聚能射流对靶板侵彻的数值仿真

聚能射流对靶板侵彻的数值仿真
聚能射流对靶板侵彻的数值仿真

兵工自动化2010-01

Ordnance Industry Automation 29(1) ·24·

doi: 10.3969/j.issn.1006-1576.2010.01.007

聚能射流对靶板侵彻的数值仿真

崔军,徐峰,李向荣

(装甲兵工程学院兵器工程系,北京100072)

摘要:利用AUTODYN非线性动力学分析软件,采用Johnson Cook 动态本构模型和多物质Euler算法,对某子母弹的子弹聚能射流形成、侵彻钢板过程进行了数值仿真,得到与试验结果相近的聚能射流形成和侵彻的物理现象和规律,验证了该模型和数值模拟的合理性,为该弹的测试和鉴定提供一些理论依据,对聚能破甲战斗部的工程设计具有重要的应用价值。

关键词:聚能装药;数值仿真;Euler-Lagrange算法

中图分类号:TP602 文献标识码:A

Numerical Simulation of Shaped Charge Jet Penetrating into Target

CUI Jun, XU Feng, LI Xiang-rong

(Dept. of Weaponry Engineering, Academy of Armored Force Engineering, Beijing 100072, China) Abstract: Using AUTODYN nonlinear dynamics analysis software, Johnson Cook constitutive model of dynamic and multi-material Euler algorithm, the bullet of a dispenser shaped jet formation process of penetrating steel plate numerical simulation and experimental results are similar to shaped Jet Formation and Penetration of the physical phenomena and laws. It verifies the model and numerical simulation is reasonableness, and provides some theoretical basis for the bullet testing and appraisal. The engineering design has important application value.

Keywords: Shaped charge; Numerical simulation; Euler-Lagrange algorithm

0 引言

聚能射流是弹药爆炸后形成的高速流体,其对靶板侵彻能力是各种舰弹对目标毁伤能力的重要指标。目前,聚能射流侵彻的方法已广泛应用于各种箭弹战斗部的设计上,故研究聚能射流对各种的靶板侵彻具有重要的现实意义。

1 理论基础

聚能射流的形成:炸药爆轰后,将炸药的能量传给金属药型罩,药型罩以很大的速度向轴线运动汇聚(压垮),药型罩内壁在压垮中产生速度更高的塑性金属流。当爆轰波在压垮过程中产生的压力远超过药型罩材料的屈服强度时,药型罩性能大致相当于一种非粘性、不可压缩的流体,因此,用定常理想不可压缩流体力学模型来解释射流的形成过程。但在实际聚能装药中,药型罩各处壁厚不同,对应的装药厚度也有变化,故药型罩上各处的压垮速度不相同。为了使仿真模拟更接近实际,可把药型罩及对应的装药划分成若干微元,只要求在微元内满足定常条件,即“准定常方法”。按理想不可压缩流体来计算处理射流形成的过程,即PER理论[1]。

AUTODYN非线性动力学仿真软件提供了多种材料模型和状态方程,功能齐全的输入输出处理模块适用于爆炸、冲击和侵彻等问题的数值模拟计算。

2 建立有限元分析模型

2.1 假设

通常情况下,对某一问题的仿真分析必须先做一些假设,将复杂的目标简化成能建立数值仿真模型并保证目标真实特性的简单目标,这就要求对一些特定的环境参数、几何条件进行简化,然后再运用数学计算的方法来对目标进行量化计算模拟。采用Backman和Goldsmith对于侵彻的假设如下:

1) 靶板的响应集中在几倍于弹体直径的区域中,可忽略远离冲击点的复杂边界条件;2) 忽略包括摩擦在内的热效应;3) 假定撞击面局部为平面。

2.2 模型材料选取

表1 材料参数

部件材料状态方程强度模型失效模型密度/g·cm-2

空气Air Ideal Gas 0.001 225

炸药CompB JWL 1.717

药型罩Copper Shock 8.93

壳体

Steel

4340

Linear

Johnson

Cook

Johnson

Cook

7.83

靶板Steel S-7 Shock

Johnson

Cook

7.75

收稿日期:2009-07-02;修回日期:2009-09-08

作者简介:崔军(1966-),男,吉林人,副教授,从事武器维修、弹药毁伤方向研究。

崔军,等:聚能射流对靶板侵彻的数值仿真·25·第1期

数值仿真的动力学模型由壳体、药型罩、炸药、空气和靶板4个部分组成。所用的材料均直接从软件的材料数据库中获得,材料参数如表1。

2.3 网格及边界条件

由于破甲弹的聚能装药结构由图示模型沿X轴旋转一周获得,故模型具有轴对称特性且聚能装药是线性的,为了节约计算资源,只需要采用平面1/2模型,用cm·g·μs单位制。其中炸药、药型罩和空气3种材料采用Euler处理器建模。建模方法为:先用Euler多物质的方法建立平面网格,划分网格后输入填充物质理想气体,并输入网格中理想气体的内能;用Lagrange的方法建立壳体、药型罩和炸药的几何模型,划分网格并依次填入理想气体到平面网格中;后将壳体、药型罩和炸药选中,并替换成Euler方法,在材料网格上重新分配质量、动量和能量,得到新的网格速度和网格内各介质的质量及内能。Euler法的好处是网格不动且不变形,克服了单元网格畸变引起的数值计算困难。

靶板采用Lagrange处理器建模,将靶板的Lagrange单元定义为固体,将炸药、空气和药型罩的多物质Euler单元定义为流体。因模型是二维使用2种处理器,故射流与靶板的相互作用为Euler -Lagrange,聚能装药产生的射流通过耦合把能量和压力传递给靶板,实现对靶板的侵彻,靶板对射流起几何约束作用。数值模拟时模型几何参数如表2。

表2 模型几何参数mm 壳体长壳体直径药型罩厚壳体厚靶板长靶板厚102 60 2 2 100 40 壳体、药型罩、炸药和靶板的初始速度以及初始能量都设为0,起爆方式为中心起爆,冲击波能量耗散为15%。最后,设定边界条件为Flow out (Euler),设置循环周期、时间步长、以及观察点等输入输出的自定义参数。

3 计算结果分析

在给定外壳尺寸和了解设计参数要求的条件下,进行数值模拟前必须先通过改变药型罩的锥角大小和炸高距离的大小,通过大量的数值模拟得到较好的射流和有利炸高,进而获得较好的破甲效果。3.1 锥角选取

通过改变锥角的大小进行数值模拟,以获取较

好的射流形成过程。由于射流的形成与EFP有区别,射流的锥角取值为3070

~[2]之间,为保证射流速度和质量,只选取了在4060

~范围内的小角度变化,每次增加5°做一次模拟。关于射流较好锥角的选择,不仅需要通过大量的仿真分析和统计试验,而且需要考虑到设计的总体要求、目标特性、边界条件及各种其它因素的影响,最终才能确定。仅粗略地根据设计对射流的速度、形状、破甲深度和扩孔的孔径等参数的要求,选取了锥角为50°时模型作为研究对象。图1为50°锥角时模型图,图2是在没有设立靶板时经历1000个周期后所形成的射流状态图,射流的头部发生了堆积现象,通过模拟发现图2再经过约500周期后射流就会产生断裂。

图1 50°锥角模型图

兵工自动化

·26·

第29卷

从各图中可以看出:射流侵彻的孔径要大于射流的直径,随着周期的不断增加,由于射流挤压靶板时,

自身头部速度降低和能量传递导致后继的射流不断堆积,射流的直径将会逐渐增大,慢慢堆积满前端

部分的侵彻孔,当然前提是在射流的最大穿深小于

靶板的厚度;当射流的穿深大于靶板厚度时,射流就会穿透,而由于杵体直径较大,可能与射流发生断裂。从图3(b)、(c)可以看出:靶板材料在射流的

猛烈挤压下,不仅密度有所增加,而且向边界挤出;图3(c)、(d)中靶板的左表面比较粗糙,是由于炸药

冲击波造成有部分射流或壳体破片飞散所造成的。

图4是在不同观察点得到射流速度随时间变化图,横轴为时间轴(ms ),纵轴为速度轴(m /s )。图

4(a)、(b)是在没有放置靶板的情况和观察点网格坐标为(107,3)、(201,2)的速度变化图,图4(c)、(d)是在侵彻靶板时观察点网格坐标为(115,7)、(312,2)的速

度变化图,其中图4(a)、(b)和(c) 3个观察点在杵体

中;从4个图中都可以看出射流的速度都达到了

6 000 m /s ,在约5 μs 时,由于在爆轰波的直接作用

下,对药型罩顶部的强烈冲击使射流微元速度激增,

射流头部压力和加速度达到最大值,从射流开始产

生到爆轰波的能量耗尽持续了约40 μs 。 由于图4(a)、(b)的观察点不同,图4 (a)网格在前,所以变化时间早于图4 (b),而射流形成的过程非常复杂,射流微元相互挤压传递速度与内能,在固定了的网格中流动,在约24 μs 产生了图4(a)观察点中射流速度下降,可能是射流发生了断裂,受其影响,图4(b)也出现了相同的情况,在约50 μs 时观察点网格中射流微元基本不再流动。

Gauge History(1)

AUTODYN-2D v6.1 from Century Dynamics

Gauge History(1)

AUTODYN-2D v6.1 from Century Dynamics

(d)

图4 不同观察点射流速度变化图

图4(c)、(d)仍然是由于网格坐标的不同导致了速度产生的先后;图4(c)中在约25 μs 时发了速度骤降,这是由于射流在侵彻靶板的过程中,其头部射流受到靶板的阻挡速度下降,通过相互挤压将自身的动能转化为靶板的内能,这样在头部产生更多

的堆积并向后延伸,后继的射流微元也受其影响速度下降,到图4(a)观察点时速度就会大减;另一个原因是沿射流纵轴线方向存在速度梯度[3],沿轴线方向的内能和速度较大,而靠近外围的则比较小;图4(d)观察点网格坐标位于靶板上,且靠近射流轴线,从开始侵彻到完成侵彻,速度下降比其它3图平缓,经过了约50 μs 射流速度降为1 000 m /s 以下。 4 结论

该仿真结果与实验结果[4]基本吻合,由上述模拟分析可知:1)在弹药的设计和试验等方面,运用计算机仿真技术可以形象逼真地模拟聚能装药对靶板的侵彻,意义重大;2) 在建立正确模型的同时,考虑的因素越全面,仿真质量越高。

参考文献:

[1] 王树魁, 贝静芬, 等 译. 成型装药原理及其应用[M].

北京: 兵器工业出版社, 1992: 55-66.

[2] 王儒策. 弹药工程[M]. 北京: 北京理工大学出版社,

2002: 104-105.

[3] 谭多望, 孙承纬, 等. 大锥角聚能射流实验研究[J]. 高

压物理学报, 2003, 17(3): 204-208.

[4] 赵捍东, 陈国光, 董永香. 聚能装药射流的数值仿真研

究[J]. 华北工学院学报, 2001, 22(3): 211-214.

CFX的流场精确数值模拟教程.pdf

基于CFX的离心泵内部流场数值模拟 基于CFX的离心泵内部流场数值模拟 随着计算流体力学和计算机技术的快速发展,泵内部的流动特征成为热点研究方向,目前应用CFX 软件的科研人员还较少,所以将CFX使用的基本过程加以整理供初学者参考。如有不对之处敬请指教。 一、 CFX数值计算的完整流程 二、基于ICEM CFD的离心泵网格划分 2.1 导入几何模型 2.2 修整模型 2.3 创建实体 2.4 创建PRAT 2.5 设置全局参数 2.6 划分网格 2.7 检查网格质量并光顺网格 2.8 导出网格-选择求解器 2.9 导出网格 三、CFX-Pre 设置过程 3.1 基本步骤 3.2 新建文件 3.3 导入网格 3.4 定义模拟类型 3.5 创建计算域 3.6 指定边界条件 3.7 建立交界面 3.8 定义求解控制

3.10 写求解器输入文件 3.11 定义运行 3.12 计算过程 四、 CFX-Post后处理 4.1 计算泵的扬程和效率 4.2 云图 4.3 矢量图 4.4 流线图 2.1 导入几何模型 在ICEM CFD软件界面内,单击File→Imort Geometry→STEP/IGES(一般将离心泵装配文件保存成STEP格式),将离心泵造型导入ICEM,如图3所示。 图3 导入几何模型界面 2.2 修整模型 单击Geometry→Repair Geometry→Build Topology,设置Tolerence,然后单击Apply,如图4所示。拓扑分析后生成的曲线颜色指示邻近表面的关系:green = 自由边, yellow = 单边,red = 双边, blue =多边,线条

CFX的流场精确数值模拟教程

基于CFX的离心泵 内部流场数值模拟基于CFX的离心泵内部流场数值模拟 随着计算流体力学和计算机技术的快速发展,泵内部的流动特征成为热点研究方向,目前应用 CFX 软件的科研人员还较少,所以将CFX 使用的基本过程加以整理供初学者参考。如有不对之处敬请指教。 、CFX数值计算的完整流程 、基于ICEM CFD勺离心泵网格划分 2.1导入几何模型 2.2修整模型 2.3创建实体 2.4仓U建PRAT 2.5设置全局参数 2.6划分网格 2.7检查网格质量并光顺网格2.8导出网格—选择求解器2.9导出网格 、CFX-Pre设置过程 3.1基本步骤 3.2新建文件

3.3导入网格 3.4定义模拟类型3.5创建计算域3.6指定边界条件3.7建立交界面

3.8定义求解控制 3.9定义输出控制 3.10写求解器输入文件 3.11定义运行 3.12计算过程 四、CFX-Post 后处理 4.1计算泵的扬程和效率 4.2云图 4.3矢量图 4.4流线图 2.1导入几何模型 在ICEMCFD软件界面内,单击File宀Imort Geometry^STEP/IGES(—般将离心泵装配文件保存成STEP格式), 将离心泵造型导入I C E M如图3所示。 图3导入几何模型界面

2.2 修整模型 单击Geometry^Repair Geometry 宀Build Topology,设置Tolerenee,然后单击Apply,如图 4 所示。拓扑 分析后生成的曲线颜色指示邻近表面的关系:gree n =自由边,yellow =单边,red =双边,blue =多边,线条 颜色显示的开/关Model tree T Geometry T Curves T Color by cou nt,Red curves 表示面之间的间隙在容差之 内,这是需要的物理模型, N41 f !孕ECHH 匚丁E> !1 Z-和-1 :z? ...... ....................... 兰直卤* 百曲gw 卜宀-im * Q涕曲空JIT^J 厂社tt-sfri- Piwpe^ifl-5 CorFklr air^ i Cphcri s Quip^jr 匸* JO 匸叭和皈X XWM X ■an. y% wn- Yellow edges 通常是一些需要修补的几何。 亠 图4修整模型界面 2-3 创建实体单击Geometry^Creade Body,详细过程如图5所示。

第三章_随机过程教案

第三章随机过程 本节首先介绍利用matlab现有的库函数根据实际需要直接产生均分分布和高斯分布随机变量的方法,然后重点讲解蒙特卡罗算法。 一、均匀分布的随机数 利用MATLAB库函数rand产生。rand函数产生(0,1)内均匀分布的随机数,使用方法如下: 1)x=rand(m);产生一个m×m的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 2)x=rand(m,n);产生一个m×n的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 3)x=rand;产生一个随机数。 举例:1、产生一个5×5服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5) 2、产生一个5×3服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5,3) 二、高斯分布的随机数 randn函数产生均值为0,方差为1的高斯分布的随机数,使用方法如下: 1)x=randn(m);产生一个m×m的矩阵,所含元素都是均值

为0,方差为1的高斯分布的随机数。 2)x=randn(m,n);产生一个m×n的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 3)x=randn;产生一个均值为0,方差为1的高斯分布的随机数。 举例:1、产生一个5×5的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5) 2、产生一个5×3的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5,3) 3、产生一个5×3的矩阵,所含元素都是均值为0,方差为4的高斯分布的随机数。 x=2×randn(5,3) 三、蒙特卡罗仿真 1、蒙特卡罗算法 蒙特卡罗估计是指通过随机实验估计系统参数值的过程。蒙特卡罗算法的基本思想:由概率论可知,随机实验中实验的结果是无法预测的,只能用统计的方法来描述。故需进行大量的随机实验,如果实验次数为N,以 N表示事件A发 A 生的次数。若将A发生的概率近似为相对频率,定义为 N N。 A 这样,在相对频率的意义下,事件A发生的概率可以通过重

DSP作业(精)

DSP的 数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。DSP有两种含义:Digital Signal Processing(数字信号处理)、Digital Sign al Processor(数字信号处理器)。我们常说的DSP指的是数字信号处理器。数字信号处理器是一种适合完成数字信号处理运算的处理器。20世纪60年代以来,随着计算机和信在过去的二十多年时间里,数字信号处理已经在通信等领域得到息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。极为广泛的应用。数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 数字信号处理是围绕着数字信号处理的理论、实现和应用等几个方面发展起来的。数字信号处理在理论上的发展推动了数字信号处理应用的发展。反过来,数字信号处理的应用又促进了数字信号处理理论的提高。而数字信号处理的实现则是理论和应用之间的桥梁。数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。可以说,数字信

号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。顾名思义,DSP主要应用在数字信号处理中,目的是为了能够满足实时信号处理的要求,因此需要将数字信号处理中的常用运算执行的尽可能快,这就决定了DSP的特点和关键技术。适合数字信号处理的关键技术:DSP包含乘法器、累加器、特殊地址产生器、领开销循环等;提高处理速度的关键技术:流水线技术、并行处理技术、超常指令(VLIW)、超标量技术、DMA等。从广义上讲,DSP、微处理器和微控制器(单片机)等都属于处理器,可以说DSP是一种CPU。DSP和一般的CPU又不同,最大的区别在于:CPU是冯.诺伊曼结构的;DSP是数据和地址空间分开的哈佛结构。 世界上第一个单片 DSP 芯片应当是1978年 AMI公司发布的 S2 811,1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个主要里程碑。这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。1980 年,日本 NEC 公司推出的μP D7720是第一个具有乘法器的商用 DSP 芯片。在这之后,最成功的DSP 芯片当数美国德州仪器公司(Texas Instruments,简称TI)的一系列产品。TI 公司在1982年成功推出其第一代 DSP 芯片 TMS32010及其系列产品TMS32011、TMS320C10/C14/C15/C16/C17等,之后相继推出了第二代DSP芯片TMS32020、TMS320C25/C26/C28,第三代DSP芯片TMS 320C30/C31/C32,第四代DSP芯片TMS320C40/C44,第五代 DSP 芯片TMS320C5X/C54X,第二代DSP芯片的改进型TMS320C2XX,集多片DSP芯片于一体的高性能DSP芯片TMS320C8X以及目前速度最快的第

短波信道模拟的计算机仿真-文档

短波信道模拟的计算机仿真 Simulation of HF Channel LI Ren-yan1, HOU Qing-song2 (1. Unit 95486 of PLA, Chengdu 610041, China; 2. Telecommunication Engineering Institute, Air Force Engineering University, Xi 'an 710077, China) :In the simulation of communication system, the approximation degree of actual channel simulated by a channel simulator affects the effectiveness of the performance parameters obtained with communication system simulation directly. Therefore, it is essential to develop the high-performance simulator for HF channel. The principle of Watterson model which is a widely used for HF ionosphere channel is described. According to the parameters given by MIL-STD-188- 141B, the implementation scheme of HF channel simulator is presented. The computer simulation demonstrates the effectiveness of the algorithm. Keywords:HF channel; Watterson model; fading channel; Matlab simulation 0 引言

泛函分析在数值分析中的应用

泛函分析在数值分析中 的应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

泛函分析在数值分析中的应用 刘肖廷工程力学 一、数学概述 数学是一门从集合概念角度去研究物质世界数量关系与空间形式的基础的自 然学科。它从应用的角度可以分为基础数学与应用数学两大范畴,而基础数学 又可以划分为纯数学和基础应用数学两大范畴。其中,纯数学是建立在基础应 用数学基础上进行的单纯的数学研究。可见基础应用数学是数学学科的基础。 基础应用数学以代数学,几何学,分析学与拓扑学为基础研究物质世界的数 学关系与空间形式。分而言之,代数学主要是从集合概念角度去研究物质世界 的数量关系;几何学主要是从集合概念的角度去研究物质世界的空间形式;分 析学则主要研究集合间的映射关系及其运算;而拓扑学则包含点集拓扑,代数 拓扑,微分拓扑,辛拓普等几个分支,融合与代数学与几何学之中。 应用数学则是以基础数学的基本方法(代数,几何,分析)为基础,去探讨 物质世界不同类型的数量关系与空间形式的。它主要包括三角学,概率论,数 理统计,随机过程,积分变换,运筹学,微分方程,积分方程,模糊数学,数 值分析,数值代数,矩阵论,测度论,李群与李代数等领域。当然,我们同样 不能忽视应用数学对基础数学在理论上的支持与贡献。 由此可见,集合概念是数学的核心概念,代数、几何与分析是是数学的三大 基本方法,代数学、几何学、分析学与拓扑学是支撑数学大厦的四根最紧要的 支柱,此四者同时又是相互联系,不可分割的。这一点印证了一句名言,数学 的魅力正在于其中各个分支之间的相互联系。 泛函分析的基本内容和基本特征 (一)度量空间和赋范线性空间 1、度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的抽 象空间。19 世纪末,德国数学家G.康托尔创立了集合论,为各种抽象空间的 建立奠定了基础。20 世纪初期,法国数学家M. R. 弗雷歇发现许多分析学的 成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度盘空间的 d?→。若对于任何x, 概念。定义:设x 为一个集合,一个映射: X X R y,z属于x,有(1) (正定性)(x,y)0 d=。当且仅当x y d≥,且(x,y)0 =; (2)

多径时变信道模型仿真及性能分析分解

***************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2013年春季学期 通信系统仿训练真课程设计 题目:基于MATLAB的FIR滤波器语音信号去噪 专业班级: 姓名: 学号: 指导教师: 成绩:

摘要 本次课程设计做的是多径时变信道模型的仿真与性能分析,首先需要建立信道模型,通过对输入信号和移动台的有些参数进行调整,使用MATLAB进行仿真,得到时域和频域图,对比分析掌握多径信道的特点;其次,对瑞利衰落的多径信道仿真,分析信道模型的特点;最后,观察单频和数字信号经过多径信道后接收信号的情况。经过多次修改调试,最终完成了设计任务。 关键词:多径时变信道;瑞利衰落;仿真;信道模型

目录 一多径信道的基本原理 (1) 1.1 移动通信 (1) 1.2 多径时变信道 (1) 1.2.1信道模型的分类 (1) 1.2.2时变信道的特点 (1) 1.3瑞利信道衰落 (2) 二实现框图 (3) 2.1多径时变信道性能仿真实现框图 (3) 2.2多径时变信道仿真实现 (4) 三详细设计 (5) 3.1 瑞利信道的特性 (5) 3.2多径时变信道的特性 (8) 3.3单频信号经过时变信道 (11) 3.4数字信号经过多径时变信道 (13) 总结 (15) 参考文献 (16) 附录 (17) 致谢 (29)

前言 在无线移动环境下进行高速可靠通信是具有挑战性的,电波通过物理媒体传播并与环境中的物体相互作用,因此,无线电波的传播是个复杂过程。在高频(HF)频段范围内,电磁波经由天波传播时经常发生的问题是信号多径。电磁波的多径传播主要是因为电磁波经电离层的多次折、反射,电离层的高度不同,电离层不均匀性引起漫射现象等引起的。当信号的多径发生在发送信号经由传播路径以不同的延迟到达接收机的时候,一般会引起数字通讯系统中的符号间干扰。而且,由不同传播路径到达的各信号分量会相互削弱,导致信号能量衰减,造成信噪比降低。 移动无线信道是一个充满复杂干扰的信道。由环境中的各种障碍物所引起的信号多径传播是其主要特点之一。另一个特点是多普勒效应。 由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。 根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。在此专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。

股票的期权定价理论介绍和相关的数值分析

股票的期权定价理论介绍和相关的数值分析 康书隆2002级数量经济硕士研究生 内容摘要:期权是人们为了规避市场风险而创造出来的一种金融衍生工具.期权之所以能够规避市场风险是因为金融证券的收益同相应的金融衍生物的收益总是负相关的。理论和实践均表明,只要投资者合理的选择其手中证券和相应衍生物的比例,就可以获得无风险利率,从而获得无风险收益。这种组合的确定有赖于对衍生证券的定价。上个世纪七十年代初期,Black 和Scholes 通过研究股票价格的变化规律,运用套期保值的思想,成功的推倒出了无分红情况下股票期权价格所满足的随机偏微分方程。从而为期权的精确合理的定价提供了有利的保障。这一杰出的成果极大的推进了金融衍生市场的稳定,完善与繁荣。本文首先将尝试着阐述期权定价理论产生的背景,过程及其带来的重大意义;在其后部分,我们将分析这一理论的数学基础以及Black---Scholes 随机微分方程的推导过程;最后我们将运用有限插分的方法来求解Black---Scholes 随机微分方程。之所以这样做,是为了弥补Black---Scholes 随机微分方程解析解只能够对欧式期权进行定价的不足。最后,我们将定量分析执行价格的变化和股票平均波动率变化对期权价格的影响。并且绘制出一系列的图形帮助人们理解这种影响。从而对于人们理解一些参数的变化对于期权价格的影响有一定的帮助。 关键词:维纳过程,伊藤过程,Black_Scholes 方程, 期权。 一、期权定价理论产生的背景,思想和重大意义 1.1: 期权定价理论产生的背景 Black-Scholes期权定价模型将股票期权价格的主要因素分为四个:预期股票价格、交割成本、股票价格波动幅度和时间。其成功之处在于:第一,提出了风险中性(即无风险偏好)概念,且在该模型中剔除了风险偏好的相关参数,大大简化了对金融衍生工具价格的分析;第二,该型创新地提出了可以在限定风险情况下追求更高收益的可能,创立了新的金融衍生工具——标准期权。布莱克和斯科尔斯1971年提出这一期权定价模型, 1973年在《政治经济学报》上得以发表他们的研究成果。一个月后,在美国芝加哥出现第一个期权交易市场。期权交易诞生后,许多大证券机构和投资银行都运用Black-Scholes期权定价模型进行交易操作,该模型在相当大的程度上影响了期权市场的发展。控制风险是Black-Scholes期权定价模型的重要意义之一。70年代以后,随着世界经济的不断发展和一体化进程的加快,汇率和利率的波动更加频繁,变动幅度也不断加大,风险增加。控制和减小风险成为所有投资者孜孜以求的目标。Black-Scholes定价模型提出了能够控制风险的期权,同时,也为将数学应用于经济领域,创立更多的控制风险和减小风险的工具开辟了道路。Black-Scholes定价模型指出,在一定条件下,人的集合行为满足一定数学规律。这一论断打破了传统的“人的行为无法定量描述”的旧观念。通过数学的定量分析,不仅投资者可更好地控制自身交易的风险,更为管理层进行风险管理、减小整个市场的风险提供了可能。由于布莱克的专业是应用数学和物理,最早从事火箭方面的研究,因此布莱克也被称为是“火箭科学向金融转移的先锋”。斯科尔斯和默顿把经济学原理应用于直接经营操作,堪为“理论联系实际”的典范。他们设计的定价公式为衍生金融商品交易市场的迅猛发展铺平了道路,也在一定程度上使衍生金融工具成为投资者良好的融资和风险防范手段。这对整个经济发展显然

瑞利信道仿真

瑞利分布信道MATLAB 仿真一、瑞利衰落原理 在陆地移动通信中,移动台往往受到各种障碍物和其他移动体的影响,以致到达移动台的信号是来自不同传播路径的信号之和。而描述这样一种信道的常用信道模型便是瑞利衰落信道。 定义:由于信号进行多径传播达到接收点处的场强來不同传播的路径,各条路径延时时间是不同的,而各个方向分量波的叠加,又产生了驻波场强,从而形成信号快衰落称为瑞利衰落。 瑞利衰落信道(Rayleighfadingchannel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,表现为“衰落”特性,并且多径衰落的信号包络服从瑞利分布。由此, 这种多径衰落也称为瑞利衰落。这一信道模型能够描述由电离层和对流层反射的短波信道,以及建筑物密集的城市环境。瑞利衰落只适用于从发射机到接收机不存在直射信号的情况,否则应使用莱斯衰落信道作为信道模型。 假设经反射(或散射)到达接收天线的信号为N个幅值和相位均随机的且统计独立的信号之和。信号振幅为r,相位为8,则其包络概率密度函数为 广 p(r) = J_/2^ (r>0) 相位概率密度函数为: P(&)二1/2兀(0

环境条件:通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径(如视距传播路径),且存在大量反射波,到达接收天线的方向角随机的((0~2兀)均匀分布),各反射波的幅度和相位都统计独立。幅度与相位的分布特性: 包络r服从瑞利分布,0在0?2肌内服从均匀分布。瑞利分布的概率分布密度如图1所示: 图1瑞利分布的概率分布密度 (2)多径衰落信道基本模型 离散多径衰落信道模型为 y(o = r k (r)x(r - T k) ◎ ⑴ 其中,4(0复路径衰落,服从瑞利分布;"是多径时延。多径衰落信道模型框图如图2所示: 图2多径衰落信道模型框图

基于Fluent流场数值仿真的管路流量计算_张功晖

Hydraulics Pneumatics&Seals/No.12.2010基于Fluent流场数值仿真的管路流量计算 张功晖1黎志航2周志鸿1 (1.北京科技大学土木与环境工程学院,北京100083; 2.广东肇庆爱龙威机电有限公司,广东肇庆526238) 摘要:利用Fluent三维单精度求解器,对管路内的三维稳态流场进行仿真,利用后处理工具得到管路体积流量,并将Fluent数值仿真计算的体积流量结果与实测结果进行对比,数值仿真计算结果得到实际测量实验的验证。 关键词:Fluent;管路;流量 中图分类号:TH138.52文献标识码:A文章编号:1008-0813(2010)12-0041-03 Air-passage Structure Improving of Pneumatic Electromagnetic Valve Based on Flow Field Simulation withing Fluent ZHANG Gong-hui1LI Zhi-hang2ZHOU Zhi-hong1 (1.Civil&Environment Engineering School of University of Science and Technology Beijing, Beijing100083,China; 2.Guangdong Zhaoqing L&V Co.,Ltd.,Zhaoqing526238,China) Abstract:This thesis applies Fluent single-precision solver calculate the volumetric flow rate by simulating3D steady flow field of the pipeline,and compares the calculated flow rate and the actual measured result. Key Words:fluent;pipeline;volumetric flow rate 0提出问题 广东肇庆爱龙威公司构建了如图1所示的管路,管路由一段长为L1=500mm、管内径为D1=4mm的塑料管AB,与一个长度为L2=40.14mm、孔径为D1=1.25mm 的不锈钢零件BC连接而成。 如图1所示,A是空气入口端,表压力为p A= 10kPa,C为直接接入大气的空气出口端,表压力p C= 0kPa。因为生产需要,公司需要测量与计算出在上述条件下的流过管路的空气流量。并且要设计出不锈钢零件的尺寸,使得管路在上述规定的条件下,达到预定的流量值—— —6±0.1L/min。 图1管路的尺寸 1建立模型 1.1创建三维几何模型 利用前处理软件Gambit进行流体区域建模,为了直接得到管路的体积流量数据,本文采用三维模型。根据尺寸坐标,先建立两段圆柱体,一段为塑料管区域:L1=500mm、管内径为D1=4mm;另一段为不锈钢管区域:L2=40.14mm、孔径为D1=1.25mm,然后使用布尔操作连接两段圆柱体,为了后续网格划分的需要,需在两段圆柱衔接处创建一个面,然后利用此面将两段圆柱分割开,模型如图2所示。 图2流体区域三维几何模型 1.2网格划分 几何模型创建完成以后需要进行网格划分,本文直接使用体网格对两段流体区域进行划分。为了获得较好的计算精度,同时又能够使计算时间较短,通过多次的尝试之后,决定对两段区域采用不同的网格尺寸。为了使两段区域衔接处的网格能够较为平顺的过渡,先对不锈钢零件区域划分网格,网格尺寸为0.1mm,再对塑料管区域划分网格,网格尺寸为1mm。网格单元和类型都分别为Hex/wedge和cooper。图3、图4和图5分别为塑料管入口端A、不锈钢零件出口端C和两管衔接处B的网格局部放大图。 图3塑料管入口端A网格 收稿日期:2010-04-06 作者简介:张功晖,男,北京科技大学2008级硕士研究生,流体力学专业; 主要研究方向:流体传动及其仿真技术。 41

汽车外流场的数值模拟

汽车外流场的数值模拟 宁燕,辛喆 中国农业大学, 北京 (100083) E-mail :rn063@https://www.360docs.net/doc/749763684.html, 摘 要:利用CFD 方法,运用FLUENT 软件对斜背式车型的外流场进行了数值模拟,并对结果进行了处理与分析。研究了车身周围涡系的三维结构和车身表面分离流的情况,表明由于车身前后的压力差和主流的拖拽作用等,在汽车尾部形成了极其复杂的涡系。 关键词:汽车空气动力学;CFD ;车身外流场;FLUENT 1. 引 言 汽车空气动力学的研究主要有两种方法[1]:一种是进行风洞实验,另一种是利用计算流体动力学(CFD )技术进行数值模拟。传统的汽车空气动力学研究是在风洞中进行实验,存在着费用昂贵、开发周期长等问题。另外,在风洞实验时,只能在有限个截面和其上有限个点处测得速度、压力和温度值,而不可能获得整车流场中任意点的详细信息。 随着计算机技术和计算流体动力学的发展,汽车外流场的计算机数值仿真由于其具有可再现性、周期短以及低成本等优越性而成为研究汽车空气动力学性能的另一种有效方法。 2. 控制方程和湍流模型 汽车外流场一般为定常、等温和不可压缩三维流场,由于外形复杂易引起分离,所以应按湍流处理。汽车外流场的时均控制方程式[2]如下:3,2,1,=j i ;z x y x x x ===321,,;,: u u =1w u v u ==32,平均连续方程:0=??i i x u 平均动量方程:??? ???????????????+????+???=??i j j i eff j j j i j x u x u x x p x u u μρ κ方程 ρεκσμμκρκ?+??????????+??=??G x x x u j t j j j )( ε方程 κερκεεσμμερε221)(C G C x x x u j t j j j ?+??????? ???+??=?? -1-

随机过程matlab程序

基本操作 -5/(4.8+5.32)^2 area=pi*2.5^2 x1=1+1/2+1/3+1/4+1/5+1/6 exp(acos(0.3)) a=[1 2 3;4 5 6;7 8 9] a=[1:3,4:6,7:9] a1=[6: -1:1] a=eye(4) a1=eye(2,3) b=zeros(2,10) c=ones(2,10) c1=8*ones(3,5) d=zeros(3,2,2); r1=rand(2, 3) r2=5-10*rand(2, 3) r4=2*randn(2,3)+3 arr1=[1.1 -2.2 3.3 -4.4 5.5] arr1(3) arr1([1 4]) arr1(1:2:5) arr2=[1 2 3; -2 -3 -4;3 4 5] arr2(1,:) arr2(:,1:2:3) arr3=[1 2 3 4 5 6 7 8] arr3(5:end) arr3(end) 绘图

x=[0:1:10]; y=x.^2-10*x+15; plot(x,y) x=0:pi/20:2*pi y1=sin(x);y2=cos(x); plot(x,y1,'b-'); hold on; plot(x,y2,‘k--’); legend (‘sin x’,‘cos x’); x=0:pi/20:2*pi; y=sin(x); figure(1) plot(x,y, 'r-') grid on 以二元函数图 z = xexp(-x^2-y^2) 为例讲解基本操作,首先需要利用meshgrid 函数生成X-Y平面的网格数据,如下所示: xa = -2:0.2:2; ya = xa; [x,y] = meshgrid(xa,ya); z = x.*exp(-x.^2 - y.^2); mesh(x,y,z); 建立M文件 function fenshu( grade ) if grade > 95.0 disp('The grade is A.'); else if grade > 86.0 disp('The grade is B.'); else

一级学科:数学

数学 0701 (一级学科:数学) 数学是一门在非常广泛意义下研究自然现象和社会现象中的数量关系和空间形式的科学。它的根本特点是从自然现象的量的侧面抽象出一般性的规律,预见事物的发展并指导人们能动地认识和改造世界。数学是各门科学的基础,在自然科学、社会科学、工程技术等方面起着思想库的作用;又是经济建设和技术进步的重要工具。数学科学是一个范围广阔、分支众多、应用广泛的科学体系。本学科目前在基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论五个二级学科招收硕士研究生。 基础数学是数学的核心和灵魂.它的思想、方法和结论是整个数学科学的基础。基础数学包括数理逻辑、数论、代数、几何、拓扑、函数论、泛函分析、微分方程等众多分支学科。 计算数学是研究如何用计算机解决各种数学问题的科学,主要研究与各类科学计算和工程计算相关的计算方法,对各种算法进行理论和数值分析,设计和研究用数值模拟方法来代替某些耗资巨大甚至难以实现的实验,研制专用或通用科学工程应用软件和数值软件等。它的核心是提出和研究求解各种数学问题的高效而稳定的算法。 概率论与数理统计是研究随机现象内在规律性的科学。概率论旨在从理论上研究随机现象的数量规律,是数理统计的基础。数理统计是研究如何有效地收集、分析和使用随机性数据的学科,为概率论的实际应用提供了广阔的天地。 应用数学是联系数学与现实世界的重要桥梁,主要研究自然科学、工程技术、信息、经济、金融、管理、社会和人文科学中的数学问题,包括建立相应的数学模型,利用数学方法解决实际问题,研究具有实际背景和应用前景的数学理论等。 运筹学与控制论以数学和计算机为主要工具,从系统和信息处理的观点出发,研究解决社会、经济、金融、军事、生产管理、计划决策等各种系统的建模、分析、规划、设计、控制及优化问题,是一个包括众多分支的学科。运筹学结合数学、计算机科学、管理科学,通过对建模方法和最优化方法的研究,为各类系统的规划设计、管理运行和优化决策提供理论依据。控制理论处于数学、计算机科学、工程学等学科交叉发展的前沿,是以自动化,机器人、计算机和航天技术为代表的新技术革命的一个理论基础。 一级学科的主要研究方向有: 1.函数论与泛函分析:主要从事几何函数论,复解析动力系统与分形几何,调和分析,算子代数及其在紧量子群等领域的应用方面的研究工作 2.代数与几何:主要从事以模糊逻辑与多值逻辑为基础的广义集合论上的代数与拓扑问题的研究;一些重要的有限群与域上有限维代数的结构理论与组合表示理论的研究;流形理论以及微分几何在广义相对论、量子力学、神经网络、控制理论、统计等方面的应用问题。 3.偏微分方程的数值方法:利用有限元法、边界元法及其它们的组合,研究微分方程、积分方程的数值解法和误差估计;进行偏微分方程组的特征值的计算方法的研究,并探讨带参变量的偏微分算子特征值曲线的扰动问题;矩阵计算中的扰动问题进行研究。 4.随机分析:研究随机动力系统的稳定性,遍历性,大偏差,以及随机过程理论在网络安全、信

【matlab毕业设计课题】highspeedlogic★短波宽带通信系统的信道建模仿真及优化

短波宽带通信系统的信道建模仿真及优化 3.1信道建模的概念 以往人们对于短波信道的理解很大程度上局限于窄带过程。近来,由于扩频大容量短波通信的需求发展,宽带短波信道的特征得到了广泛的研究。 对于短波信道,损耗和畸变是最主要的两种传输影响。它包括自由空间传播损耗、电离层吸收损耗、多跳地面反射损耗和一些额外系统损耗。信号畸变包括:信道参数时变、多径传播和信号色散。 一般来讲,多径时延又可分为inter-modal和intra-modal两种形式。Inter-modal延迟包括multimode(多模式包括多层模式、O模式和X模式以及高低仰角模式等)和multi-hop(多跳模式)情况,这种情况下主要引起码间串扰。Intral-modal延迟由地理场强影响、电离层不均匀性和电离层介质的色散特性引起的,在这种情况下将引起信号脉冲畸变,这种情况下限制了信道的带宽。 本章,我们将重点介绍两种比较常用的信道模型,即Watterson信道模型和ITS信道模型,并且在MATLAB平台上对两种模型进行了仿真分析,其中重点讨论了ITS模型,并对该模型进行了改进分析。 3.2基于统计模型的短波信道模型 对短波信道建模具有里程碑意义的是沃特森在1970年发表的一篇文章,文章中提出了一种静态模型,并在大气中进行了实验验证。此静态模型可以描述为高斯散射增益抽头延迟线模型,即Watterson模型。 Watterson信道模型是经典的窄带短波信道模型,在这个模型中,信道衰落是瑞利幅度分布,而在每种传播模式中多普勒扩展的功率谱满足高斯分布。Watterson模型没有定义延时扩展的形状,认为各个多径传输模式中不存在延时扩展。其有效带宽仅为10kHz。在与高纬度电离层和近赤道电离层有关的应用中,Watterson模型过于简单,例如,在高纬度,多普勒谱通常不是高斯型的。 上个世纪90年代后期,美国电信科学协会(ITS)发表了一篇迄今最为权威的宽带信道模型仿真器实现方法的论文,后被广泛称为ITS模型。ITS模型适用于宽带和窄带两种情况,可看作Watterson模型的一种扩展。 美国ITS提出了一种更复杂的电离层信道模型。这个模型是作为宽带模型提出的,但也适用于窄带模型。在ITS模型中,总的信道冲击响应定义为所有传输模式冲击响应之和,它

应用FLUENT进行射流流场的数值模拟

应用FLUENT进行射流流场的数值模拟 谢峻石何枫 清华大学工程力学系 一.引言 射流是流体运动的一种重要类型,射流的研究涉及到许多领域,如热力学、航空航天学、气象学、环境学、燃烧学、航空声学等。在机械制造与加工的过程中,就经常利用压缩空气喷枪喷射出高速射流进行除尘、除水、冷却、雾化、剥离、引射等。在工业生产中,改善气枪喷嘴的设计,提高气枪的工作效率对于节约能源具有重大的意义。 FLUENT是目前国际上比较流行的商用CFD软件包,它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。本文的工作就是将FLUENT应用于喷嘴射流流场的数值模拟,使我们更加深刻地理解问题产生的机理、为实验研究提供指导,节省实验所需的人力、物力和时间,并对实验结果的整理和规律的得出起到很好的指导作用.。 二.控制方程与湍流模式 非定常可压缩的射流满足如下的N-S方程: (1) 上式中,是控制体,是控制体边界面,W是求解变量,F是无粘通量,G是粘性通量,H是源项。

采用二阶精度的有限体积法对控制方程进行空间离散,时间离散采用Gauss-Seidel隐式迭代。 FLUENT软件包中提供了S-A(Spalart-Allmaras),K-(包括标准K-、RNG K-和Realizable K-),Reynolds Stress等多种湍流模式,本文在大量数值实验的基础上,亚音速射流选择RNG K-湍流模式,超音速射流选择S-A湍流模式。 三.算例分析 (一)二维轴对称亚声速自由射流 计算了一个出口直径为3mm的轴对称收缩喷嘴的亚声速射流流场,压比为1.45。外流场的计算域为20D×5D(见图1)。 图1 计算域及网格示意图 图2显示的是速度分布,图3、图4分别显示了轴线上的速度分布以及截面上的速度分布计算值与实验值的比较。从图中可以看出,亚声速自由射流轴线上的速度核心区的长度约为5~6D,计算值与实验值吻合的比较一致,证明RNG k-湍流模式适合于轴对称亚音速自由射流的数值模拟。

装药爆炸过程中聚能射流行为模拟

ANSYS 软件及应用 装药爆炸过程中聚能射流行为模拟

装药爆炸过程中聚能射流行为模拟 1. 聚能效应简介 聚能效应(Gathering energy effect),通常称为“门罗效应”,即炸药爆炸后,爆炸产物在高温高压下基本是沿炸药表面的法线方向向外飞散的。因此,带有锥形凹槽的装药在引爆后,凹槽附近的爆轰产物飞散时将在装药轴线处汇聚,形成一股高速、高温、高密度的射流,这股射流在靶板较小的区域内形成较高的能量密度,致使炸坑较深。这种利用装药一端空穴以提高爆炸后局部破坏作用的效应称为聚能效应。 聚能效应的应用非常广泛,在军事上,可用来生产穿甲弹、碎甲弹、反坦克枪榴弹等,用于对付各种装甲目标;在工程爆破中,可在土层和岩石上打孔,其中在石油工程领域的应用最为典型;另外,聚能效应也可用于水下切割构件,在野外切割钢板、钢梁等。 图1显示了不同装药结构的穿孔能力。图1.a中爆轰产物向柱型装药四周均匀飞散,药柱底部爆轰产物作用于靶板;图1.b中装药锥孔部分的爆轰产物飞散时,向轴线集中会聚成速度和压力很高的气流,爆轰产物的能量集中在较小的面积上,在靶板上打出更深的孔;图1.c中装药锥孔部分加装金属药型罩,爆轰产物在推动罩壁向轴线运动的过程中,将能量传递给了金属罩,依靠罩的动能产生了更大的破坏作用;图1.d显示增大炸高可以使射流充分形成,提高侵彻能力。 图1. 不同装药结构的穿孔能力 图2为爆炸产物的飞散方向示意图。圆柱形的普通炸药柱爆轰时,爆轰产物以近似垂直药柱表面的方向朝四周飞散,如图2.a所示。而有锥孔的圆柱形药柱

爆炸后,锥孔部分的爆轰产物向轴线集中,汇聚成一股速度和密度都很高的气流,这时爆轰产物的能量集中在较小的范围内,即为聚能效应。爆轰产物向轴线汇聚过程中,一方面由于爆轰产物以一定速度沿垂直于锥孔表面的方向朝轴线汇聚;另一方面,由于稀疏波的作用,汇聚到轴线处的爆轰产物又会迅速地向周围低压区膨胀,使能量分散开。因此,爆轰产物只能在短时间内和距药柱端面某一近距离内保持高度集中,如图2.b所示。如果在成型装药的锥孔表面加上一个金属罩,则爆炸后的爆轰产物将推动罩壁向轴线运动,将能量传递给金属罩,这样就可以避免气体的高压膨胀引起能量再度分散。罩壁在轴线处碰撞时,罩内表面的速度比药型罩压垮闭合时的速度高出1~2倍,使金属中的动能进一步提高,形成高速的金属射流,如图2.c所示。 图2. 爆炸产物的飞散方向 图3显示了金属射流和杵的形成过程。由于金属罩体积基本不变,同样质量的金属收缩到较小的区域时,罩壁必然要增厚,即罩内壁的质点速度必然大于外表面速度,因此在轴线碰撞后,内壁成为射流,外壁成为杵,如图3所示。图中号码表示罩壁与射流和杵的对应位置。显然,药型罩外壁材料在杵上的排列位置与原排列顺序一致,而内壁材料在射流上的排列顺序则与原位置相反。 本文将采用ANSYS软件对聚能射流的形成过程进行模拟。

随机过程——马尔可夫过程的应用

随机过程——马尔可夫过程的应用 年级:2013级 专业:通信工程3班 姓名:李毓哲 学号:31

摘要:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础, 是目标检测、估计、滤波灯信号处理理论的基础,在通信、雷达、自动检测、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论讲日益广泛与深入。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而且会叠加随机噪声等。 马尔可夫过程是一类非常重要的随机过程。随着现代科学技术的发展,很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。 关键词:随机过程,马尔可夫过程,通信工程,应用

目录 一、摘要 二、随机过程 、随机过程的基本概念及定义 、随机过程的数学描述 、基于MATLAB的随机过程分析方法三、马尔可夫过程 马尔可夫过程的概念 马尔可夫过程的数学描述 四、马尔可夫过程的应用 马尔可夫模型在通信系统中的应用 马尔可夫模型在语音处理的应用 马尔可夫模型的其他应用 五、结论 参考文献

二、随机过程 、随机过程的基本概念及定义 自然界变换的过程通常可以分为两大类——确定过程和随机过程。如果每次试验所得到的观测过程都相同,且都是时间t的一个确定函数,具有确定的变换规律,那么这样的过程就是确定过程。反之,如果每次试验所得到观测过程都不相同,是时间t的不同函数,没有为确定的变换规律,这样的过程称为随机过程。 、随机过程的数学描述 设随机试验E的样本空间Ω,T是一个数集(T∈(-∞,∞)),如果对于每一个t ∈T,都有一个定义在样本空间Ω上的随机变量 X(w,t),w∈Ω,则称依赖于t的一族随机变量{X(w,t),t∈T}为随机过程或随机函数,简记为{X(t),t∈T }或X(t),其中t称为参数,T称为参数集。当T={0,1,2,…},T={1,2,…},T={…,-2,-1,0,1,2,…}时,{X(w,t)t∈T}称为随机序列或时间序列。 、基于MATLAB的典型随机过程的仿真 信号处理仿真分析中都需要模拟产生各种随机序列,通常都是先产生白噪声序列,然后经过变换得到相关的随机序列,MATLAB有许多产生各种分布白噪声的函数。

相关文档
最新文档