专题05+平面向量+5.2 平面向量的数量积讲义(无解析)

专题05+平面向量+5.2 平面向量的数量积讲义(无解析)
专题05+平面向量+5.2 平面向量的数量积讲义(无解析)

5.2 平面向量的数量积讲义

1

1.平面向量的数量积

已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b =|a ||b |cos θ.

规定:零向量与任一向量的数量积为__0__.

两个非零向量a 与b 垂直的充要条件是 a·b =0,两个非零向量a 与b 平行的充要条件是 a·b =±|a||b|.

2.平面向量数量积的几何意义

b 在a 的方向上的投影=|b |cos θ的乘积.

3.平面向量数量积的重要性质

(1)非零向量a ,b ,a ⊥b ?a·b =0;

(2)当a 与b 同向时,a·b =|a||b|;

当a 与b 反向时,a·b =-|a||b|,

(3)a 2=|a |2

(4)向量的夹角公式cos θ=a·b |a||b|

; (5)|a·b |__≤__|a||b|.

4.平面向量数量积满足的运算律

(1)a·b =b·a (交换律);

(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数);

(3)(a +b )·c =a·c +b·c .

5.平面向量数量积有关性质的坐标表示

设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到

(1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.

(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2.

(3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1x 2+y 1y 2=0.

题型一 平面向量数量积的运算

例1 (1)(2016年天津高考)已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的

中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC 的值为( )

(A )85-

(B )81

(C )41 (D )811

2 (2)(2015·四川,理7)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,

DN →=2NC →,则AM →·NM →=( )

A .20 B. 15 C .9 D .6

跟踪训练1 (1)(2015·山东,理4)已知菱形ABCD 的边长为a ,∠ABC =60° ,则BD →·CD →=( )

A .-32a 2

B .-34a 2 C.34a 2 D.32

a 2 (2)(2015·广东,文9)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,

-2),AD →=(2,1),则AD →·AC →=( )

A.5

B.4

C.3

D.2

题型二 求向量的模与夹角

例2 (1)(2014·新课标全国Ⅱ,理3)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( )

A .1

B .2

C .3

D .5

(2)(2016年北京高考)已知向量 ,则a 与b 夹角的大小为_________. 跟踪训练2 (1)(2012·新课标全国,理13)已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.

(2)(2014·江西,理14)已知单位向量e 1与e 2的夹角为α,且cos α=13

,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.

a b

平面向量的数量积导学案

平面向量的数量积导学案

河北孟村回民中学高一数学导学纲编号 班级姓名 年级高一作者温静时间 课题 2.4平面向量的数量积课型新授【课程标准】1.掌握平面向量的数量积及其几何意义; 2.了解并掌握平面向量数量积的重要性质及运算律; 【重点】重点是数量积的定义、几何意义及运算律,. 【难点】难点是夹角公式和求模公式的应用. 【导学流程】 一、了解感知: (一)知识链接:1、向量加法和减法运算的法则_________________________________. 2、向量数乘运算的定义是 . 3、两个非零向量夹角的概念:_________________________________. 思考:通过前面的学习我们知道向量的运算有向量的加法、减法、数乘,那么向量与向量能否“相乘”呢?

(二)自主探究:(预习教材P103-P106) 探究1:如下图,如果一个物体在力F的作用下 产生位移s,那么力F所做的功W= ,其中 θ是 . 请完成下列填空: F(力)是量;S(位移)是量;θ是; W(功)是量; 结论:功是一个标量,功是力与位移两个向量的大小及 其夹角余弦的乘积 启示:能否把“功”看成是力与位移这两个向量的一种 运算的结果呢? 新知1向量的数量积(或内积)的定义 已知两个非零向量a和b,我们把数量cos a bθ叫做a和b的数量积(或内积),记作a b?,即 注:①记法“a·b”中间的“·”不可以省略,也不可 以用“?”代替。 ②“规定”:零向量与任何向量的数量积为零,即a?=。 00

探究2:向量的数量积运算与向量数乘运算的结果有什么不同?影响数量积大小因素有哪些? 小组讨论,完成下表: θ的范围0°≤ θ<90° θ=90° 0°<θ≤ 180° a·b的符号 新知2:向量的数量积(或内积)几何意义 (1)向量投影的概念:如图,我们把cos aθ叫做向量a在b 方向上的投影;cos bθ叫做向量b在a方向上的投影. 说明:如图, 1cos OB bθ =. 向量投影也是一个数量,不是向量; 当θ为锐角时投影为_______值;当θ为钝角时投影为_______值; 当当θ = 0?时投影为 ________;当θ=90?时投影为__________; 当θ = 180?时投影为__________. (2)向量的数量积的几何意义:数量积a·b等于a的长度︱a︱与b在a的方向上的投影的乘积。

平面向量的数量积与应用举例专题训练

平面向量的数量积与应用举例专题训练 A组基础题组 1.已知向量a=(2,1),b=(1,m),c=(2,4),且(2a-5b)⊥c,则实数m=( ) A.- B.- C. D. 2.已知向量a=(1,0),|b|=,a与b的夹角为45°,若c=a+b,d=a-b,则c在d方向上的投影为( ) A. B.- C.1 D.-1 3.向量a,b满足|a+b|=2|a|,且(a-b)·a=0,则a,b的夹角的余弦值为( ) A.0 B. C. D. 4.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记 I1=·,I2=·,I3=·,则( ) A.I1

10.已知向量a=(cos x,sin x),b=(3,-∈[0,π]. (1)若a∥b,求x的值; (2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值. B组提升题组 1.已知a、b均为单位向量,且a·b=0.若|c-4a|+|c-3b|=5,则|c+a|的取值范围是( ) A.[3,] B.[3,5] C.[3,4] D.[,5] 2.非零向量m,n的夹角为,且满足|n|=λ|m|(λ>0),向量组x1,x2,x3由一个m和两个n排列而成,向量组 y1,y2,y3由两个m和一个n排列而成,若x1·y1+x2·y2+x3·y3的所有可能值中的最小值为4|m|2,则λ = . 3.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1). (1)求以线段AB,AC为邻边的平行四边形的两条对角线的长; (2)设实数t满足(-t)·=0,求t的值.

平面向量数量积练习题

平 面 向 量 数 量 积 练 习 题 一.选择题 1.下列各式中正确的是 ( ) (1)(λ·a ) ·b =λ·(a b )=a · (λb ), (2)|a ·b |= | a |·| b |, (3)(a ·b )· c = a · (b ·c ), (4)(a +b ) · c = a ·c +b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2.在ΔABC 中,若(CA CB)(CA CB)0+?-= ,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3. 已知|a |=6,|b |=3,a·b =-12,则向量a 在向量b 方向上的投影是( ) A .-4 B .4 C .-2 D .2 4.已知||=1,||=2,且(-)与垂直,则与的夹角为 ( ) A .60° B .30° C .135° D .45° 5.设||= 4,||= 3,夹角为60°,则|+|等于 ( ) A .37 B .13 C .37 D .13 6.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( ) A. 5 B.10 C .2 5 D .10 7. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.????79,73 B.????-73,-79 C.????73,79 D.????-79,-73 二.填空题 8.已知e 是单位向量,∥e 且18-=?e a ,则向量a =__________. 9.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 10. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________. 三.解答题 11. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°. (1)求b ; (2)若c 与b 同向,且a 与c -a 垂直,求c .

平面向量数量积学案

平面向量的数量积(1)学案 一、导学目标: 1.掌握平面向量的数量积定义; 2.掌握平面向量数量积的重要性质及运算律; 3.熟练应用平面向量的数量积处理有关模长、角度和垂直问题, 掌握向量垂直的条件; 二、学习过程: (一)复习引入 1.向量数量积的定义 (1)向量数量积的定义:____________________________________________ (2)向量数量积的性质: ①如果e 是单位向量,则a e ?=e a ?=________; ②a a ?=___________或a =__________; ③cos ,a b <>=________; ④非零向量,a b ,a b ⊥?________________; ⑤a b ?____a b . 2.向量数量积的运算律 (1)交换律:a b ?=________; (2)分配律:()a b c +?=______________________; (3)数乘向量结合律:(a λ)·b =________________. (二)探索研究 小试牛刀 1.(口答)判断题. (1)=?; (2)a b b a ?=?; (3)22a a =; (4)()()a b c a b c ?=?; (5)a b a b ?≤?; (6) . 2. 已知向量a 和b 的夹角为135°,2a =,3b =,则a b ?= ________ =??=?

3.已知2a =,3b =,则a b ?=-3,则a 和b 的夹角为__________ 4.(2010·重庆)已知向量a 、b 满足0a b ?=,2a =,3b =,则2a b -=________ 学生归纳: 例题探究 例1(2010·湖南) 在Rt ABC ?中,90C ∠=,4AC =,则AB AC ?等于( ) A .-16 B .-8 C .8 D .16 变式: 1.在ABC ?中,3AB =,2AC =,BC =AB AC ?等于 ( ) A.-32 B.-23 C.23 D.32 2.在ABC ?中,3AB =, 2AC =,5AB AC ?=,则BC =_____________ 例2已知向量a b ⊥,2a =,3b =,且32a b +与a b λ-垂直,则实数λ的值为________. 变式: (2011·课标全国) 已知a 和b 为两个不共线的单位向量,k 为实数,若向量a b +与向量ka b -垂直,则k =________ (三)练习 1.已知4a =,3b =,(23)(2)61a b a b -?+=,(1)求a 与b 的夹角θ;(2)求a b +. 2.(2011·广东) 若向量,,a b c 满足//a b ,且a c ⊥,则(2)c a b ?+=( ) A .4 B .3 C .2 D .0 3.在ABC ?中,M 是BC 的中点,1AM =,2AP PM =,则()PA PB PC ?+=_______ 4.设非零向量,,a b c 满足a b c ==,a b c +=,则a 与b 的夹角为 ( ) A .150° B .120° C .60° D .30° 5.(2011·辽宁) 若,,a b c 均为单位向量,且0a b ?=,()()0a c b c -?-≤,则a b c +-的最大值为 ( ) A.2-1 B.1 C. 2 D.2

平面向量数量积运算专题附答案

. 平面向量数量积运算平面向量数量积的基本运算题型一DCBCEFABCDBAD,,=120°,点的边长为2,∠1 例(1)(2014·天津)已知菱形分别在边→→AFDFAEBCBEDC________. .若λ·上,的值为=3=,1=λ,则→→PBPAPAOPBAB) · (2)已知圆为切点,的半径为1,, 那么为该圆的两条切线,的最小值为,( 2 -43+2 +B.A.-2 3+2C.-4+D.22 -→→→→→OBOAOAABOA________. ·=|=1 变式训练(2015·湖北)已知向量3⊥,则,| 利用平面向量数量积求两向量夹角题型二 22babaababab与+(|,且2-(1)(2015·重庆例2 )若非零向量,则,)⊥(3满足||)=|3的夹 角为( ) ππ3πA. B. C. D.π424πabababab的夹角2-+与=|2,|,则|=32(2)若平面向量与平面向量,的夹角等于|3的余弦值等于( ) 1111A. B.- C. D.-262612121→→→→ABCOAOABACAB与)=(+,则上的三点,若2 变式训练(2014·课标全国Ⅰ)已知,,为圆2→AC的夹角为________. 教育资料. . 利用数量积求向量的模题型三 baababab等于+的夹角为|120°,则|=2,且例3 (1)已知平面向量|2和与,|||=1,) ( B.4 A.2 D.6 5 C.2ABCDADBCADCADBCPDC上的动点,则是腰=,∠1=90°,,=(2)已知直角梯形2中,,∥→→PAPB|的最小值为________. +3|1eeeebbe·.是平面单位向量,且若平面向量·满足变式训练3 (2015·浙江)已知,=beb|=,则=|·________. 112212 =12

学案27平面向量的数量积及其应用

学案27 平面向量的数量积及其应用 导学目标: 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题. 自主梳理 1.向量数量积的定义 (1)向量数量积的定义:____________________________________________,其中|a |cos 〈a ,b 〉叫做向量a 在b 方向上的投影. (2)向量数量积的性质: ①如果e 是单位向量,则a·e =e·a =__________________; ②非零向量a ,b ,a ⊥b ?________________; ③a·a =________________或|a |=________________; ④cos 〈a ,b 〉=________; ⑤|a·b |____|a||b |. 2.向量数量积的运算律 (1)交换律:a·b =________; (2)分配律:(a +b )·c =________________; (3)数乘向量结合律:(λa )·b =________________. 3.向量数量积的坐标运算与度量公式 (1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(a 1,a 2),b =(b 1,b 2),则a·b =________________________; (2)设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ?________________________; (3)设向量a =(a 1,a 2),b =(b 1,b 2), 则|a |=________________,cos 〈a ,b 〉=____________________________. (4)若A (x 1,y 1),B (x 2,y 2),则|AB →=________________________,所以|AB → |=_____________________. 自我检测 1.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC → 等于 ( ) A .-16 B .-8 C .8 D .16 2.(2010·重庆)已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .8 3.(2011·福州月考)已知a =(1,0),b =(1,1),(a +λb )⊥b ,则λ等于 ( ) A .-2 B .2 C.12 D .-1 2 4.平面上有三个点A (-2,y ),B (0,2 y ),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________. 5.(2009·天津)若等边△ABC 的边长为3,平面内一点M 满足CM →=16CB →+23 CA →,则MA →·MB → =________.

平面向量的数量积优秀教案第一课时

2.4《平面向量的数量积》教案(第一课时) 教材分析: 教材从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的5个重要性质,运算律。向量的数量积把向量的长度和三角函数联系起来,这样为解决三角形的有关问题提供了方便,特别能有效地解决线段的垂直问题。 教学目标: 1.掌握平面向量数量积的定义 2.掌握平面向量数量积的重要性质及运算律 教学重点: 平面向量的数量积定义. 教学难点: 平面向量数量积的定义及运算律的理解和平面向量数量积的应用 教学方法: 1. 问题引导法 2. 师生共同探究法 教学过程: 一.回顾旧知 向量的数乘运算定义:一般地,实数λ与向量的积是一个向量,记作λ, 它的长度和方向规定如下: (1)= (2)当λ>0时,λ的方向与a 方向相同,当λ<0时, λ的方向与a 方向相反 特别地,当0=λ或=时,=λ 向量的数乘运算律:设a ,b 为任意向量,λ,μ为任意实数,则有: ① λ(μ)=()λμ ② (λ+μ)=μλ+ ③ λ(+)=λλ+ 二.情景创设 问题1. 我们已经学习了向量的加法,减法和数乘,它们的运算结果都是向量,

那么向量与向量之间有没有“乘法”运算呢?这种新的运算结果又是什么呢? 三.学生活动 联想:物理中,功就是矢量与矢量“相乘”的结果。 问题2. 在物理课中,我们学过功的概念,即如果一个物体在力F 的作用下产生位移s ,那么力F 所做的功为多少? W 可由下式计算:W =|F |·|s |cos θ,其中θ是F 与s 的夹角. 若把功W 看成是两向量F 和S 的某种运算结果,显然这是一种新的运算,我们引入向量数量积的概念. 四.建构数学 1.向量数量积的定义 已知两个非零向量a 与b ,它们的夹角是θ,则数量|a ||b |cos θ叫a 与b 的数量积,记作a ·b ,即有a ·b =|a ||b |cos θ 说明:(1)向量的数量积的结果是一个实数,而不是向量,符号由夹角决定 (2)θ是a 与b 的夹角;范围是0≤θ≤π,(注意在两向量的夹角定义中,两向量 必须是同起点的.) 当θ=0时,a 与b 同向;a ·b =|a ||b |cos0=|a ||b | 当θ=π2 时,a 与b 垂直,记a ⊥b ;a ·b =|a ||b |cos 2 π=0 当θ=π时,a 与b 反向;a ·b =|a ||b |cos π=-|a ||b | (3)规定· a =0;a 2=a ·a =|a |2或|a (4)符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替 2. 向量数量积的运算律 已知a ,b ,c 和实数λ,则向量的数量积满足下列运算律: ①a ·b =b · a (交换律) ②(λa )· b =λ (a ·b )=a · (λb ) (数乘结合律) ③(a +b )·=a ·+b · (分配律) ④(a ·b )c ≠a (b · c ) (一般不满足结合律) 五.例题剖析 加深对数量积定义的理解 例1 判断正误,并简要说明理由.

向量数量积专题(总)

平面向量的数量积 【知识点精讲】 一、平面向量的数量积 (1)已知两个非零向量a r 和b r ,记为OA a OB b ==u u u r r u u u r r ,,则)0(πθθ≤≤=∠AOB 叫做向量a r 与b r 的夹角,记作,a b <>r r ,并规定[],0,a b π<>∈r r 。如果a 与b 的夹角是2 π,就称a r 与b r 垂直,记为.a b ⊥r r (2)cos ,a b a b <>r r r r 叫做向量a r 与b r 的数量积(或内积),记作a b ?r r ,即b a ? cos ,a b a b <>r r r r . 规定:零向量与任一向量的数量积为0. 两个非零向量a r 与b r 垂直的充要条件是0.a b ?=r r 两个非零向量a r 与b r 平行的充要条件是.a b a b ?=±r r r r 二、平面向量数量积的几何意义 数量积a b ?r r 等于a r 的长度a r 与b r 在a r 方向上的投影cos b θr 的乘积,即cos a b a b θ ?=r r r r (b r 在a r 方向上的投影为cos a b b a θ?=r r r r );a r 在b r 方向上的投影为 cos .a b a b θ?=r r r r 三、平面向量数量积的重要性质 性质1 cos .e a a e a θ?=?=r r r r r 性质2 0.a b a b ⊥??=r r r r 性质3 当a r 与b r 同向时,a b a b ?=r r r r ;当a r 与b r 反向时,a b a b ?=-r r r r ;22a a a a ?==r r r r 或 a =r 性质4 cos (00)a b a b a b θ?=≠≠r r r r r r r r 且 性质5 a b a b ?≤r r r r 注:利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题。 四、平面向量数量积满足的运算律 (1)a b b a ?=?r r r r (交换律);

(完整版)平面向量的数量积练习题.doc

平面向量的数量积 一.选择题 1. 已知 a ( 2,3), b ( 1, 1),则 a ?b 等于 ( ) A.1 B.-1 C.5 D.-5 r r r r r r r r 2.向量 a , b 满足 a 1, b 4, 且 a b 2 ,则 a 与 b 的夹角为( ) A . B . 4 C . D . 2 6 3 r r 60 0 r r ) 3.已知 a, b 均为单位向量,它们的夹角为 ,那么 a 3b ( A . 7 B . 10 C . 13 D . 4 4 .若平面向量 与向量 的夹角是 ,且 ,则 ( ) A . B . C . D . 5. 下面 4 个有关向量的数量积的关系式① 0 ?0 =0 ②( a ?b ) ?c = a ?( b ? c ) ③ a ?b = b ?a ④ | a ?b | ≦ a ?b ⑤ | a ?b | | a | ?| b | 其中正确的是( ) A . ① ② B 。 ① ③ C 。③ ④ D 。③ ⑤ 6. 已知 | a |=8 , e 为单位向量,当它们的夹角为 时, a 在 e 方向上的投影为( ) 3 A . 4 3B.4 C.4 2 3 D.8+ 2 7. 设 a 、 b 是夹角为 的单位向量,则 2a b 和 3a 2b 的夹角为( ) A . B . C . D . 8. 已知 a =(2,3) , b =( 4 ,7) , 则 a 在 b 上的投影值为( ) A 、 13 B 、 13 C 、 65 D 、 65 5 5 9. 已知 a (1,2), b ( 3,2), ka b 与 a 3b 垂直时 k 值为 ( ) A 、 17 B 、 18 C 、 19 D 、 20

《平面向量数量积》说课稿

《平面向量数量积》说课稿 一:说教材 平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。 二:说学习目标和要求 通过本节的学习,要让学生掌握 (1):平面向量数量积的坐标表示。 (2):平面两点间的距离公式。 (3):向量垂直的坐标表示的充要条件。 以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。 三:说教法 在教学过程中,我主要采用了以下几种教学方法: (1)启发式教学法 因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。 (2)讲解式教学法 主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程! 主要辅助教学的手段(powerpoint) (3)讨论式教学法

主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。 四:说学法 学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题! 五:说教学过程 这节课我准备这样进行: 首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量? 继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢? 引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论: (1)模的计算公式 (2)平面两点间的距离公式。 (3)两向量夹角的余弦的坐标表示 (4)两个向量垂直的标表示的充要条件 第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。 例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。 例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。 再配以练习,让学生能熟练的应用公式,掌握今天所学内容。

专题二 培优点9 平面向量数量积的最值问题

培优点9 平面向量数量积的最值问题 平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化. 例 (1)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC → |AC →|,则PB →·PC → 的最大值等于( ) A .13 B .15 C .19 D .21 答案 A 解析 建立如图所示的平面直角坐标系,则B ????1t ,0,C (0,t ),AB →=????1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →| AC →|=t ????1t ,0+4t (0,t )=(1,4),∴P (1,4), PB →·PC →=????1t -1,-4· (-1,t -4) =17-????1t +4t ≤17-21t ·4t =13, 当且仅当t =12 时等号成立. ∴PB →·PC →的最大值等于13. (2)如图,已知P 是半径为2,圆心角为π3 的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为________. 答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),

设P (2cos θ,2sin θ)????π3≤θ≤2π3, 则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ), 其中0

(学案)校级公开课--平面向量的数量积及应用(学案)

课题:平面向量的数量积及其应用 一、知识归纳:见课本 二、问题探究: 问题1.()1已知ABC △中,||6,||9,45BC CA C ==∠=?,则BC CA ?= ()2已知平面上三点,,A B C 满足3,4,5AB BC CA ===, 则AB BC BC CA CA AB ?+?+?的值等于 ()3已知,a b 是两个非零向量,且a b a b ==-,求a 与a b +的夹角 问题2.在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。 (1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(OC t AB -)·OC =0,求t 的值。 问题3 已知向量a =,23sin ,23cos ?? ? ??x x b =,2sin ,2cos ??? ??-x x 且x ∈??????-4,3ππ. (1)求a ·b 及|a +b |; (2)若f(x)=a ·b -|a +b |,求f(x)的最大值和最小值.

2 问题4 设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1与e 2的夹角为3 ,若向量2t e 1+7e 2与e 1+t e 2的夹角为钝角, 求实数t 的范围. 课堂练习 1、一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知1F ,2F 成0 60角,且1F ,2F 的大小分别为2和4,则3F 的大小为 A. 6 B. 2 C. 25 D. 27 2. |a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为 ( )A .30° B .60° C .120° D .150° 3.如图所示,在平行四边形ABCD 中, AC =(1,2) ,BD =(-3,2),则AD ·AC = . 4、.设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.

专题03 “三法”解决平面向量数量积问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(解析

一.方法综述 平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.由于命题方式灵活多样,试题内容活泼、新颖,因此,在高考试卷中备受青睐,是一个稳定的高频考点.解决这类问题有三种基本方法:投影法、基底法和坐标法.“三法”的准确定位应是并举!即不应人为地、凭主观划分它们的优劣,而应具体问题具体分析. 本专题举例说明解答解决平面向量数量积问题的方法、技巧. 二.解题策略 类型一投影定义法 【例1】【2018届河南省中原名校高三上第一次考评】已知P是边长为2的正△ABC边BC上的动点,则·(+)=_________. 【答案】6 【解析】设BC的中点为D,则AD⊥BC, 【指点迷津】

1、数量积与投影的关系(数量积的几何定义): 向量,a b 数量积公式为cos a b a b θ?=,可变形为()cos a b a b θ?=?或() cos a b b a θ?=?,进而与向量投影找到联系 (1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→?=?(记a b λ→为a 在b 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解: a b a b b λ→?= 即数量积除以被投影向量的模长 2、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)学科&网 (2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 【举一反三】 已知圆M 为直角三角形ABC 的外接圆,OB 是斜边AC 上的高,且6,22AC OB ==,AO OC <,点P 为线段OA 的中点,若DE 是 M 中绕圆心M 运动的一条直径,则PD PE ?=_________ M C A O B P D E Q 【答案】-5 【解析】思路:本题的难点在于DE 是一条运动的直径,所以很难直接用定义求解.考虑到DE 为直径,所以延长EP 交圆M 于Q ,即可得DQ QE ⊥,则PD 在PE 上的投影向量为PQ .所求 PD PE PE PQ ?=-?,而由PE PQ ?联想到相交弦定理,从而PE PQ AP PC ?=?.考虑与已知条 件联系求出直径AC 上的各段线段长度.由射影定理可得:2 8AO CO OB ?==,且

(完整版)平面向量的数量积练习题(含答案)

平面向量的数量积 A 组 专项基础训练 一、选择题(每小题5分,共20分) 1. (2012·辽宁)已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于 ( ) A .-1 B .-12 C.12 D .1 2. (2012·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( ) A. 5 B.10 C .2 5 D .10 3. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.? ????79,73 B.? ????-73,-79 C.? ????73,79 D.? ?? ??-79,-73 4. 在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于 ( ) A .-32 B .-23 C.23 D.32 二、填空题(每小题5分,共15分) 5.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 6.在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 7. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________. 三、解答题(共22分) 8. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°. (1)求b ; (2)若c 与b 同向,且a 与c -a 垂直,求c . 9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与 向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.

平面向量数量积的坐标表示学案

必修4 2.4.3 平面向量数量积的坐标表示、模、夹角 【学习目标】 1.举例说明平面向量数量积的坐标表示、用坐标表示向量的模、夹角、垂直、平面内两点间的距离公式; 2.能运用以上知识解决有关问题和解决问题的思想方法; 3.通过本节课的学习,进一步加深对向量数量积的认识,提高同学们的运算速度、运算能力、创新能力及数学素质. 【学习重点】平面向量数量积的坐标表示、坐标表示向量的模、夹角、垂直、距离等公式. 【难点提示】平面向量数量积的坐标表示、坐标表示向量的模、夹角、垂直、距离的综合 运用以及灵活解决相关问题. 【学法提示】1.请同学们课前将学案与教材106108P 结合进行自主学习(对教材中的文字、 图象、表格、符号、观察、思考、说明与注释、例题、阅读与思考、小结等都要仔细阅读)、小组组织讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备; 2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达. 【学习过程】 一、学习准备 前面我们学习了向量有关知识,请对照上面知识网络,回顾其中知识内容,请对不熟悉的知识点进行复习,并填写在空白处,同时思考下列问题: 1.两个非零向量的夹角 ,夹角的范围是 ; 当两向量共线与垂直时夹角分别是 、 、 ;与非零向量a 垂直的向量有 个; 2.平面向量数量积定义 , 向量数量积的几何意义 、向量数量积的性质 、 、 、 、 . 3.向量数量积满足的运算律 、 、 ;

4.平面向量的坐标表示及坐标运算 ,平面向量共线的坐标表示 ; 热身练习 已知△ABC 的三点为A(1,2),B(2,3),C(-2,5),求:(1)____AB =; (2)____AB AC -=;请问同学们,你还能求:____AB =,____AB AC ?=, cos ____ABC ∠=,该△ABC 的形状如何?等. 这就是我们本节课要探究的问题! 二、学习探究 通过“学习准备”,在想一想:前面我们学习了平面向量的坐标表示,我们已经会用向量的坐标表示来表示向量中的哪些相关知识?能用向量的坐标表示解决向量的哪些问题?上节课我们又学习了向量的数量积及相关知识,那么,现在你能用向量的坐标来表示向量的数量积、模、夹角吗?请同学们发挥你的想象探究一下: 探究向量数量积坐标表示 已知:11(,)a x y =,22(,)b x y =,请你坐标表示a b ?? 【提示】请同学们一定要先独立思考,再看链接1 探究: 归纳结论 若11(,)a x y =,22(,)b x y =,则a ?b = . 快乐体验 1.已知:(3,4),(5,12)a b =-=,求:|a |= ,|b |= ,a ?b = , cos ___θ=(θ为向量a 与b 的夹角) 解: 2. 已知(2,3),(2,4),(2,4),a b c ==-=-求2,()(),(),().a b a b a b a b c a b ?+?-?++ 解: 3.已知△ABC 的三点为A(1,2),B(2,3),C(-2,5),求:(1)____AB AC ?=; (2)____AB =;(3)△ABC 的形状是 . 解: 同学们通过探究、归纳、体验,对向量数量积的坐标表示有哪些感悟?它们有哪些性质呢?你能对它们进行深度思考和挖掘拓展吗? 挖掘拓展 1.你能用几种语言来描述平面向量数量积的坐标表示?它实质就是一个运算公式,这个公式又怎样的特征?有几个变量?如何运用该公式? 2.设),(y x a = ,则|a |= 或|a |= (长度公式) 3.如果表示向量a 的有向线段的起点和终点的坐标分别为A ),(11y x 、B ),(22y x ,那么 ||||AB a == (平面内两点间的距离公式) 4.夹角的计算:设),(11y x a =,),(22y x b = ,夹角为θ,则cos θ= 5.垂直关系分析:设),(11y x a = ,),(22y x b = ,则b a ⊥? ?

平面向量数量积运算专题(附标准答案)

平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________. (2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2 D.-3+2 2 变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=22 3 |b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4 D.π (2)若平面向量a 与平面向量b 的夹角等于π 3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦 值等于( )

A.126 B.-126 C.112 D.-1 12 变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与 AC → 的夹角为________. 题型三 利用数量积求向量的模 例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5 D.6 (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB → |的最小值为________. 变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=1 2.若平面向量b 满足b ·e 1=b ·e 2 =1,则|b |=________.

2.4.1平面向量数量积的物理背景及其含义 导学案

2.4.1平面向量数量积的物理背景及其含义 【课标要求】 1、掌握平面向量数量积的意义,体会数量积与投影的关系。 2、平面向量积的重要性质及运算律。 【考纲要求】 1、能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 2、会用向量方法解决某些简单的平面几何问题。 【学习目标叙写】 1、知道平面向量数量积的物理意义,记住其含义; 2、会用向量数量积的公式解决相关问题; 3、记住数量积的几个重要性质。 【使用说明与学法指导】 先阅读教材P103-P105.在理解物理学中作“功”的实例引出数量积的几何概念之后,学习向量数量积的性质与运算律。 【预习案】 问题1:如下图,如果一个物体在力F 的作用下产生位移s ,那么力F 所做的功W = ,其中θ是 . 思考:这个公式的有什么特点?请完成下列填空: F (力)是 量;S (位移)是 量;θ是 ;W (功)是 量; 结论:功是一个标量,功是力与位移两个向量的大小及其夹角余弦的乘积 启示:能否把“功”看成是力与位移这两个向量的一种运算的结果呢? 问题2:向量的数量积(或内积)的定义 已知两个非零向量a 和b ,我们把数量cos a b θ叫做a 和b 的数量积(或内积),记作 a cos a b =? ”代替。 ② 两个非零向量夹角的概念:非零向量a 与b ,作OA =a ,OB =b , 则∠AOB=θ(0≤θ≤π)叫a 与b 的夹角(两向量必须是同起点) 注意:当θ=0时,a 与b 同向;当θ=π时,a 与b 反向; 当θ=2 π 时,a 与b 垂直,记a ⊥b ; ③“规定”:零向量与任何向量的数量积为零,即00a ?=。 思考:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小因素有哪些? 数量积的符号由cos θ的符号所决定,完成下表: 问题3:向量的数量积(或内积)几何意义 (1)向量投影的概念:如图,我们把cos a θ叫做向量 a 在 b 方向上的投影;cos b θ叫做向量b 在a 方向上的投影. 说明:如图,1cos OB b θ=. 向量投影也是一个数量,不是 向量; 当θ为锐角时投影为正值;当θ为钝角时投影为负值; 当θ = 0?时投影为 |b |;当θ=90?时投影为0;当θ = 180?时投影为 -|b | 作图: (2)向量的数量积的几何意义:数量积a ·b 等于a 的长度︱a ︱与b 在a 的方向上的 投影︱b ︱cos α 的乘积。 问题4:由定义得到的数量积的性质。 设a 和都是非零向量,θ是a 与b 的夹角,则 ⑴当a 与垂直时,90θ=,即a b a b ⊥??= ; ⑵当a 与同向时,0θ=,a b ?= ;

相关文档
最新文档