3D电视的原理与技术

3D电视的原理与技术
3D电视的原理与技术

3D电视原理与技术

一.立体电视的发展

1.3D成像技术的发展

随着科技的发展,人民生活水准的提高,3D电视的普及必将是一个不可阻挡的历史趋势。正如时代华纳公司的副总裁艾尔沃斯所言,3D将是下一个电视圈盛事。3D电视节目以更加多元化、更具真实感的内容必将吸引更多的观众。

拍下最早3D照片的立体镜

最早的3D电影

3D影像原理,最早是1839年由英国科学家温特斯顿发现的。人的两眼间距约5公分,看任何物体时,两只眼睛的角度不尽相同,即存在两个视角。要证明这点很简单,请举起右手,做“阿弥陀佛”姿势,将拇指紧贴鼻尖,其余四指抵住眉心。闭上左眼,只见手背不见手心;而闭上右眼则恰恰相反。这种细微的角度差别经由视网膜传至大脑里,就能区分出景物的前后远近,进而产生强烈的立体感。这就是3D的秘密———“偏光原理”。并于1922年,世界上第一部3D电影《爱情的力量》诞生了,遗憾的是,影片很早之前就已经遗失了。

MJ主演的3D影片

3D巨作《阿凡达》

80年代中期,IMAX开始制作首部3D纪实片。1986年,迪士尼主题公园和环球影城上映了迈克尔杰克逊的3D影片。2008年,日本有线BS 11频道开始播送3D节目,3D高清电视业务进入实用化。2009年耗资5亿美元的电影巨作《阿凡达》同时以2D、3D、3D IMAX等多种版本在全球公映。2010年,天空传媒开办3D电视频道。2010年,ESPN开设3D体育频道,一年内进行85项赛事的3D转播。2010年6月,南非世界杯称为史上首次进行3D转播的世界杯比赛。2012年1月,由央视牵头,联合多家电视台开办的国内首个3D电视试验频道正式开始播出节目。

国内首个3D频道

3D成像技术发展史

从1890年第一份3D电影的专利的出现,到现在的上百年间里,3D技术逐渐发展壮大,已经受到越来越多人的欢迎。索尼公司预计,2014年所生产的一般的电视都将会支持3D模式。2010年,3D电视浪潮开始席卷全球。从最初的3D 科幻电影《阿凡达》引爆,到年初的美国电子展,各大彩电厂家竞相亮相3D电视,再到年中的世界杯和近期的3D亚运营销,彩电厂家们各显神通上演3D电视的大战,可以把2010年定义为“3D电视元年”。

2.立体电视的分类

用全真立体电视技术制作的节目具有很强的景深立体效果,画面中景物富有层次与空间感,画面透明、细腻,画质优良。在传送立体电视节目时,必须采取频带压缩或码率压缩等方法才能通过普通电视频道传送立体电视节目。目前的立体电视按其原理可分为如下三类。

(1)视差制式立体电视

视差制式立体电视的摄制由立体摄像机完成,立体摄像机具有两个镜头和两个摄像器件,用来代替人的两只眼睛摄取图像,两个图像信号需用2个通路传送到显像端。两个镜头之间的距离及其光轴之间的夹角和距离必须模仿人的两个眼球动作,随着拍摄物体的距离变化不断进行调整,以保证拍摄的两个图像的视差与人眼直接观看的视差相同。

立体电视节目可以利用现有的电视设备(录像机,电视机)播放。能与普通电视互换,可兼容HDTV立体电视。在观看节目时,需要一幅立体液晶转换屏与一副检偏眼镜配合完成。转换屏放在电视机荧屏前部,由电视机内场同步扫描信号控制,将普通电视机显示的重叠立体图像分离。通过检偏眼镜就可看到清晰的立体图像。但这种方式并非主流。

(2)时差式立体电视

1982年,美国南卡罗莱纳大学最先提出时差立体电视概念。根据闭上一只眼睛也能获得立体感的特性,将一对视差信号的两幅图像先后轮流地出现在屏幕上,从而使人获得立体感觉。

时差制式立体电视在发送端也是利用两部摄像机获得一对视差图像信号,用一条信道以适当速率顺序交替传送。在接收端使这一对视差信号所形成的两幅图像,按发送端传送的顺序,先后轮流地出现在屏幕上,人眼就能看到立体彩色图像。

与视差式立体电视不同,时差式立体电视在接收端不需要附加任何装置,用普通彩色电视机就可以看到立体彩色图像。为了实现时差制式立体电视,只需要在前端系统进行必要的改造和添置设备。

(3)全息制式立体电视

全息制式立体电视以全息影像技术为基础,利用电视技术摄取,传送和显示全息图来重现空间三维立体像。它可以让一幅静止画面以立体方式呈现,观看者可以从各个角度看立体电视,甚至围成一个圈看电视。

全息成像技术正在成为立体电视的发展趋势,开篇提及的那一幕就是依托全息立体电视技术实现的。随着科技的发展,全息立体技术将颠覆传统观念,人类将进行一场视觉革命。

3.制约立体电视发展的因素

就目前的立体电视系统而言,与人们理想的立体电视模式有着一定的距离,并不是真正意义上的3D电视,主要存在两个问题:1)当获取立体图像时,左摄像机和右摄像机是固定在空间的,因此,左视和右视只能从一个特定的视角来描述三维场景,如果不是从这一特定的角度来观察立体图像对,就会导致场景的不自然表达。当观看者头部移动时,应根据视角改变而生成相应的视点场景。当观看者头部移动时,应产生相应的显示图像,这个效果叫做运动视差(motion parallax),这种系统通常需要一个头部位置跟踪器来决定视角位置。2)由于两摄像机基线距离是固定的

(约64 mm),这意味着获取的立体图像仅适合于具有相似瞳孔距离的人。显然固定的摄像机基线距离不能保证适合每一位观察者的视觉特性,而观察中的不适感往往由此产生。理想的情况是每个观看者能够根据需要调节立体感。

一.研究结果显示,观众在观看立体影像时,由于眼睛会迅速地来回移动,因而容易造成眼睛疲劳。二.3D电视一般还需要匹配3D影视碟片、3D碟机和立体眼镜,才能组建成一个家庭3D影视系统。如果把这些全加起来,成本投入势必更大,普通家庭难以承受。三.3D片源问题是制约3D电视发展的重要因素,未来两三年内3D电视还难以普及。

二.立体电视成像原理

1.立体视觉原理

人类从各种各样的线索中获取三维信息,其中最重要的两种是双目视差和运动视差。双目视差始于CharlesWheatstone1838年的研究工作,指的是双眼看到同一物体的不同映像;运动视差始于Helmholtz1866年的研究工作,指的是头部运动时看到同一物体的不同映像。1833年,wheatstone用世界上第一台三维显示装置科学地验证了视差和立体感之间的联系。从此,研究者们就不断地致力于开发新的立体图像技术。所谓的“视差创造立体”的原理,是指人的两只眼睛从不同的角度观看世界,即左眼看到的物体与右眼看到的同一物体之间有细微的差别,

两者平均相差约65mm,因而描述场景轮廓的方式也不尽相同。大脑根据这两个有细微差别的场景进行综合处理,产生精确的三维物体,以及该物体在场景中的定位,这就是具有深度的立体感。立体成像系统的工作就是对每个场景至少产生两张图像,一张代表左眼所看到的,另一张代表右眼所看到的,这两张图像称为立体图像对,而立体显示系统必须使左眼只能看到左图像,右眼只能看到右图像。

2.立体图像的获取

使用立体摄像机对,分别拍摄独立的左、右视图以模拟人类双眼感知立体图像的方式。立体摄像机对包括平行配置和会聚配置两种结构。

当平行配置立体摄像机对时:两部摄像机模拟人的双眼,在水平方向分隔一定的距离,这两部摄像机的变焦、会聚、及视频记录都严格地同步,并对所获取的两路视频信号以某种方式进行记录。

当会聚配置立体摄像机对时:两部摄像机的摄像机光轴相交于一个会聚点。如图所示,一个现实世界点(X,Y,Z)在摄像机感应器上的投影要比平行配置复杂些。当这对摄像机都处于一个平面上,且两个摄像机光轴都不平行于Z轴,则这种情况下仅有水平视差存在。若两个摄像机既不平行于Z轴,又不处于同一水平平面,则两个摄像机获得的图像既有水平视差,又有垂直视差。其可通过将相同w点在左、右摄像机平面中映射的x,y坐标,分别相减求得。

一个摄像机对可获得一个立体图像对,其产生双视点的立体图像。如果将多个摄像机对在同一平面内线性排列,则可产生同处一个平面的多个视点。如果将多个摄像机在空间内以某种特定阵列方式排列,则可产生空间上的多视点。其中,线性排列的摄像机拍摄的多幅不同视点的图像仅携带水平视差信息,区域排列的摄像机拍摄的多幅不同视点的图像同时携带水平和垂直视差信息。阵列中的摄像机特性完全相同,以相等的距离,按照特定的形式排列,使得摄像机的光轴相互平行或者会聚在一个公共点。

3.立体电视节目的拍摄

3D电视节目的获取主要包括两种方式:一种方式是直接进行3D内容的获取,如立体拍摄,3D蓝光盘节目和3D动画片;另一种是将原有的2D视频转成3D 视频。目前存在的问题:前者拍摄与制作设备价格昂贵,复杂三维场景的实时获取与表示能力不足,已有视频内容利用程度低。后者技术不够成熟,立体效果较差。立体摄像机具有两个镜头和两个摄像器件,用来模仿人的两只眼睛摄取图像。两个镜头的间距及其光轴的汇聚夹角等参数须模仿人的两个眼球的动作,随着拍摄物体的距离变化不断进行调整,以使拍摄的两个图像信息与人眼直接观看的信息相同。

目前高清摄像机技术已经成熟,所以立体电视摄像可直接利用高清技术。如今年足球世界杯采用SONY高清多格式便携式3D摄像机HDC-1500便是证明。

目前日本SONY与松下等公司相继推出专业级立体电视摄像机,为立体电视

前期拍摄提供保证。松下的全整合型高清3D摄录一体机AG-3DA1MC使用了双镜头、双感光元件、汇聚点调整、双记录单元等新技术,其中的两个镜头,机头和半导体录像机都是安装在一个紧凑的机身里面的。不同于大型3D摄像机系统,这个摄录一体机允许视频拍摄可以从多种角度以更大的幅度来移动;大大的减少了调整和设置的时间,因此可以使用更多的可能性和时间来创作拍摄动作。配以BT-3DL2550MC 3D监视器,由于支架式3D摄像机在现场有众多的调整步骤,并且调整结果需要非常精确,所以该款监视器的图像调整功能可以对支架的偏差进行监看和修正,对于现场拍摄有很大的指导作用。利用AG-HMX100MC 3D

数字视音频切换台,可以将两路SDI合并为双链路SDI,以完成对3D节目的制作。

SONY推出单镜头3D数字摄像机,能够以240fps记录自然平滑的3D影像。该项技术结合了为单镜头3D摄影新开发的可同时捕捉左侧和右侧图像的光学系统,以及现有的高帧率记录技术来实现240fps 3D摄影。单镜头系统的引入解决了可能导致双眼光学特征差异的任何问题。并且,通过使用反射镜替代快门,入射光线可以同时被分离进入左侧和右侧的影像,并在到达中继镜头的平行光区域(在此区域目标物体焦点处发出的分离光线变成平行光线)时被记录下来。分离的左侧和右侧影像随后被左右影像传感器分别处理和记录。由于左右的影像被捕捉时没有时间差异,记录自然平滑的3D影像成为可能,甚至是快速运动的场景。

4.立体电视节目的制作

立体影像系统采用双路画面实时操作方式,可以实时看到左右眼画面,也可以戴上眼睛实时观看最终放映的效果,便于对两个画面的同步、色彩、曝光、景深

等进行匹配,便于修饰闪烁、畸变等各种立体瑕疵,便于调整两个画面之间的视觉夹角。

SONY立体电视后期制作设备为多画面处理系统MPE-200,它的作用就是利用Cell处理器的强大处理能力,修正两台摄像机在位置、转动方向、光轴、色彩上的偏差,实时合成准确的3D影像,简化拍摄准备过程中的摄像机调整工作,并对摄制完成的影像进行处理。

5.立体电视节目的传输

主动式立体信号传输主要针对采用快门式眼镜的立体电视收看方式。快门式眼镜立体电视主要原理是需要在显示屏幕上交替地显示左右眼图像,这就要求立体信号作为左右眼视图的交替帧进行编码。

由于立体电视传输的是左右眼双路视频信号,为了实现每只眼睛都可收看50Hz 的高清信号,高清立体电视信号的传输就需要达到100Hz。该信号可以像传统的二维100Hz高清电视信号那样被编码,为了减少传输比特率,编码过程中可以采用视差补偿预测方法,以去除左右眼视图之间的冗余。采用这种方法,在传输过程中所需的比特率仍然远高于一个传统50Hz高清电视信号,但会比双路信号独立传

输方式的比特率低一些。国外相关实验证明,在实现同样分辨率图像的情况下,采用这种方法传输的高清立体电视信号所需的比特率是普通二维高清电视信号的1.7到1.9倍。另外,需要对当前的高清电视的基础设施进行升级才能承载这一信号,传输播放所需的成本也会进一步增加,而立体信号将呈现传统的高清电视的分辨率,帧速率达到100Hz。

为了实现更高的压缩比率,减少传输的比特率,可以采用时间可分级的编码方式。这样,左眼视图就是基础层面,作为一个传统的50Hz的高清电视信号被编码,而右眼视图分别进行帧内的MCP预测和帧间的DCP预测,并将二者相结合。

采用这种方式的优点是降低了传输的比特率,并且左眼视图可以由传统的二维图像解码器解码,并通过二维显示器显示,实现立体电视的后向兼容。基于上述技术,若想观看立体视频内容,观众需要一个工作在100Hz的可分级的视频解码器,搭配一个能够接收和显示100Hz视频的显示器以及一副同步的快门眼镜。

被动式立体电视主要是指采用偏振光原理收看立体电视的方式。立体电视信号采用双路分别传输左右眼视图,两路信号并行传输,可以通过高质量的MPEG-4或H.264标准进行压缩,以减少传输过程中的比特率。这种传输方式除了要考虑编码压缩方式外,更重要的是播放图像格式的选择。立体数据通过各种不同的方式组织起来显示在具有相匹配的微偏振技术的显示器上,观看者佩戴偏振眼镜观看,完全有效地将自然空间分辨率一分为二,以达到立体收看的效果。

这种传输方式将左右两路图像信息在屏幕上隔行交叉排列,奇数行显示一只眼睛要看到的视频(也就是传输的左路视频),偶数行则显示另一只眼睛要看到的视频(也就是传输的右路视频),以这种方式将垂直分辨率一分为二。再通过偏光眼镜进行观看,左眼看到左路视频图像,右眼看到右路视频图像,。

三.3D显示技术

1.眼镜式3D技术

1).色差式3D技术

色差式3D技术,配合使用的是被动式红蓝(或红绿、红青)滤色3眼镜。先由旋转的滤光轮分出光谱信息,使用不同颜色的滤光片进行画面滤光,使得一个图片产生两幅图像。然后由眼镜左右分别过滤相应的光谱画面,经人眼接收后在大脑合成正常颜色的影像。

2).偏光式3D技术

偏光式3D技术也叫偏振式3D技术,配合使用的是被动式偏光眼镜。偏光式3D立体成像技术是利用光线有“振动方向”的原理来分解原始图像的,通过在显示屏幕上加放偏光板,可以向观看者输送两幅偏振方向不同的两幅画面,当画面经过偏振眼睛时,由于偏光式眼睛的每只镜片只能接受一个偏振方向的画面,这样人的左右眼就能接收两组画面,再经过大脑合成立体影像。

3).主动式3D技术

主动快门式3D,配合主动快门3D眼镜使用。这种技术主要是通过进步画面的刷新率把两组画面持续交织显示出来,同时红外信号发射器将同步把持快门式3D眼镜的左右镜片开关,使左、右双眼能够在准确的时刻看到相应画面。这项技巧能够坚持画面的原始辨别率,很轻松地让用户享受到真正的全高清3D效果,而且不会造成画面亮度下降。一般情形下,3D液晶屏幕刷新频率必需到达120Hz 以上,也就是让左、右眼均接受到频率在60Hz以上的图像,才能保证用户看到持续而不闪耀的3D图像后果。

如今3D电视之中主要分为两大阵营:一个是偏光式3D阵营,一个是主动快门式3D阵营,两大阵营分别以其独有的优势占据属于自己的市场。两种3D电视的技术都有很大的进一步发展空间,比如偏光式3D液晶电视在画面上没有明显的闪烁,但是垂直可视角度不太理想,当观看视角高于电视屏幕时,就无法观看到3D影像。对于主动快门式3D电视,它可以保证画面较好的清晰度和立体感,但是3D眼镜的佩戴舒适度相对要差一下,价格也比较贵,同类3D电视之间的兼容性较差;在头部进行偏转时,画面的亮度会明显降低。

偏光式3D电视在短短一年内成为市场的主流,这主要得益于不闪式3D技术的绝对优势。第一点,偏光式3D技术没有闪烁现象。第二点,就是没有重影现象。第三点,偏光式3D技术成像的亮度非常高。第五点,不闪式3D眼镜完全不需要电力驱动。第六点,是关于刷新率,不闪式IPS硬屏3D面板刷新率达到了240Hz。

2.裸眼式3D技术

为摆脱了眼镜的束缚,消费者期待用裸眼观看到逼真的3D图像,于是裸眼式

3D技术诞生了,当我们用裸眼观看普通屏幕播放的3D图像时,由于没有了眼镜的“开关”作用,此时我们的左眼和右眼都会对整个屏幕图像“一目了然”,没有了左眼和右眼图像信息的差别,自然重新回到了2D图像,那么在裸眼状态下重新看到3D图像?显然只能是通过改变屏幕的结构来实现,改变屏幕结构的目的自然是让左眼只能看到左眼图像,让右眼只能看到右眼图像,于是在面板的设计上就需要附加可以实现对屏幕图像进行“方向性”视觉阻挡的介质,让左眼和右眼分别看到各自应该看到的相对应的可视画面,从而形成3D立体图像的视觉效果。

1).光屏障式3D技术

光屏障式3D技术也被称为视差屏障或视差障栅技术,其原理和偏振式3D较为类似,是由夏普欧洲实验室的工程师十余年的研究成功。光屏障式3D产品与既有的LCD液晶工艺兼容,因此在量产性和成本上较具优势,光屏障式3D技术的实现方法是在背光模组与LCD面板间的安置了“视差障壁”,“视差障壁”相当于一个新加的“开关”液晶层,采用了大家熟知的偏振膜和高分子液晶层控制光线透过与阻断的原理,形成了一系列垂直排列的栅状的条纹,这些条纹宽几十微米,用于在显示3D图像时来阻断光线(在显示2D图像时透光),而条纹的间隙可以透过光线;在3D显示模式下,应该由左眼看到的图像显示在液晶屏上时,不透明的条纹会遮挡右眼;同理,应该由右眼看到的图像显示在液晶屏上时,不透明的条纹会遮挡左眼,通过将左眼和右眼的可视画面分开,使观者看到3D 影像。但采用此种技术的产品影像分辨率和亮度会下降。

2).柱状透镜3D技术

柱状透镜(Lenticular Lens)技术也被称为双凸透镜或微柱透镜3D技术,其最大的优势便是其亮度不会受到影响,3D技术显示效果更好,但相关制造与现有LED液晶工艺不兼容,需要投资新的设备和生产线。柱状透镜3D技术的原理是在液晶显示屏的前面加上一层柱状透镜,使液晶屏的像平面位于透镜的焦平面上,这样在每个柱透镜下面的图像的像素被分成用以分别显示左眼图像和右眼图像的左眼图像子像素和右眼图像子像素,由于左右眼的视角不同,即使通过同一条透镜却能看到不同的子像素,这样柱透透镜就能将左眼图像子像素和和右眼图像子像素的光以不同的方向分别折射到汇聚到左眼和右眼,于是双眼从不同的角度观看显示屏,就看到不同的图像,从而在大脑形成3D图像。

3).方向性背光3D技术

方向性背光3D技术(也称指向背光或指向光源3D技术)搭配左、右两组LED

背光源,因左、右两组LED背光源在分别显示左、右眼图像时交替点亮,从而控制了背光的方向性改变,故名“方向性背光”,不仅如此,还在背光模组的导光板与液晶面板之间设计了3D透光膜,3D透光膜呈锯齿状设计,因此在左组、右组LED背光源照亮时入射光线的角度不同,使得在显示左眼图像时,点亮的左组LED背光源通过导光板全反射后透过3D透光膜后产生折射后将图像正好聚焦在左眼,而右眼看不到;同样的,在显示右眼图像时,点亮的右组LED背光源通过导光板反射后透过3D透光膜后产生折射后将图像正好聚焦在右眼,而左眼看不到,配合快速反应的LCD面板和驱动方法,加上人眼的视觉暂留效应,让左右眼内容以交替方式进入观看者的左右眼而产生视差,进而让人眼感受到

3D立体效果。其原理等同于我们双眼平时观看外部真实世界时的情形,面板的像素得到全面利用,因此该技术在分辨率、透光率方面能保证,不会影响既有的设计结构,3D显示效果出色,但产品还不成熟,处于研发阶段。

2009年4月,美国一家公司宣布研发出改进后的裸眼3D技术——MLD(多层显示),这种技术能够通过一定间隔重叠的两块液晶面板,实现在不使用专用眼镜的情况下,观看文字及图画时所呈现3D影像的效果。与以往采用柱状透镜技术的裸眼3D显示器相比,MLD技术具有以下几个优点:一、观看3D影像时,用户不会产生眩晕作用;二、3D显示时,屏幕的分辨率不会降低;三、可组合显示文字等二维影像和3D影像;四、对观看3D影像的视野及角度没有太大的限制。

四.立体电视的现状

1.3D领域各企业动态

1).三星

三星电子身为3D电视行业中的引领者,在2011CES上展示了包括3D液晶电视、蓝光播放器在内的多款3D电子产品。而作为全球最薄的蓝光播放器,三星BD-D7500 3D蓝光播放器厚度只有2.2cm,具有三星独创的2D转3D功能。2).TCL

TCL全球首台使用3D UI的量产超级智能互联网电视V8200系列拥有3D UI、超级智能单芯片、Windows/Android+操作系统、电视应用程序商店、逐行3D、云计算及声控、智能手势和姿态识别与控制等多项创新性的人机交互技术和应用。该电视荣膺“2011CES全球年度品质平板电视”和“2011CES年度最佳全能3D电视”双项大奖。

3).松下

2011年日本电子高新技术博览会上,松下在展会上展出了一款152英寸,

4K*2K解析度,拥有3D播放功能的等离子电视,也是目前市场上最大的一款平板电视,采用的为主动快门式3D技术,需要搭配快门式3D眼镜进行观看。4).LG

2011德国柏林国际消费类电子展上,LG电子发布了最新款同屏双显3D电视,可以给游戏玩家们同时提供两种不同的游戏画面,从而避免了游戏玩家在进行对战时的画面分屏。这款3D电视机采用了Dual Play技术,因此这款电视的规格也有两种:右边画面的规格和左边画面的规格。该技术原理是:借助高刷新率只显示特定画面。

5).东芝

东芝在2011IFA展出了一款55英寸大屏幕裸眼3D电视,该产品配备了分辨率高达3840×2160的液晶面板,解析度可达行内标准的4倍以上,该产品是目前全球首款超高清裸眼3D电视。

该机已于2011年十二月在欧洲逐步发行。除了支持面板可显示4K2K 4K分辨率的视频,静止图像的一个像素对应4K JPEG和图像,可直接显示在高清晰度

视频压缩原理

1. 为什么要进行视频压缩 未经压缩的数字视频的数据量巨大 存储困难 一张DVD只能存储几秒钟的未压缩数字视频。 传输困难 1兆的带宽传输一秒的数字电视视频需要大约4分钟。 2. 为什么可以压缩 ? 去除冗余信息 ? 空间冗余:图像相邻像素之间有较强的相关性 时间冗余:视频序列的相邻图像之间内容相似 编码冗余:不同像素值出现的概率不同 视觉冗余:人的视觉系统对某些细节不敏感 知识冗余:规律性的结构可由先验知识和背景知识得到3. 数据压缩分类 ? 无损压缩(Lossless) ? 压缩前解压缩后图像完全一致X=X' 压缩比低(2:1~3:1) 例如:Winzip,JPEG-LS ?

有损压缩(Lossy) ? 压缩前解压缩后图像不一致X≠X' 压缩比高(10:1~20:1) 利用人的视觉系统的特性 例如:MPEG-2,AVC,AVS 4. 编解码器 ? 编码器(Encoder) ? 压缩信号的设备或程序 ? 解码器(Decoder) ? 解压缩信号的设备或程序 ? 编解码器(Codec) ? 编解码器对 5. 压缩系统的组成 (1) 编码器中的关键技术 (2) 编解码中的关键技术 6. 编解码器实现 ?

编解码器的实现平台: ? ? 超大规模集成电路VLSI ? ASIC, FPGA 数字信号处理器DSP 软件 ? 编解码器产品: ? 机顶盒 数字电视 摄像机 监控器 7. 视频编码标准 编码标准作用: ? 兼容: ? 不同厂家生产的编码器压缩的码流能够被不同厂家的解码器解码? 高效: ? 标准编解码器可以进行批量生产,节约成本。 主流的视频编码标准: MPEG-2 MPEG-4 Simple Profile AVC

电视机原理与维修大纲资料讲解

《电视机原理与维修》教学大纲 (一)课程概述 1.适用专业:电子与信息技术专业 2.课程说明:了解电视信号的产生,掌握全电视信号的组成,理解NTSC和PAL编码制。掌握黑白、彩色电视机的整机方框图和信号流程。掌握电视机各主要单元电路的组成,理解其基本工作原理。能应用所学知识读电视机的电原理图,说明常见故障现象、特点,掌握正确的检测程序和基本方法,并能对修复的电视机进行必要的调试。了解数字电视机的特点。了解电视技术的新成果、新动向。 3.课程目标: ?理解电视图像光电转换的基本原理,了解色度学基本知识。 ?了解电视信号基本组成和主要参数。 ?了解彩色电视机的基本组成和基本电路的功能。 ?理解PALD制彩色电视的编码和解码原理。 ?掌握彩色电视机基本电路的工作原理。 ?掌握电视机主要元器件、电路和整机的性能指标测试方法。 ?了解电视机一般附属电路的功能与工作原理。 ?具备测试电视机元器件、单元电路和整机性能指标的初步能力。 ?能读懂典型电视机的整机线路图。 ?能通过对故障现象和检测数据的分析判断故障部位。 ?能说明产生故障现象的原因。 ?了解电视机的有关新技术。 4.学时要求:102学时。 (二)内容要求 一电视机基本原理及维修的基础知识 1色度学的基本知识 1.1光和色的基本知识 1.2三基色原理与空间混色 2 电视信号的形成和传输 2.1 光电转换与电子扫描

2.2视频信号 2.3射频电视信号 2.4彩色电视信号 2.5 色差信号频带的压缩与频谱交错 2.6正交平衡调幅制(NTSC制) 2.7逐行倒相制(PAL制) 3电视接收机的整机结构 理论知识学习要点及维修技能训练目标 3.1 电视机的分类 3.2 电视机的整机结构 3.3黑白电视机的基本电路方框结构及信号流程3.4 彩色电视机的基本电路结构及信号流程3.5 彩色电视机电路的集成化及常见机型 3.6 遥控彩色电视机整机电路简介 3.7 电视机整机的初步认识 二电视机各部分电路的电路分析与故障维修 4电视机电源电路分析与故障维修 理论知识学习要点及维修技能训练目标 4.1 开关电源的分类及基本工作原理 4.2开关电源部分的特殊元器件 4.3 “LA单片机”开关电源的电路分析 4.4 “TDA单片机”开关电源的电路分析

电视机的历程和原理

电视机的历程和原理简介 电视机对于我们并不陌生,它是我们日常生活中必不可少的,它让我们了解到外界重要 电视接收机简称电视机,是广播电视系统的中端设备,它的主要作用是把电视台发出的高频信号进行放大、解调,并将放大的图像信号加至显像管栅机极或阴极间,使图像在屏幕上

重现,将伴音信号放大,推动扬声器放出声音。另外,在同步信号作用下产生与发送端同步的行、场扫描电流,供给显像管偏转线圈,使屏幕重现图像。目前电视机大都采用超外差内载波方式。 1. 电视的接收方式与信号分离 (1) 电视的接收方式 电视信号的接收,主要分为地面广播电视接收、电缆电视技术接收、卫星直播电视接收三种方式。电视接收机的任务就是将接收到的电视信号转变成黑白或者彩色图像。它对电视信号可采用模拟或者数字处理方式。目前电视机正处在从模拟信号处理向数字信号处理过渡的阶段,电视信号的接收正朝着数字处理和多种视听信息综合接收的方向发展。。其主要表现是: ①利用数字集成电路,对电视信号进行数字化处理,以便压缩频带,获得高质量的图像。 ②利用超声波、红外线和微处理技术实现遥控。完成选台、音量调节、对比度、亮度、色饱和度、静噪控制、电源开关、复位控制等遥控动作。 ③利用微处理技术进行自动搜索,自动记忆,预编节目程序。利用频率合成技术和存贮技术,在屏幕上显示时间、频道数和作电视游戏等。 (2) 电视信号的分离 微弱和高频电视信号必须先经过高频放大、变频、中频放大和视频检波后,才能变成具有一定电压幅度的彩色全电视信号;然后根据亮度信号、色度信号、同步信号和色同步信号在时域和频域中的特点,利用它们在频率、相位、时间、幅度等方面的差异进行分离。 2. 黑白电视接收机的组成 黑白电视接收机主要由信号通道(包括高频头,中放,视放和伴音通道),扫描电路(包括同步分离,场、行扫描电路)和电源三部分组成。 信号通道的任务是将天线接收到的高频电视信号变换成视频亮度信号和音频伴音信号。亮度信号激励显像管产生黑白图像,伴音信号推动扬声器产生电视伴音。扫描电路的任务是为显像管提供场、行扫描电流和各种电压,使显像管产生与电视台摄像管同步扫描的光栅。电源部分的任务是将交流市电转变成电视机所需要的各种直流电压。 (1) 信号通道 电视天线周围存在着各种各样的电磁波,由天线和输入电路选出欲接收频道的电视信号,再经过高频放大器有选择性的放大,与本振输出的频率较高的正弦波混频得到中频信号。在变频前,图像载频低于本频道的伴音载频;变频后,图像中频高于伴音中频。这是由于本振频率高于图像载频和伴音载频的缘故。但是,图像中频和伴音中频之差不变,例如,保持6.5MHz 图像和伴音两中频信号经公用通道放大进入视频检波级。检波器有两个作用:一是从中频信号中检出其包括---视频全电视信号;二是利用检波器的非线性作用,完成图像中频和伴音中频的差拍作用,产生出6.5MHz调频的第二伴音中频信号。 检波器的输出信号不仅馈给视放级,而且馈给同步分离电路、自动增益控制(AGC)电路及伴音中放电路,因此采用射随器进行预放大,以加强其负载能力。 预放级也有两个作用:一个将全电视信号和第二伴音中频信号分离。二是将全电视信号进行电流放大,分别馈级视放级,同步分离级和AGC电路;将第二伴音中频信号进行电压放大馈级伴音通道。因此,从天线至预视放称为黑白电视机图像信号和伴音信号和公共通道。全电视信号的一部分经视放级放大去激励显象管产生黑白图象。另一部分送到同步分离级,分离同步信号,用以控制接收机的扫描电路,产生与发送端同步的扫描运动。第三部分送到AGC电路,对高频头和图像中放的增益进行自动控制,从而保证接收机的稳定接收。 第二伴音中频信号经伴音中频放大电路的放大和限幅,由鉴频器解调出伴音信号,再经低频放大,推动扬声器产生电视伴音。鉴频前为调频信号,从天线至混频的载频为伴音载频,混

有线电视基础原理知识

有线数字电视基础知识 一、有线电视概述 1、电视信号的传输形式 就电视技术的原理而言,传送活动景像的电视系统,通常由摄像、信号处理、传输、显像等 部分组成。图像信息的顺序传送原理,是电视信号产生的基础。其基本方法是将要传送的图 像分解为许多像素,将各像素的特征,如亮度和颜色按一定的顺序和方法转变为电信号的幅 度和时间序列,依次传送和处理,并附加表示各像素相对位置的特征信号——同步信号,以便于在接收端电—光信息还原时像素的再现定位,这就是电视技术中电视信号的产生原理。 对于这种包含全部图像信息的全电视信号,其传输的基本形式可分为以下三种方式。 (1)基带传输 是通过传输线或其它媒介直接传输基带信号。一般应用在视频设备比较集中的地方。 (2)无线电视传输 即将基带电视信号和伴音信号通过幅度调制的信号变换处理方法,调制在射频载波上,以便由后者通过适当的天线以高频电磁波形式幅射出去。 对于无线传输方式的接收端来说,要通过各种形式和规模的接收天线设施来提高接收信号的 强度和质量,信号还原的水平因人因地而异,不能做到一致的效果和普遍的稳定。 (3)有线电视传输 将一定幅度的全电视信号经射频调制处理后,把具备全部声像信息特征的射频载波信号,通过有形的传输媒介,如同轴电缆、光纤等介质构成的线路网络形式来进行传输处理的方式。 由于无线广播电视因其固有的开路发射特点而带来的种种弊端,如节目源增加要扩展频道的 数量,其结果又受到频率分配的限制。而有线电视可以在前端演播室利用录像机等设备的视 频节目,以及卫星电视信号、微波中继信号等各类基带视听信息加以选择、处理、解调、调 制等,再经电缆分配系统传送给闭路系统网络内所覆盖的广大用户。这种不受频率使用法规 的局限、不受自然环境干扰的电视信号传输形式,得到了迅速的发展,支持其设施发展的基础产业也逐渐形成,推动了用同轴电缆作为传输线路媒体并具有处理多路多功信号特点的电 缆电视系统。随着光纤设备的技术运用,网络的覆盖途径和范围更加扩大,系统的功能和网络管理又列入了自动调节控制技术,智能型计算机技术和各种辅助工程技术,在有线电视系统信息来源的新技术运用方面发展也很快。因此,作为一种信息传输的有效手段,有线电视还在信息社会需求中不断地发展变化。而电视信号的传输形式最终将突破现有各类形式向更 市制阶段发展,以适应未来社会对电视信息的新要求。 2、有线电视系统的组成 目前,我国的有线电视系统一般都是由信号源和机房设备、前端设备、传输网络、分配网络、用户终端五个部分组成的整体系统。 (1)信号源和机房设备。有线电视节目来源包括卫星地面站接收的模拟和数字电视信号, 本地微波站发射的电视信号,本地电视台发射的电视信号,上行电视信号和数据等。为实现信号源的播放,机房内应有卫星接收机、模拟和数字播放机、多功能控制台、摄像机、特技 图文处理设备、编辑设备、视频服务器,用户管理控制设备、数字信号处理设备等。 (2)前端设备。前端设备是接在信号源与干线传输网络之间的设备。它把接收来的电视信 号进行处理后,再把全部电视信号经混合器混合,然后送入干线传输网络,以实现多信号的单路传输。前端设备输出信号频率范围可在5MHz—1GHz之间。前端输出可接电缆干线, 也可接光缆和微波干线。 (3)传输网络。传输网络处于前端设备和用户分配网络之间,其作用是将前端输出的各种

视频压缩原理

第1章介绍 1. 为什么要进行视频压缩? ?未经压缩的数字视频的数据量巨大 ? 存储困难 ? ?一DVD只能存储几秒钟的未压缩数字视频。 ? 传输困难 ? ?1兆的带宽传输一秒的数字电视视频需要大约4分钟。 2. 为什么可以压缩 ? 去除冗余信息

? ?空间冗余:图像相邻像素之间有较强的相关性 ?时间冗余:视频序列的相邻图像之间容相似 ?编码冗余:不同像素值出现的概率不同 ?视觉冗余:人的视觉系统对某些细节不敏感 ?知识冗余:规律性的结构可由先验知识和背景知识得到3. 数据压缩分类 ? 无损压缩(Lossless) ? ?压缩前解压缩后图像完全一致X=X' ?压缩比低(2:1~3:1) ?例如:Winzip,JPEG-LS ? 有损压缩(Lossy) ? ?压缩前解压缩后图像不一致X≠X' ?压缩比高(10:1~20:1) ?利用人的视觉系统的特性 ?例如:MPEG-2,H.264/AVC,AVS

4. 编解码器 ? 编码器(Encoder) ? ?压缩信号的设备或程序 ? 解码器(Decoder) ? ?解压缩信号的设备或程序 ? 编解码器(Codec) ? ?编解码器对 5. 压缩系统的组成

(1) 编码器中的关键技术 (2) 编解码中的关键技术 6. 编解码器实现 ? 编解码器的实现平台: ? ?

超大规模集成电路VLSI ? ?ASIC,FPGA ?数字信号处理器DSP ?软件 ? 编解码器产品: ? ?机顶盒 ?数字电视 ?摄像机 ?监控器 7. 视频编码标准 编码标准作用: ? 兼容: ? ?不同厂家生产的编码器压缩的码流能够被不同厂家的解码器解码 ? 高效: ?

电视机原理与技术课后答案

1.6当电视收看圆图节目时,出现四对黑白相间的干扰条纹,P30(页) 干扰频率是 4 ×50=100 Hz 1、12 既然电视信号带宽为6MHz,为什么还要调制到高频载波上去发射?应如何解释?答:图像信号的最高频率为6MHz,将其调制到高频载波上,在无线电传输中可以减小天线尺寸,功率大便于远距离传输,还能提高信号的抗干扰能力;载波频带丰富,便于频带复用,即不同频道电视信号占用不同频带,其传输和接受互不影响;已调的伴音信号还可以加到已调图像信号的间隔里; 1.14 调幅和调频波各有什么特点?为什么伴音采用调频方式?图像可否也采用调频方式?答:调频的特点是频宽窄,距离长,对阻碍物的穿透能力弱,但是传输距离长,对寄生调幅,可用限幅器加以消除;所携带的边频很丰富,因此伴音的音质、音域都比调幅波好 调幅的特点是频宽宽,距离短,对阻碍物的穿透能力强,但是传输距离较短,已调信号带宽

是基带信号带宽的2倍。 伴音信号采用调频方式,能获得高音质的伴音,能防止高频伴音和高频图像信号的干扰 图像信号不能采用调频方式,否则它容易与伴音信号产生相互干扰,它采用单边带调幅方式,压缩了图像信号调幅波频带,滤波性能容易实现,可采用简单的峰值包络检波。 1.15 电视变频器框图如图P31(页) f=(48.5+56.5)/2=52.5MHz 第一频道中心载频 1 ?????????????????????? 2.6简单说明通道超外差式电视机有什么特点?存在哪几个干扰? 答:超外差接收,不论接收哪个频道的全射频电视信号混频后都变成同一中频,这一中频为固定的38MHz,则可以设法使中放的频率特性具有优良的选择性并适合于残留边带的特点,并抑制邻频道的干扰。因此其接收效果好,调谐方便,灵敏度、选择性和抗干扰能力都比较理想。 其干扰有一下几种:邻频道干扰,中频干扰,镜频干扰 2.13 根据电视机原理方框图2-5,判断下列故障可能出现在哪一部分? 答:(1)有光栅,无图像,无伴音;故障部分:信号通道和伴音通道,如伴音中放,鉴频器,音频放电器,视放。 (2)有光栅,有图像,有无伴音;故障部分:检波输出的6.5MHz第二伴音中频信号未能经伴音通道加到扬声器上,则伴音通道有问题,如伴音中放,鉴频器,音频放电器 (3)有光栅,无图像,有伴音;故障:出现在视放级 (4)有伴音,荧光屏上只出现一条水平亮线;故障:场频锯齿波电流没有送入场偏转线圈,则故障出现在场扫描电路,如积分器、场震荡、场激励、场输出 (5)有伴音,荧光屏上只出现一条垂直亮线;故障:行输出级产生的锯齿电流未能送到偏转线圈,所以故障可能发生在行偏转线圈支路,如AFC、行震荡、行激励、行输出 (6)图像垂直方向不同步;故障:场不同步,故障一般出现在场同步分离电路或场振荡电路 (7)图像水平方向不同步;故障:行不同步,故障出现在行扫描部分,如同步分离电路、行振荡和行AFC 电路 (8)图像水平和垂直方向都不同步;故障:行场均不同步,故障通常在同步分离电路不良。 3.2何谓三基色原理?彩色电视所用相加混色方式有哪几种?为什么彩色电视用相加混色 法而不用相减混色法? 答:(1)三基色原理是指自然界常见的多数彩色都可以用三种相互独立的基色按不同比例成,所谓独立的三基色是指其中的任一色都不能由另外两色合成。 (2) ①最直接方法——光谱混色法 ②生理混色法,(即利用R(红)、G(绿)、B(蓝)三基色按相同比例相加混合) ③时间混色法 ④空间混色法 (3)三个概念: 一、混色法:不同颜色混合在一起,能产生新的颜色

数字电视原理

//第一章 1.说明色温和相关色温的含义。在近代照明技术中,通常选用哪几种标准光源? 答:色温:当某一光源的相对辐射功率波谱及相应颜色与绝对黑体在某一特定热力学温度下的辐射功率波谱及颜色相一致时,绝对黑体的这一特定热力学温度就是该光源的色温,色温的单位是开(K)。相关色温:当某光源的相对辐射功率波谱及相应光色只能与某一温度下绝对黑体的辐射功率波谱及相应光色相近,无论怎样调整绝对黑体的温度都不能使两者精确等效时,使两者相近的绝对黑体的温度称为该光源的相关色温。五种标准白光源:①标准光源A:色温为2856K的透明玻壳充气钨丝灯。②标准光源B:相关色温为4874K的辐射,光色相当于正午阳光。③标准光源C:相关色温为6774K 的辐射,光色相当有云的天空光。④标准光源D:模拟典型日光的标准照明体D65,相关色温为6504K。⑤标准光源E:假想的等能白光(E白)相关色温为5500K,。 2.彩色三要素的物理含义。 答:亮度:光作用于人眼时所引起的明亮程度的感觉。色调:指颜色的类别,通常所说的红色,绿色,蓝色等就是色调。色调与光的波长有关,改变光的波谱成分,就会使光的色调发生变化。色饱和度:是指彩色光所呈现色彩的深浅程度。色调与色饱和度合称为色度,它既说明彩色光的颜色类别,又说明颜色的深浅程度。 3.阐述三基色原理及其在彩色电视系统中的应用。 答:三基色原理是指自然界中常见的大部分彩色都可由三种相互独立的基色按不同的比例混合得到。三基色原理是彩色电视的基础,人眼的彩色感觉与彩色光的光谱成分有密切关系,但不是决定性的,只要引起的彩色感觉相同,都可以认为颜色是相同的,而与他们的光谱成分无关。利用三基色原理就可以大大简化彩色电视信号的传输。 4.什么是隔行扫描和逐行扫描? 答:隔行扫描是指电子束在摄像管的光电靶上拾取图像信号或在显像管上重现图像做匀速直线运动时,将一桢完整的电视画面分为两场,每一场包含了一桢中的所有奇数扫描行或者偶数扫描行,通常先扫描由所有的奇数行构成的奇数场,然后再扫描所有的偶数行构成的偶数场。奇数场和偶数场,两场光栅均匀相嵌,够成一桢完整的电视画面。逐行扫描是指电子束在摄像管的光电靶上拾取图像信号,或在显像管上重现图像时,一行紧接一行的扫描一次,连续扫描完一桢完整的电视画面。 5.隔行扫描有哪些优点和缺点? 答:优点:利用视觉暂留效应,在保证无闪烁感的同时,使图像信号的传输带宽下降一半,可以有效的节省电视广播频道的频谱资源。缺点:行间闪烁现象;并行现象引起垂直清晰度下降;易出现垂直边沿锯齿化现象;隔行扫描产生的视频信号给压缩处理和后期视频制作带来困难。 6.隔行扫描的总行数为什么是奇数,而不是偶数? 答:隔行扫描的关键是要使两场光栅均匀相嵌,否则屏幕上扫描光栅不均匀,甚至产生并行现象,严重影响了图像清晰度。为此,选取一桢图像总行数为奇数,每场均包含有半行。并设计成奇数场最后一行为半行,然后电子束返回到屏幕上方的中间,开始偶数场的扫描;偶数场第一行也为半行,最后一行为整行。 7.如何理解亮度?如何理解对比度? 答:亮度是表征发光物体的明亮程度的物理量,是人眼对发光器件的主观感受。在电视机和显示器中,亮度用于表征图像亮暗的程度,是指在正常显示图像质量的条件下,重现大面积明亮图像的能力。对比度是表征在一定的环境光照射下,物体最亮部分的亮度与最暗部分的亮度之比。电视机和显示器的对比度(C)是指在同一幅图像中显示图像最亮部分的亮度(B max)和最暗部分的亮度(B min)之比。 8.什么是图像分辨力?什么是图像清晰度?这两者的联系与区别? 答:图像分辨力:指相关标准规定的整个数字电视系统生成、处理、传输和重现图像细节的能力。图像清晰度:电视图像清晰度是人眼能察觉到的电视图像细节的清晰程度,

液晶电视机的工作原理和维修方法

液晶电视机的工作原理和维修方法(一) 2010-02-21 17:29:31| 分类:默认分类| 标签:|字号大中小订阅 现在几乎所有的商场都见不到老式的显像管彩电了,液晶彩电虽然缺点明显,但因体积小重量轻,对比度和清晰度高成为了市场的主流,对于我们的老家电维修工来说,不学液晶彩电的维修技术是不行了,这是我积极推出液晶彩电维修知识的主要原因。希望能对大家有所帮助,并减少不必要的弯路。 液晶显示(LiquidCrystalDisplay)简称LCD。 LCD是个大家族,TFT(薄膜晶体管)LCD类型仅仅是其中的一种,它是在两片玻璃板之间封入液晶,在下玻璃板上配制上扫描线与寻址线(即行、列线)将其组成一个矩阵,在其交点上再制作TFT有源器件和像素电极。如果是彩色显示,还要在微细加工方式制作上与下面矩阵像素对应的R(红)、G(绿)、 B(蓝)三种颜色的滤色膜,最后将其上与下玻璃基板对齐、封盒、灌注、堵孔等一系列工艺制成液晶片。 因为液晶本身不发光,必须要靠调制外界光才能达到显示目的,所以在LCD显示屏模块中就有了发光的装置--冷阴极荧光灯CCF,这是一种依靠冷阴极气体放电,激发荧光粉而发光的光源。掺有少量水银的稀薄气体在高电压下会产生电离,被电离的气体的二次电子发射轰击水银蒸汽,使水银蒸气激发,发射出紫外线,紫外线激发涂布于管壁的荧光粉层,使其发光。发光的CCF灯管通过特殊的导光板和匀光板,使其与液晶片大小一致,紧贴于液晶显示面板,用作背景光,从而达到显示图像的目的。通过调节背光灯亮度或者调节液晶片中的薄膜晶体管的导光度从而达到调节图像亮度、对比度的目的。 液晶电视主要由显示屏、信号处理电路、背光灯电路构成。其显示屏是一个模块,信号处理主要由高频电路图象处理A/D电路、伴音电路、控制电路等构成。背光灯电路是一个逆变电路,用于点亮显示屏内灯管的作用。 维修实例: 1、白光栅,有伴音(15AAB/8TT1机芯) 维修:通电开机,发现屏幕为白屏,但有伴音,分析此故障为液晶屏没有工作所致造成,查显示屏的+5V供电及行、场信号,发现没有+5V供电,查线路为主板L21,+5V供电电感开路更换后OK! 2、无光栅,有伴音(20AAA/8TT1机芯) 维修:开机后发现在强光下隐约可见图像,分析认为本机为背光灯未工作所致,拆机后通电后发现背光板无高压产生,查背光板供电及背光控制电平,用万用表测主板J6处电压。1脚供电12V正常,但5脚在时ON应该为+5V高电平,此时却始终为0V。顺线路查控制电路,J6的第5脚通过R52/1K贴片电阻接 CPU-KS88C4504的第22脚,用表测CPU第22脚为+5V电压,R52/1K电阻一端有+5V,另一端为0V,断电后测该电阻已经开路了,更换后一切正常。 3、死机:(15AAB/8TT1机芯) 维修:插上电源指示灯不亮,测主板已有+5V电压输出,查CPU电路,测CPU-KS88C4504的第12脚、第5脚、第53脚供电均正常,测CPU晶振Y2-10M也已经起振,后测复位脚第19脚电压,正常应该为高电平,而此时为0V,查复位电路及其外围,复位电路是

图像压缩原理

1、为什么要对图像数据进行压缩?其压缩原理是什么? 答:(1)数字图像如果不进行压缩,数据量是比较大的,例如一幅分辨率为1024×768的静态真彩色图像,其数据量为1024×768×24=2.25(MB)。这无疑对图像的存储、处理、传送带来很大的困难。事实上,在图像像素之间,无论在行方向还是列方向,都存在一定的相关性。也就是说,在一般图像中都存在很大的相关性,即冗余度。静态图像数据的冗余包括:空间冗余、时间冗余、结构冗余、知识冗余和视觉冗余、图像区域的相同性冗余、纹理的统计冗余等。图像压缩编码技术就是利用图像数据固有的冗余性和相干性,将一个大的图像数据文件转换为较小的同性质的文件。 (2)其压缩原理: 空间冗余、时间冗余、结构冗余、和视觉冗余。 2、图像压缩编码的目的是什么?目前有哪些编码方法? 答:(1)视频经过数字化处理后易于加密、抗干扰能力强、可再生中继等诸多优点,但是由于数字化的视频数据量十分巨大,不利于传输和存储。若不经压缩,数字视频传输所需的高传输率和数字视频存储所需的巨大容量,将成为推广数字电视视频通信的最大障碍,这就是进行视频压缩编码的目的。 (2)目前主要是预测编码,变换编码,和统计编码三种编码方法。 3、某信号源共有7个符号,概率分别为0.2,0.18,0.1,0.15,0.07,0.05,0.25,试进行霍夫曼编码,并解释是否进

行了压缩,压缩比为多少? 0000 0001 000 00 111 110 10 0.05 0.07 0.1 0.2 0.18 0.15 0.25 0.05×4+0.07×4+0.1×3+0.2×2+0.18×3+0.15×3+0.25×2=2.67

数字电视机工作原理

基本定义 数字电视(Digital TV)又称为数位电视或数码电视,是指从演播室到发射、传输、接收的所有环节都是使用数字电视信号或对该系统所有的信号传播都是通过由0、1数字串所构成的二进制数字流来传播的电视类型,与模拟电视相对。 内容简介 数字电视是一个从节目采集、节目制作节目传输直到用户端都以数字方式处理信号的端到端的系统。基于DVB技术标准的广播式和“交互式”数字电视.采用先进用户管理技术能将节目内容的质量和数量做得尽善尽美并为用户带来更多的节目选择和更好的节目质量效果,数字电视系统可以传送多种业务,如高清晰度电视(简写为“HDTV”或“高清”)、标准清晰度电视(简写为“SDTV”或“标清”)、互动电视、BSV液晶拼接及数据业务等等。与模拟电视相比,数字电视具有图像质量高、节目容量大(是模拟电视传输通道节目容量的10倍以上)和伴音效果好的特点。 数字信号 在通信系统内传输的信号,其载荷信息的物理量在时间上是离散,而且取值也离散,则称为数字信号(Digital signal)。它是离散时间信号(discrete-time signal)的数字化表示,通常可由模拟信号(analog signal)获得。 传播速率 数字信号的传播速率是每秒19.39兆字节,如此大的数据流的传递保证了数字电视的高清晰度,克服了模拟电视的先天不足。同时还由于数字电视可以允许几种制式信号的同时存在,每个数字频道下又可分为几个子频道,从而既可以用一个大数据流--每秒19.39兆字节,也可将其分为几个分流,例如4个,每个的速度就是每秒4.85兆字节,这样虽然图像的清晰度要大打折扣,却可大大增加信息的种类,满足不同的需求。例如在转播一场体育比赛时,观众需要高清晰度的图像,电视台就应采用每秒19.39兆字节的传播;而在进行新闻广播时,观众注意的是新闻内容而不是播音员的形象,所以没必要采用那么高的清晰度,这时只需每秒3兆字节的速度就可以了,剩下16.39兆字节可用来传输别的内容! 传输过程 “数字电视”的含义并不是指我们一般人家中的电视机,而是指电视信号的处理、传输、发射和接收过程中使用数字信号的电视系统或电视设备。其具体传输过程是:由电视台送出的图像及声音信号,经数字压缩和数字调制后,形成数字电视信号,经过卫星、地面无线广播或有线电缆等方式传送,由数字电视接收后,通过数字解调和数字视音频解码处理还原出原来的图像及伴音。

《电视机原理与技术》试题集二

《电视机》第三、四、五、九、十章彩电原理试题集 一、填空题 1.彩色三要素是、和;其中和称为色度;三基色是指、、三种颜色。 2.彩条信号图案的颜色从左至右分别是白、、、、、、、黑。 3.目前世界上采用的彩色电视制式有制、制和制,我国采用制。 4. NTSC制是__________ 制,PAL制是__________ 制。 5.正交是指两个副载波相位相差,PAL制采用正交平衡调幅。 6.平衡调幅是一种的调幅方式,对平衡调幅波进行解调必须先恢复。 7.PAL制是对分量进行逐行倒相处理,它的优点是。 8.亮度方程式是。 9.U R表示,U G表示,U B表示,U Y表示, U R-Y表 示,U B-Y表示,U表示, V表示 F U 表示, F V表示,F表示。 10.彩色全电视信号(FBAS)包括、、、和。 11.色度信号在编码的过程中变换成一个矢量F,那么彩色图像的色度信息全部包含在色度信号的与中。 12.要实现黑白彩色电视兼容,在彩色电视中采用两个重要措施,即和。 13.彩色电视机与黑白电视机的主要区别在于在彩色电视机电路中,多了一个。 14.为在一个8MHz的带宽中传输亮度信号和色差信号,彩色电视系统中采用了____________原理。 15.为实现正交平衡调制的解调,要求接收机的副载波与发射端____________,这可以通过 在电视信号中加入____________来实现。 16.PAL制色同步信号是一串等幅的正弦信号,其频率为______,初相位:NTSC行______, PAL行______。 17.解码电路由、、和矩阵电路组成。 18.解码电路的作用是对信号解调,还原出信号。 19.解码过程是:两分离即__________与__________分离,__________与__________分离;两解调即__________与__________解调和__________与__________解调;一矩阵:即__________矩阵。 20.当色度信号幅度很小时,电路会关闭色度通道,色度信号无法通过而消除了彩色。 21.延时解调器又称,能从色度信号中解码出信号,色度信号经一行延时后,输出信号相位会。 22.因为U、V信号是信号,所以采用电路进行检波,该检波电路工作 时需要信号。第1页

电视机原理期末复习题含答案

总复习题 一、选择题 1、色温是(D) A、光源的温度 B、光线的温度 C、表示光源的冷热 D、表示光源的谱分布 2、彩色三要素中包括(B) A、蓝基色 B、亮度 C、品红色 D、照度 3、用RGB计色制表示单色光时有负的色系数,这是因为(D) A、这样的单色光不存在 B、这样的单色光饱和度太高 C、这样的单色光不能由RGB三基色配出来 D、这样的单色光要由负系数对应基色的补色配出来 4、水平扫描的有效时间的比例可以由(C)反映。 A、行频 B、场频 C、行逆程系数 D、场逆程系数 5、均衡脉冲的作用是(BorD)选B A、保证场同步期内有行同步 B、保证场同步起点的一致 C、保证同步信号的电平 D、保证场同步的个数 6、关于隔行扫描和逐行扫描,以下哪一点是错的(C) A、隔行扫描一帧内的扫描行数是整数 B、逐行扫描一帧内的扫描行数是整数 C、相同场频时,二者带宽相同 D、隔行扫描可以节省带宽 7、下面的(D)与实现黑白电视与彩色电视的兼容无关 A、频谱交错 B、大面积着色原理 C、恒定亮度原理 D、三基色原理 8、PAL彩色电视制式的色同步信号与NTSC彩色电视制式的色同步信号(D) A、相同 B、U分量不同 C、V分量不同 D、完全不同 9、从彩色的处理方式来看,(A)制式的色度信号分辩率最高 A、NTSC B、PAL C、SECAM D、都差不多 10、NTSC彩色电视制式中副载频选择的要求不包括(B) A、实现频谱交错 B、减少视频带宽 C、尽量在视频较高频率端 D、保证色度带宽不超出视频上限 11、色同步信号的位置在(C) A、行同步脉冲上 B、行消隐信号的前沿 C、行消隐信号的后沿 D、场消隐信号的后沿 12、关于平衡调幅以下哪一种是正确的(C) A、平衡调幅中有载频分量 B、平衡调幅波的极性由载频决定 C、平衡调幅利于节省功率 D、平衡调幅可以用包络检波解调 13、彩电色度通道中色度信号与色同步信号的分离采用的是(B)方式。 A、幅度分离 B、时间分离 C、相位分离 D、频率分离 14、彩电中行输出变压器的作用是(D)。 A、为显像管提供工作电压 B、为小信号供电电路提供直流电压 C、为ABL电路、行AFC电路提供控制信号 D、A和B和C 15、彩电高频头(高频调谐器)的输出信号是(B)。 A、高频图像信号与伴音信号 B、中频图像信号与第一伴音中频信号

数字电视技术

第一章 三网合一 (互联网、电信网、电视网) 三屏合一 (手机、计算机、电视机的显示屏) 3C 是计算机(Computer )、通讯(Communication )和消费电子产品(Consumer Electronic ) 模拟彩色电视的不足:传统的电视存在着“易受干扰、色度分辨率不高且容易畸变,亮色串扰。行闪烁和行蠕 动、清晰度低和临场感弱、时间利用率和频带利用率都不高以及不能与计算机网兼容”等缺点。 模拟彩色电视的不足主要原因是:扫描制式;亮色共用一个通道;电视接收机屏幕不够大。 数字电视就是拍摄、编辑、制作、播出、传输、接收等电视信号播出和接收的全过程都使用数字技术的全新的 电视系统。 数字电视和现行的模拟电视最大的区别:数字信号在传输过程中通过再生技术和纠错编解码技术使噪声不会逐 步积累,基本不产生新的噪声,保持信杂比基本不变,收端图像质量基本保持与发端一致,适合多环节、 长距离传输。保证了数字电视的图像清晰而稳定,在覆盖区域内图像质量不会因信号传输距离的远近而变 化,在信号传输整个过程中外界的噪声干扰都不会影响电视图像质量。 模拟彩色电视系统缺陷主要原因:1.都采用隔行扫描,导致垂直扫描线不够,垂直清晰度不高。2.亮度信号和色 度信号共同使用一个信道,导致清晰度低,引起亮度串扰。3.显示屏幕尺寸不够大,即扫描线数不够。 数字电视的分类及其特点: ⑴ 按数字电视的接收方式: 固定接收:模拟电视接收机+机顶盒 计算机+机顶盒 数字电视接收机 移动接收: 车载接收,手机电视 ⑵按传输接收方式: 卫星传输系统(DVB-S ) 地面传输系统(DVB-T) 有线电视传输系统(DVB-C) (3) 按清晰度:HDTV(高清) ,SDTV(标清),LDTV(低清) 1.高质量画面2.功能更加丰富3.有高质量音效4.丰富电视节目5.有交互性6.有通信功能 第三章 CCIR601建议 3.1图像信号的压缩依据(可能性): 存在时间和空间、信息熵、结构、知识、视觉、局部和区域等不同程度 的冗余. 图像压缩的可行性:预测编码、变换编码、矢量量化、运动补偿、熵编码、分形编码 1. 空间冗余:空间上亮度、色度、色饱和度相关性 2. 时间冗余:相邻两帧之间图像近似 3. 结构与知识冗余 4.视觉冗余:对灰度和色度的分辨力不同 人眼的视觉特性: 1.空间分辨力:是指对一幅图像相邻像素的灰度和细节的分辨力。 2.视觉阈值:视觉阈值是指干扰或失真刚好可以被觉察的门限值,低于它就觉察不出来,高于它才察觉出来。 3.亮度辨别阈值:当景物的亮度在背景亮度基础上增加较少时,人眼是察觉不出的,只有当亮度增加到某一数 值时,人眼才可以察觉其变化。 3.3预测编码基本原理:预测编码仅对非独立信源(即相关的)起作用。若设XN 为待编码像素,其前面第(N 一1)个像素为{Xi |i=1,… ,N-1}, 一般地在图像信号的线性预测编码中,如用前面第(N 一1)个像素来预 测第N 个像素,有112211--+++=N N N X a X a X a X 预测编码\解码系统结构框图 预测编码:就是用预测值与待传输X0相减得到的差值e(=X0-0X ' ),对e 进行量化编码传送的过程。对e 进行量化编码传送的过程。显然预测精度愈高,e 值越小,其量化编码的位数愈少 自适应预测编码:使预测器或量化器的参数能够根据图像的局部的具体特点作自动调节 电视系统中的空间分解力是原图像清晰度(即帧图像的总像素)的本质反映 运动补偿实际上是对活动图像进行压缩时所使用的一种帧间编码技术。客观上相邻帧间有较大的时域相关性, 因此,运动补偿的目的正是要将这种时域相关性尽可能地去除,其核心技术是运动估值. 运动估值算法归纳为两大类:一类是像素递归算法PRA ,另一类是块匹配算法BMA ,BMA 要解决两个问题即搜索 方式(计算量)和匹配准则(精度和速度) 运动补偿的原理可简要地理解为:当视频编码器对图像序列中的第n 帧n F 进行处理时,利用运动估值得到的 预测值n F ',如果预测系统性能卓越,其n F '与n F 两者差值应极小,即运动估值在十分有效时,差值基本 上分布在零附近。 运动补偿预测编码步骤 第一步:是在相邻的参考帧中估计运动物体的位移值即位移矢量或运动矢量,这一步称为运动估值(估计)或位 移估值等。 第二步:是利用所得到的运动估值即位移矢量进行帧间预测编码,这一步称为运动补偿。运动补偿是把参考帧 中的像素位移后作为当前帧像素的预测值。 第三步:是将预测信息如运动矢量(直接编码)和预测误差(真实值与预测值之差)进行变换、量化、编码。显然 此时的预测误差是一个较小的值,所以编码的结果就得到了较大的压缩。当找到完全匹配像素时,其 预测误差为零。 二维DCT 有其明确的物理意义,就N =8而言,8×8的二维数据块经DCT 变换后成为8×8个变换域的系数,当 u =0,v =0时,是原64个样值的平均,相当于直流分量。随着u ,v 的增加,相应的系数分别代表逐步增加的 水平和垂直空间频率的大小。 利用预测编码实现数据压缩编码依据:对于静止和低速运动的图像,其像素之间有很大的相关性。由n 个像素 预测出第n+1个像素,在信道中只需传送真实与预测的误差值,其次人眼对细节分辨力低,所以可以利用 预测编码实现数据压缩编码 DCT 不能进行数据压缩,以为变换后就算是0也要用8bit 进行编码,其作用是为后续游程编码做准备,游程编

电视原理试题和答案打印版[答案]

总复习题 下面试题为电视机原理期末考试试题(含答案),望大家参考…… 一、选择题 1、色温是(D) A、光源的温度 B、光线的温度 C、表示光源的冷热 D、表示光源的谱分布 2、彩色三要素中包括(B) A、蓝基色 B、亮度 C、品红色 D、照度 3、用RGB计色制表示单色光时有负的色系数,这是因为( D) A、这样的单色光不存在 B、这样的单色光饱和度太高 C、这样的单色光不能由RGB三基色配出来 D、这样的单色光要由负系数对应基色的补色配出来 4、水平扫描的有效时间的比例可以由( C)反映。 A、行频 B、场频 C、行逆程系数 D、场逆程系数 5、均衡脉冲的作用是( B) A、保证场同步期内有行同步 B、保证场同步起点的一致 C、保证同步信号的电平 D、保证场同步的个数 6、关于隔行扫描和逐行扫描,以下哪一点是错的( C) A、隔行扫描一帧内的扫描行数是整数 B、逐行扫描一帧内的扫描行数是整数 C、相同场频时,二者带宽相同 D、隔行扫描可以节省带宽 7、下面的( D)与实现黑白电视与彩色电视的兼容无关 A、频谱交错 B、大面积着色原理 C、恒定亮度原理 D、三基色原理 8、PAL彩色电视制式的色同步信号与NTSC彩色电视制式的色同步信号( D) A、相同 B、U分量不同 C、V分量不同 D、完全不同 9、从彩色的处理方式来看,( A)制式的色度信号分辩率最高 A、NTSC B、PAL C、SECAM D、都差不多 10、NTSC彩色电视制式中副载频选择的要求不包括( B) A、实现频谱交错 B、减少视频带宽 C、尽量在视频较高频率端 D、保证色度带宽不超出视频上限 11、色同步信号的位置在( C) A、行同步脉冲上 B、行消隐信号的前沿 C、行消隐信号的后沿 D、场消隐信号的后沿 12、关于平衡调幅以下哪一种是正确的( C) A、平衡调幅中有载频分量 B、平衡调幅波的极性由载频决定 C、平衡调幅利于节省功率 D、平衡调幅可以用包络检波解调 13、彩电色度通道中色度信号与色同步信号的分离采用的是(B)方式。 A、幅度分离 B、时间分离 C、相位分离 D、频率分离 14、彩电中行输出变压器的作用是(D)。 A、为显像管提供工作电压 B、为小信号供电电路提供直流电压 C、为ABL电路、行AFC电路提供控制信号 D、A和B和C 15、彩电高频头(高频调谐器)的输出信号是(B)。 A、高频图像信号与伴音信号 B、中频图像信号与第一伴音中频信号

电视机原理及基础知识

电视机原理及基础知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

图1 电视机原理及基础知识 -、概论: 电视技术是利用广播、通信领域的发射、接收及信号处理技术,将现场的或记录的活动图像或静止图像,连同它们的声音信号一起,在一定的距离之外即时再现。随着电子技术的迅速发展,电视机经历了黑白电视,正由彩色电视向数字电视发展。黑白电视系统只能按景物的明暗程度来重现图像,使多彩的自然景色看起来不那么自然,为了逼真的反映景物的本来面目,满足顾客的需要,彩色电视机逐渐代替了黑白电视机。而将来能更清晰地显示图像内容的数字电视系统必将代替模拟的彩色电视系统。 下面主要叙述彩色电视系统接收机原理: 彩色电视机一般由高频调谐器、图像与伴音中频处理电路、行场扫描电路、亮度信号处理电路、色度信号解码及基色矩阵电路、高压形成电路、电源电路等组成。彩色电视机方框图如下(图1): 高频调协器的主要功能是完成高频电视信号的接收、放大、混频等任务。彩色电视机均采用超外差式接收方式,从电视接收天线接收到高频电视信号(包括图像信号与伴音信号),经过输入回路预选后,首先进入高频放大器,高频放大器为具有双调谐回路的低噪声放大器,它的增益受高放AGC 电压控制。高频放大器放大有用信号,抑制带外干扰信号,提高图像、伴音信噪比。被放大的高频电视信号,与本机振荡器产生的等幅高频振荡

电压一起,送到混频器的输入端。混频器是一个非线性放大器,它的混频原理是将高频电视信号与本振信号同时送给晶体管的基射极之间,由于PN结的非线性特性,使集电极回路产生了新的频率,其中有两者的差频、和频、倍频等等,它们又经三极管放大,由于集电极调协电路谐振于差频,因此准确地选出差频,滤除其它频率。这样利用混频器的非线性作用,形成图像中频信号与伴音中频信号,由混频器输出送到图像中频信号处理电路。 从高频调谐器混频级输出的图像中频信号与伴音中频信号,首先经过前置中频放大器放大后,送到声表面波滤波器。声表波滤波器通过压电转换作用,形成图像中频放大器的通频带及幅度-频率特性,选择电视信号并保证电视接收机对临近频道电视信号的抑制能力。由于声表面滤波器存在各种损耗,造成信号衰减,降低图像中频放大器增益,为此加入前置中频放大器,以弥补声表波滤波器的损耗。 由声表面波滤波器输出的38MHz的图像中频信号和的伴音中频送到图像中频放大器放大。通常图像中频放大器由三级-四级组成,其增益受图像中放AGC 电压控制。经放大后的图像中频信号送到同步检波器,进行视频检波,从图像中频信号中取出视频全电视信号,再经前置视频放大器放大后,送到色度解码电路、亮度信号处理电路和行、场扫描电路的同步分离电路。 从图像中频信号处理电路分离出的的第二伴音中频信号,经带通滤波器后,抑制亮度信号对伴音信号的干扰,形成等幅调频信号,送到伴音中频信号处理电路。伴音中频放大器由多级限幅放大器组成,其主要特点是增益高,对由内载波接收形成的寄生调幅分量有一定的抑制能力。对于由限幅放大形成的高次谐波可用有源低通滤波器滤除,放大后的等幅调频伴音信号进入鉴频电路。 彩色电视机行、场扫描电路的作用是产生15625Hz的行扫描锯齿波电流和50Hz的场扫描锯齿波电流,通过偏转线圈形成垂直方向和水平方向的均匀磁场,控制彩色显像管的电子束,沿水平方向和垂直方向在荧光屏上进行匀速直线扫描运动,形成矩形光栅。一般红、绿、蓝三路输出的视频信号,加在彩色显像管电子枪的红、绿、蓝三个阴极上,行、场同步信号分别使行、场扫描电路与彩色电视发射中心的行、场扫描电路同频、同相工作,在彩色显像管荧光屏上就可以重显色彩艳丽的彩色画面。 从视频检波电路输出的视频全电视信号,首先通过幅度分离电路,从视频全电视信号中分离出复合同步信号(包括行、场同步信号),一路经积分电路,利用行、场同步脉冲的宽度不同,分离出场同步脉冲,直接同步场扫描电路;另一路经过自动频率控制(AFC)电路,间接控制行扫描电路的频率和相位,使行扫描电路同步工作。为了防止干扰脉冲破坏行、场扫描电路的正常工作,在同步分离之前,必须加入干扰抑制电路。 行扫描电路大致由以下几部分组成:行频自动频率控制(AFC)电路(图2),行频压控振荡电路,行激励电路,行输出电路。行自动频率控制电路利用行同步脉冲与反映行输出级频率与相位的锯齿波比较电压进行相位比较,得到的误差控制电压加到行振荡器上,控制行振荡电路的频率和相位,提高行同步电路的抗干扰能力。行频压控振荡电路在行AFC电路输出的直流误差控制电压作用下,产生15625Hz的行频定时脉冲。此脉冲经行激励电路放大后,推动行输出级正常工作。行输出管在行激励脉冲的作用下工作在开关状态,并与阻尼二极管组成双向开关,行偏转线圈与行输出变压器的等效电感组成积分电路,这样,在行偏转线圈中形成锯齿波电流。

相关文档
最新文档