ANSYS 高级技术分析:非线性_弹塑性分析

ANSYS 高级技术分析:非线性_弹塑性分析
ANSYS 高级技术分析:非线性_弹塑性分析

ansys非线性分析指南

ANSYS 非线性分析指南(1) 基本过程 第一章结构静力分析 1. 1 结构分析概述 结构分析的定义: 结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身、骨架;海洋结构,如船舶结构;航空结构,如飞机机身、机翼等,同时还包括机械零部件,如活塞传动轴等等。 在ANSYS 产品家族中有七种结构分析的类型,结构分析中计算得出的基 本未知量- 节点自由度,是位移;其他的一些未知量,如应变、应力和反力, 可通过节点位移导出。 七种结构分析的类型分别是: a. 静力分析- 用于求解静力载荷作用下结构的位移和应力等。静力分析 包括线性和非线性分析。而非线性分析涉及塑性、应力刚化、大变形、大应变、超弹性、接触面和蠕变,等。 b. 模态分析- 用于计算结构的固有频率和模态。 c. 谐波分析- 用于确定结构在随时间正弦变化的载荷作用下的响应。 d. 瞬态动力分析- 用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 e. 谱分析- 是模态分析的应用拓广,用于计算由于响应谱或PSD 输入 随机振动引起的应力和应变。 f. 屈曲分析- 用于计算屈曲载荷和确定屈曲模态,ANSYS 可进行线性特征值和非线性屈曲分析。 g. 显式动力分析- ANSYS/LS-DYNA可用于计算高度非线性动力学和复 杂的接触问题。 除了前面提到的七种分析类型,还有如下特殊的分析应用: ? 断裂力学 ? 复合材料 ? 疲劳分析

? p-Method 结构分析所用的单元:绝大多数的ANSYS 单元类型可用于结构分析。单元类型从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元 1.2 结构线性静力分析 静力分析的定义: 静力分析计算在固定不变的载荷作用下结构的响应。它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是静力分析可以计算那些固定不变的惯性载荷对结构的影响,如重力和离心力;以及那些可以近似为等价静力作用的随时间变化载荷,如通常在许多建筑规范中所定义的等价静力风载和地震载荷。 静力分析中的载荷: 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力。固定不变的载荷和响应是一种假定,即假定载荷和结构的响应随时间的变化非常缓慢,静力分析所施加的载荷包括: ? - 外部施加的作用力和压力 ? - 稳态的惯性力如中力和离心力 ? - 位移载荷 ? - 温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形、塑性、蠕变、应力刚化、接触、间隙单元、超弹性单元等,本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。 线性静力分析的求解步骤 1 建模 2 施加载荷和边界条件求解 3 结果评价和分析

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方 法的优缺点 Pushover分析法 1、Pushover分析法优点: (1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。 (2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。 2、Pushover分析法缺点: (1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。 (2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。(3)只能从整体上考察结构的性能,得到的结果较为粗糙。且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。不能完全真实反应结构在地震作用下性状。 二、弹塑性时程分析法 1、时程分析法优点: (1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量

对高层建筑的不利影响。 (2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。 (3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。 (4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。 2、时程分析法缺点: (1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。 (2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。所以此法的计算工作十分繁重,必须借助于计算机才能完成。而且对于大型复杂结构对计算机要求更高,耗时耗力。 (3)对工程技术人员素质要求较高,工程应用要求较高。从结构模型建立,材料本构的选取、地震波选取,到参数控制及庞大计算结果的整理及甄别都要求技术人员具有扎实的专业素质以及丰厚的工程经验。

静力弹塑性分析(Push-over Analysis)方法的研究

静力弹塑性分析(Push-over Analy sis)方法的研究 赵 琦1 桑晓艳2 (1.陕西金泰恒业房地产有限公司 710075 西安; 2.陇县建设工程质量安全监督站 721200 陇县) 摘 要:本文介绍了静力弹塑性分析(Push-over Analysis)的基本原理及实施步骤,为实际工程设计提供了一定的参政价值。 关键词:静力弹塑性;性能评价 引言 随着科技的发展,抗震设计方法在不断的完善,但是人类对自然的认识水平是一个渐进过程,地震运动的自然现象也是一样的,现行的抗震设计方法与抗震构造措施,在建筑结构遭遇罕遇地震时,并不能够保证“大震不倒”。那么,如何正确地把握建筑结构在地震中的破坏状况,追踪结构在地震时反应的全过程,了解结构抗震的薄弱楼层和构件,这些在抗震设计过程中都是非常重要的。因此,在设计中利用结构的弹塑性分析来追踪结构在地震时反应的全过程,便于设计者发现结构抗震的薄弱楼层和构件,故是检验地震时结构抗倒塌能力的有效方法。 我国现行抗震规范实行的是以概率可靠度为基础的三水准设防原则,即“小震不坏,中震可修,大震不倒”。所谓的“不坏、可修、不倒”是规范给定的各类结构的最低功能要求,反映的是结构抗震设计的“共性”,不能根据结构用途以及业主要求的不同确定结构各自不同的功能水平,反映结构的“个性”。我国对高层结构的抗震设计主要是采用传统的抗震设计方法和构造措施来保障。这样,结构在罕遇地震下进入弹塑性阶段后,现有结构措施有可能无法保证结构具有充足的延性来耗散施加在结构上的地震能量,进而可能导致结构发生倒塌。静力弹塑性分析方法(Push -over Analy sis)是近年来国内、外兴起的一种等效非线性的静力分析法。这种方法能够揭示出在罕遇地震作用下结构实际的屈服机制,各塑性铰的出现顺序,进而暴露出结构的薄弱环节。我国抗震规范规定:不规则且具有明显薄弱部位可能导致地震时严重破坏的建筑结构,可根据结构特点采用静力弹塑性分析或弹塑性时程分析方法。因此,采用静力弹塑性的分析方法,可以对结构在罕遇地震下的抗震性能进行分析研究,找出其中的薄弱环节,并通过相应的设计方法和构造措施予以加强,从而实现“大震不倒”的设计要求。静力弹塑性(Push-over)分析作为一种结构非线性响应的简化计算方法,比一般线性抗震分析更为合理和符合实际情况,在多数情况下它能够得出比静力弹性甚至动力分析更多的重要信息,且操作十分简便。 1.Push-over分析原理 静力弹塑性(Push-ov er)分析是一种考虑材料非线性来对建筑物的抗震性能进行评价的方法,其中还结合了最近在抗震设计方面很受重视的以性能为基本的抗震设计理论。性能基本设计法的目的是为了使设计人员明确地设定建筑物的目标性能,并为达到该性能而进行设计。故可采用一般方法进行设计后,通过Push-over分析对建筑物进行评价来判断其是否能够达到所设定的目标性能。 Push-over方法的应用范围主要集中于对现有结构或设计方案进行抗侧力能力的计算,从而得到其抗震能力的估计。这种方法从本质上说是一种静力非线性计算方法,对结构进行静力单调加载下的弹塑性分析。与以往的抗震静力计算方法不同之处主要在于它将设计反应谱引入了计算过程和计算成果的工程解释。具体地说,在结构分析模型上施加按某种方式

ANSYS弹性及塑性分析(非常经典)

目录 什么是塑性 (1) 路径相关性 (1) 率相关性 (1) 工程应力、应变与真实应力、应变 (1) 什么是激活塑性 (2) 塑性理论介绍 (2) 屈服准则 (2) 流动准则 (3) 强化准则 (3) 塑性选项 (5) 怎样使用塑性 (6) ANSYS输入 (7) 输出量 (7) 程序使用中的一些基本原则 (8) 加强收敛性的方法 (8) 查看结果 (9) 塑性分析实例(GUI方法) (9) 塑性分析实例(命令流方法) (14)

弹塑性分析 在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面: ?什么是塑性 ?塑性理论简介 ?ANSYS程序中所用的性选项 ?怎样使用塑性 ?塑性分析练习题 什么是塑性 塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。 由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 率相关性: 塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力 )。(P A0)与工程应变(?l l0),也可能是真实应力(P/A)与真实应变(n L l l() 0大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。 什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服应力本身可能是下列某个参数的函数。 ?温度 ?应变率 ?以前的应变历史 ?侧限压力 ?其它参数 塑性理论介绍 在这一章中,我们将依次介绍塑性的三个主要方面: ?屈服准则 ?流动准则 ?强化准则 屈服准则: 对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。 屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。因此,

ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析

!ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析 !学习重点: !1、强化非线性屈曲知识 首先了解屈曲问题。在理想化情况下,当F < Fcr时, 结构处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 结构将返回到它的初始位置。当F > Fcr时, 结构处于不稳定平衡状态, 任何扰动力将引起坍塌。当F = Fcr时,结构处于中性平衡状态,把这个力定义为临界载荷。在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。 要理解非线性屈曲分析,首先要了解特征值屈曲。特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。 !理论解,根据Euler公式。其中μ取决于固定方式。 !有限元方法, 已知在特征值屈曲问题: 求解,即可得到临界载荷 而非线性屈曲问题: 其中为结构初始刚度,为有缺陷的结构刚度,为位移矩阵,为载荷矩阵。 非线性屈曲分析时考虑结构平衡受扰动(初始缺陷、载荷扰动)的非线性静力分析,该分析时一直加载到结构极限承载状态的全过程分析,分析中可以综合考虑材料塑性、几何非线性、接触、大变形。非线性屈曲比特征值屈曲更精确,因此推荐用于设计或结构的评价。 !2、熟悉WB中非线性屈曲分析流程 (1) 前处理,施加单元载荷,进行预应力静力分析。 (2) 基于预应力静力分析,指定分析类型为特征值屈曲分析,完成特征值屈曲分析。 (3) 在APDL模块将一阶特征屈曲模态位移乘以适当系数,将此变形后的形状当做非线性分析的初始模型。

钢筋混凝土梁的ansys分析

摘要 本文介绍ANSYS 模拟钢筋混凝土梁的过程,讨论了有限元模型的建立以及在 ANSYS 中的实现,给出了用分离式配筋方法对混凝土梁的分析的一般过程。并给出了详细的命令流过程。并在此基础上对混凝土梁进行了分析,讨论了在力的作用下混凝土梁的塑形变形和裂缝的发展过程。 关键词 Ansys 混凝土梁 分离式配筋 The analysis of mechanics of a reinforced concrete based on ANSYS Abstract This paper introduces ANSYS simulation of the reinforced concrete beam process, discusses the establishment of the finite element model and the realization, and gives the ANSYS reinforcement method with separate the analysis of concrete beams of the general process. And gives the detailed command flow process. Based on the analysis of concrete beams, and discussed the concrete beam under the action of forces of the body deformation and fracture process. Keywords Ansys concrete beams reinforced separated 1 引言 由于钢筋混凝上材料性质复杂,使其表现出明显的非线性行为[1]。长期以来采用线弹性理论的设计方法来研究钢筋混凝上结构的应力或内力,显然不太合理,尽管有此理论是基于人量试验数据上的经验公式,还是不能准确反映混凝上的力学性能,特别是受力复杂的重要结构,必须采用三维钢筋混凝上非线性有限元方法才能很好地掌握其力学性能。利用ANSYS 对钢筋混凝上结构弹塑性的仿真分析,可以对结构自开始受荷载直到破坏的全过程进行分析,获得不同阶段的受力性能。本文将以混凝土梁的弹塑性分析为例,介绍在Ansys 中分析材料非线性问题的具体实现方法。 2 问题介绍 如图所示的钢筋混凝土梁[2],横截面尺寸为200400b h mm mm ?=?,梁的跨度为3.0L m =,支座宽度为250mm 采用C20混凝土,梁内受拉纵筋3φ20,架立筋采用2φ12, 箍筋采用φ6@150,钢筋保护层厚度为25mm 。如图一。 图一 对于梁中所采用的所有钢筋,弹性模量为5 2.110MPa ?,抗拉强度设计值210MPa , 密度33 7.810/kg m ?,泊松比为0.3。

ansys学习非线性静态分析实例

ansys学习-非线性静态分析实例 问题描述 一个子弹以给定的速度射向壁面。壁面假定是刚性的和无摩擦的。将研究子弹和壁面接触后达80微秒长的现象。目的是确定子弹的整个变形,速度历程,以及最大等效Von Mises应变。求解使用SI单位。 用轴对称单元模拟棒。求解最好能通过单一载荷步实现。在这个载荷步中,将同时施加初始速度和约束。将圆柱体末端的节点Y方向约束住以模拟一固壁面。打开自动时间分步来允许ANSYS确定时间步长。定义分析结束的时间为8E-5秒,以确保有足够长的时间来扑捉整个变形过程。 问题详细说明 下列材料性质应用于这个问题: EX= (杨氏模量) DENS= (密度) NUXY=(泊松比) Yield Strength=(屈服强度) Tangent Modulus (剪切模量) 下列尺寸应用于这个问题: 长=-3m 直径=-3m 对于这个问题的初始速度是。 图1铜圆柱体图解 求解步骤: 步骤一:设置分析标题 1、选择菜单路径:Utility Menn>File>ChangeTitle。 2、键入文字“Coppery Cylinder Impacting a Rigid Wall”

3、单击OK。 步骤二:定义单元类型 1、选择菜单路径Mail Menu>Preprocessor>Element Type>All/Edit/Delete。 2、单击Add。Library of Element Types(单元类型库)对话框出现。 3、在靠近左边的列表中,单击“Visio Solid”仅一次。 4、选靠近右边的列表中,单击“4node Plas 106”仅一次。 5、单击OK。Library of Element Types 对话框关闭。 6、单击Options (选项)。VISCO106 element type Options(visco106单元类型选项)对话框出现。 7、在关于element behavior(单元特性)的卷动柜中,卷动到“Axisymmetric” 且选中它。 8、单击OK。 9、单击Element Types (单元类型)对话框中的Close。 步骤三:定义材料性质 1、选择菜单路径Main Menu>Preprocessor>Material Props>-Constant-Isotropic. Isotropic Matersal Properties (各向同性材料性质)对话框出现。 2、单击OK来指定材料号为1。另一个I sotropic Material Properties对话框出现。 3、对杨氏模量(EX)键入 4、对密度(DENS)键入8930。 5、对泊松比(NUXY)键入。 6、单击OK。 步骤四:定义双线性各向同性强化数据表(BISO) 1、选择菜单路径Main Menu>Preprocessor>Matersal Props>Data Tables> Define/Activate . Define/Activate Data Table(定义数据表)对话柜出现。 2、在关于type of data table(数据表类型)的卷动框中,卷动到“Bilin isotr BISO”且选中它。 3、对material reference number(材料参考号)健入1。

关于ansys非线性分析的几点忠告

关于非线性分析的几点忠告 了解程序的运作方式和结构的表现行为 如果你以前没有使用过某一种特别的非线性特性,在将它用于大的,复杂的模型前,构造一个非常简单的 模型(也就是,仅包含少量单元),以及确保你理解了如何处理这种特性。 通过首先分析一个简化模型,以便使你对结构的特性有一个初步了解。对于非线性静态模型,一个初步的 线性静态分析可以使你知道模型的哪一个区域将首先经历非线性响应,以及在什么载荷范围这些非线性将 开始起作用。对于非线性瞬态分析,一个对梁,质量块及弹簧的初步模拟可以使你用最小的代价对结构的 动态有一个深入了解。在你着手最终的非线性瞬时动态分析前,初步非线性静态,线性瞬时动态,和/或模 态分析同样地可以有助于你理解你结构的非线性动态响应的不同的方面。 阅读和理解程序的输出信息和警告。至少,在你尝试后处理你的结果前,确保你的问题收敛。对于与路程 相关的问题,打印输出的平衡迭代记录在帮助你确定你的结果是有效还是无效方面是特别重的。 简化 尽可能简化最终模型。如果可以将3─D结构表示为2─D平面应力,平面应变或轴对称模型,那么这样做, 如果可以通过对称或反对称表面的使用缩减你的模型尺寸,那么这样做。(然而,如果你的模型非对称加 载,通常你不可以利用反对称来缩减非线性模型的大小。由于大位移,反对称变成不可用的。)如果你可 以忽略某个非线性细节而不影响你模型的关键区域的结果,那么这样做。 只要有可能就依照静态等效载荷模拟瞬时动态加载。 考虑对模型的线性部分建立子结构以降低中间载荷或时间增量及平衡迭代所需要的计算时间。 采用足够的网格密度 考虑到经受塑性变形的区域要求一个合理的积分点密度。每个低阶单元将提供和高阶单元所能提供的一样

静力弹塑性分析_PushoverAnalysis_的基本原理和计算实例

收稿日期:2003-02-16; 修订日期:2003-05-12 基金项目:华东建筑设计研究院有限公司第2001年度科研项目. 作者简介:汪大绥(1941-),男,江西乐平人,教授级高工,主要从事大型复杂结构设计与研究工作. 文章编号:100726069(2004)0120045209 静力弹塑性分析(Pushover Analysis )的 基本原理和计算实例 汪大绥 贺军利 张凤新 (华东建筑设计研究院有限公司,上海200002) 摘要:阐述了美国两本手册FE M A273/274和AT C -40中关于静力弹塑性分析的基本原理和方法,给出了利用ET ABS 程序进行适合我国地震烈度分析的计算步骤,并用一框剪结构示例予以说明,表明 Pushover 方法是目前对结构进行在罕遇地震作用下弹塑性分析的有效方法。 关键词:静力弹塑性;能力谱;需求谱;性能点中图分类号:P315.6 文献标识码:A The basic principle and a case study of the static elastoplastic analysis (pushover analysis) W ANG Da 2sui HE Jun 2li ZH ANG Feng 2xin (East China Architectural Design &Research Institute C o.,Ltd ,Shanghai 200002,China ) Abstract :This paper reviews the basic principles and methods of the static elasto 2plastic analysis (pushover analysis )in FE MA273/274and in AT C 240.Its main calculation procedures are summarized and a case study is presented for the frame 2shearwall structure designed according to China C ode for Seismic Design by means of ET ABS.It has been proved that pushover analysis is a effective method of structural elastoplastic analysis under the maximum earthquake action.K ey w ords :static elastoplastic ;capacity spectrum ;demand spectrum ;performance point 1 前言 利用静力弹塑性分析(Pushover Analysis )进行结构分析的优点在于:既能对结构在多遇地震下的弹性设 计进行校核,也能够确定结构在罕遇地震下潜在的破坏机制,找到最先破坏的薄弱环节,从而使设计者仅对局部薄弱环节进行修复和加强,不改变整体结构的性能,就能使整体结构达到预定的使用功能;而利用传统的弹性分析,对不能满足使用要求的结构,可能采取增加新的构件或增大原来构件的截面尺寸的办法,结果是增加了结构刚度,造成了一定程度的浪费,也可能存在新的薄弱环节和隐患。 对多遇地震的计算,可以与弹性分析的结果进行验证,看总侧移和层间位移角、各杆件是否满足弹性极限要求,各杆件是否处于弹性状态;对罕遇地震的计算,可以检验总侧移和层间位移角、各个杆件是否超过弹塑性极限状态,是否满足大震不倒的要求。 20卷1期2004年3月 世 界 地 震 工 程 W OR LD E ARTH QUAKE E NGI NEERI NG V ol.20,N o.1 Mar.,2004

ansys实例命令流-弹塑性分析命令流

/FILNAME,Elastic-Plasitc,1 /TITLE, Elastic-Plasitc Analysis !前处理。 /PREP7 !**定义梁单元189。 ET,1,BEAM189 !定义单元。 !**梁截面1。 SECTYPE, 1, BEAM, HREC, , 0 !定义梁截面。SECOFFSET, CENT SECDATA,50,100,6,6,6,6,0,0,0,0 !定义梁截面完成。 !**定义材料。 MPTEMP,,,,,,,, !定义弹塑性材料模型。MPTEMP,1,0 MPDATA,EX,1,,2.05e5 MPDATA,PRXY,1,,0.3 TB,BISO,1,1,2, TBTEMP,0 TBDATA,,150,18600,,,, !定义弹塑性材料模型。!**建立几何模型。 K,1, , , , K,2 ,900, K,3 ,,50 LSTR, 1, 2 !**网格划分。 FLST,5,1,4,ORDE,1 !定义网格密度。FITEM,5,1 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,50, , , , ,1 !定义网格密度完成。CM,_Y,LINE !网格划分。 LSEL, , , , 1 CM,_Y1,LINE CMSEL,S,_Y CMSEL,S,_Y1 LATT,1, ,1, , 3, ,1 CMSEL,S,_Y CMDELE,_Y CMDELE,_Y1 LMESH, 1 !网格划分完成。 !施加载荷及求解。 FINISH /SOL

!**施加约束。 FLST,2,1,3,ORDE,1 !施加约束。FITEM,2,1 /GO DK,P51X, , , ,0,UX,UY,UZ,ROTX, , , FLST,2,1,3,ORDE,1 FITEM,2,2 /GO DK,P51X, , , ,0,UY,UZ,ROTX, , , , !施加约束完成。 !**加载。 FLST,2,50,2,ORDE,2 FITEM,2,1 FITEM,2,-50 SFBEAM,P51X,1,PRES,100, , , , , , LSWRITE,1, !定义载荷步1完成。FLST,2,50,2,ORDE,2 !定义载荷步2。FITEM,2,1 FITEM,2,-50 SFEDELE,P51X,1,PRES LSWRITE,2, !定义载荷步2完成。!设定求解步并求解。 LSSOLVE,1,2,1,

ANSYS 非线性_结构分析

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 1

第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析 非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金 2

属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 3

非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。 接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。 几何非线性 如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。 4

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点 Pushover)分析法 1、静力弹塑性分析方法(Pushover)分析法优点: (1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。 (2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。 2、静力弹塑性分析方法(Pushover)分析法缺点: (1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。 (2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。(3)只能从整体上考察结构的性能,得到的结果较为粗糙。且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。不能完全真实反应结构在地震作用下性状。 二、弹塑性时程分析法

1、时程分析法优点: (1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。 (2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。 (3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。 (4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。 2、时程分析法缺点: (1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。 (2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。所以此法的计算工作十分繁重,必须借助于计算机才能完成。而且对于大型复杂结构对计算机要求更高,耗时耗力。 (3)对工程技术人员素质要求较高,工程应用要求较高。从结构模型建立,材料本构的选取、地震波选取,到参数控制及庞大计算结果的整理及甄别都要求技术人员具有扎实的专业素质以及丰厚的工程经验。

地震工程中的静力弹塑性_pushover_分析法

第32卷 第2期 贵州工业大学学报(自然科学版) Vol.32No.2 2003年 4月 JOURNAL OF GUIZHOU UNIVERSI TY OF TEC HNOLOGY April.2003 (Natural Science Edition) 文章编号:1009-0193(2003)02-0089-03 地震工程中的静力弹塑性(pushover)分析法 冯峻辉,闫贵平,钟铁毅 (北方交通大学土建学院,北京100044) 摘 要:静力弹塑性(pushover)分析法在抗震结构的设计和评估中,尤其是基于性能/位移的抗 震设计中,具有很大的潜力。根据其发展背景和近况,评述了它在运用中的一些关键论点用于 性能评估的缺陷。为了预测地震反应,提出了一些可能的发展方向。 关键词:抗震设计;静力弹塑性分析;推倒分析 中图分类号:TU311.3 文献标识码:A 0 引 言 基于性能的抗震结构设计概念,包括了工程的设计,评估和施工等,要求在未来不同强度水平的地震作用下结构达到预期的性能目标[1]。为此需在工程实践中完成一个近似且简易的性能评估方法,通常所指的是静力弹塑性分析法(简称为推倒法)。由于推倒法的优点突出:考虑了结构的弹塑性特性,可用图形方式直观表达结构的能力与需求,通常比同一模型的动力分析更快且易于运行,可提供一个较可靠的结构性能预测等特点,正逐渐受到重视和推广。目前国内外许多组织把其纳入抗震规范,如美国的ATC-40,FE MA274等。我国也把其引入 建筑抗震设计规范 (GB50011-2001)。 1 推倒(Pushover)分析方法的原理,用途和实施过程 1.1 Pushover的原理和用途 推倒法是一个用于预测地震引起的力和变形需求的方法。其基本原理是:在结构分析模型上施加按某种方式(如均匀荷载,倒三角形荷载等)模拟地震水平惯性力的侧向力,并逐级单调加大,直到结构达到预定的状态(位移超限或达到目标位移),然后评估结构的性能。 推倒法可用于建筑物的抗震鉴定和加固,以及对新建结构的抗震设计和性能评估。它可以对所设计的地震运动作用在结构体系和它的组件上的抗震需求提供充足的信息,如对潜在脆性单元的真实力的需求,估计单元非弹性变形需求,个别单元强度退化时对结构体系行为作用的影响,对层间移位的估计(考虑了强度和高度不连续),对加载路径的证实等,其中一些是不能从弹性静力或动力分析中获得的。 1.2 Pushover的实施过程 推倒分析法的实施步骤为: 1.准备结构数据。包括建立结构模型,构件的物理常数和恢复力模型等; 2.计算结构在竖向荷载作用下的内力(将其与水平力作用下的内力叠加,作为某一级水平力作用下构件的内力,以判断构件是否开裂或屈服); 3.在结构每一层的质心处,施加沿高度分布的某种水平荷载。施加水平力的大小按以下原则确定:水平力产生的内力与2步所计算的内力叠加后,使一个或一批构件开裂或屈服; 4.对于开裂或屈服的构件,对其刚度进行修改后,再施加一级荷载,使得又一个或一批构件开裂或屈服; 5.不断重复3,4步,直至结构顶点位移足够大或塑性铰足够多,或达到预定的破坏极限状态。 6.绘制基础剪力 顶部位移关系曲线,即推倒分析曲线。 收稿日期:2002-10-25

静力弹塑性分析

静力弹塑性分析(Pushover分析) ■简介 Pushover分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。Pushover分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。Pushover分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover分析评价结构在大震作用下是否能满足预先设定的目标性能。 计算等效地震静力荷载一般采用如图2.24所示的方法。该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。这样的设计方法可以说是基于荷载的设计(force-based design)方法。一般来说结构刚度越大采用的修正系数R越大,一般在1~10之间。 但是这种基于荷载与抗力的比较进行的设计无法预测结构实际

的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。 基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。 Capacity (elastic) Displacement V B a s e S h e a r 图 2.24 基于荷载的设计方法中地震作用的计算 Pushover 分析是评价结构的变形性能的方法之一,分析后会得到如图2.25所示的荷载-位移能力谱曲线。另外,根据结构耗能情况会得到弹塑性需求谱曲线。两个曲线的交点就是针对该地震作用结构所能发挥的最大内力以及最大位移点。当该交点在目标性能范围内,则表示该结构设计满足了目标性能要求。

ANSYS弹性及塑性1讲解

什么是塑性 (1) 路径相关性 (1) 率相关性 (1) 工程应力、应变与真实应力、应变 (1) 什么是激活塑性 (2) 塑性理论介绍 (2) 屈服准则 (2) 流动准则 (3) 强化准则 (3) 塑性选项 (5) 怎样使用塑性 (6) ANSYS 输入 (7) 输出量 (7) 程序使用中的一些基本原则 (8) 加强收敛性的方法 (8) 查看结果 (9) 塑性分析实例(GUI方法) (9) 塑性分析实例(命令流方法) (14)

弹塑性分析 在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题 --弹塑性分析,我们 的介绍人为以下几个方面: 什么是塑性 ?塑性理论简介 ?ANSY 皐序中所用的性选项 *怎样使用塑性 ?塑性分析练习题 什么是塑性 塑性是一种在某种给定载荷下 ,材料产生永久变形的材料特性 ,对大多的工程材料来说 当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点 时,表现为弹性行为,也 就是说,当 移走载荷时,其应变也完全消失。 由于屈服点和比例极限相差很小,因此在 ANSYS 程序中,假定它们相同。在应力一应变 的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。 塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关, 这类非线性问题叫作与路 径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解一内部的应力,应变分 布一存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 率相关性: 塑性应变的大小可能是加载速度快慢的函数, 如果塑性应变的大小与时间有关,这种塑 性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性, 但在大多数静 力分 析所经历的应变率范围, 两者的应力一应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力一应变曲线形式给出。材料数据可能是工程应力 ( P/A 。)与工程应变(川/l 。),也可能是真实应力( 大应变的塑性分析一般采用真实的应力, 应变数据而小应变分析一般采用工程的应力、 应变数据。 什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生) 。而屈服应 力本身可 能是下列某个参数的函数。 * 温度 * 应变率 * 以前的应变历史 * 侧限压力 *其它参数 塑性理论介绍 在这一章中,我们将依次介绍塑性的三个主要方面: 屈服准则 * 流动准则 强 化准则 屈服准则: 对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑 性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。 屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示 知道了应力状态和屈服准则,程序就能确定是否有塑性应变产生。 屈服准则的值有时候也叫作等效应力,一个通用的屈服准则是 Von Mises 屈服准则, 。因此, P/A )与真实应变(

静力弹塑性分析方法简介

静力弹塑性分析方法简介 摘要:pushover方法是基于性能/位移设计理论的一种等效静力弹塑性近似计算方法,该方法弥补了传统的基于承载力设计方法无法估计结构进入塑性阶段的缺陷,在计算结果相对准确的基础上,改善了动力时程分析方法技术复杂、计算工作量大、处理结果繁琐,又受地震波的不确定性、轴力和弯矩的屈服关系等因素影响的情况,能够非常简捷的求出结构非弹性效应、局部破坏机制、和整体倒塌的形成方式,便于进一步对旧建筑的抗震鉴定和加固,对新建筑的抗震性能评估以及设计方案进行修正等。pushover方法以其概念明确、计算简单、能够图形化表达结构的抗震需求和性能等特点,正逐渐受到研究和设计人员的重视和推广。目前,国内外论述pushover方法的文章已经很多,但大部分是针对某一方面的论述。为了给读者一个比较快速全面的认识,本文在综合大量文献的基础上,对pushover方法的基本原理、分析步骤、等效体系的建立、侧向荷载的分布形式等方面做了比较全面的论述。 关键词:基于性能抗震设计;静力弹塑性分析;动力时程分析方法;恢复力模型;目标位移 abstract:pushover is an equivalent static elastoplastic approximate method which based on performance or displacement design theory. this method offsets the drawback of the force-base method which can’t estimate the inelastic characteristic of the structure, and improves the situation

相关文档
最新文档