第二章 随机变量及其概率分布

第二章  随机变量及其概率分布
第二章  随机变量及其概率分布

第二章 随机变量及其概率分布

教学目的与要求

1. 熟练掌握一维离散型随机变量及其分布的概念,会求一维离散型随机变量的分布列;

2. 熟练掌握一维随机变量分布函数的概念与性质;

3. 熟悉一维离散型随机变量的分布函数与分布列的关系; 3. 理解一维连续型随机变量分布函数与分布密度的概念及其关系;

4. 熟记常见的几种分布的表达形式.

6. 熟悉随机变量函数的分布函数与分布密度的计算公式. 教学重点 一维离散型、连续型随机变量及其分布 教学难点 随机变量函数的分布 教学方法 讲解法 教学时间安排

第11-12学时 第一节 随机变量

第四节 随机变量的分布函数

第13-16学时 第二节 离散型随机变量 第三节 连续型随机变量 第17-18学时 第五节 随机变量函数的分布

习题辅导

教学内容

第一节 随机变量

一、随机变量

在上一章所讲的有些随机试验的样本空间中基本事件是用数值描述的,这就提示我们,无论什么随机试验,如果用一个变量的不同取值来描述它的全部可能结果,样本空间的表达及其相应的概率就显得更明了、更简单.事实上,这种想法是可以的,为此,引入一个新概念.

定义2.1 设E 维随机试验,()ωΩ=为其样本空间,若对任意的ω∈Ω,有唯一的实数与之对应,且对{},x R x ξ?∈≤为事件,则称()ξω为随机变量.

这样,事件可通过随机变量的取值来表示,随机变量,(),(),b a b ξξξ≤<≤L 等都表

示为事件,其中,a b 表示任意实数.即用随机变量的各种取值状态和取值范围来表示随机事件.

二、分布函数的定义与性质

定义2.2 定义在样本空间Ω上,取值于实数域的函数()ξω,称为是样本空间Ω上的(实值)随机变量,并称 ()(()),

(,)F x P x x ξω=≤∈-∞∞

是随机变量()ξω的概率分布函数.简称为分布函数. 分布函数的性质:

(1)单调性 若12,x x <则12()()F x F x ≤; (2)()lim ()0x F F x →-∞

-∞==

()lim ()1x F F x →+∞

+∞==

(3)右连续性 (0)()F x F x

+= 反过来,任一满足这三个性质的函数,一定可以作为某个随机变量的分布函数.因此,满足这三个性质的函数通常都称为分布函数. 由分布函数还可以下列事件的概率:

{()}1()

{()}(0){()}1(0){()}()(0)

P x F x P x F x p x F x P x F x F x ξωξωξωξω>=-<=-≥=--==--

由此可见,形如12121212{()},{()},{()},{()}x x x x x x x x ξωξωξωξω≤≤<<<≤≤<这些事件以及它们经过有限次或可列次并、交、差以后的概率,都可以由()F x 算出来,所以()F x 全面地描述了随机变量()ξω的统计规律.

第二节 离散型随机变量

一、离散型随机变量的概念及其分布

定义 2.2 定义在样本空间Ω上,取之于实数域R ,且只取有限个或可列个值的变量

()ξξω=,称作是一维(实值)离散型随机变量,简称为离散型随机变量.称

()i i P x p ξ==, 1,2,i =L

为随机变量()ξω的概率分布列,也称为分布律,有时就简称为分布.

离散型随机变量()ξω的分布列常常习惯地把它们写成表格的形式或矩阵形式:

12

1

2i

i x x x P

p p p ξ

L

L

L L

由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0,1,2,;i p i ≥=L (2)

1

1i

i p

==∑

反过来,任意一个具有以上两个性质的数列{}i p 都有资格作为某一个随机变量的分布列.

二、一维离散型随机变量的分布函数

如果()ξω是一个离散型随机变量,它们的分布列为

12

1

2i

i x x x P

p p p ξ

L

L

L L

那么()ξω的分布函数为 ()(())(())i i

x x

F x P x P x ξωξω<=<=

=∑

因为事件()()i i

a x b

a b a ξξ≤≤≤≤==U 右端的事件是两两互不相容的,

于是由概率的可列可加性有

()()i i a x b

P a b P a ξξ≤≤≤≤=

=∑

由此可知,()ξω取各种值的概率都可以由它的分布列通过计算而得到,这件事实常常说成是:分布列全面地描述了离散型随机变量的统计规律.

三、常见的离散型随机变量及其分布

1、两点分布 设离散型随机变量ξ的的分布列为

011P P ??

?-??

其中01P <<,则称ξ服从两点分布,亦称ξ服从(0—1)分布,简记为~(ξ0—1)分布. 显然,两点分布具有离散型随机变量的两个性质.

两点分布可用来描述一切只有两种可能结果的随机试验.例如,掷一枚均匀硬币是出正面还是反面;产品质量是否合格;卫星的一次发射是否成功等试验. 2、二项分布 若离散型随机变量ξ的分布列为

(),0,1,2,,k k n k

n p k C p q k n ξ-===L

其中01,1p q p <<=-,则称ξ服从参数为,n p 的二项分布,简称ξ服从二项分布,记为

~(;,).b k n p ξ

易验证 0

()0,

()1n

k k n k n

n

k P k C p q p q ξ-==≥=+=∑

显然,当n =1时,二项分布就化为两点分布.可见两点分布是二项分布的特例.

二项分布是离散型随机变量概率分布中重要的分布之一,它以n 重贝努里试验为背景,具有广泛的应用.例如,质量管理中,不合格产品数n p 控制图和不合格率p 控制图的绘制;一些抽样检验方案的制定,都是以二项分布为理论依据的.

3、泊松(Poisson )分布 设离散型随机变量ξ的所有可能取值为0,1,2,L ,且取各个值的概率为 (),0,1,2,,!

k e P k k k λ

λξ-==

=L

其中0λ>为常数,则称ξ服从参数为λ的泊松分布,记为~(;)P k ξλ.易验证

(1)()

0,0,1,2,;

(2)()1

!

k

k P k k P k e k λ

ξλξ∞-==>====∑∑

L

泊松分布是重要的离散型随机变量的概率分布之一,有广泛的应用.例如,来到某售票口买票的人数;进入商店的顾客数;布匹上的疵点数;纱锭上棉纱断头次数;放射性物质放射出的质点数;热电子的发射数;显微镜下在某观察范围内的微生物数;母鸡的产蛋量等,

这些随机变量都可利用泊松分布.

定理2.1 (泊松定理)在n 重贝努里试验中,事件A 在一次试验中出现的概率为n p (与试验总数n 有关)如果当n →∞时,(0n np λλ→>常数),则有 0

l i m (;,)

,0,1

,2,!

k

n x b k n p e k k λ

δλ-→==L 4、几何分布 设ξ是一个无穷次贝努里试验序列中事件A 首次发生时所需的试验次数,且可能的值为1,2,L ,而取各个值的概率为 1

1()(1)

,1,2..k k P k p p q p k ξ--==-==L

其中01,1p q p <<=-,则称ξ服从几何分布.记为~(,)g k p ξ.易验证

1

11

(1)()0,1,2,

(2)1

k k k P k p q k pq ξ-∞

-===>

==∑

上面讨论了几种常见的离散型随机变量的分布.两点分布、二项分布、泊松分布、几何分布都是以贝努里试验为背景.即在一次试验中事件A 要么出现,要么不出现.而试验的次数是不同的,两点分布的次数为1,二项分布的次数是n ,泊松分布是无穷,随机变量k ξ=的取值从0到试验的次数.由此可见,两点分布是二项分布的特例,泊松分布是二项分布的地推广.注意几何分布k ξ=的取值从1开始到无穷.在应用中,一定要分清该问题属于哪一种类型,准确灵活地应用. 作业 1, 2, 3, 4, 6, 8。

第三节 连续型随机变量及其分布

一、连续型随机变量及其分布的概念与性质

定义2.3 若()ξω是随机变量,()F x 是它的分布函数,如果存在函数()f x ,使对任意的x ,有 ()()x

F x f t dt -∞

=

?

(*)

则称()ξω为连续型随机变量,相应的()F x 为连续型分布函数.同时称()f x 是()ξω的概率

密度函数或简称为密度函数.

由分布函数的性质即可验证任一连续型分布的密度函数()f x 具有下述性质:

(1)()

(2)

()1

f x f x dx ∞

-∞

≥=?

反过来,任意一个R 上的函数()f x ,如果具有以上两个性质,即可由(*)式定义一个分布函数()F x .

由(*)式可知,连续型随机变量的分布函数是连续函数.给定随机变量ξ的概率密度函数()f x ,由(*)式可求出分布函数()F x .这说明连续型随机变量的概率密度函数也完全刻画了随机变量的概率分布.且由概率密度函数可()f x 直接求出ξ落在任意区间[,]a b 内的概率.事实上,如果随机变量()ξω的密度函数为()f x ,则对任意的1212,()x x x x <,有 2

1

1221(())()()()x x P x x F x F x f t dt ξω<≤=-=

?

(**)

这一结果有很简单的几何意义:()ξω落在12[,)x x 中的概率,恰好等于在区间12[,)x x 上由曲线()y f x =形成的曲边梯形的面积(如图3.4中的影阴部分),而

()1f x dx ∞

-∞

=?

式表明,

整个曲线()y f x =以下,x 轴以上的面积为1. 由(**)式还可以证明,连续型随机变量()ξω取单点值的概率为零,也就是说对任意的x ,(())0P x ξω==,于是有

121

22(())(())(())

P x x P x x P x ξωξωξω≤≤=≤<+= 2

1

12(())()x x P x x f y dy ξω=≤<=

?

(***)

如果()f x 在某一范围内的数值比较大,则由(***)式与(**)式可知,随机变量落在这个范围内的概率也比较大,这意味着()f x 的确具有“密度”的性质,所以称它为概率密度函数.此外由()()x

F x f t dt -∞

=?

式可知,对()f x 的连续点必有

()

'()()dF x F x f x dx

== 二、常见的几种连续型随机变量及其分布 1、 均匀分布

若随机变量()ξω的概率密度函数为

1()0

a x

b f x b a

?≤≤?

=-???其他

时,则称随机变量()p x 服从[,]a b 上的均匀分布.显然()f x 的两条性质满足.其分布函数为

0()1

x a x a F x a x b b a x b

=≤≤?

-?>??

这正是上一节讲过的引例.均匀分布可用来描述在某个区间上具有等可能结果的随机试验的统计规律性.例如,在数值计算中,假定只保留到小数点后一位,以后的数字按四舍五入处理,则小数点后第一位小数所引起的误差,一般可认为在[0.5,0.5]上服从均匀分布.在一个较短的时间内,考虑某一股票的价格ξ在[,]a b 内波动的情况,若区间[,]a b 较短,切无任何信息可利用,这时可近似认为ξ~[,]U a b .

2、 指数分布

若随机变量ξ的密度函数为

,0

()0,0x e x f x x λλ-?>=?

≤?

其中:

0λ>为常数,则称ξ服从参数为λ的指数分布,记为()~E ξλ。

指数分布的分布函数:

1,0

()0,0x e x F x x λ-?->=?≤?

注:许多“等待时间”是服从这个分布的;一些没有明显“衰老”机理的元器件的寿命也可以用指数分布来描述.所以指数分布在排队论和可靠性理论等领域中有着广泛的应用.

3. 正态分布

若随机变量ξ的密度函数为

22

()2(),x f x x μσ--

=

-∞<<∞ (*)

,(0)μσσ>是两个常数,则随机变量ξ服从参数为,(0)μσσ>的正态分布,记为

2~(,)N ξμσ.

分布函数为

22

()2(),y x

F x e

dy x μσ--

-∞

=

-∞<<∞

并且称()F x 为正态分布,记作2

(,)N μσ.如果一个随机变量()ξω的分布函数是正态分布,也称()ξω是一个正态变量.

正态分布是概率论中最重要的一个分布,高斯(Gauss )在研究误差理论时曾用它来刻划误差.经验表明许多实际问题中的变量,如测量误差、射击时弹着点与靶心间的距离、热力学中理想气体的分子速度、某地区成年男子的身高等都可以认为服从正态分布.进一步的理论研究表明,一个变量如果受到大量微小的、独立的随机因素的影响,那么这个变量一般是正态变量.

正态分布的密度函数()f x 的图像称为正太曲线。

性质:1、关于x μ=点对称,在x μ=

处达到极大,极大值为()f μ=

2、当μ固定时,σ的值愈小,()f x 的图像就愈尖、愈狭,σ的值愈大,()f x 的图像就愈平、愈宽.由此可见,如果()f x 在μ点的附近愈尖、愈高,则随机变量在μ点附近取值的概率也愈大.事实上,对任一服从2

(0,)N σ的随机变量ξ有

22

22

22

2222323(())0.688

(2()2)0.955(3()3)0.997

x x x P e

dx P e dx P e

dx σ

σσ

σ

σσσ

σσ

σξωσσξωσσξωσ-

-

-

--

--≤≤=

≈-≤≤=≈-≤≤=

≈ 这说明,随机变量ξ的绝对值不超过σ的概率略大于2/3,不超过2σ的概率在95%以上,而超过3σ的概率只有0.003,即 (3)0.003P ξσ>≈

因为(3)P ξσ>很小,在实际问题中常常认为它是不会发生的.也就是说,对服从2

(0,)

N σ分布的随机变量ξ来说,基本上认为有3ξσ≤,这种近似的说法被实际工作者称作是正态分布的“3σ”原则.

(0,1)N 分布常常称为是标准正态分布,其密度函数通常以()x ?表示,相应的分布函数

则记作()x Φ

,所以22

()()y x

x

x y dy e

dy -

-∞

-∞

Φ=

?=

?

附录中给出了(0,1)N 分布的()x ?和()x Φ的表,如果要查(,)N 2

μσ分布,只要通过一个函数关系(变换)就能解决.

设ξ是2

(,)N μσ分布的随机变量,则

22

()2()y x

P x e dy -μ-

σ-∞

ξ<=

这时,令

ξ-μ

η=

σ

则η也是一个随机变量,并且有

()(

)()2

P x P x P x ξ-μ

η<=<=ξ<σ+μ

22

()2y x e dy -μ-σ+μσ-∞

=

对上述积分作变量代换,令y u -μ

=

σ即得

22

()()u x

p x e

du x -

-∞

η<=

=Φ?

由此可知η是一个服从(0,1)N 分布的标准正态随机变量。于是要查()()F x P x =ξ<,只要查()y Φ,其中x y -μ

=

σ

,这就是说只要查(0,1)N 分布表就可以了,因为这时有 ()()()x F x P x P ξ-μ-μ

=ξ<=<

σσ

()()x x P -μ-μ

=η<=Φσσ

两边求导还有

1()()()x p x F x '-μ==

?σσ

可见一张(0,1)N 分布表解决了所有2

(,)N μσ分布的查表问题。其中把一般的

2(,)N μσ分布的随机变量ξ变换成标准正态变量η,所以常常称它为“标准化”变换.

小结 本节我们学习了一维连续型随机变量的分布函数和密度函数的概念及性质,并且讨论了几种常见的随机变量的分布,望熟记它们的分布函数和密度函数的表达方式并会应用.

作业 11, 12, 13, 14.

随机变量及其分布知识点汇总

随机变量及其分布知识点汇总 知识点一 离散型随机变量及其分布列 (一)、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值 (1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== 则随机变量X 的概率分布列如下: {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注意:超几何分布的模型是不放回抽样

知识点二 条件概率与事件的独立性 (一)、条件概率 一般地,设A,B 为两个事件,且()0P A >,称() (|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ (二)、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即 ()()()P AB P A P B =),则称事件A 与事件B 相互独立。 ()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注意:(1)互斥事件:指同一次试验中的两个事件不可能同时发生; (2)相互独立事件:指在不同试验下的两个事件互不影响. (三)、n 次独立重复试验 1.一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验. 在n 次独立重复试验中,记i A 是“第i 次试验的结果”,显然, 1212()()()()n n P A A A P A P A P A ???=??? “相同条件下”等价于各次试验的结果不会受其他试验的影响 注意: 独立重复试验模型满足以下三方面特征 第一:每次试验是在同样条件下进行; 第二:各次试验中的事件是相互独立的; 第三:每次试验都只有两种结果,即事件要么发生,要么不发生. 2.n 次独立重复试验的公式: n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为 ()(1),0,1,2,...,.(1)k k n k k k n k n n P X k C p p C p q k n q p --==-===-其中,而称p 为成功

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

“随机变量及其分布”简介

“随机变量及其分布”简介 北京师范大学数学科学院李勇 随机变量是研究随机现象的重要工具之一,他建立了连接随机现象和实数空间的一座桥梁,使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,如二项分布模型、超几何分布模型、正态分布模型等。 在本章中将通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的模型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义。 一、内容与要求 1. 随机变量及其分布的概念。 通过具体实例使学生理解随机变量及其分布列的概念,认识随机变量及其分布对于刻画随机现象的重要性。要求学生会用随机变量表达简单的随机事件,并会用分布列来计算这类事件的概率。 2.超几何分布模型及其应用。 通过实例,理解超几何分布及其导出过程,并能进行简单的应用。 3. 二项分布模型及其应用。 通过具体实例使学生了解条件概率和两个事件相互独立的概念,理解n次独立重复试验和二项分布模型,并能解决一些简单的实际问题。 4.离散随机变量的均值与方差。 通过实例使学生理解离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。 5.正态分布模型。 借助直观使学生认识正态分布曲线的特点及含义。 二、内容安排及说明 1.全章共安排了4个小节,教学约需12课时,具体内容和课时分配如下(仅供参考): 2.1 离散型随机变量及其分布列约3课时 2.2 二项分布及其应用约4课时

2.3 离散型随机变量的均值与方差约3课时 2.4 正态分布约1课时 小结约1课时 2. 本章知识框图 3.对内容安排的说明。 研究一个随机现象,可以借助于随机变量,而分布描述了随机变量取值的概率分布规律。二项分布和超几何分布是两个应用广泛的概率模型.为了使学生能够更好地理解它们,并能用来解决一些实际问题,教科书在内容安排上作了如下考虑: (1) 为学生把注意力集中在随机变量的基本概念和方法的理解上,通过取有限个不同 值的随机变量为载体介绍这些概念,以便他们能更好的应用这些概念解决实际问 题。例如,如何定义随机变量来描述所感兴趣的随机事件;一个具体的随机变量都 能表达什么样的事件,如何表达这些事件;如何用分布列来表达随机事件发生的概 率等。 (2) 介绍超几何分布模型及其应用,其目的是 i. 让学生了解它的广泛应用背景,并使学生能够应用该分布设计一些能够丰富学生课外

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

随机变量及其分布知识点总结

圆梦教育中心 随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率 ()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称() (|)() P AB P B A P A = 为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+U 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =.

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.360docs.net/doc/748065567.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列、 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1、两点分布 则称X服从两点分布,并称=P(X=1)p 为成功概率、 2、超几何分布 一般地,在含有M件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型就是不放回抽样 二、条件概率 一般地,设A,B为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率、 0(|)1P B A ≤≤ 如果B 与C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A,B两个事件,如果事件A 就是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事

件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生; (2)相互独立事件:指在不同试验下的两个事件互不影响、 四、n 次独立重复试验 一般地,在相同条件下,重复做的n 次试验称为n次独立重复试验、 在n 次独立重复试验中,记i A 就是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ???=??? “相同条件下”等价于各次试验的结果不会受其她试验的影响 注: 独立重复试验模型满足以下三方面特征 第一:每次试验就是在同样条件下进行; 第二:各次试验中的事件就是相互独立的; 第三:每次试验都只有两种结果,即事件要么发生,要么不发生、 n 次独立重复试验的公式: n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为 ()(1),0,1,2,...,.(1)k k n k k k n k n n P X k C p p C p q k n q p --==-===-其中,而称p 为成功概率、 五、二项分布 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则 ()(1)0,1,2,,k k n k n P X k C p p k n -==-=???, 此时称随机变量X服从二项分布,记作~(,)X B n p ,并称p为成功概率、 六、离散随机变量的均值(数学期望) 则称1122()i i n n E X x p x p x p x p =+++++ 为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平. 则()EY aE X b =+,即()()E aX b aE X b +=+ 2.一般地,如果随机变量X 服从两点分布,那么

二、随机变量及其分布(答案)

概率论与数理统计练习题 系 专业 班 姓名 学号 第二章 随机变量及其分布(一) 一.选择题: 1.设X 是离散型随机变量,以下可以作为X 的概率分布是 [ B ] (A ) 1234111124816 X x x x x p (B ) 123411112488 X x x x x p (C ) 123411112 3 4 12 X x x x x p (D ) 1234 11112 3 412 X x x x x p - 2.设随机变量ξ的分布列为 0123 0.10.30.40.2 X p )(x F 为其分布函数,则)2(F = [ C ] (A )0.2 (B )0.4 (C )0.8 (D )1 二、填空题: 1.设随机变量X 的概率分布为 0120.20.5 X p a ,则a = 0.3 2.某产品15件,其中有次品2件。现从中任取3件,则抽得次品数X 的概率分布为 313315660105()C P X C ===,12213315361105()C C P x C ===,212133 15 3 2105()C C P x C === 3.设射手每次击中目标的概率为0.7,连续射击10次,则击中目标次数X 的概率分布为 1010070301210()(.)(.) (,,,,)k k k P X k C k -===L 三、计算题: 1.同时掷两颗骰子,设随机变量X 为“两颗骰子点数之和”求: (1)X 的概率分布; (2)(3)P X ≤; (3)(12)P X > 解:(1)1236()P X == , 2336()P X ==, 3436()P X ==, 4536()P X ==, 5636()P X ==, 6736()P X ==, 5836()P X ==, 4 936()P X == 31036()P X ==, 21136()P X ==, 11236 ()P X ==

随机变量及其概率分布

第二章 随机变量及其概率分布 【内容提要】 一、随机变量及其分布函数 设()X X ω=是定义于随机试验E 的样本空间Ω上的实值函数,且x R ?∈, {}()X x ωω≤是随 机事件,则称()X X ω=为随机变量,而称()()()F x P X x ω=≤为其概率分布函数。 随机变量()X X ω=的概率分布函数()()()F x P X x ω=≤具有如下性质: ⑴.非负性: x R ?∈,有0()1F x ≤≤; ⑵.规范性: ()0,()1F F -∞=+∞=; ⑶.单调性: 若12x x ≤,则12()()F x F x ≤; ⑷.右连续性: x R ?∈,有(0)()F x F x +=。 二、离散型随机变量 1.离散型随机变量及其概率分布律 若随机变量()X X ω=只取一些离散值12n x x x -∞<<=其中而。 三、连续型随机变量

二维随机变量及其分布题目

一、单项选择题 1 ,那么下列结论正确的是 ()A B C D.以上都不正确 2设X与Y相互独立,X 0—1分布,Y 0—1分布,则方程 t 有相同实根的概率为 (A(B(C (D 3.设二维随机变量(X,Y)的概率密度为 则k的值必为 (A(B(C (D 4.设(X,Y)的联合密度函数为 (A (B(C(D 5.设随机变量X与Y相互独立,而且X服从标准正态分布N(0,1),Y服从二项分布B(n,p),0

二、填空题 2 若(X ,Y )的联合密度 , 3 4 ,则 且区域 5 。 6 . 7

=? ∞+∞ -)(x f X . 8 如果随机变量),(Y X 的联合概率分布为 X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 ;若X 与Y 相互独立,则=α ,=β . 9 设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f ,Y X Z +=的概率密度=)(Z f Z . 10、 设 ( 、 ) 的 联 合 分 布 函 数 为 ()()()()?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =_____。 11设X 服从参数为1的泊松分布,Y 服从参数为2的泊松分布,而且X 与Y 相互独立,则 (max(,)0)_______. (min(,)0)_______.P X Y P X Y ≠=≠= 12 设X 与Y 相互独立,均服从[1,3]上的均匀分布,记(),A X a =≤(),B Y a => 7 ()9 P A B ?= 且,则a=_______. 13 二维随机变量(X ,Y )的联合概率密度为 221()21sin sin (,)(,),2x y x y f x y e x y π -++= -∞<<+∞ 则两个边缘密度为_________. 三.解答题 1 一个袋中有三个球,依次标有数字 1, 2, 2,从中任取一个, 不放回袋中 , 再任取一个, 设每次取球时,各球被取到的可能性相等,以 X , Y 分别记第一次和第二次取到的球上标有的数字 ,求 ( X , Y ) 的分布律与分布函数. 2.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取2次,定义随机变量12,X X 如下:

随机变量及其分布知识点整理

随机变量及其分布知识点整理 、离散型随机变量的分布列 般地,设离散型随机变量 X 可能取的值为x-i , x 2, , x i , , Xn , X 取每一个值X j (i 1,2, ,n)的概率 P(X x ) p ,则称以下表格 离散型随机变量的分布列具有下述两个性质: (1) P > 0,i 1,2, , n (2) p 1 p 2 p n 1 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称 p=P(X=1)为成功概率? 2.超几何分布 一般地,在含有 M 件次品的N 件产品中,任取 n 件,其中恰有X 件次品,则事件 x k 发生的概率为: 其中 m min M , n ,且n N, M N,n ,M,N N 。 注:超几何分布的模型是不放回抽样 二、条件概率 般地,设A,B 为两个事件,且P(A) 0,称P(B|A)鵲为在事件A 发生的条件下,事件B 发生的条 件概率? 0 < P(B | A) < 1 如果 B 和 C 互斥,那么 P[(BUC)|A] P(B|A) P(C|A) 三、相互独立事件 设A , B 两个事件,如果事件A 是否发生对事件 B 发生的概率没有影响(即P(AB) P(A)P(B)),则称事件 A 与事件 B 相互独立。 即A 、B 相互独立 P(AB) P(A)P(B) 般地,如果事件 A,A 2,…,A n 两两相互独立,那么这 n 个事件同时发生的概率,等于每个事件发生的概率 P(X k) k n k C M C N M k C N 0,1,2,3,…,m

的积,即P(AA..A) P(A)P(A2)...P(A n). 注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生; (2)相互独立事件:指在不同试验下的两个事件互不影响? 四、n次独立重复试验 一般地,在相同条件下,重复做的n次试验称为n次独立重复试验? 在n次独立重复试验中,记A是“第i次试验的结果”,显然,P(AA2 A n) P(A)P(A2) P(AJ “相同条件下”等价于各次试验的结果不会受其他试验的影响 注:独立重复试验模型满足以下三方面特征 第一:每次试验是在同样条件下进行; 第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生 n次独立重复试验的公式: 一般地,在r次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为 P(X k) C:p k(1 p)n k C:p k q nk,k 0,1,2,…,n.(其中q 1 p),而称p 为成功概率? 五、二项分布 一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则k k n k P(X k) C n p (1 p) ,k 0,1,2, ,n 此时称随机变量X服从二项分布,记作,并称p为成功概率 六、离散随机变量的均值(数学期望) 则称E(X) Xg X2P2 X i P i X n P n 为X的数学期望或均值,简称为期望?它反映了离散型随机变量取值的平均水平 则EY aE(X) b,即E(aX b) aE(X) b 2.一般地,如果随机变量X服从两点分布,那么 E(X)=1 p 0 (1 p) p 即若X服从两点分布,则E(X) p 3?若X ~ B(n, p),则E(X) np 七、离散型随机变量取值的方差和标准差 般地,若离散型随机变量x的概率分布列为

第2章 随机变量及其分布

第2章 随机变量及其分布 1,设在某一人群中有40%的人血型是A 型,现在在人群中随机地选人来验血,直至发现血型是A 型的人为止,以Y 记进行验血的次数,求Y 的分布律。 解:显然,Y 是一个离散型的随机变量,Y 取k 表明第k 个人是A 型血而前1-k 个人都不是A 型血,因此有 1 1 6 .04.0) 4.01(4.0}{--?=-?==k k k Y P , ( ,3,2,1=k ) 上式就是随机变量Y 的分布律(这是一个几何分布)。 2,水自A 处流至B 处有3个阀门1,2,3,阀门联接方式如图所示。当信号发出时各阀门以0.8的概率打开,以X 表示当信号发出时水自A 流至B 的通路条数,求X 的分布律。设各阀门的工作相互独立。 解:X 只能取值0,1,2。设以)3,2,1(=i A i 记第i 个阀门没有打开这一事件。则 )}(){()}({}0{3121321A A A A P A A A P X P ?=?== )()()()()()()(}{}{}{32131213213121A P A P A P A P A P A P A P A A A P A A P A A P -+=-+= 072.0)8.01()8.01()8.01(3 22=---+-=, 类似有512.08 .0)()}({}2{3 321321=====A A A P A A A P X P , 416.0}2{}0{1}1{==-=-==X P X P X P ,综上所述,可得分布律为 3,据信有20%的美国人没有任何健康保险,现任意抽查15个美国人,以X 表示15个人中无任何健康保险的人数(设各人是否有健康保险相互独立)。问X 服从什么分布?写出分布律。 并求下列情况下无任何健康保险的概率:(1)恰有3人;(2)至少有2人;(3)不少于1人且不多于3人;(4)多于5人。 解:根据题意,随机变量X 服从二项分布B(15, 0.2),分布律为 15 ,2,1,0, 8 .02.0)(1515 =??==-k C k X P k k k 。 (1), 2501.08 .02.0)3(12 3315=??==C X P (2) 8329 .0)0()1(1)2(==-=-=≥X P X P X P ; (3) 6129 .0)3()2()1()31(==+=+==≤≤X P X P X P X P ; (4) )2()3()4()5(1)5(=-=-=-=-=>X P X P X P X P X P

选修2-3第二章-随机变量及其分布测试题

随机变量及其分布测试题 一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.给出下列四个命题: ①15秒内,通过某十字路口的汽车的数量是随机变量; ②在一段时间内,某侯车室内侯车的旅客人数是随机变量; ③一条河流每年的最大流量是随机变量; ④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量. 其中正确的个数是( ) A.1 B.2 C.3 D.4 2.已知随机变量X 满足D (X )=2,则D (3X +2)=( ) A .2 B .8 C .18 D .20 3.设服从二项分布X ~B (n ,p )的随机变量X 的均值与方差分别是15和45 4 ,则n 、 p 的值分别是( ) A .50,1 4 B .60,14 C .50,3 4 D .60,3 4 . 4.某次语文考试中考生的分数X ~N (90,100),则分数在70~110分的考生占总考生数的百分比是( ) A .68.26% B .95.44% C .99.74% D .31.74%

5.某市期末教学质量检测,甲、乙、丙三科考试成绩近似服从正态分布,则由如图曲线可得下列说法中正确的是( ) A.甲学科总体的方差最小 B.丙学科总体的均值最小 C.乙学科总体的方差及均值都居中 D.甲、乙、丙的总体的均值不相同 6.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 7.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4、0.5,则恰有一人击中敌机的概率为( ) A .0.9 B .0.2 C .0.7 D .0.5 8.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是 3 10 的事件为( ) A .恰有1只是坏的 B .4只全是好的 C .恰有2只是好的 D .至多有2只是坏的 9.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2.又已知E (X )=4 3, D (X )=2 9 ,则x 1+x 2的值为( ) A.53 B.73 C.11 3 D .3

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 离散型随机变量及其分布列(1)随机变量:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.通常用字母X ,Y ,ξ,η等表示. (2)离散型随机变量:所有取值可以一一列出的随机变量称为离散型随机变量.(3)离散型随机变量的分布列: 要点归纳 一、 1. 一般地,若离散型随机变量X 可能取的不同值为x 1,x 2…,x i ,…x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: X x 1x 2…x i …x n P p 1 p 2 … p i … p n 我们将上表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了简单起见,也用等式P (X =x i )=p i , i =1,2,…,n 表示X 的分布列.(4)离散型随机变量的分布列的性质:①p i ≥0,i =1,2,…,n ; ② i =1n p i =1.

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. X 01P 1-p p 两点分布又称0-1分布,伯努利分布. 超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X = k )=C k M C n - k N -M C n N ,k =0,1,2,…,m ,即 X 0 1 …m P … C 0M C n - N -M C n N C 1M C n - 1 N -M C n N C m M C n - m N -M C n N 其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.二项分布及其应用2. (1)条件概率:一般地,设A 和B 是两个事件,且P (A )>0,称P (B |A )= P (AB ) P (A ) 为在事件A 发生的条件下,事件B 发生 的条件概率.P (B |A )读作A 发生的条件下B 发生的概率. (2)条件概率的性质:①0≤P (B |A )≤1; ②必然事件的条件概率为1,不可能事件的条件概率为0; (4)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. (5)二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为 ③如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). (3)事件的相互独立性:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立.如果事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立.

相关文档
最新文档