液,洗净比重瓶,注入事先煮沸过且与试验时同温度的蒸馏水至同

一体积刻度处,短颈比重瓶则注水至满,按本试验3步骤调整液面后,将瓶外水分擦干,称瓶、水总质量。 5、如系砂土,煮沸时砂粒易跳出,允许用真空抽气法代替煮沸法排出土中空气,其余步骤与本试验3、4相同。 6、对含有某一定量的可溶盐、不亲性胶体或有机质的土,必须用中性液体(如煤油)测定,并用真空抽气法排出土中气体。真空压力表读数宜为100kPa,抽气时间1-2h(直至悬液内无气泡为止),其余步骤同本实验3、4相同。 7、本试验称量应准确至0.001g。 结果整理: 用蒸馏水测定时,按下式计算比重: 式中:G s—土的比重,计算至0.001; m s—干土质量(g); m1—瓶、水总质量(g); m2—瓶、水、土总质量(g); G wt—t℃时蒸馏水的比重(水的比重可查物理手册),准确至 0.001. 精密度和允许差: 本试验必须进行二次平行测定,取其算上平均值,以两位小数表示,其平行差值不得大于0.02。

土的比重试验(比重瓶法)

土的比重试验 比重瓶法 目的和适用范围:本试验法适用于粒径小于5mm 的土。 仪器设备:比重瓶、天平、恒温水槽、砂浴、真空抽气设备、温度计 操作步骤: 1、将比重瓶烘干,将15g 烘干土装入100mL 比重瓶内(若用50mL 比重瓶,装烘干土约12g ),称量。 2、为排出土中空气,将已装有干土的比重瓶,注蒸馏水至瓶的一半处,摇动比重瓶,土样侵泡20h 以上,再将瓶在砂浴中煮沸,煮沸时间自悬沸腾时算起,砂及低液限黏土应不少于30min ,高液限黏土应不少于1h ,使土粒分散。注意沸腾后调节砂浴温度,不使土液溢出瓶外。 3、如系长颈比重瓶,用滴管调整液面恰至刻度处(以弯月面下缘为准),擦干瓶外及瓶内壁刻度以上部分的水,称瓶、水、土总质量。如系短颈比重瓶,将纯水注满,使多余水分自瓶塞毛细管中溢出,将瓶外水分擦干后,称瓶、水、土总质量,称量后立即测出瓶内水的温度,准确至0.5℃。 4、根据测得的温度,从已绘制的温度与瓶、水总质量关系曲线中查得瓶水总质量。如比重瓶体积事先未经温度校正,则立即倾去悬液,洗净比重瓶,注入事先煮沸过且与试验时同温度的蒸馏水至同一体积刻度处,短颈比重瓶则注水至满,按本试验3步骤调整液面后,将瓶外水分擦干,称瓶、水总质量。 5、如系砂土,煮沸时砂粒易跳出,允许用真空抽气法代替煮沸法排出土中空气,其余步骤与本试验3、4相同。 6、对含有某一定量的可溶盐、不亲性胶体或有机质的土,必须用中性液体(如煤油)测定,并用真空抽气法排出土中气体。真空压力表读数宜为100kPa ,抽气时间1-2h (直至悬液内无气泡为止),其余步骤同本实验3、4相同。 7、本试验称量应准确至0.001g 。 结果整理: 用蒸馏水测定时,按下式计算比重: wt 21G m m m m G s s s ?-+= 式中:G s —土的比重,计算至0.001; m s —干土质量(g ); m 1—瓶、水总质量(g ); m 2—瓶、水、土总质量(g ); G wt —t ℃时蒸馏水的比重(水的比重可查物理手册),准确至0.001. 精密度和允许差: 本试验必须进行二次平行测定,取其算上平均值,以两位小数表示,其平行差值不得大于0.02。

土粒比重试验试验检测-材料

土粒比重试验试验检测-材料2011-01-22 17:17:21 阅读75 评论0 字号:大中小订阅 目的:测定土粒在105 ~l10 ℃下烘至恒重的质量与体积4 ℃时纯水的质量的比值。土粒比重是计算土的换算指标的一个必不可少的物理量。 基本原理:土的比重是土中各矿物的比重之平均值即组成土的矿物颗粒密度的平均值,其值大小常与组成土矿物的种类及其含量有关。 4.1 一般规定: 4.1.1 a小于5mm 的各类土采用比重瓶法、 b粒径等于、大于5mm 的各类土,且其中粒径大于20mm 的土质量应小于总土质量的10 %的用浮称法和 c粒径等于、大于5mm 的各类土,且其中粒径大于20mm 的土质量等于、大于总土质量的10 %。虹吸管法测定比重。 4.1.2 土颗粒的平均比重。 4.2 比重瓶法 4.2.1 本试验方法适用于粒径小于5mm 的各类土。 4.2.2 本试验所用的主要仪器设备,应符合下列规定: 1 比重瓶:容积l00mL 或50mL ,分长颈和短颈两种 2 恒温水槽:准确度应为士l℃ 3 砂浴:应能调节温度 4 天平;称量200g ,最小分度值0.001g 。 5 温度计;刻度为O ~50 ℃,最小分度值为0.5 ℃。 4.2.3 比重瓶的校准,应按下列步骤进行: 1 将比重瓶洗净,烘干,置于干燥器内,冷却后称量,准确至0.001g 。 2 将煮沸经冷却的纯水注入比重瓶。对长颈比重瓶注水至刻度处,对短颈比重瓶应注满纯水,塞紧瓶塞,多余水自瓶塞毛细管中溢出,将比重瓶放入恒温水槽直至瓶内水温稳定。取出比重瓶,擦干外壁,称瓶、水总质量,准确至0.001g 。测定恒温水槽内水温,准确至0 .5 ℃。 3 调节数个恒温水槽内的温度,温度差宜为5 ℃,测定不同温度下的瓶、水总质量。每个温度时均应进行两次平行测定,两次测定的差值不得大于0.002g ,取两次测值的平均值。 4 绘制温度与瓶、水总质量的关系曲线。 4.2.4 比重瓶法试验的试样制备,应按本标准第1.1.5 条1 、2 款的步骤进行。 4.2.5 比重瓶法试验,应按下列步骤进行: l 将比重瓶烘干。称烘干试样15g( 当用50mL 的比重瓶时,称烘干试样lOg) 装入比重瓶,称试样和瓶的总质量,准确至0.001g 。 2 向比重瓶内注入半瓶纯水,摇动比重瓶,并放在砂浴上煮沸,煮沸时间自悬液沸腾起砂土不应少于30min ,粘土、粉土不得少于1h 。沸腾后应调节砂浴温度,比重瓶内悬液不得溢出。对砂土宜用真空抽气法;对含有可溶盐、有机质和亲水性胶体的土必须用中性液体( 煤油) 代替纯水,采用真空抽气法排气,真空表读数宜接近当地一个大气负压值,抽气时间不得少于1h 。 注:用中性液体,不能用煮沸法。 3 将煮沸经冷却的纯水( 或抽气后的中性液体) 注入装有试样悬液的比重瓶。当用长颈比重瓶时注纯水至刻度处,当用短颈比重瓶时应将纯水注满,塞紧瓶塞,多余的水分自

土粒比重试验公式如下

H.W.1 1-64 土粒比重試驗公式如下,試說明各參數之意義,並說明如何試驗求得。 G S = W S / W S + W2 - W1×G W W S + W2 - W1 = 排開土粒同體積的水重 A: 土粒比重、孔隙比、孔隙率、飽和度試驗 有塞比重瓶,50cm3及100cm3兩種;適合土粒小於#4篩以 下者,瓶塞中央穿孔以利空氣與水之排出,50cm3比重瓶取 土樣10g,100cm3比重瓶取樣25g G S= 土粒比重 W S= 乾土重 W2= 比重瓶+水重 W1= 比重瓶+水重+乾土 G W= 查表求溫度T℃蒸餾水比重

土粒比重、孔隙比、孔隙率、飽和度試驗試驗步驟 1. 土粒比重、孔隙比、孔隙率、飽和度試驗試驗(ASTM D854-92) 2.稱乾土重,W S 3.量試驗時蒸餾水溫度,T℃ 4.比重瓶+乾土+半滿水,煮沸10分鐘:加滿水冷卻至T℃蓋上蓋子稱比重瓶+乾土+水重,W1 5.比重瓶+加滿水於T℃蓋上蓋子;稱比重瓶+水重,W2 6.查表求溫度T℃蒸餾水比重,G W 7.土粒之比重,G S = W S / W S + W2 - W1×G W 8.由公式求出孔隙比,e = G S ×γw / γd - 1 由公式求出孔隙率,n = e / 1 + e 由公式求出飽和度,S = G S ×w / e 土粒比重、孔隙比、孔隙率、飽和度試驗試驗之實例解說

2-83 有一土壤試樣進行篩分析試驗得結果如下﹕ 請:(一)繪出此土樣之粒徑分佈曲線。(參考所附半對數紙) (二)求出D10、D30、D60 (三)計算曲率係數C C

(四)此土樣依統一土壤分類法,其分類符號為何? A:

比重瓶法比重试验

比重瓶法比重试验 一、本试验方法适用于粒径小于5 mm的土。 二、比重瓶法比重试验所用的主要仪器设备,应符合下列规定: 1.比重瓶:容积100 m1和50 ml,分长颈和短颈两种。 2.恒温水槽:精度应为±1 o C。 3.砂浴:应能调节温度。 4.天平:称量200 g,感量0.001 g。 5.温度计:刻度为0~50 o C,分度值为0.5 o C。 三、比重瓶的校正,应按下列步骤进行; 1.将比重瓶洗净、烘干。称比重瓶质量,精确至0.001 g。 2.将煮沸经冷却的纯水注入比重瓶。对长颈比重瓶注水至刻度处,对短颈比重瓶应注满纯水,塞紧瓶塞,多余水分自瓶塞毛细管中溢出。将比重瓶放入恒温水槽直至瓶内水温稳定。取出比重瓶,擦干外壁,称瓶、水总质量,精确至0.001 g。并测定恒温水槽内水温,精确至0.5 o C。 3.调节数个恒温水槽内的温度,温度差宜为5 o C,,测定不同温度下的比重瓶、水总质量。每个温度时均应进行两次平行测定。两次测定的差值不得大于 0.002 g,取两次测值的平均值。绘制温度与瓶、水总质量关系曲线。 四、比重瓶法比重试验,按下列步骤进行: 1.将比重瓶烘干。称烘干试样15 g(当用50 ml的比重瓶时称烘干试样10 g)装入比重瓶,称瓶和试样总质量,精确至0.001 g。 2.向比重瓶内注入半瓶纯水或中性液体,摇动比重瓶,并放在砂浴上煮沸。悬液煮沸时间为:砂性土不应少于30 min;粘性土不应少于1 h。沸腾后应调节砂浴温度,比重瓶内悬液不得溢出。对砂性土宜用真空抽气法;对含有可溶盐、有机质和亲水性胶体的土用中性液体代替纯水时,应用真空抽气法排气。真空压力表读数宜为100 kPa,抽气时间不宜小于l h。 3.将煮沸经冷却的纯水或中性液体注入装有试样的比重瓶。当用长颈瓶时注纯水至刻度处;当用短颈瓶时应将纯水注满,塞紧瓶塞,多余水分可自瓶塞毛细管中溢出。将比重瓶置于恒温水槽内至温度稳定,且瓶内上部悬液澄清。取出比重瓶,擦干瓶外壁,称比重瓶、水、试样总质量,精确至0.001 g;并应测定瓶内水的温度,精确至0.5 o C。

比重瓶校验方法

比重瓶校验方法 本方法适用于新的或使用中的比重瓶。 (一)概述 比重瓶用于粒径小于5mm的土及其他粉状物料比重(密度)测定。 (二)技术要求 2.1 外观:无裂纹或其它明显变形。 2.2 容积:经测量得出不同温度下的瓶水质量,准确至1mg,两次差值。 0.02g (三)校验用标准工具 3.1 电子天平:称量1100g,感量0.01g。 温度计:刻度范围0~50℃,精确至1℃。 (四)环境条件 温度:20℃~24℃;相对湿度:≤75%。 (五)校验方法 5.1 外观:目测。 5.2 比重瓶计算校正法: 5.2.1 将比重瓶洗净、烘干,在干燥器内冷却称量m01,准确至0.01g,再次烘干冷却后称量m02。两次差值不大于0.02g,取其算术平均值m0。 5.2.2 将事先煮沸并冷却至室温的纯水注入比重瓶至满,塞上瓶塞,使多余的水沿瓶塞毛细管中溢出,擦干瓶外表面的水,称其瓶、水总质量m11,准确至0.01g,重复上述步骤,取其算术平均值m1,两次差值不得大于0.02g。 5.3 按公式计算m2: m2=m m m P P T T w w v 010 2 1 21 1 +-+- ()[()] ω 式中:T1──比重瓶内纯水温度℃T2──比重瓶内纯水任意温度℃m1──温度为T1时的瓶水总质量m2──温度为T2时的瓶水总质量

m0──比重瓶的质量 PW1──温度T1时水的密度 PW2──温度T2时水的密度 ωV──玻璃的膨胀系数,国产瓶可取2.4×10-5/℃(六)校验结果处理 校验结果符合技术要求为合格,合格者方可使用。(七)校验周期 一年。 (八)附录 校验记录表格式。

关于土粒比重试验误差分析

关于土粒比重试验误差分析 发表时间:2019-09-21T11:47:29.093Z 来源:《基层建设》2019年第19期作者:潘冬雪1 李磊2 赵国明3 [导读] 摘要:土是由三相组成的:土颗粒、土中水、土中气三相组合后应按同一量纲才能合理确定土的各种成分的占比,这个量纲就是比重。 1.大连理工大学土木建筑设计研究院有限公司辽宁大连 116000; 2.辽宁省第六地质大队有限责任公司辽宁大连 116000; 3.大连理工大学土木建筑设计研究院有限公司辽宁大连 116000 摘要:土是由三相组成的:土颗粒、土中水、土中气三相组合后应按同一量纲才能合理确定土的各种成分的占比,这个量纲就是比重。颗粒比重(specific gravity of solid particles)是指土粒在105℃-110℃温度下烘至恒重时的质量与同体积4℃时水的重量之比值。 关键词:颗粒比重;误差;比重瓶 一、土粒比重试验概述 土粒比重是指土粒在105℃-110℃温度下烘至恒重时的质量与同体积4℃时纯水的质量之比,简称比重。土工试验方法标准《GB/T50123- 1999》中规定,对于小于、等于和大于5mm土颗粒组成的土,应分别采用比重瓶法、浮称法和虹吸管法测定比重,在实际的勘察项目中,经常采用的为比重瓶法,基本原理就是利用称好质量的干土放入盛满水的比重瓶的前后质量差异,来计算出土粒的体积,从而进一步算出土粒比重(见公式1-1)。比重试验规定,必须进行两次平行测定,两次测定的差值不得大于0.02,取两次的平均值。 GS=×GiT 公式1-1 md为干土质量,mbw为比重瓶、水总质量;mbws为比重瓶、水、试验总质量;GiT为T时纯水或中性液体的比重。 比重试验分为比重瓶校准、试验制备、称重、煮沸、静置澄清、测温、称重,计算等步骤,其中质量称重要求准确至0.001g,温度准确至0.5,水的比重可查物理手册。 二\比重试验误差原因分析 在实际操作土粒比重试验比重瓶法中,发现比重Gs容易出现误差超过最大值0.02,经长期试验总结,误差点主要存在以下几点: 1、比重瓶校准过程 《GB/T50123-1999》6.2.3.2要求对长颈比重瓶注水至刻度处,对短颈比重瓶应注满纯水,塞紧瓶塞,多余水自瓶塞毛细管中溢出,将比重瓶放入恒温水槽至瓶内水温稳定,取出比重瓶,擦干外壁,称重。在此过程中,由于试验人员的操作差异,对长颈比重瓶刻度处的读数会存在差异,对短颈比重瓶塞紧过程中,由于人员力度差异、方法差异,导致瓶塞塞紧程度不同,会引起瓶、水总质量的差异;在恒温水槽取出的过程中,由于晃动,对短颈比重瓶会引起比重瓶瓶塞处的纯水流出导致瓶加水总质量不准确,会直接导致误差超值。 2、试验样品差异 土在形成过程中存在个体差异,每个试验样品均匀不一,颗粒大小不一(见图2),在两次平行测定采取样品的时候,样品差异程度会直接影响比重计算值,从而导致误差超值。 瓶加水总质量 图1 温度和瓶、水质量关系曲线 3、试样煮沸过程 《GB/T50123》6.2.5.2要求煮沸时间自悬液沸腾起砂土不应少于30min,黏土、粉土不得少于1h,比重瓶内悬液不得溢出。对于砂土、粉土及含有砂粒、粉粒黏土在煮沸过程中容易溢出比重瓶,平行测定的两个样品煮沸程度及溢出程度不同,导致误差超值。 图2 三、比重误差降低的建议 《GB/T501123-1999》6.1.3要求比重试验两次测定的差值不得大于0.02,土工试验中为减少误差,增强试验数据的准确性,经过反复大量的试验,提出以下几点建议: 1、减少比重瓶校准误差 比重瓶在使用过程中,瓶塞及瓶口会出现不同程度的磨损,温度和瓶、水质量关系曲线不能长期使用,反复校准增大工作量,经过不断测试,比重试验校准可以改为在6.2.5.3步骤后称量同温度下煮沸的蒸馏水与比重瓶的质量,即公式1-1中mbw可以每次进行称量计算,从而减少误差。 2、减少样品差异误差 在称量烘干试验前,对待取样品进行研磨处理,在保证原有颗粒前提下,尽量细化处理,将不影响土样质量百分比的个别大颗粒剔

相关文档
最新文档