多功能结冰风洞及声学风洞建设进展

多功能结冰风洞及声学风洞建设进展
多功能结冰风洞及声学风洞建设进展

多功能结冰风洞

一、项目背景

风洞是一种能人工产生和控制气流,以模拟飞行器或物体周围气体的流动,并可量度气流对试验对象的作用以及观察物理现象的一种管道状试验设备。风洞试验是利用相对运动的原理,在风洞中安置飞行器或其它物体的模型,研究气体流动及其与模型的相互作用,以了解实际飞行器或其它物体的空气动力学特性的一种实验方法。

多功能结冰风洞包括两个风洞试验回路,即结冰回路和声学回路。两个回路自成体系,可分别进行试验准备和试验。

结冰风洞是研究飞行器迎风表面和机外传感器结冰形态及防(除)冰技术的特种风洞,是为保证飞机在结冰气象条件下飞行安全、扩大现代飞机在恶劣气象条件下执行任务能力和保障通用飞机完成结冰适航合格审定的基本试验装置,是新机研制必不可少的重要地面试验设备。结冰风洞与常规风洞的主要区别在于结冰风洞可以模拟结冰环境,以便进行试验模型的结冰及防(除)冰试验。为此,结冰风洞中需要配置大型热交换器和喷雾装置。运行时,热交换器首先把风洞内的气流冷却到冰点温度以下,然后位于试验段上游的喷雾装置喷射雾化水滴形成符合结冰要求的云雾条件。

声学风洞是通过消声的方法降低试验段背景噪声,用于进行气动声学试验研究的风洞,是进行飞行器、地面车辆噪声等声学工程研究的基础设施。声学风洞声学设计的目标是在保证良好的流场品质条件下,具有无声反射的自由场、可进行远场声测量的足够距离及足够低的风洞背景噪声。一般认为风洞试验段背景噪声低于所测声源噪声10dB以上,测量数据可以不作修正。声学风洞有两种型式:开口试验段和闭口试验段。其设计的不同点在于,开口试验段被消声室所围绕、收集口及其下游的扩散段要考虑吸声、风洞回路内设置内场消声器衰减风扇驱动装置的噪声和采用声学处理的拐角导流片等措施;闭口试验段声学风洞与常规闭口试验段风洞设计的不同点是:闭口试验段内壁加吸声内衬、风洞回路内设置内场消声器衰减风扇驱动装置的噪声和采用声学处理的拐角导流片等措施。

多功能结冰风洞性能指标世界一流,兼顾低湍流度、低噪声和低雷诺数试验。建设原则是“实用、可靠”。建设的指导思想是“满足现在和未来飞行器研制需要,立足国内、自主创新、稳妥可靠,在较短的时间内,建成世界一流的多功能结冰风洞”。

二、建设内容

多功能结冰风洞的建设内容包括:

结冰回路:回路主体(钢结构)及其测量控制系统、制冷站、辅助设施厂房、试验楼、风扇控制厂房、蒸汽锅炉房、真空泵房、供电厂房、综合楼等;

声学回路:回路主体(钢和钢筋混凝土结构)及其测量控制系统、试验厂房、风扇控制厂房、供电厂房、综合楼等。

三、建设进展

2006年10月11日,国家发展改革委批复了多功能结冰风洞项目建议书,2010年5月10日,多功能结冰风洞在中国空气动力研究与发展中心开工建设,计划于2013年7月建成通气,2013年10月完成调试,形成试验能力。

四、建设效果

多功能结冰风洞将填补我国航空航天飞行器结冰、声学、低湍流度和高空低雷诺数风洞试验设备的空白,其综合性能指标将达到世界先进水平,形成我国独立研制先进的航空航天飞行器的结冰试验和声学试验平台,成为飞机结冰研究、防(除)冰技术验证和声学降噪技术研究的地面试验中心,满足各类飞行器的结冰防护试验和声学试验研究需要。

多功能结冰风洞鸟瞰效果图

结冰风洞结构布局图

声学风洞结构布局图

结冰风洞建设现场

声学风洞建设现场

2014年TI杯大学生电子设计竞赛赛题-G题风洞控制系统V4—专科

2014年TI杯大学生电子设计竞赛题 G题:简易风洞及控制系统(高职) 设计制作一简易风洞及其控制系统。风洞由圆管、连接部与直 流风机构成,如右所示。圆管竖直放置,长度约40cm,内径大于 4cm且内壁平滑,小球(直径4cm黄色乒乓球)可在其中上下运动; 管体外壁应有A、B、C、D等长标志线,BC段有1cm间隔的短标 志线;可从圆管外部观察管内小球的位置;连接部实现风机与圆管 的气密性连接,圆管底部应有防止小球落入连接部的格栅。控制系 统通过调节风机的转速,实现小球在风洞中的位置控制。 2.要求 (1)小球置于圆管底部,启动后5秒内控制小球向上到达BC 段,并维持5秒以上。(20分) (2)当小球维持在BC段时,用长形纸板(宽度为风机直径的 三分之一)遮挡风机的进风口,小球继续维持在BC段。(10分) (3)以C点的坐标为0cm、B点的坐标为10cm;用键盘设定小球的高度位置(单位:cm),启动后使小球稳定地处于指定的高度3秒以上,上下波动不超过± 1cm。(10分) (4)以适当的方式实时显示小球的高度位置及小球维持状态的计时。(10分)(5)小球置于圆管底部,启动后5秒内控制小球向上到达圆管顶部处A端,且不跳离,维持5秒以上。(10分) (6)小球置于圆管底部,启动后30秒内控制小球完成如下运动:向上到达AB段并维持3~5秒,再向下到达CD段并维持3~5;再向上到达AB段并维持3~5, 再向下到达CD段并维持3~5;再向上冲出圆管(可以落到管外)。(20分)(7)风机停止时用手将小球从A端放入风洞,小球进入风洞后系统自动启动,控制小球的下落不超过D点,然后维持在BC段5秒以上。(10分) (8)其他自主发挥设计。(10分) (9)设计报告。(20分) 共1页,G-1

大国重器:突飞猛进中的中国高科技

大国重器:突飞猛进中的中国高科技 突飞猛进中的中国高科技(2016-07-11 10:32:43) 中国空气动力研究与发展中心的结冰风洞和每秒千万亿次 超算投入使用央视新闻联播今天(7月10日)在国内要闻部分报道了中国空气动力研究与发展中心,这里担负着我国几乎所有飞机、导弹、飞船等航空航天飞行器的空气动力试验研究任务。报道如下:风洞被称为“航空航天飞行器的摇篮”,被世界各国视为重要的战略资源。从常规风洞到特种风洞,中国空气动力研究与发展中心面向世界科技前沿,成功构建起世界一流空气动力试验研究能力体系。中国空 气动力研究与发展中心完全具有我国自主知识产权的结冰 风洞这座建成不久,完全具有我国自主知识产权的结冰风洞,是研究飞机在高空飞行时,机翼等迎风面结冰现象及其防冰除冰技术的特种风洞设备。年逾七旬的风洞设计专家刘政崇带领创新团队,攻克了制冷系统、喷雾系统和高度模拟系统等多个关键技术难题,扫清了结冰风洞建设的技术障碍。刘政崇说,核心技术是买不来的,所以我们建造了这样一座结冰风洞,要独立自主发展我们的航空航天事业。空气动力 研究与发展中心担负着我国几乎所有飞机、导弹、飞船等航空航天飞行器的空气动力试验研究任务。创新团队依托自主发展的尾旋、颤振、热防护等一大批配套完善的先进试验技

术,让中国风洞的综合试验能力跻身世界先进行列。目前,中心已具备了风洞试验、数值计算和模型飞行三大研究手段,实现了从单纯提供试验数据向解决型号气动问题的跨越。 此前,新华社曾在6月下旬连发两篇报道介绍中国空气动力研究与发展中心的发展成就,报道指出,2016年5月,该 中心新建成的每秒千万亿次计算机系统正式投入运行,极大提升了我国计算空气动力学能力。报道如下:新华社成都6月27日电题:洞天铸剑驭风雷——记中国空气动力研究与发展中心科研创新群体李国利、徐青、于杰洞天铸剑驭风雷,舞动人生风洞间——几十年来,有“空气动力事业国家队”之誉的中国空气动力研究与发展中心科研创新群体,胸怀祖国、勇于创新,自主设计建成世界级风洞群,我国几乎所有的飞机、导弹、飞船等航空航天飞行器,都在这里进行过空气动力试验研究。中心在几乎所有涉及空气动力学的国家重大研究计划和工程中发挥了重要作用,为我国从大国向强国迈进提供了有力支撑。科研人员在0.6米×0.6米连续式跨声速风洞现场进行测试(资料照片)。新华社发,余江摄。忠诚风洞,是以人工的方式产生并且控制气流,用来模拟飞 行器或实体周围气体流动情况的大型试验设施。看似高深 莫测,却事关国家战略安全、与社会生活息息相关——飞机、飞船、火箭、导弹、汽车、高铁,乃至建筑、桥梁,都要在这个被称为“地面的人造天空”的风洞里开展大量试验研究。

MS82风洞试验技术研究(负责人林麒)

MS82 风洞试验技术研究(负责人:林麒) 8月27日下午地点:4层临4-10 时间 编号 报告题目 报告人单位 主持人 13:30 MS82-1700-I 运输机后体舱门开启流动特性试验研究 胡汉东中国空气动力研究与发展中心 杨希明 13:50 MS82-0056-O 一种改进的内埋武器高速风洞弹射投放实验方法 宋威中国航天空气动力技术研究院 14:00 MS82-0690-O 大长细比模型高速风洞试验支撑干扰分析 秦 汉 中国航天空气动力技术研究院 14:10 MS82-1330-O 翼身融合构型飞机跨声速风洞试验支撑干扰问题研究林榕婷中国商飞北研中心 14:20 MS82-1859-O 小展弦比飞翼低速大迎角支架干扰试验研究 王延灵航空工业空气动力研究院 白鹏 14:30 MS82-1860-O 风洞节流对其高亚声速特性影响试验研究 秦红岗中国空气动力研究与发展中心 14:40 MS82-2136-O 倾转四旋翼无人机风洞虚拟飞行初步验证 聂博文国防科技大学 14:50 MS82-2647-O 高速风洞中大型飞机常用支撑形式干扰特性研究 李 强 中国空气动力研究与发展中心 15:00 MS82-2681-O 基于映像涡系法的闭口矩形实壁风洞洞壁干扰因子计算 马洪雷中国航空工业空气动力研究院 岳连捷 15:10 MS82-2761-O 弹性体模型风洞试验支撑系统虚拟振动试验研究 张 戈 中国航空工业空气动力研究院 15:20 MS82-1850-O 导弹滑块电缆罩气动特性风洞测力试验优化研究 朱中根西安现代控制技术研究所 15:30 15:40 MS82-0819-O 并联级间分离自由飞风洞试验技术及相似律推导 薛 飞 中国航天空气动力技术研究院 8月28日下午地点:4层临4-9 时间 编号 报告题目 报告人单位 主持人 13:30 MS82-1670-I 风洞动态试验中的仿真技术应用 赵俊波中国航天空气动力技术研究院 陈德华13:50 MS82-2868-O 不同收集口角度下风洞流场的数值模拟与试验研究高 娜 中国航空工业空气动力研究院 14:00 MS82-0603-O 基于RBF 神经网络的大迎角耦合振荡气动力建模 卜凡楠厦门大学 14:10 MS82-3570-O 端壁附面层抽吸对压气机叶栅分离影响的仿真研究王东中航发动力所 王铁进14:20 MS82-1760-O 结冰风洞中SLD 模拟方法及其实验验证研究 符 澄 中国空气动力研究与发展中心 14:30 MS82-2393-O 进气道试验中管道效应对湍流度的影响研究 徐彬彬中国空气动力研究与发展中心低速所 14:40 MS82-2994-O 结冰条件下大型民机操稳特性研究与风洞虚拟飞行验证 朱正龙中国空气动力研究与发展中心低速所 14:50 MS82-2986-O 螺旋桨噪声特性风洞试验研究 谭 啸 中国航空工业空气动力研究院 吴佳莉15:00 MS82-3159-O 地效飞机近波浪水面气动特性风洞试验模拟 高立华中国空气动力研究与发展中心 15:10 15:20 MS82-2365-O 可压缩混合层增长率的试验方法研究 王铁进 中国航天空气动力技术研究院

风洞结构设计的发展趋势

风洞结构设计的发展趋势 随着现代飞行器研制的高速发展,具有复杂外形和特种飞行环境要求的飞行器不断涌现,对气动力研究提出了新的气动力试验要求。风洞作为气动力试验研究必不可少的试验设备,新的气动力试验问题使风洞朝着具有更强的试验能力、高的生产效率及低的运行费用的方向发展。 风洞作为提供并保证风洞试验功能和性能的重要设备,决定其运行功能和性能的重要关键技术之一是风洞结构设计。风洞结构设计的主要目的是如何保证风洞结构具有气动力设计性能所要求的结构型式、以及为风洞试验提供各种特种试验所需的试验设备。 二十世纪七十年代以来,为使风洞具有更强的试验能力、高的生产效率及低的运行费用。世界各国作了大量的试验研究工作,在改造原有风洞的同时,发展了许多新型特种风洞试验设备,使风洞结构设计技术取得了较快的发展。尤其是随着相关专业技术的发展和计算机技术的飞速发展,风洞结构设计在传统的风洞结构设计方法的基础上取得了明显的成效。但应看到,风洞结构作为一个有机的整体,要满足气动性能、运行工况等各方面提出的要求,其结构设计极其复杂,仍有一些技术不够成熟,有许多结构问题仍未解决。典型的如风洞结构的整体综合强度刚度优化配置、风洞整体结构振动、风洞中运动执行机构的振动、执行机构的传动精度及稳定性、以及特种风洞结构性能等问题。 随着科学技术水平的加速发展,特别是计算机软硬件性能和水平的持续提高,以及计算机技术对各行各业全面深入的渗透,各技术领域的思维、观念和方法不断得以更新。基于现有性能优良的风洞所建立的传统设计准则与方法也相应发生了根本性的改变。面对气动力试验对风洞结构性能和功能的新要求,为实现进一步提高风洞气流品质、提高实验数据的精准度,以及尽可能满足新的气动力要求,使风洞具有更强的试验能力、高的生产效率及低的运行费用的发展目的,在风洞结构设计上不断地开展新技术创新与应用,并将现代设计方法引入到风洞结构设计之中是风洞结构设计发展的新的趋势特征。 9.1 加强新技术创新,提高风洞结构性能 风洞结构设计是一门专业面宽、多种学科综合应用的系统工程,涉及流体力学、机械系统设计、固体力学、振动与噪声控制、压力容器设计、热结构工程及土建设计等多学科;风洞结构设计的主要目的首先是要满足风洞气动力试验要求,而风洞结构性能的保证与提高取决于风洞结构设计中关键技术的创新与应用。 9.1.1逐步建立风洞结构设计的综合强度刚度设计准则 风洞结构设计不同于一般机械产品设计的最大特征是风洞是单件设计制造、既类似于化工容器设计,又类似于机械设计的非标设备设计。简单地就强度刚度设计而言,应将各种强度及刚度(静强度、动强度、热强度、疲劳与断裂强度等)统一考虑并进行优化,综合提出一个满足各种强度与刚度要求的综合强度设计准则,使结构设计达到一个较为完善的程度。但由于所诸多因素的制约,要达到这样的程度是非常困难的。 目前,在风洞结构设计中,对其强度刚度的设计较多的是使用“钢制压力容器设计规范”及“机械设计手册”进行设计,也有部分是应用有限元法新技术进行结构设计校核,并未形成一种

简易风洞及控制系统

简易风洞及控制系统(G题) 摘要:本帆板控制系统由单片机ATMEGA328作为帆板转角的检测和控制核心,实现按键对风扇转速的控制、调节风力的大小、改变帆板转角θ、液晶显示等功能。引导方式采用角度传感器感知与帆板受风力大小的转角θ的导引线。通过PWM波控制电机风扇风力的大小使其改变帆板摆动的角度θ。风扇控制核心采用L298电机驱动模块,用ATMEGA328单片机为控制核心,产生占空比受数字PID 算法控制的PWM脉冲,实现对直流电机转速的控制,同时利用光电传感器将电机速度转化成脉冲频率反馈到单片机中,实现转速闭环控制,达到转速无静差调节的目的。MMA7455三轴加速传感器把角度输出信号传送给ATMEGA328单片机进行处理。 关键词:ATMEGA328,MMA7455,PWM波,PID算法

目录 1. 系统设计 1.1 任务与要求 1.1.1 主要任务 1.1.2 基本要求 1.1.3 说明 1.2总体设计方案 1.2.1 设计思路· 1.2.2 方案论证与比较 1.2.3 系统的组成 2. 单元电路设计 2.1 风速控制电路 2.2小球测距原理 2.3控制算法 3. 软件设计 3.1风速控制电路设计计算 3.2控制算法设计与实现 3.3程序流程图 4. 系统测试 4.1 调试使用的仪器与方法 4.2 测试数据完整性 4.3 测试结果分析 4.4 结束语 5. 总结 参考文献 附录1 元器件明细表 附录2 电路图图纸 附录3 程序清单

1.1任务与要求 1.1.1 主要任务 设计制作一简易风洞及其控制系统。风洞由圆管、 连接部与直流风机构成,如图所示。 圆管竖直放置,长度约40cm,内径大于4cm且内 壁平滑,小球(直径4cm黄色乒乓球)可在其中上下运 动;管体外壁应有A、B、C、D等长标志线,BC段有 1cm间隔的短标志线;可从圆管外部观察管内小球的位置;连接部实现风机与圆管的气密性连接,圆管底部应有防止小球落入连接部的格栅。控制系统通过调节风机的转速,实现小球在风洞中的位置控制。 1.1.2 基本要求 (1)小球置于圆管底部,启动后5s内控制小球向上到达BC段,并维持5s 以上。 (2)当小球维持在BC段时,用长形纸板(宽度为风机直径的三分之一)遮挡风机的进风口,小球继续维持在BC段。 (3)以C点的坐标为0cm、B点的坐标为10cm;用键盘设定小球的高度位置(单位:cm),启动后使小球稳定地处于指定的高度3s以上,上下波 动不超过±1cm。 (4)以适当的方式实时显示小球的高度位置及小球维持状态的计时。(5)小球置于圆管底部,启动后5s内控制小球向上到达圆管顶部处A端,且不跳离,维持5s以上。 (6)小球置于圆管底部,启动后30s内控制小球完成如下运动:向上到达AB段并维持3~5s,再向下到达CD段并维持3~5s;再向上到达AB段 并维持3~5s,再向下到达CD段并维持3~5s;再向上冲出圆管(可以

风洞试验

风洞实验 科技名词定义 中文名称:风洞实验 英文名称:wind tunnel testing 定义:在风洞中进行模拟飞行器在大气中运动时的空气动力学现象。 应用学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 流体力学方面的风洞实验指在风洞中安置飞行器或其他物体模型,研究气体流动及其与模型的相互作用,以了解实际飞行器或其他物体的空气动力学特性的一种空气动力实验方法;而在昆虫化学生态学方面则是在一个有流通空气的矩形空间中,观察活体虫子对气味物质的行为反应的实验。 目录

编辑本段原理 风洞实验的基本原理是相对性原理和相似性原理。根据相对性原理,飞机在静止 风洞实验 空气中飞行所受到的空气动力,与飞机静止不动、空气以同样的速度反方向吹来,两者的作用是一样的。但飞机迎风面积比较大,如机翼翼展小的几米、十几米,大的几十米(波音747是60米),使迎风面积如此大的气流以相当于飞行的速度吹过来,其动力消耗将是惊人的。根据相似性原理,可以将飞机做成几何相似的小尺度模型,气流速度在一定范围内也可以低于飞行速度,其试验结果可以推算出其实飞行时作用于飞机的空气动力。[1] 编辑本段优点 风洞实验尽管有局限性,但有如下四个优点:①能比较准确地控制实验条 风洞实验 件,如气流的速度、压力、温度等;②实验在室内进行,受气候条件和时间的影响小,模型和测试仪器的安装、操作、使用比较方便;③实验项目和内容多种多样,实验结果的精确度较高;④实验比较安全,而且效率高、成本低。因此,风洞实验在空气动力学的研究、各种飞行器的研制方面,以及在工业空气动力学和其他同气流或风有关的领域中,都有广泛应用。 编辑本段要求

两自由度风洞实验运动装置机械结构总体的设计

选题、审题表 学院 选题 教师姓名 专业专业技术职务 申报课题名称 两自由度风洞实验运动装置机械结构总体设计 课题性质①②③④⑤⑥ 课题来源 A B C D √√ 课题简介该装置用于风洞实验测量,采用尾撑模型,实现垂直运动和俯仰运动,共两个自由度。风洞最大风速为80m/s。由于风洞实验的要求,机构部分不能进入风洞实验范围,因此,该机构的支撑部分和悬伸部分长度较长,如何提高其支撑刚性和低俗运动的平稳性,是该课题重点考虑的问题。 设计(论文) 要求(包括应具备的条 件)学生具有较好的机械设计理论基础,能熟练掌握二维和三维的制图软件,具有比较强的独立研究和探索能力,具有较强的主动沟通意识。 课题预计工作量大小大适中小课题预计 难易程度 难一般易√√ 所在专业审定意见: 负责人(签名):年月日院主管领导意见: 签名:年月日

任务书 1、本毕业设计(论文)课题应达到的目的: 通过毕业设计,了解相关行业的发展状况,熟悉机械设计的过程,熟悉常用的机械设计软件和二维三维绘图软件,培养独立进行开发研究的能力。 2、本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): 1.两自由度风洞实验运动装置机械结构总体设计 2.完整的机械设计过程及其说明 3.完成二维或三维的设计图纸绘制

任务书 1、对本毕业设计(论文)课题成果的要求(包括毕业设计论文、图表、实物样品等): 1.完成外文专业资料的翻译; 2.两自由度风洞试验运动装置原理示意图; 3.两自由度风洞试验运动装置试验结果; 4毕业实习报告; 5.毕业论文; 4、主要参考文献:

[1]REINM,eta l.Ground-B a s e d S i m u l a t i o n Of Complex Maneuvers Of A Delta-Wing Aircraft[J].AIAA Journal Of Aircraft,2008,45(1):286-291. [2]BERGMANNA.Modern Wind Tunnel Techniques forunsteady testing[J].NNFM,2009,102:59-77 [3]David J. Korsmeyer, Joan D. Walton, Bruce L. Gilbaugh and Dennis J. Koga oDARWIN—REMOTE ACCESS AND DATA VISUALIZATION ELEMENTS. AIAA96-2250. [4]Felice Cennamol, Francesco Fusco,Michele Inverno, Alessandro Masil, Andrea Ruggiero. A Memotc Control led Measurement for Kducat ion and Training ofExperiments in Wind Tunnel. MTC2004-Instrumentation and Measurement TechnologyConferences Como, Italy, 18-20 May 2004. [5]樊昌,张连河.基于Web Service的风洞信息数字解决方案.航空计算技术.2007,37(4):124-128. [6]文福安,杨光.并联机器人机构概述[J].机械科学与技术,2000, 19(1):69-72. [7]江平宇,陈献国.基于Web的同步远程协同产品设计的实现.机械工程学报,2002,38(3):34-38 [8]邹建文;王安庆;林中达;基亍Web的火电厂远程监控及故障诊断系统开发机屯工程技术,2010. 1 任务书 5、本毕业设计(论文)课题工作进度计划 起止日期工作内容

结构设计基本流程

一、结构设计的内容和基本流程 结构设计的内容主要包括: 1.合理的体系选型与结构布置 2.正确的结构计算与内力分析 3.周密合理的细部设计与构造 三方面互为呼应,缺一不可。 结构设计的基本流程 二、各阶段结构设计的目标和主要内容 1.方案设计阶段 1)目标 确定建筑物的整体结构可行性,柱、墙、梁的大体布置,以便建筑专业在此基础上进一步深化,形成一个各专业都可行、大体合理的建筑方案。 2)内容: a.结构选型 结构体系及结构材料的确定,如混凝土结构几大体系(框架、框架—剪力墙、剪力墙、框架—筒体、筒中筒等)、混合结构、钢结构以及个别构件采用组合构件,等等。 b.结构分缝 如建筑群或体型复杂的单体建筑,需要考虑是否分缝,并确定防震缝的宽度。 c.结构布置 柱墙布置及楼面梁板布置。主要确定构件支承和传力的可行性和合理性。 d.结构估算 根据工程设计经验采用手算估计主要柱、墙、梁的间距、尺寸,或构建概念模型进行估算。

2.初步设计阶段 目标在方案设计阶段成果的基础上调整、细化,以确定结构布置和构件截面的合理性和经济性,以此作为施工图设计实施的依据。 2)内容 ①计算程序的选择(如需要); ②结构各部位抗震等级的确定; ③计算参数选择(设计地震动参数、场地类别、周期折减系数、剪力调整系数、地震调整系数,梁端弯矩调整系数、梁跨中弯矩放大系数、基本风压、梁刚度放大系数、扭矩折减系数、连梁刚度折减系数、地震作用方向、振型组合、偶然偏心等); ④混凝土强度等级和钢材类别; ⑤荷载取值(包括隔墙的密度和厚度); ⑥振型数的取值(平扭耦连时取≥15,多层取3n,大底盘多塔楼时取≥9n,n为楼层数); ⑦结构嵌固端的选择。 3)结构计算结果的判断 ①地面以上结构的单位面积重度是否在正常数值范围内,数值太小可能是漏了荷载或荷载取值偏小,数值太大则可能是荷载取值过大,或活载该折减的没折减,计算时建筑结构面积务必准确取值; ②竖向构件(柱、墙)轴压比是否满足规范要求:在此阶段轴压比必须严加控制;③楼层最层 间位移角是否满足规范要求:理想结果是层间位移角略小于规范值,且两个主轴方向侧向位移值相近;④ 周期及周期比;⑤剪重比和刚重比⑥扭转位移比的控制;⑦有转换层时,必须验算转换层上下刚度比 及上下剪切承载力比;等等 4)超限判别:确定超限项目(高度超限、平面不规则、竖向不连续、扭转不规则、复杂结构等)和超限程度是否需要进行抗震超限审查。结构计算中可能需要包括地震的多向作用、多程序验证、多模型包络、弹性时程分析、弹塑性时程分析、转换结构的应力分析、整体稳定分析,等。 a.性能化设计和性能目标的确定(如需) b.基础选型和基础的初步设计 如果是天然地基基础,需确定基础持力层、地基承载力特征值、基础型式、基础埋深、下卧层(强度、沉降)等;如果是桩基础,需确定桩型、桩径、桩长、竖向承载力特征值等等。并应注意是否存在液化土层、大面积堆载、负摩阻、欠固结土层等特殊问题。

风洞试验论文

低速风洞在设计和使用中需要考虑的因素 丛磊 汕头大学工学院,汕头515063 [摘要] 低速风洞试验作为研究结构物在风力作用下动力响应特性的一种重要手段,在其洞体设计和使用中需要考虑诸多内外因素对试验结果的影响。本文总结了影响低速风洞试验结果的一些相关因素,包括洞体各部分几何特性对风洞流场品质的影响、试验段槽道对流场方向的影响、收缩段的边界层修正、低速风洞试验数据库系统的建设以及无线数据采集技术在低速风洞中的应用研究。 [关键词] 低速风洞洞体几何特性试验段槽道边界层修正数据库系统无线材及技术 1 前言 低速风洞作为研究土木工程结构无在风力作用下动力响应特性的一种实验装置,其对测试结果的精确性具有很高的要求,但在试验中不可避免的要受到许多不可控因素的影响。因此,如何得到研究中所需要的比较令研究者满意的精确数据是许多风工程研究人员需要解决的问题。本文通过总结一些国内外对风洞试验技术的改进研究,希望对现有风洞的改进与新建风洞的建设有所帮助。 2 影响低速风洞测试精确度的因素 2.1 低速洞体各部分几何特性对风洞流场品质的影响 2.1.1 实验段 实验段为风洞中模拟原型流场进行模型空气动力实验的地方,是风洞的重要组成部分。为了能模拟原型流场,实验段尺寸和气流速度的大小,应满足实验Re 达到一定值的要求。此外,实验段气流应稳定,速度的大小、方向在空间的分布应均匀,原始紊流度、噪声强度、静压梯度应低。实验段气流的这些特性的好坏,总称为流场品质。实验段的尺寸由模型的尺寸来确定。 一般实验段内部沿轴向(顺来流方向)有扩散角,或沿轴向逐渐减小各截面的切角部分所切除的面积,使横截面积沿轴向逐渐增大,以减小由于壁面附面层沿轴向增厚而产生的负静压梯度的绝对值。

绵阳风洞基地

◆◆中国绵阳——亚洲最大的航空风洞群探秘◆◆ 世界上公认的第一个风洞是英国人于1871年建成的。美国的莱特兄弟于1901年建造了风速12米/秒的风洞,从而发明了世界上第一架飞机。风洞的大量出现是在20世纪中叶。到目前为止,我国已建成配套齐全功能完备的各类风洞140余座,在风洞试验、数值计算、模型飞行试验等领域取得长足进步,空气动力学设备、技术和人才均跨入国际先进行列。 在我国四川西北的群山深处,有一个总体规模居世界第三、亚洲第一的风洞群。我国自行研制的各种航空航天飞行器,都要在这里进行空气动力试验。中国空气动力研究与发展中心自主设计、建设了亚洲规模最大、功能最完备的风洞群,其中2.4米跨声速风洞等8座为世界领先量级,可开展从低速到24倍声速,从水下、地面到94公里高空范围的气动试验研究。此外,这个中心还具有每秒14万亿次运算能力的计算机系统及各类飞行器彷真计算的应用软件体系;具备飞机和飞艇带飞、火箭助推的模型飞行试验和飞行力学研究能力,在无人飞行器的研制方面也取得重要成果。目前,我国已经开展了47万余次风洞试验,成功解决了包括神舟载人飞船返回舱、逃逸飞行器的气动力和气动热等大量关键技术,以及其他航空航天飞行器和武器装备的关键气动问题。我国航空、航天、航海几乎所有的飞船、飞机、火箭等都首先在风洞进行试验才设计定型。 当时因为工作关系,我几乎见过中国所有的顶级风洞,包括大山里的那些风洞,以及中科院的一些特殊的风洞。现在就挑一些有趣的风洞,大家可能没有听说过的,讲一讲: 当时我去参观山里的一个风洞,这是个不一般的风洞,叫做高温电弧风洞,是用来模拟火箭飞行或高超声速飞行器飞行的。风洞本身并不大,这类模拟极端条件的风洞都不大(大的风洞都是低速风洞,我见过的最大的可以放进去两辆汽车),但是奇怪的是哪个实验室的墙上的结构钢梁很奇怪,极其粗大,就这麽个一层楼的房子,好像没有必要。结果一介绍,原来那是输电“线”!高温电弧风洞要用电力来产生电弧,这些电线要传输上千乃至上万安培的电流,注意不是上万伏特,而是安培!要知道一般情况下,一安培就是不得了的电流了,那麽

国内几个大型风洞实验室资料

1)石家庄铁道大学风洞实验室参数

2)湖南大学风洞实验室 湖南大学风工程试验研究中心目前拥有国内先进的大型边界层风洞实验室,风洞试验室占地2000m2,建筑面积3200 m2。该风洞气动轮廓全长53m、宽18 m,为低速、单回流、并列双试验段的中型边界层风洞,其试验速度相对较高的试验段(高速试验段)长17 m,模型试验区横截面宽3 m、高 m,试验段风速0~60 m /s 连续可调。高速试验段有前后两个转盘,前转盘位置可模拟均匀流风场,通过在该试验段一定范围内布置边界层发生器,在后转盘位置可进行与边界层有关的桥梁节段模型试验、局部构件抗风性能试验。试验速度相对较低的试验段(低速试

验段)长15 m、模型试验区横截面宽 m、高 m,最大风速不小于16 m /s,可进行长大桥梁全桥模型抗风试验研究。 3)大连理工大学风洞实验室介绍 大连理工大学风洞实验室(DUT-1)建成于2006年4月,是一座全钢结构单回流闭口式边界层风洞,采用全自动化的测量控制系统。风洞气动轮廓长m,宽m,最大高度为;试验段长18m,横断面宽3m,高,空风洞最大设计风速50m/s,适用于桥梁与建筑结构等抗风试验研究。 4)中国建筑科学研究院实验室介绍 风洞试验室建筑面积4665平米,拥有目前国内建筑工程规模最大、设备最先进的下吹式双试验段边界层风洞,风洞全长,高速试验段尺寸为4m×3m×22m(宽×高×长),最高风速30m/s;低速段尺寸为6m××21m,最高风速18m/s。拥有1280点同步电子扫描阀、多点激光测振仪、高频天平等先进的测试设备,可进行结构抗风和风环境的风洞试验、CFD数值模拟、风振分析等研究和咨询工作。 风洞采用先进的交流变频调速系统,试验段转盘和移测架均由微机控制,自动化程度较高。风洞压力测量系统包含美国Scanivalve公司的3台DSM主机和20个压力扫描阀,能够实现1280点的压力同步测量,可满足海量测点压力测试的要求。振动测量系统包括美国NI公司的动态信号采集系统、PCB和Dytran公司的超小型精密加速度传感器以及德国Polytec公司的四台激光测振仪,可进行建筑物模型气动弹性试验。此外实验室还配备了高频底座天平、地面风速测量系统和热线风速仪等测试设备,以满足不同类型的风洞试验需要。 实验室最大的特点在于:风洞试验段截面尺寸较大,可满足较大体量建筑群落试验要求;配备的压力扫描系统可实现上千测点规模的同步测压,满足后续压力数据处理的要求。

PID控制在风洞风速调节中的应用

PID控制在风洞风速调节中的应用 陈树权 (哈尔滨150001) 摘要为了完成某研究所风洞的风速控制系统,设计了一套以计算机为中心基于PLC的风速控制系统,给出了系统的硬件设计和软件设计,在提出PI控制方案的基础上,介绍了PID 控制的原理和特点,对风速控制精度及PID参数整定进行了研究。经实际运行验证了在风洞交流电机变频调速系统中PID控制的可靠性和实用性。 关键词PID控制交流电机变频调速 引言 风洞是空气动力学试验系统的必要设备。它依据运动的相对性原理,将飞行器的模型或实物固定在风洞中,通过风洞气流流过,以此模拟飞行器空中各种复杂的飞行状态,获取实验数据。风洞是研制飞机必需的一种试验装置。它模拟飞机飞行中各种气动力条件,以便获取飞机在空中飞行时的各种参数。 气流的改变是通过调节风洞系统中的电机转数调节风速实现的,风速采用安川G7系列变频控制器,并配以编码器反馈完成高精度控制,通过可编程逻辑控制器(PLC)实现PID 控制,使用具有触摸操作和通信功能的人机界面。PID控制是闭环控制系统中比例一积分一微分控制算法,它可以看作是这三项之和,根据设定值与被控对象实际值的差值,按PID方式汁算出控制输出量,使反馈跟随设定值变化,因此PID控制是负反馈闭环控制其中比例项是增益(Kc)与偏差的乘积,积分项与偏差的和成正比,微分项与偏差的变化成正比,而可编程控制器(PIC)是利用其闭环控制模块来实现PID控制。 1 PID控制介绍 1.1 PID控制的原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID调节PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时。系统控制器的结构和参数必须依靠经验和现场调试来确定时,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。本系统中只采用比例和积分控制。1.1.1 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输人误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady—stateerror)。 1.1.2 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进人稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System withSteady—stateError)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。1.1.3 微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大

风洞试验

《桥梁风工程》之——风洞试验技术 主要内容简介 第一章风洞试验的理论基础——相似性 (概述、相似性基本要求、无量纲参数的来源、基本缩尺考虑) 1.1 概述 理论流体力学——物理实验——数值模拟(风工程研究的“三大手段”); 桥梁、建筑结构在结构设计方面,只要求结构在风荷载作用下具有足够的强度、刚度和稳定性即可,即确保桥梁结构、建筑结构的安全性、舒适性和耐久性即可;(这区别于航空器的设计——力求其周围运动空气对其的阻力最小),主要关注绕尖角的流动和分离流动,因此,称为“钝体空气动力学”。个别建筑、桥梁已开展了实际结构的实测。 Fig.1 Research methods of Wind Engineering of Bluff Body 1932年,Flachsbart O.“建筑物气动特性的模拟应当在具有与自然风相似的风洞气流中进行”。 几何缩尺——经济性和方便性 由于缩尺几何引出了物理相似的一系列问题,相似性准则是风洞试验的理论基础。应该说明的是,由于模型的几何缩尺,导致部分物理现象不能准确反映,如雷诺数效应。因此,在实际设计模型试验时,需要进行一系列权衡,确保主要问题能模拟即可。(科学与艺术结合!) 1.2 模型相似性 在分析一切物理问题,特别是需要通过实验进行研究的问题时,通常需要确定一组无量纲的控制参数。该组无量纲参数通常是根据描述所研究物理系统的偏微分方程得到的,用一个具有对应量纲的参考值遍除所有关键变量,使之无量纲化,于是得到大量的无量纲组合参数,它们就是控制系统的物理特性的因子。如果这些控制参数组从一种情况(原型物)到另一种情况(模型)保持不变,则自然保证了相似性。具体风洞试验相似性无量纲参数推导见下。

民用飞机气动设计原理

民用飞机气动设计原理 民用飞机可以随时转为军用。海湾战争期间,美国曾动员民用 飞机用于军事运输。预警机、加油机等军事用途飞机也往往由民用飞机改型而成。下面是为大家分享民用飞机气动设计原理知识,欢迎大家阅读浏览。 宽体飞机相对于窄体飞机,超临界机翼气动设计的难点主要体 现在哪里?(Dan) 超临界翼型设计的本质是弱激波翼型的设计。超临界翼型相较 于普通翼型,其头部比较丰满,降低了前缘的负压峰值使气流较晚达到声速。即提高了临界马赫数。同时超临界翼型上表面中部比较平坦,有效控制了上翼面气流的进一步加速,降低了激波的强度和影响范围,并且推迟了上表面的激波诱导边界层的分离。因此超临界翼型有着更高的临界马赫数和更高的阻力发散马赫数。 超临界翼型与传统翼型对比 对于窄体飞机,其巡航马赫数范围在0.78-0.80之间,通常巡 航时间占全航程比例不高,因此翼型设计需要多考虑起降、爬升等非巡航性能。而宽体飞机的巡航马赫数则通常在0.85-0.90之间,并常用于长航程飞机,应此翼型设计需要多考虑巡航性能。更高的巡航马赫数使得机翼表面有很大的超声区,使得通过翼型设计来削弱、推迟激波的设计难度大大加大。 控制律载荷一体化技术能改善飞机什么性能?有何效 益?(Zhijie)

放宽静稳定性使飞机阻力减小,减轻飞机的质量,增加有用升力,使飞机的机动能力提高; 边界控制技术减轻了驾驶员的工作负担并保证飞机安全; 阵风载荷减缓技术减小阵风干扰下可能引起的过载,从而达到 减轻机翼弯曲力矩和结构疲劳的目的,并提高乘坐舒适性; 机动载荷控制改变飞机机动飞行时机翼的载荷分布,降低翼根 处的弯曲力矩,从而减轻机翼的结构重量和机动时的疲劳载荷,最终可以提高商载能力和增加飞行航程; 颤振模态控制技术通过改变翼面的非定常的气动力分部,从而 降低或改善机翼的气动弹性耦合效应,最终达到提高颤振速度的目的。 A320阵风载荷减缓控制系统 说说风洞试验中,风洞的问题和缩比模型的问题、试验结果的 一致性问题(Shaoyun) 风洞试验是指在风洞中安装试验模型,研究气体流动及其与模 型的相互作用,以了解实际飞行器的空气动力学特性的一种空气动力试验方法。 F22飞机风洞模型 风洞的基本参数一是风洞几何参数,包括风洞截面积、风洞试 验段长度等,二是风洞的试验风速,一般地,0~0.3M范围为低速风洞,0.3M~1M为高速风洞,大于1M为超音速风洞。 由于模型缩比等原因,风洞试验模型不能完全保留真实飞行器 的气动特性。风洞试验通过采用相似准则来尽可能地使试验特性同真

风洞试验

A.风洞实验的基本原理是相对性原理和相似性原理。根据相对性原理,飞机在静止风洞实验 空气中飞行所受到的空气动力,与飞机静止不动、空气以同样的速度反方向吹来,两者的作用是一样的。但飞机迎风面积比较大,如机翼翼展小的几米、十几米,大的几十米(波音747是60米),使迎风面积如此大的气流以相当于飞行的速度吹过来,其动力消耗将是惊人的。根据相似性原理,可以将飞机做成几何相似的小尺度模型,气流速度在一定范围内也可以低于飞行速度,其试验结果可以推算出其实飞行时作用于飞机的空气动力。[1] B.风洞实验原理及实验仪器 一、实验目的 通过参观,让学生了解风洞实验装置的构造、作用,常用的风洞实验仪器及作用,风洞实验的过程和风洞实验的原理。 二、风洞系统简介 风洞作为一套完整的空气动力实验装备,其构造是较为复杂的。按风洞实验段气流速度的大小,一般可分为:低速风洞(M≤0.3),高亚音速风洞(0.3≤M≤0.8),跨音速风洞(0.8≤M≤1.5)。超音速风洞(1.5≤M≤4.5)。高超音速风动(4.5≤M≤10),极高速风洞(M>10)。 1.以805实验室HG-4号超音速风洞为例,它主要由以下几部分组成: l 气源系统:由大型空气压缩机提供清洁干燥的高压空气; l 风洞本体:由高压管道、紧闭阀、快速阀、调压阀、稳定段、喷管、试验段、攻角机构、可调节超音速扩散、亚音速扩散段等组成;

l 控制系统:控制系统及模型状态等; l 测量系统:测量系统系数、模型空气动力及模型转速,并作为纹影显示及摄影等, l 消音系统:降低噪音。 实验过程:空气压缩机把压缩空气打进储气瓶储存起来,压缩空气经管道流向风洞。实验时,预给调压阀一开度,开启紧闭阀至完全打开后,开启快速阀,压缩空气经稳定段至喷管,到达试验段时已获得所需超音速流场,待稳定后测量系统工作。最后气流经扩压段扩压向出口消音塔排去。 2.低速风洞构造、作用:低速风洞的动力由风机提供、风速可通过调整风机的转速来调节。低速风洞有稳定段、实验段和扩压段,没有喷管。为了节约能源和降低噪音,低速风洞常做成环流式的。 3.常用仪器:风洞的常用仪器有压力传感器和天平,测温传感器、压力传感器和温度传感器是监测风洞流场必不可少的仪器。而天平则是用来测量实验模型在风洞中受力情况的一种多元传感器,它是通过受力产生形变,给出形变电信号经换算求出受力的一种精密仪器。 三、思考题 1.超音速流动是如何建立的? 2.超音速流场建立的条件如何? 3.风洞实验是如何测得模型气动力的? C.优点

机械毕业设计1080两自由度风洞实验运动装置机械结构总体设计

两自由度风洞实验运动装置机械结构 总体设计 专业:机械设计制造及其自动化 学生: 指导教师: 完成日期:2014年5月30日

摘要 风洞试验设备是一个国家航空航天事业发展的基础设施 ,对国家的航空航天事业、武器装备研制以及国民经济的发展发挥着非常重要的作用。风洞试验是研制新型飞行器必不可少的重要环节。每一种新型飞行器的研制都需要在风洞中进行大量的试验。 串联机构的发展曾经带动了空间机构学的发展,近20年来并联机构的发展再次促进了空间机构学的发展。今天,为了我国的科技进步,自主创新性及在一些新兴产业和领域开辟自己独特的道路,基于串联机构与并联机构的特点,混联机构成为各种高端技术应用一个新的热点。 本文对两(少)自由度机构的现状和发展趋势以及风洞试验进行了简略的阐述,在此基础上进行两自由度运动机构的结构设计;介绍SolidWorks软件和对所设计的两自由度运动机构装置进行的三维造型过程;对所设计的运动机构的主要节点进行的强度校核和力学性能的分析;在校核的基础上选择了合适的电机;最后对本课题做一个总结和展望。 关键词:串联,两自由度,风洞试验,三维造型。

Abstract Wind tunnel testing facilities are infrastructures for the aeronautics and astronautics of a nation ,which are important for aviation and spaceflight career ,weapon development and national economy. It is an important and indispensable part of the development of new types of aircraft for the wind tunnel test. Development of each new aircraft needs carry out a large number of tests in a wind tunnel. The development of the series mechanisms have contributed to the study of space mechanism ,and nearly 20 years of the parallel mechanism have promoted the development of the space mechanism again. At the present,in order to advance of science and technology of China,independent innovation and open up the unique way in some new industries and fields,based on the characteristics of series mechanisms and parallel mechanism,parallel-series institutions become a hot new area of all high-end technology applications . In this paper, a brief description of current situation and development of two (few) degree of freedom mechanism and wind tunnel experiment, further for structure design to the two degrees of freedom motion mechanism; introduction of SolidWorks software and process for the design of two degrees of freedom movement mechanism unit for three-dimensional modeling ; strength check and mechanical properties analysis for the main nodes of movement mechanism, based on that select suitable motor; finally this project makes a summary and prospected. Key words:Series, Two degree of freedom, wind tunnel, Three-dimensional modeling.

相关文档
最新文档