浅谈牛岐二站水电站电气设备发热量计算

浅谈牛岐二站水电站电气设备发热量计算
浅谈牛岐二站水电站电气设备发热量计算

浅谈牛岐二站水电站电气设备发热量计算

摘要:本文分析了牛岐二站水电站几种主要电气设备的特性,通过电气设备发热量的计算确定,为水工建筑设计提供了较为准确的依据,并在电气设计工作中应用。

关键词:牛岐二站水电站电气设备发热量确定

1、引言

在水电站运行过程中为了满足机电设备,特别是电子控制元件对运行环境的要求;另一方面为了满足运行人员的舒适度要求,随着生活水平的提高,人们对水电站运行环境的温、湿度要求也越来越高。要较为准确的控制环境的温、湿度,就需要对厂房的热负荷及其特性有比较深入的了解,分析那些电气设备的热量会对周围环境产生影响,对所需的电气设备通过计算得出结论为水工建筑设计提供较为准确的依据,也为通风空调系统的设计打下了一个好的基础。

2、电气设备发热量计算确定

电站厂房的热负荷主要来自两个方面,一方面是建筑围护结构的热量,另一方面是来自于电站内各种机电设备的发热。电气设备的发热主要来源于发电机组、各类变压器、母线、电缆、高低压配电盘柜和照明设备等。在这里,主要对电站中的电气设备发热特性进行探讨。

2.1发电机组发热量

发电机组的散热量主要来自于两个方面,一是发电机组的盖板传热和机壳围护结构传热,二是发电机组的冷却循环风的漏风所带来的热量。

牛岐二站发电机组的冷却方式采用封闭式空气自循环冷却方式,发电机绕组的损耗传给冷却空气,空气的热量再通过机组水冷却器由冷却水带走。根据实测的数据,定子排出的空气温度一般不超过65℃,而进入转子的空气温度一般不低于5℃。

发电机机壳的散热量可以按下式计算:

w

其中:——发电机机壳的传热系数w/㎡·℃——发电机机壳的面积㎡——发电机冷却循环风的平均温度℃——室内空气温度℃

发电机的漏风散热量可以按下式计算:

高低压配电柜发热量计算方法

高低压开关柜、变压器的发热量计算方法 变压器损耗可以在生产厂家技术资料上查到(铜耗加铁耗);高压开关柜损耗按每台200W估算;高压电容器柜损耗按3W/kvar 估算;低压开关柜损耗按每台300W估算;低压电容器柜损耗按4W/kvar估算。一条n芯电缆损耗功率为:Pr=(nI2r)/s,其中I 为一条电缆的计算负荷电流(A),r为电缆运行时平均温度为摄氏50度时电缆芯电阻率(Ωmm2/m,铜芯为0.0193,铝芯为0.0316),S为电缆芯截面(mm2);计算多根电缆损耗功率和时,电流I要考虑同期系数。 上面公式中的"2"均为上标,平方。 一、如果变压器无资料可查,可按变压器容量的1~1.5%左右估算; 二、高、低压屏的单台损耗取值200~300W,指标稍高(尤其是高压柜); 三、除设备散热外,还应考虑通过围护结构传入的太阳辐射热。 主要电气设备发热量 电气设备发热量 继电器小型继电器0.2~1W 中型继电器1~3W励磁线圈工作时8~16W 功率继电器8~16W 灯全电压式带变压器灯的W数

带电阻器灯的W数+约10W 控制盘电磁控制盘依据继电器的台数,约300W 程序盘 主回路盘低压控制中心100~500W 高压控制中心100~500W 高压配电盘100~500W 变压器变压器输出kW(1/效率-1) (KW) 电力变换装置半导体盘输出kW(1/效率-1) (KW) 照明灯白炽灯灯W数 放电灯 1.1X灯W数 假设变压器为1000KVA,其有功输出为680KW,则其效率大致为680/850=0.8,根据上述计算损耗的公式,该变压器的损耗为680*(1/0.8-1)=170KW!!! 变压器的热损失计算公式: △Pb=Pbk+0.8Pbd △Pb-变压器的热损失(kW) Pbk-变压器的空载损耗(kW) Pbd-变压器的短路损耗(kW)

发电效率PR计算公式

光伏电站发电效率的计算与监测 1、影响光伏电站发电量的主要因素 光伏发电系统的总效率主要由光伏阵列的效率、逆变器的效率、交流并网效率三部分组成。 1.1光伏阵列效率: 光伏阵列的直流输出功率与标称功率之比。光伏阵列在能量转换与传输过程中影响光伏阵列效率的损失主要包括:组件匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度的影响以及直流线路损失等。 1.2逆变器的转换效率: 逆变器输出的交流电功率与直流输入功率之比。影响逆变器转换效率的损失主要包括:逆变器交直流转换造成的能量损失、最大功率点跟踪(MPPT)精度损失等。 1.3交流配电设备效率: 即从逆变器输出至高压电网的传输效率,其中影响交流配电设备效率的损失最主要是:升压变压器的损耗和交流电气连接的线路损耗。 1.4系统发电量的衰减: 晶硅光伏组件在光照及常规大气环境中使用造成的输出功率衰减。 在光伏电站各系统设备正常运行的情况下,影响光伏电站发电量的主要因素为光伏组件表面尘埃遮挡所造成太阳辐射损失。 2、光伏电站发电效率测试原理 2.1光伏电站整体发电效率测试原理 整体发电效率E PR公式为: E PDR PR PT = —PDR为测试时间间隔(t?)内的实际发电量;—PT为测试时间间隔(t?)内的理论发电量;

理论发电量PT 公式中: i o I T I =,为光伏电站测试时间间隔(t ?)内对应STC 条件下的实际有效发电时间; -P 为光伏电站STC 条件下组件容量标称值; -I 0为STC 条件下太阳辐射总量值,Io =1000 w/m 2; -Ii 为测试时间内的总太阳辐射值。 2.2光伏电站整体效率测试(小时、日、月、年) 气象仪能够记录每小时的辐射总量,将数据传至监控中心。 2.2.1光伏电站小时效率测试 根据2.1公式,光伏电站1小时的发电效率PR H i H i PDR PR PT = 0I I i i T = —PDRi ,光伏电站1小时实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —Ti ,光伏电站1小时内发电有效时间; —Ii ,1小时内最佳角度总辐射总量,气象设备采集通讯至监控系统获得; —I 0=1000w/m 2 。 2.2.2光伏电站日效率测试 根据气象设备计算的每日的辐射总量,计算每日的电站整体发电效率PR D D PDR PR PT = 0I I T = —PDR ,每日N 小时的实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —T ,光伏电站每日发电有效小时数

电气设备发热量确定

几种电气设备的发热量计算 1. 发电机组发热量 发电机组的散热量主要来自于两个方面,一是发电机组的盖板传热和机壳围护结构传热,另一是发电机组的冷却循环风的漏风所带来的热量。 大、中型发电机组的冷却方式通常采用封闭式空气自循环冷却方式,发电机绕组的损耗传给冷却空气,空气的热量再通过机组水冷却器由冷却水带走。根据实测的数据,定子排出的空气温度一般不超过65℃,而进入转子的空气温度一般不低于5℃。 发电机机壳的散热量可以按下式计算: w 其中:——发电机机壳的传热系数 w/㎡·℃ ——发电机机壳的面积㎡ ——发电机冷却循环风的平均温度℃ ——室内空气温度℃ 发电机的漏风散热量可以按下式计算: w 其中:——漏风系数,钢盖板取0.3% ——发电机的冷却循环风量m3/h ——空气比热w/kg·℃ ——空气容重取1.2kg/m3 ——发电机漏风温度℃ ——室内空气温度℃ 根据发电机组内部的冷却风温和发电机的表面积,我们不难计算机组壳体的传热量。但漏风热量的计算上却有较大的差异,随着机械制造技术的不断提高,特别是空气冷却器的效率的提高,发电机组的冷却循环风量各个厂商有较大区别。例如按机电设计手册计算,30万KW机组的冷却循环风量约为200m3/h,但多数国际厂商提供的冷却风量约为120m3/h,这就给计算结果产生较大的出入。一般情况下,冷却风温越低,发电机的线圈温度也越低,发电机的效率就越高,但是冷却风温受冷却器的布置尺寸影响,冷却器大,机组的制造难度相对增大,经济性下降,冷却风温不可能无限降低,机组制造厂设计时考虑一个经济区域,达到机组的最大性价比。因此,在实际的设计计算中,应由发电机厂商提供冷却循环风量参数对漏风热量加以核算。 2. 变压器发热量

热负荷及散热量计算

热负荷及散热量计算 所谓热负荷是指维持室内一定热湿环境所需要的在单位时间向室内补充的热量。所谓得热量是指进入建筑物的总量,它们以导热、对流、辐射、空气间热交换等方式进入建筑。 系统热负荷应根据房间得、失热量的平衡进行计算,即 房间热负荷=房间失热量总和-房间得热量总和 房间的失热量包括: 1)围护结构传热量Q1; 2)加热油门、窗缝隙渗入室内的冷空气的耗热量Q2; 3)加热油门、孔洞和其他相邻房间侵入的冷空气的耗热量Q3; 4)加热由外部运入的冷物料和运输工具的耗热量Q4; 5)水分蒸发的耗热量Q5; 6)加热由于通风进入室内冷空气的耗热量Q6; 7)通过其他途径散失的热量Q7; 房间的得热量包括: 1)太阳辐射进入房间的热量Q8; 2)非供暖系统的管道和其他热表面的散热量Q9; 3)热物料的散热量Q10; 4)生产车间最小负荷班的工艺设备散热量Q11; 5)通过其他途径获得的散热量Q12; 1.1围护结构的基本耗热量 式中 'q —围护结构的基本耗热量,W ; K —围护结构的传热系数,w/(㎡.℃); F —围护结构的面积,㎡; w t '—供暖室外计算温度,℃; n t —冬季室内计算温度,℃; a —围护结构的温差修正系数。 整个建筑物的基本耗热量等于各个部分围护结构的基本耗热量的总和: 1.2围护结构的附加耗热量 在实际中,气象条件和建筑物的结构特点都会影响基本耗热量使其发生变化,此时需要对基本耗热量加以修正,这些修正耗热量称为围护结构附加耗热量。附加耗热量主要有朝向修正,风力附加和高度附加耗热量。 朝向修正耗热量是太阳辐射对建筑围护耗热量的修正。 表1-1朝向修正率 《暖通规范》规定:民用建筑和工业辅助建筑(除楼梯间外) 的高度附加率,当房高超过四米时,每增加一米,为附加围护基本耗热量和其他修正量总和的2%,但总附加率不超过总附加率的15%。 所以,建筑物的总耗热量等于围护结构基本耗热量和朝向修正,风力附加和高度附加耗热

导叶开启时间对水电站过渡过程的影响(1)解析

导叶开启时间对水电站过渡过程的影响(1) 摘要:针对国内外规范对导叶开启 时间的不同规定,结合理论推导和数值计算实例,分析了不同的导叶开启时间对水电站过渡过程的影响。实例研究结果表明,大波动过渡过程中的蜗壳动水压力、沿管道轴线的压力分布以及调压室阻抗孔口压差等参数均随导叶开启时间变化而变化。通过研究得到如下结论:国际电工技术委员会标准推荐的增负荷时间30~40s是合理的;在并入小网的水力干扰过渡过程中,需要将运行机组最大初始开度限制在最大临界开度之内,才能保证运行机组转速收敛于额定转速,以满足发电机和电网对调节系统的要求。 关键词:过渡过程导叶开启时间数值计算临界时间 前言 在水电站运行中,从空载增至全负荷的导叶开启时间,国内外规范有不同的规定:文献[1]中对调节系统的要求:导叶开度的全行程动作时间应符合设计规范,一般为10~40s。国际电工技术委员会iec(international electrotechnical commission)标准[2]则规定开启时间为20~80s,推荐值30~40s。上述规程标准给出的取值范围虽有重叠部分,但整体范围并不一致,而导叶开启时间的取值问题一直未进行深入的研究。本文将结合两机一洞常规水电站和抽水蓄能水电站两个代表性实例,探讨不同的导叶开启时间对水电站过渡过程的影响,寻找恰当的开启时间(直线开启规律),以满足发电机和电网对调节系统的要求。 1导叶开启时间对过渡过程的影响 水电站过渡过程涉及到大波动、小波动和水力干扰过渡过程三个方面。而在小波动过渡过程中,调速器将自动跟踪,机组不受导叶开启时间长短的影响。因此本文仅讨论导叶开启时间对大波动和水力干扰过渡过程的影响。 1.1导叶开启时间对大波动过渡过程的影响 在无穷大电网条件下,增负荷,机组转速不变,调速器将不参与调节,所以增负荷时间的长短将只对机组两个调保参数(蜗壳末端动水压力、尾水管进口断面压力)、管道沿程的压力分布、调压室涌浪水位及阻抗孔口压差等产生相应的影响。文献[3]给出了粗略估算水锤压力的计算公式:,式中、分别为压力管道水流惯性加速时间常数和导叶动作时间,、为水轮机在初始和终了时的相对流量值。由上式不难看出,在机组增负荷过程中,导叶开启越快,引起的

光伏电站发电量计算方法

光伏电站平均发电量计算方法小结 一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目就是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算 /估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6 6条:发电量计算中规 疋: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置与环境条件等各种因素后计算确定。 2、光伏发电站年平均发电量 Ep计算如下: Ep=HA< PAZX K 式中: HA为水平面太阳能年总辐照量(kW? h/m2); Ep——为上网发电量(kW?h); PAZ ――系统安装容量(kW); K ――为综合效率系数。 综合效率系数K就是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数 3)光伏发电系统可用率 ;

4)光照利用率; 5)逆变器效率 ; 6)集电线路、升压变压器损耗 ; 7)光伏组件表面污染修正系数 ; 8)光伏组件转换效率修正系数。 这种计算方法就是最全面一种 ,但就是对于综合效率系数的把握 , 对非资深光伏从业人员来讲 ,就是一个考验 ,总的来讲 ,K2 的取值在 75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA< SX K1X K2 式中: HA为倾斜面太阳能总辐照量(kW? h/m2); S――为组件面积总与(m2) K1 ——组件转换效率 ; K2 ——为系统综合效率。 综合效率系数K2就是考虑了各种因素影响后的修正系数,其中包括: 1)厂用电、线损等能量折减 交直流配电房与输电线路损失约占总发电量的3%,相应折减修正系数取为 97%。 2)逆变器折减 逆变器效率为 95%~98%。 3)工作温度损耗折减光伏电池的效率会随着其工作时的温度变化而变化。当它们的温度升高时 , 光伏组件发电效率会呈降低趋势。一般而言 , 工作温度损耗平均值为在 2、5%左右。 其她因素折减

恒温恒湿冷量计算

为了确定空调机的容量,以满足机房温度、湿度、洁净度和送风速度的要求(简称四度要求)。必须首先计算机房的热负荷。 机房的热负荷主要来自两个方面: 其一是机房内部产生的热量,它包括: 室内计算机及外部设备的发热量,机房辅助设施和机房设备的发热量(电热、蒸气水温及其它发热体)。这些发热量显热大、潜热小; 照明发热(显热); 工作人员的发热(显热小、潜热大); 由于水分蒸发、凝结产生的热量(潜热)。 其二是机房外部产生的热量,它包括: 传导热。通过建筑物本体侵入的热量,如从墙壁、屋顶、隔断和地面传入机房的热量(显热); 放射热(也称辐射热)。由于太阳照射从玻璃窗直接进入房间的热量(显热);对流产生的热量。从门窗等缝隙侵入的高温室外空气(也包含水蒸气)所产生的热量(显热、潜热); 为了使室内工作人员减少疲劳和有利于人体健康而引入的新鲜空气所产生的热量(包括显热和潜热)。 总之,人体放出的热量、缝隙风侵入的热量和换气带进的热量,不仅使室温升高,也会增加室内的含湿量,因此需要除湿。这部分热负荷称为潜热负荷,而机房内所有设备散发的热量只是室内的温度升高,这种热负荷称为显热负荷。与一般宾馆、办公室、会议室等潜热占有相当大比例所不同的是,计算机、程控机机房内的热负荷是以显热负荷为主。因此对于热负荷状况不同的场合应选用不同类型的空调机。通常用显热比(SFH)作为空调机的重要指标。 概略计算(也称为估算)

在机房初始设计阶段,为了较快的选定空调机的容量,可采用此方法,即以单位面积所需冷量进行估算。 计算机房(包括程控交换机房): 楼层较高时,250~300kcal/m2h 楼层较低时,150~250kcal/m2h(根据设备的密度作适当的增减)办公室(值班室):90kcal/m2h 简易热负荷计算 计算机房空调负荷,主要来自计算机设备、外部设备及机房设备的发热量,大约占总热量的80%以上,其次是照明热、传导热、辐射热等,这几项计算方法与一般空调房间负荷计算相同。计算机制造商,一般能提供设备发热量的具体数值。否则根据计算机的耗电量计算其发热量。 a.外部设备发热量计算 Q=860N¢(kcal/h) 式中: N:用电量(kW);¢: 同时使用系数( 0.2~ 0.5);860:功的热当量,即l kW电能全部转化为热能所产生的热量。 b.主机发热量计算Q=860×P×h 1×h 2 ×h 3 式中,P: 总功率(kW); h 1:同时使用系数;

武都水库工程水轮机过渡过程计算

武都水库工程水电站水轮机过渡过程计算成果 1.概述 根据技术协议的要求,完成所要求计算的过渡过程计算工况,并提出相应的初步计算成果。 2.计算条件 (1)上游水库 校核洪水位659.43m 设计洪水位656.96m 正常蓄水位658.00m 死水位624.00m (2) 下游尾水位 校核洪水位581.368m 设计洪水位580.126m 正常尾水位572.5m (3) 水轮机净水头 最大水头85.12m 加权平均水头68.09m 额定水头64.00m 最小水头49.35m (4) 流量 多年平均流量142m3/s 电站引用流量259.2m3/s 2.3 布置型式 武都水库水电站位于四川省江油市武都镇境内,电站厂房距江油市约20 km。该电站是涪江上游干流最后一级电站,具有不完全年调节性能,承担部分调峰的中型电站工程。该工程总库容5.72亿m3,额定水头64m,装机容量3×50MW。电站引水发电系统布置情况详见招标文件第8章引水系统布置图。 (5) 水轮发电机组基本参数 水轮机型号HLD267-LJ-320

转轮名义直径 3.2m 水轮机额定出力51.5MW 额定转速214.3r/min 飞逸转速465r/min 发电机GD23750t.m2 水轮机安装高程568.956m 水轮机导叶个数24 3.计算要求 机组最大转速升高率小于55%,蜗壳最大压力升高率小于50%。若两个参数不能同时满足,应推荐合适的参数值。尾水管内的最大真空度不宜大于8m水柱。 4.计算工况 根据武都水库工程电站引水系统的布置方式,水库和发电机组的运行调度情况,以下几种工况可以求出蜗壳最高压力、机组速率最高上升率和尾水管真空值,所选工况: A)额定水头64m条件下,3台机同时甩全负荷3×51.54MW。 B)最大水头85.12.m条件下,3台机甩全负荷3×51.54MW。 C)机组运行水头68.09.m条件下,1台机组带最大负荷56.7MW。 5.计算结果 所述工况的调节保证计算结果,汇总列于表5-1。 表5-1 调节保证计算结果 6.结论 1)武都水库工程电站采用的引水系统,当机组GD2不小于3750t.m2,导叶关闭规律采用图(一)的关闭规律,机组速率上升小于55.0%;蜗壳最高压力升高率小于50.0%,尾水管真空度不大于8.0m。

光伏电站发电量的计算方法

光伏电站发电量计算方法 ①理论发电量 1)1MW屋顶光伏电站所需电池板面积一块235MW的多晶电池板面积 1.65*0.992=1.6368㎡,1MW需要1000000/235=4255.32块电池,电池板总面积 1.6368*4255.32=6965㎡ 2)年平均太阳辐射总量计算 上海倾角等于当地纬度斜面上的太阳总辐射月平均日辐照量H 由于太阳能电池组件铺设斜度正好与当地纬度相同,所以在计算辐照量时可以直接采 用表中所列数据(2月份以2 8天记)。 年平均太阳辐射总量=Σ(月平均日辐照量×当月天数) 结算结果为5 5 5 5.3 3 9 MJ/(m 2·a)。 3)理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ=6771263.8*0.28KWH=1895953.86KWH =189.6万度 ②系统预估实际年发电量 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往 达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时 要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件,当光伏组件内部的温度达到5 0-7 5℃时,它的输出功率降为额定时的8 9%,在分析太阳 电池板输出功率时要考虑到0.8 9的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太 阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%的影响,在分析太阳电池板输出功率时要考虑到0.9 3的影响系数。

机房散热量计算

所有的电子设备在工作过程中都要产生热量,这些热量必须排出到设备外部,否则热量的积累将会导致故障。选择适合的通风或冷却系统,首先需要知道设备的产热量和散热空间。 热是一种能量,其度量单位是焦耳,BTU(British thermal unit,英制单位)和卡。通用的计量标准是BTU/小时或焦耳/秒(焦耳/秒等同于瓦特),在实际应用中这两个单位会需要换算,计算公式如下: 3.41 BTU/小时 = 1 瓦特 在计算机或其他处理信息的仪器中真正用于处理数据的电源能量是很少的,可以忽略不记。因此,交流电源的能量几乎全转化成热量了,也就是说,从设备的电源消耗就可推算出热量的产生量。 制冷量取决于全部系统 一个系统总的发热量是由所有产热设备相加得出。产生的热量通常用表示为 BTU/小时,也可以用其他单位表示,这个数据可以从设备的手册中得到。将每个设备的发热量相加就得出整个系统总的值。UPS作为一个特殊的例子在下面详细介绍。 很多IT设备的交流功率消耗(瓦特)可以在APC的UPS选择方案中找到,或者从设备的产品数据中也可查到。若设备的耗电量由VA或电压-电流值的形式来表示,那么设备的伏安数也可以代替瓦来衡量热量的输出。要是设备的功耗用安或安培表示,则用电流值乘以交流供电电压得出伏安值。由于有功率因数存在,用伏安值来估算设备的发热量,其准确程度是比不上用瓦特来表示的,依据不同的设备会有0到35%的误差。但是,这些估算方法都可以给出一个比较保守的,不会低估的设备发热量。 对于UPS散热量的确定

由于UPS将功率从输入端送到输出端,因此在计算UPS的散热量时与其他IT设备时是有区别的。UPS工作在不同的模式下,其产生的热量也是不同的。在UPS的绝大多数运行时间内,是工作在普通状态下的,即把AC电源提供给被保护设备,这时UPS运行效率可以达到80%到98% 。因此,UPS的无用功(或称功率损失)会在2%到20%之间,这部分交流输入功率会转化成热量。 不同类型的UPS产生的无用功是由其设计电路结构决定的,可由下表估算出: UPS热量的产出由此公式计算得出: 产热量(BTU/小时) = 负载功率(瓦特)x 无用功比例(由表1查出)x 3.41 (BTU转换常数) 注意:当UPS工作在电池放电模式或正在给电池充电时,它的产热量会增加,但这是很正常的。UPS输出的这些能量并不需要特别注意,无须计算在通风冷却系统的设计容量中。 综述 一个电子系统总的热量输出是其中每个设备热量输出的总和。热量的输出(BTU/小时)是设备自身的一个指标;但在技术手册中不一定能查到,也可以用设备的电源功率消耗来估算。UPS的产热量可由技术手册中查到,或通过负载量和产生无用功比例计算得出。在设计通风冷却系统时,应将容量考虑的大一些,以适应将来设备的增加而带来的额外热量。 工艺设备的散热量计算公式 工艺设备的散热量计算公式为:

小水电站发电量计算的分析探讨

小水电站发电量计算的分析探讨 1问题的提出 小水电站开发形式多样,有的小水电站引水线区间有径流加入,存在区间径流如何分析的问题;有的电站有几处跨流域水库,引水隧洞应如何优化设计以及引水工程能够达到怎样的效果的问题;有的经过扩容改造的电站,冲击式机组与混流式机组一起发电,对不同的水管路水力损失,不同的机组效率,不同的尾水位,如何确定水能参数;也有一些梯级电站,一级电站扩容,二、三级电站不扩容,梯级电站发电量如何重新确定等等。对于这些问题,如何给出一个更加量化的结论,这就需要小水电站发电量计算的进一步发展和完善。 2电量计算的算法原理 根据以往年份的水文规律利用计算机进行演算,来预测设计电站在未来年份中的一个平均发电量数值,这是电量计算的基本方法。电量算法分插补水文数据、来水量推算、来水量处理、库容曲线拟合、水管路水力损失、系统效率修正、时段发电量计算等几个部分。 3电量计算的分析探讨 3.1插补水文数据 原始水文资料仅提供每日流量数据,首先需要对水文数据进行插补数据完成逐小时模型水文流量表,以使程序能够以1小时为时间步长进行更为精确的分析计算,插补数据可以采用样条函数,样条插补数据的缺点是可能产生负流量,简单的办法是产生负数流量时以置零处理。 3.2天然来水量推算 对于有区间径流加入和几处跨流域引水水库的水电站。这类电站有多个集雨区,各个集雨区的水文参数以及引水条件有时候并不相似,所以程序对于天然来水量是分区计算和分区处理的。程序在计算时段发电量时,根据该时段模型水文数据

的流量数值,各个集雨区集雨面积和径流深数据,为各个集雨区推算时段来水量。各个集雨区逐日来水量不宜先期集中处理,而应分散在时段电量计算段中处理,因为像有压隧洞引水入库这种情况逐日入库水量无法事先确定。 3.3来水量处理 小水电站有些情况的来水需经过引水后进入电站水库,其中存在一个引水工程的过水能力问题,来水量大时超过引水能力的水量无法到达电站水库,这是一种先期弃水。如果是有压隧洞引水,水库水位有涨落,引水隧洞的过水能力则是随水库水位变化的动态量,在计算过程中加入这样的函数。同时引水线的漏水损失也需计算,漏水流量可以处理成一个定数,当来水量流量大于漏水量时,来水量应减去一个漏水量,当来水量小于漏水量时,来水量处理为零。对于梯级电站的水量需要记录进入下一级电站的逐日水量。 要考虑上一级弃水有可能进入下一级调蓄水库而作用于发电,在下一级电站电量中对上一级传递的水量进行数量方面的合理处理。 3.4库容曲线拟合 库容曲线函数在给定一个库容数据情况下能够确定地给出一个水库水位数值。库容曲线拟合可以采用样条拟合。也可以采用分段立方根函数拟合,即将两个高程区间的库容看作是一个上大下小的几何台体,这种拟合方法的好处是延伸性较好,即曲线的向上延伸段与客观实际符合得较好。 3.5动态库容和时段动态水位 时段初始库容已知,时段末库容可以由时段小时数、来水流量时段发电库容、具体时段发电流量进行计算。对于电站与水库之间以隧洞引水的电站,一般而言隧洞的漏水很少,可以认为发电流量即为通过机组的工作流量;对于渠道引水发电的电站,发电流量为通过渠道进水口处的工作流量,即通过机组的工作流量除以一个渠道效率。作为算法发电流量采用上一时段发电流量,最初时段采用额定发电流量。于是,可以估算该时段动态平均水位,溢洪问题安排在时段发电量计算以后处理,如果计算库容大于允许最大库容,则计算库容代之以允许最大库容。

光伏发电年发电量计算

以1MW装机容量为例(300KW即0.3MW),你可以自己换算下。 电力系统的装机容量是指该系统实际安装的发电机组额定有效功率的总和。 由于光伏发电必然有损耗,所以实际发电量是无法达到理论值的。 1、1MW光伏电站理论年发电量: =年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ =6771263.8*0.28 KWH =1895953.86 KWH =189.6万度 2、实际发电效率 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件, 当光伏组件内部的温度达到50-75℃时,它的输出功率降为额定时的89%,在分析太阳电池板输出功率时要考虑到0.89的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%

的影响,在分析太阳电池板输出功率时要考虑到0.93的影响系数。 由于太阳辐射的不均匀性,光伏组件的输出几乎不可能同时达到最大功率输出,因此光伏阵列的输出功率要低于各个组件的标称功率之和。 另外,还有光伏组件的不匹配性和板问连线损失等,这些因素影响太阳电池板输出功率的系数按0.9 计算。 并网光伏电站考虑安装角度因素折算后的效率为0.88。 所以实际发电效率为:0.9 5 * 0.8 9 * 0.9 3*0.9 5 *0.8 8 =65.7%。 3、系统实际年发电量: =理论年发电量*实际发电效率 =189.6*0.9 5 * 0.8 9 *0.9 3*0.9 5 * 0.8 8 =189.6*65.7% =124.56万度

YMS水电站水力过渡过程计算与分析

4第39卷第6期 2016年06月 水电姑机电技术 Mechanical & Electrical Technique of Hydropower Station Vol.39 No.6 Jun.2016 YM S水电站水力过渡过程计算与分析 刘峰,安刚 (新疆水利水电勘测设计研究院,新疆乌鲁木齐830000) 摘要:通过对YM S水电站水力过渡过程计算分析,介绍了各个系统的设计思路和布置方式,希望对国内外同类型水电站设计提供一定的借鉴参考。 关键词:水电站;调节保证计算;调压阀;气垫式调压室 中图分类号:TV136 文献标识码:A文章编号=1672-5387(2016)06-0004-03 D0I:10.13599/https://www.360docs.net/doc/7f17476729.html,ki.11-5130.2016.06.002 1概述 YMS水电站工程位于新疆维吾尔自治区阿克 苏地区,工程为引水式电站,由进水闸、引水渠道、压 力前池、压力钢管、厂房及尾水渠等主要建筑物组 成。电站最大水头210.3 m,加权平均水头201.3 m,额定水头199.6 m,最小水头199.6 m,设计弓丨用流量 140 m3/s,厂房内安装3台70 MW和1台34 MW的 立轴混流式水轮发电机组,总容量为244 MW。 2无调保措施下的计算 2.1引水系统布置 该电站是一座长压力引水系统电站,压力管道 总长S L为2332.43 m。发电弓|7乂系统由2条压力 输水管路组成,其中1号输水主管(04 600 mm)经 岔管分为2条支管分别接入2台70 MW机组,2号 输水主管(CM 100 mm)经岔管分为2条支管分另!j接 入1台70 MW机组和1台34 MW机组。 2.2调节保证计算控制标准 本电站水头范围为199.6 ~ 210.3 m,在电网中 承担基荷运行。结合地区电网容量及特点,按照《水 力发电厂机电设计规范》的要求,机组甩负荷时的最 大转速升高率保证值宜小于60 %,蜗壳最大压力升 高率保证倌宜为25 %~30 %.尾水管进口断面的最 大真空保证值不应大于0.08 MPa0 考虑到最大转速升高率与最大压力升高率计算 值存在误差,计算值中没包括甩负荷时蜗壳中压力 脉动,因此其保证值应按计算值并留有适当的裕度 来确定,本电站调节保证计算的设计标准如下: 机组最大转速升高率矣50 %; 蜗壳最大压力升高率矣25 %(263 m); 尾水管进口最大真空彡6_3 m。 2.3无调保措施下的过渡过程数值计算 由于电站尾水道很短,尾水管进口最小压力容 易满足,而引水道相对较长,故主要针对蜗壳末端压 力和转速控制值选取控制工况。计算中的机组关闭 规律初步选用一段直线关闭,70 MW机组GD2暂取 3 600 t.m2,34 M W机组 GD2暂取 780 t.m2,计算结 果见下页表1。 由表1可知,在不设置调保措施的前提下,2个 7jC力单元机组关闭规律在11~15 S选取时,蜗壳末 端最大压力及机组最大转速上升率均大于相应的控 制标准,不能满足调保控制要求。因此,在现有的引 水系统下,单纯采用调整关闭规律的方法是不能够 解决水锤压力与机组转速上升之间的矛盾,应在引 水发电系统上设置调保措施。 3设置调压阀措施下的调保计算 为保证电站安全运行,需采用设置调压井或调 压阀等措施来解决引水系统水锤压力和转速上升之 间的矛盾。该电站属于中型电站,设置调压井需要较 大投资和较长工期,且电站由于自身的地形、地质条 件的限制,难于建造常规调压井。故从技术经济层面 考虑,推荐采用调压阀方案。 理论上调压阀必须与导叶联动,但一旦联动装收稿日期:2016-02-26 作者简介:刘峰(1981-),男,工程师,长期从事水电站水力机械设计工作。

水力-机械过渡过程计算分析总结

大波动过渡过程计算分析总结水电站输水系统和机组过渡过程的计算分析具有重要的意义,该计算分析对于机组参数GD2的选择、导叶关闭规律的确定、调压室参数的选择和管道线路的布置等方面都有重要的指导作用。 水电站过渡过程计算分析由大波动过渡过程计算分析和小波动过渡过程计算分析两部分组成。以下对大波动过渡过程计算分析进行总结说明。 大波动过渡过程计算分析主要包含以下几个部分:①该类系统数学计算模型的建立和求解;②仿真计算程序的编制;③具体输水系统有关原始数据的准备(包含实际系统概化问题);④各种大波动控制工况的计算分析;⑤《水力过渡过程计算分析报告》的撰写。一.数学计算模型的建立 水电站输水系统数学模型由输水道数学模型和边界数学模型两部分构成。 1.输水道数学模型 目前,输水道数学模型是根据一元总流流体的运动方程和连续方程,建立有压管道水力瞬变的弹性水锤基本方程组,然后利用特征线法对方程组进行简化、求解(这里暂不讨论无压输水道); 由于在建立和求解模型的过程中,存在一些简化和假定条件,因此存在以下几个值得研究的问题: ①现模型采用一元流假定,该假定在某些情况下不适用,应该改

用“二元流”或“三元流”原理构造数模。 ②该模型要求“同一段管道为单特性管”,因此须对非单特性管进行合理概化。 ③该模型中管道阻力系数采用的是阀门关闭前稳态流动的值,实际应该采用动态的阻力系数。 ④计算时间步长和波速调整的优化。 ⑤含气水锤模型的建立。 2.边界数学模型 不同边界具有不同的数学模型,目前基本边界的数学模型已较成熟,满足仿真计算精度要求。 3.数模的求解方法 有压输水道数学模型采用特征线法求解;简单边界数学模型(如一元非线性代数方程)采用改进的不动点迭代法求解;复杂边界数学模型(如二元非线性代数方程组)采用牛顿-莱甫生法求解。二.仿真计算程序的编制 利用FORTRAN语言将已建立的数学模型和所选的求解方法编制成仿真计算程序。同时,须注意以下几个问题: ①水轮机特性曲线的变换(目前采用改进的Suter法)。 ②水轮机特性曲线数据的插值方法。 ③计算过程中小开度工况的处理(目前采用数学模型处理)。 ④管网系统初始恒定流参数的确定。 三.原始数据的准备

计算某流域水电站保证出力和多年平均发电量

计算某流域水电站保证出力和多年平均发电量 1、确定设计保证率 根据设计资料可知,湖北省电网中水电比重占57%,由《水利水电工程水利动能设计规范》可查得其对应的水电站设计保证率为95%~98%。取95%为隔河岩水电站的设计保证率。选取95%、50%、1-95%,在年水量频率曲线上分别确定设计枯水年、设计中水年和设计丰水年的年水量。 2、选取典型年 根据年水量法选取典型年 将表1-6所给的数据根据年年水量由大到小排序,并计算其对应的频率,计算结果如表所示。 表1 序号频率(%) 年份年平均流量(m3/s) 年水量(亿m3) 1 3.4 54-55 602.3 190.08 2 6.9 58-59 517.2 163.23 3 10.3 75-76 497.2 156.91 4 13.8 73-74 487.8 153.95 5 17.2 63-64 482.4 152.24 6 20. 7 71-72 475.4 150.03 7 24.1 69-70 449.3 141.8 8 27.6 67-68 447.2 141.13 9 31.0 64-65 429.6 135.58 10 34.5 62-63 422.2 133.24 11 37.9 68-69 419 132.23 12 41.4 52-53 405.9 128.1 13 44.8 77-78 403.7 91.3 14 48.3 70-71 401 126.55

15 51.7 74-75 361.5 114.09 16 55.2 60-61 350.9 110.74 17 58.6 76-77 335.2 105.79 18 62.1 65-66 320.5 101.15 19 65.5 57-58 303.4 95.75 20 69.0 61-62 295.2 93.16 21 72.4 56-57 290.3 91.62 22 75.9 78-79 289.3 91.3 23 79.3 59-60 287.8 90.83 24 82.8 72-73 282.1 89.03 25 86.2 51-52 270.1 85.24 26 89.7 55-56 270 85.21 27 93.1 53-54 254.9 78.71 28 96.6 66-67 249.4 77.61 绘制经验频率曲线,如图所示。 在绘制的经验频率曲线上找出95%、50%、5%所对应的年水量值,查图可知设计枯水年的年水量为79亿m3,设计中水年年水量为115亿m3,设计丰水年年水量为180亿m3。 选取与设计年水量接近的年份作为设计典型年: 选取66-67年作为设计枯水典型年,其年水量为78.7亿m3,放大倍比K枯=79/78.7=1.004; 表2 流量(m3/s) 选取60-61年作为设计中水典型年,其年水量为110.7亿m3 放大倍比K中=115/110.7=1.309;

电力负荷计算

电力负荷计算 (2011-10-27 11:11:24) 转载▼ 分类:电力知识 标签: 杂谈 电力负荷计算 7.2.1基本概念 (1)额定功率( P n):电气设备的额定功率是其铭牌标称功率,是设备在额定条件(额 定电压和适当的绝缘材料等)下的允许输出功率,设备在此功率下长期运行时温升不会超出规定的允许值。 (2)设备容量(P e):设备容量也称设备功率、安装容量或安装功率,它与用电设备的额定功率是两个不同的概念,两者在数值上可能相等,有可能不等。设备安装功率是指设备在统一的标准工作制下的功率,当铭牌上标注的暂载率与标准暂载率不相等时,需要把铭牌标称的额定功率换算成标准暂载率条件下的功率。 (3)电气设备的工作制与暂载率: 电气设备的工作制分为连续、短时和断续三种。 ①连续工作制:又称连续运行工作制或长期工作制。是指电气设备在规定的环境温度下 运行,能够达到稳定的温升,但设备的任何部分的温度和温升均不超过允许值 ②短时工作制:即短时运行工作制,是指电气设备的运行时间短而停歇时间长,且在工 作时间内的发热量不足以达到稳定的温升,而在停歇时间内能够冷却到环境温度。 ③断续工作制:即反复短时工作制,是指电气设备以断续方式反复周期性的进行工作, 工作时间(t g)与停歇时间(t r)交替重复进行。短时断续周期性工作的电气设备的特性用暂载率表征。 ④暂载率:暂载率用以表征断续工作制电气设备的工作特性,暂载率定义为 ε= = 国家标准规定一个工作周期(t g+t r)为10min。起重专用电动机的标准暂载率有15%、25%、40%、60%四种;电焊设备的标准暂载率有50%、65%、75%、100%四种。 7.2.2负荷计算的内容和意义 负荷计算是供配电系统设计的基础,一般需要计算设备容量、有功功率、无功功率、视在功率、计算电流,一级负荷、二级负荷、季节性负荷、消防负荷、尖峰负荷电流等。 (1)计算负荷:也称计算容量或最大需要负荷,它是个假定的等效的持续性负荷,其热效应与同一时间内实际的不一定恒稳的负荷所产生的最大热效应相等。在配电设计中,通常采用能让中小截面导体达到稳定温升的时间段(30min)的最大平均负荷作为按发热条件选择配电变压器、导体及相关电器的依据,并用来计算电压损失和功率消耗。在工程上为方便计,也可作为电能消耗量及无功功率补偿的计算依据。计算用的单位的各类总负荷也是确定供电电压等级也确定合理的配电系统的基础和依据。 (2)一级、二级负荷及消防负荷:用以确定变压器的台数和容量、备用电源或应急电源的形式、容量及配电系统的形式等。 (3)季节性负荷:从经济运行条件出发,用以考虑变压器的台数和容量。 (4)尖峰电流:也叫冲击电流,是指单台或多台冲击性负荷设备在运行过程中,持续时间在ls左右的最大负荷电流。一般用设备启动电流的周期分量作为计算电压损失、电压波动、电压下降,以及选择校验保护器件等的依据。在校验瞬动元件时,还应考虑起动电流的非周期分量。大型冲击性电气设备的有功、无功尖峰电流是研究供配电系统稳定性的基础。

光伏发电量计算及综合效率影响因素

一、光伏电站理论发电量计算 1.太阳电池效率η 的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 其中,At 为太阳电池总面积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把 At 换成有效面积 Aa (也称为活性面积),即扣除了栅线图形面积后的面积,同时计算得到的转换效率要高一些。Pin 为单位面积的入射光功率。实际测量时是在标准条件下得到的:Pin 取标准光强:AM 条件,即在 25℃下, Pin= 1000W / m 2。 2.光伏系统综合效率(PR) η总=η1×η2×η3 光伏阵列效率η1:是光伏阵列在 1000 W/m2 太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率η2:是逆变器输出的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率η3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV 高压端,主要是升压变压器和交流线缆损失,按96%计算。 3.理论发电量计算 太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为1000W/m2的光照条件下,1000Wp 太阳电池 1 小时才能发一度电。而实际上,

同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量=系统峰值功率(kw)x等效日照小时数(h)x系统效率 等效峰值日照小时数h/d=(日太阳辐照量m2/d)/1kW/m2 (日照时数:辐射强度≥120W/m2的时间长度) 二、影响发电量的因素 光伏电站的发电量由三个因素决定:装机容量、峰值小时数、系统效率。当电站的地点和规模确定以后,前两个因素基本已经定了,要想提高发电量,只能提高系统效率。 自然原因:温度折减、不可利用太阳光; 设备原因:光伏组件的匹配度、逆变器、箱变的效率、直流线损、交流线损、设备故障,光伏组件衰减速度超出预期; 人为原因:设计不当、清洁不及时。 三、影响光伏发电效率的具体情况如下: 1.温度折减 对系统效率影响最大的自然因素就是温度。温度系数是光伏组件非常重要的一个参数。一般情况下,晶硅电池的温度系数一般是~%/℃,非晶硅电池的温度系数一般是%/℃左右。而光伏组件的温度并不等于环境温度。下图就是光伏组件输出功率随组件温度的变化情况。 在正午12点附近,图中光伏组件的温度达到60摄氏度左右,光伏组件的输出功率大约仅有85%左右。除了光伏组件,当温度升高时,逆变器等电气设备

导叶开启时间对水电站过渡过程-影响解析

导叶开启时间对水电站过渡过程-影响 摘要:针对国内外规范对导叶开启时间的不同规定,结合理论推导和数值计算实例,分析了不同的导叶开启时间对水电站过渡过程的影响。实例研究结果表明,大波动过渡过程中的蜗壳动水压力、沿管道轴线的压力分布以及调压室阻抗孔口压差等参数均随导叶开启时间变化而变化。通过研究得到如下结论:国际电工技术委员会标准推荐的增负荷时间30~40s是合理的;在并入小网的水力干扰过渡过程中,需要将运行机组最大初始开度限制在最大临界开度之内,才能保证运行机组转速收敛于额定转速,以满足发电机和电网对调节系统的要求。 关键词:过渡过程导叶开启时间数值计算临界时间 前言 在水电站运行中,从空载增至全负荷的导叶开启时间,国内外规范有不同的规定:文献[1]中对调节系统的要求:导叶开度的全行程动作时间应符合设计规范,一般为10~40s。国际电工技术委员会IEC(International Electrotechnical Commission)标准[2]则规定开启时间为20~80s,推荐值30~40s。上述规程标准给出的取值范围虽有重叠部分,但整体范围并不一致,而导叶开启时间的取值问题一直未进行深入的研究。本文将结合两机一洞常规水电站和抽水蓄能水电站两个代表性实例,探讨不同的导叶开启时间对水电站过渡过程的影响,寻找恰当的开启时间(直线开启规律),以满足发电机和电网对调节系统的要求。 1导叶开启时间对过渡过程的影响 水电站过渡过程涉及到大波动、小波动和水力干扰过渡过程三个方面。而在小波动过渡过程中,调速器将自动跟踪,机组不受导叶开启时间长短的影响。因此本文仅讨论导叶开启时间对大波动和水力干扰过渡过程的影响。 1.1导叶开启时间对大波动过渡过程的影响 在无穷大电网条件下,增负荷,机组转速不变,调速器将不参与调节,所以增负荷时间的长短将只对机组两个调保参数(蜗壳末端动水压力、尾水管进口断面压力)、管道沿程的压力分布、调压室涌浪水位及阻抗孔口压差等产生

相关文档
最新文档