生物酶法制备壳寡糖的现状与未来

生物酶法制备壳寡糖的现状与未来
生物酶法制备壳寡糖的现状与未来

生物酶法制备壳寡糖的现状和展望

壳寡糖(Chitosan oligosaccharide),是以氨基葡萄糖为单体通过β-1,4-糖苷键连接的不同聚合度的混合物。其水溶性好、功能作用大、生物活性高的低分子量产品,分子量小于3000Da。随着对壳寡糖功能的深入研究,壳寡糖在农业、食品、日用化工、医药等各

大领域有突出的效果。农业上,壳寡糖的抑菌、抗病毒效果,可开发无公害生物农药,它的别称是氨基寡糖素。另外,壳寡糖促进植物的营养生长,作为零污染的肥料;食

品工业方面,壳寡糖具有提高免疫力,抗氧化,降三高的良好功能,是许多食品、保

健品追捧的新食品原料;日用化工上,壳寡糖的吸水保湿功效,许多面膜、护肤品等

都添加了壳寡糖;壳寡糖具有抗肿瘤、降血压等医疗功效,甚至可以作为疫苗的佐剂,为新药的开发提供思路和原料。

壳寡糖的功能决定着它的巨大市场需求,市场就推动了壳寡糖产业的发展。目前

壳寡糖工业化的生产主要是两种方法:一、物理化学法,通过机械粉碎虾蟹壳,用强

碱去蛋白,无机酸脱盐制成壳聚糖,再用微波辐射或强酸降解壳聚糖生产壳寡糖;二、生物酶法,用生物酶降解壳聚糖生产壳寡糖。物理化学法生产壳寡糖,高污染低质量

受到了政府的制约和市场的淘汰,现市面上优质的壳寡糖产品绝大多数是生物酶法生产。对于第二种方法生产壳寡糖有如下展望。

第一、发现并利用具有更优性质的生物酶

目前,商业化的水解酶有溶菌酶、纤维素酶、木瓜蛋白酶、果胶酶、半纤维素酶

对甲壳素和壳聚糖的水解有或多或少的催化效果 [1]. 这些非特异性酶连同特异性的甲

壳素酶、壳聚糖酶、糖基转移酶等混合使用很可能开辟最优生物酶法制备壳寡糖的新

道路。虽然不同的非特异性酶有用来以壳聚糖或甲壳素为原料制备壳寡糖,但由于此

类酶的水解能力有限,所以探寻更优特质水解酶是有市场需求的。譬如,分支酶Branchzyme,可作用于壳聚糖并生成聚合度为2-20的壳寡糖,其中聚合度3-8的比

例非常高[3]。研究甲壳素或壳聚糖降解时中会发现,最初的步骤都是考虑将它们溶解,如果有能够直接降解结晶多糖的酶那就是省时高效的工业简化。Vaaje-Kolstad 等[4]

表明CBP21 (几丁质结合蛋白), 由甲壳素酶产生菌灵杆菌Serratia marcescens产生,

它能催化结晶的甲壳素中糖苷键的断裂。这一发现,不仅帮助理解晶体甲壳素或自然

甲壳素降解的因素,而且更重要的是提供壳寡糖生产的新思路:从晶体甲壳素,甚至

虾蟹壳,酶解到壳寡糖产品。

第二、控制壳寡糖关键品质聚合度分布

壳寡糖的聚合度分布均一集中体现出壳寡糖的最高品质,目前有采用超滤膜来分

离不同分子量的壳寡糖,但效果不乐观。换角度,从一开始就制备窄范围聚合度壳寡

糖就可解决这问题。现在有报道壳寡糖混合物的脱乙酰度、聚合度、分子量分布、N-

乙酰化形式主要取决于原料壳聚糖、甲壳素的脱乙酰度和酶降解的特异性。换句话说,选择合适原料和特异性酶是可以提高壳寡糖产品品质的。例如,ChiB(壳聚糖酶)具有酶双向动力学,Sorbotten et 等[5] 说明用它降解壳聚糖制备寡聚物分子量大小可以由壳聚糖的脱乙酰度(DD 87%, 68%, 50%, and 35%)控制,寡聚物的链随着脱乙酰度的升高而延长。更有Sikorski 等 [6,7] 制成了模型:用ChiB充分降解不同壳聚糖能

很好的预测产物分子量分布和产量。该模型表明选择最适反应参数和底物指标可高效

生产分子量分布特定的壳寡糖是可行的。此类方法满足条件苛刻,甚至壳聚糖的脱乙

酰度、壳聚糖都没有准确的测定方法,应该还是处在工业化道路的起点。

第三、寻找新的菌种直接发酵降解虾蟹壳

用虾蟹壳做发酵原料,直接进行发酵是生产甲壳寡糖和壳寡糖的另一条较为粗放

途径。Liang, T.W 等[8]1.5%的虾头粉末,用Bacillus cereusTKU022发酵,该菌产生

一系列酶,包括脱乙酰化酶、甲壳素酶、壳聚糖酶等,可直接获得壳寡糖。虽然在上

清液中鉴定可知 (GlcNAc)2, (GlcNAc)4, (GlcNAc)5, 和(GlcNAc)6的浓度很低(0.3–201.5 μg/mL),但是这种方法能最快速度、最低成本生产粗壳寡糖应用于农业。生物

的世界是复杂的多样的,可继续探寻优质菌种。

第四、应用基因工程技术制备壳寡糖

基因工程技术应用于壳寡糖的生产是可行并且非常有前景的,因为基因工程可将

酶整合,更好的制备壳寡糖,甚至还可以合成特异结构的寡糖。Martinez等构建了工

程菌,该突变体菌株含两GH-18水解酶基因,一个B. circulans WL-12 甲壳素酶

A1(Bc ChiA1)基因,一个摈弃甲壳素水解活性的甲壳素酶 42 (Th Chit42)基因,工程菌发酵体系简单,酶高产且水解特定底物效率高[9]。现已报道的壳聚糖酶基因、甲壳素基因、其他水解酶基因等基因序列都可在基因库中调取,它们的特异性酶切位点、最

最佳酶解体系都有文章报道,基因重组技术在基因的时代构建工程菌,并非难事。工

程菌进入壳寡糖产业指日可待。

此外,壳寡糖的生物酶制备还可以从反应设备、工艺出发突破现实存在的问题,

比如,目前生物酶反应体系都是间歇性的,有着酶不能重复利用、间断反应成本高。

那么采用柱式反应体系可以连续生产,同时酶也可以重复利用。改设备将酶固定在柱

上,壳聚糖溶于通过柱子而被降解成壳寡糖,但这种方法需要非常高活性的酶,因为酶固体化之后对壳聚糖的亲和性会降低。将柱式反应体系和超滤结合是否可以解决酶亲和性的问题?那么会引来超滤膜容易污染的问题?总之,壳寡糖的的生物制备在市场的推动下朝着品质更优、价格更低、环境友好的方向发展。

【1】Yalpani, M.; Pantaleone, D. An examination of the unusual susceptibility of aminoglycans to enzymatic hydrolysis. Carbohydr. Res. 1994, 256,159–175. 【2】Shinohara, M.L.; Ihara, M.; Abo, M.; Hashida, M.; Takagi, S.; Beck, T.C. A novel thermostable branching enzyme from an extremely thermophilic

bacterial species, Rhodothermus obamensis. Appl. Microbiol. Biotechnol. 2001, 57, 653–659.

【3】Montilla, A.; Ruiz-Matute, A.I.; Corzo, N.; Cecilia Giacomini, C.; Irazoqui, G.

Enzymatic generation of chitooligosaccharides from chitosan using soluble

and immobilized glycosyltransferase (Branchzyme). J. Agric. Food Chem.

2013, 61, 10360–10367.

【4】Vaaje-Kolstad, G.; Westereng, B.; Horn, S.J.; Liu, Z.; Zhai, H.; S?rlie, M.;

Eijsink, V.G.H. An oxidative enzyme boosting the enzymatic conversion of

recalcitrant polysaccharides. Science 2010, 330, 219–222.

【5】S?rbotten, A.; Horn, S.J.; Eijsink, V.G.; V?rum, K.M. Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-

oligosaccharides and insight into enzyme processivity. FEBS J. 2005, 272,

538–549.

【6】Sikorski, P.; Stokke, B.T.; S?rbotten, A.; V?rum, K.M.; Horn, S.J.; Eijsink, V.G.

Development and application of a model for chitosan hydrolysis by a family

18 chitinase. Biopolymers 2005, 77, 273–285.

【7】Sikorski, P.; S?rbotten, A.; Horn, S.J.; Eijsink, V.G.; V?rum, K.M. Serratia marcescens chitinases with tunnel-shaped substrate-binding grooves show

endo activity and different degrees of processivity during enzymatic

hydrolysis of chitosan. Biochemistry 2006, 45, 9566–9574.

【8】Liang, T.W.; Hsieh, J.L.; Wang, S.L. Production and purification of a protease,

a chitosanase, and chitin oligosaccharides by Bacillus cereus TKU022

fermentation. Carbohydr. Res. 2012, 362, 38–46.

【9】Martinez, E.A.; Boer, H.; Koivula, A.; Samain, E.; Driguez, H.; Armand, S.; Cottaz, S. Engineering chitinases for the synthesis of chitin

oligosaccharides: Catalytic amino acid mutations convert the GH-18 family

glycoside hydrolases into transglycosylases. J. Mol. Catalys. B Enzym. 2012,

74, 89–96.

高中生物酶的分类与功能解读

高中生物酶的分类与 功能解读 Revised on November 25, 2020

高中生物酶的分类与功能解读 1.酶的概念和本质 酶是活细胞内产生的一类具有生物催化作用的有机物。绝大多数酶是蛋白质,少数种类的RNA也具有生物催化作用。 2.酶的合成及分布 酶都是在细胞内合成的。蛋白质类酶是在细胞内的核糖体上合成的,而具有催化作用的RNA是以DNA为模板转录而成的。对于病毒这类不具有细胞结构的生物,其结构内一般不含有酶,也不能进行独立的新陈代谢作用。 细胞是生物体进行生命活动的主要场所,生物体内的化学反应也主要发生在细胞内,所以大多数酶在细胞内催化化学反应,例如:解旋酶、RNA聚合酶、转氨酶、固氮酶等;被分泌到细胞外的酶在细胞外发挥催化作用。例如:人体消化道内的唾液淀粉酶、胃蛋白酶、肠脂肪酶、胰麦芽糖酶、肠肽酶等。 3.酶的特性 酶具有高效性 酶催化反应的反应速度比非催化反应高108~1020倍,比其他催化反应高107~1013倍。例如:过氧化氢酶和Fe3+相比,过氧化氢酶的催化效率要高许多。 酶具有专一性 一种酶只能催化一种化合物或一类化合物的化学反应,这就是酶作用的专一性。通常把酶作用的物质称为该酶的底物。所以也可以说一种酶只作用于一种或一类底物。例如:淀粉酶只能催化淀粉的水解,对蔗糖则不起作用。二肽酶可以水解由任何两种氨基酸组成的二肽。 酶的作用条件较温和一般的催化剂在一定的条件下会因中毒而失去催化能力,而酶较其他催化剂更加脆弱,更易失去活性。凡使蛋白质变性的因素,如高温、低温以及过酸和过碱,都能使酶破坏而完全失去活性。所以,酶作用一般都要求比较温和的条件,如常温、常压、接近中性的酸碱度等。 4.酶的分类 酶的种类很多,现巳鉴定出3000种以上的酶,其中不少已得到酶的结晶。人们相继弄清了多种酶的结构及作用机理。随着酶学理论研究的不断深入,必将对生命的探索作出更大的贡献。

生物酶解技术

天然植物有效成分的提取新技术——生物酶解技术 酶是生物体活细胞产生的,以蛋白质形式存在的一类特殊的生物催化剂。某些酶可以在常温、常压和温和的酸碱条件下,将植物细胞壁分解,较大幅度提高天然植物中有效成分的提取率,改善生产过程中的滤过速度和纯化效果,提高产品纯度和制剂的质量。 生物酶解技术包括酶法提取(又称酶反应提取)和酶法分离精制两方面。该技术是在传统的天然植物成分提取基础上进行的,应用常规提取设备即可完成,操作简便,成本低廉。 1原理 酶法提取是根据植物细胞壁的构成,利用酶反应所具有高度专一性的特点,选择相应的酶,将细胞壁的组成成分(纤维素、半纤维素和果胶质)水解或降解,破坏细胞壁结构,使细胞内的成分溶解、混悬或胶溶于溶剂中,从而达到提取目的,且有利于提高成分的提取率。许多天然植物中含有蛋白质,采用煎煮法时蛋白质遇热凝同,影响提取成分的煎出,如加入蛋白酶,就可以将天然植物中的蛋白质分解析出,如此可提高成分的提取率。 天然植物水提液除了含有提取成分外,还含有淀粉、蛋白质、果胶、树胶、树脂、黏液质等,这些成分的存在往往使提取液呈混悬状态,并影响提取液的滤过速度,为此要实施除杂,常用的方法有离心法、澄清剂法、醇沉法、大孔树脂吸附法、离子交换法、微孑L滤膜滤过法及超滤法。而酶法除杂是分离精制的新方法,此方法是根据天然物提取液中杂质的种类、性质,有针对性地采用相应的酶,将这些杂质分解或除去,以改善液体产品的澄清度,提高产品的稳定性。由于酶反应具有高度的专一性,决定了酶解方法除杂的高效性。 2酶的种类 2.1 用于天然植物细胞破壁的酶 2.1.1 纤维素酶 纤维素是由链状结构的β-D-葡萄糖以β- l,4-葡萄糖苷键结合而成的聚合物,纤维素分子束聚集成为较大的单位——微纤丝,构成了植物细胞壁的框架,在微纤丝之间的空隙中尚有其他物质(角质、木质素、二氧化硅),形成植物细胞壁的基本结构。在干燥植物中纤维素约占总重的l/3~l/2。 纤维素酶具有分解、软化纤维素、破坏细胞壁、增加植物细胞内容物的溶出量的作用,它是降解纤维素生成葡萄糖的一组酶的总称,包括内切葡聚糖酶、纤维二糖水解酶、β-葡萄糖苷酶3个组分。最适pH值4~5,最佳作用温度40~60℃。 2.1.2半纤维素酶 半纤维素包括木聚糖、甘露聚糖、阿托伯聚糖、阿拉伯半乳聚糖和木葡聚糖等多种组分,约占植物干重的35%。含量仅次于纤维素。 半纤维素酶由β-甘露聚糖酶、β-木聚糖酶等内切型酶,β-葡萄糖苷酶、β-甘露糖苷酶、β-木糖苷酶等外切型酶以及阿拉伯糖苷酶、半乳糖苷酶、葡萄糖苷酸酶和乙酰木聚糖酶等组成。具有消化植物细胞壁的作用。 2.1.3果胶酶 果胶质属于黏液质类,是植物细胞的正常产物,多见于植物的地下部分及种子中。 果胶酶是分解果胶质的聚糖水解酶、果胶质酰基水解酶的一类复合酶的总称。固体的呈浅黄色,易溶于水;液体的呈棕褐色。最适作用温度45-50 ℃,作用pH值3~6。

语音识别发展现状与展望

中国中文信息学会第七次全国会员代表大会 暨学会成立30周年学术会议 语音识别发展现状与展望中科院自动化研究所徐波 2011年12月4日

报告提纲 ?语音识别技术现状及态势?语音识别技术的行业应用?语音识别技术研究方向?结论与展望

2010年始语音识别重新成为产业热点?移动互联网的兴起成为ASR最重要的应用环境。在Google引领下,互联网、通信公司纷纷把语音识别作为重要研究方向 –Android系统内嵌语音识别技术,Google语音 翻译等; –iPhone4S 上的Siri软件; –百度、腾讯、盛大、华为等都进军语音识别领 域; –我国语音技术领军企业讯飞2010年推出语音云识别、讯飞口讯 –已有的QQ2011版语音输入等等

成熟度分析-技术成熟度曲线 ?美国市场调查咨询公司Gartner于2011年7月发布《2011新兴技术成熟度曲线》报告:

成熟度分析-新兴技术优先矩阵?Gartner评出了2011年具有变革作用的技术,包括语音识别、语音翻译、自然语言问答等。其中语音翻译和自然语言问答有望在5-10年内获得大幅利用,而语音识别有望在2-5年内获得大幅利用;

三十年语音识别技术发展 ---特征提取与知识方面?MFCC,PLP,CMS,RASTA,VTLN;?HLDA, fMPE,neural net-based features ?前端优化 –融入更多特征信息(MLP、TrapNN、Bottle Neck Features等) ?特征很大特点有些是跟模型的训练算法相匹配?大规模FSN图表示,把各种知识源集中在一起–bigram vs. 4-gram, within word dependencies vs. cross-word

焊接技术现状及展望

浅析我国焊接技术的现状与未来发展 【摘要】在我国制造业发展的过程中,焊接技术是人们常用的加工工艺。本文通过对我国现阶段焊接技术的发展现状进行简要的介绍,阐述了我国焊接技术的未来发展趋势,以供相关人士参考。 【关键词】焊接技术;材料;发展现状;发展趋势 随着科学技术的不断发展,焊接技术也在进行不断的创新和发展,这不仅有利于我国社会经济建设,还有效的促进了我国现代制造业的发展。目前,人们为了推动缓解制造技术的创新和发展,也将许多先进的科学技术和科学理念应用到其中。下面我们就对我国焊接技术的现状和未来发展趋势进行介绍。 一、我国当前焊接技术的发展现状 目前,在我国社会经济发展的过程中,人们对生活水平的要求也越来越高,而钢结构材料作为我国城市建设、社会发展的基础材料之一,人们对其材料性能的要求也在逐渐的提高,因此我们在对其进行相关的加工处理施工的时候,人们就对焊接技术进行严格的要求,从而使其焊接技术的加工处理效果满足工程设计的相关要求。而随着电子信息化时代的到来,人们也将许多先进的科学技术应用到了焊接加工技术当中,从而实现了焊接技术的自动化。这不仅有效的加快了焊接施工的工作效率,还大幅的提高了焊接的质量。目前,我们也已经将焊接技术应用到各个行业当中,并且还充分的利用了计算机技术和防治设计受到,来对焊接过程中产生的应力变形进行相关的控制。如今,在我国焊接技术创新发展的过程中,人们已经开始全面的对焊接介绍的内容展开了全面的分析,进而有利于我国焊接技术的发展。 二、当前我国焊接学科研究成就及进展 1.高品质焊接材料的生产与应用 钢铁生产技术的产生和发展都和焊接技术有着密切的关系,人们可以通过焊接来对钢铁材料的性能进行全面的提高。但是,在对其进行焊接施工处理的过程中,施工人员没有严格的按照工程施工的相关标准来对其进行焊接处理,使其自身结构的平衡性结晶组织出现问题,那么这就对钢铁焊接材料的品质有着一定的影响。为此要实现高品质焊接材料的生产,施工人员就要结合相关的焊接要求,来对其焊接材料、金属质量以及纯度等各个方面进行严格的控制,尽可能的避免人们在对金属材料进行焊接加工处理的过程中出现问题。而随着科学技术的不断进步,人们也将焊接技术应用到了复合合金材料的加工制作当中,这就给我国焊接技术带来了新的发展空间和挑战。目前,人们在对金属材料进行焊接加工的过程中,药芯焊丝技术在其中有着十分重要的作用,因此在对其焊接施工前,施工人员就要对其进行严格的要求。不过,和国外发达国家相比,我国在药芯焊丝的生产技术上还存在着一定的缺陷,为此我们在对高品质焊接材料进行生产和应用的过程中,我们还要向发达国家的生产制造工艺多的学习。 2.对无铅连接材料及无铅可靠性技术与标准的突破 随着科学技术的不断发展,人们也将焊接施工技术应用到了电子电气产品的加工生产当中。但是,由于多数电子电气产品中都含铅以及其他的有毒有害物质,这对周围的生态环境有着极其严重的影响。因此,我们电子工业发展的过程中,就开始对无铅连接材料进行研究开发。近年来,人们在对无铅连接材料进行研究的过程中,也将许多的先进的科学技术应用的其中,从而通过多种科学技术的有机结合,来使得无铅连接材料的整体性能进行有效的提高,而且人们还可以在其中添加适量的微量元素,来改善无铅连接材料的物理性能,使其可靠性得到明显的增强。目前,我国在无铅连接材料研发试验中,对其无铅绿色电气电子产品的开发以

菌草酸多酶体反应体生物酶解技术

菌草酸多酶体反应体生物酶解技术“治疗癌症及延缓衰老的策略” 菌草酸多酶体反应体生物技术(BGA)是一种现代生物制剂高新技术。由林陆山教授发明,1994年在美国获得“克里斯托”发明专利技术金奖,96年正式被列入“国家火炬高新科技计划项目”。 “BGA”是以多种生物酶组合多酶反应体,并在常温常压下,一方面充分分解中草药中的纤维素、半纤维素、木质素、脂肪、蛋白质等生物成分,使水溶性和脂溶性所有有效成分得以充分提取浓缩,另一方面使所有有效成分全部破壁分解,游离出具有细胞活性的小分子活性蛋白,裂解氨基酸的肽链,形成肽物质。整体成分可达150多种,这样的特性在癌症和延缓衰老的治疗中极具价值。 “BGA”制品是以量子生物与中医药理论为基础,和创新性很强的酶工程工艺结合的量子生物制剂。“BGA”制剂原料以中草药为主具有多种药、多组分、采用酶解工艺,制作上混合提取物的模式,因而制品具有多靶点、多途径的药效机理。这样克服了研发集中在单体成分的提取模式可能会掩盖中药中其他有效成分的药理作用。 最近国内,郝海平等2009年“通过多组分、多靶点中药整体代动力学的探索”的研究表明:认为“多靶点、低亲和力、低选择性”药物研发模式将可能成为未来全球畅销创新药物研发 的主体,并取代“单靶点、高亲和力、高选择性”。我们认为“BGA”制品的多组分、多靶点的特点,对多种基因的干预,可能最有效的调控复杂的病理性网络。“BGA”制品不会改变中草药中的生物活性物质的化学结构,而是充分体现药品的药理活性,是实现中药现代化的一项重要的技术革新。具有如下开创性技术特点: 1、通过酶解破壁,有效成分利用率从传统工艺18%提升到80%以上。 2、“BGA”制品具有活性和小分子特点。 3、彻底脱毒,且无任何毒副作用。 4、药效迅速、具有酶类制品的药理特性。 5、具有节省能源,环保。 6、对中药制药工艺进行改革。 多酶体应用于中草药提取制作工艺的研究,已是非常成熟的生物技术,经过国家药检所工艺比对试验,其实际应用价值得到了进一步认证。 下面举出具体实例说明“策略”的正确性实验依据。“BGA”产品之一,“平癌灵辅药一号”。主要原料灵芝孢子粉,采用多酶反应体酶解提取。产品测试:委托农业部食用菌产品质量监督检验测试中心 检验结果NO2011W1584 检测项目单位实例值检测依据 1.多糖% 5.64 NY/TI676-2008 2.三萜% 1.68 NY/SJ339-2001 3.破比率(一次性)72.3 NY/TI677-2008 赵东旭等(2000年5月)对灵芝孢子粉(破壁孢子和未破壁孢子)醇提取物比对实验室证明灵芝孢子破壁后,其醇提取物比未破壁孢子高6倍以上,且破壁孢子的醇提物对Hela细胞细胞有极强毒性,未破壁孢子则无毒性。鲍幸峰等(2001年5月)“赤灵芝孢子粉粉破壁前后多糖释放能力比较研究”证明。多糖释放能力比较未破壁0.92%、破壁1.56%。

现代焊接技术发展的现状及前景

现代焊接技术发展的现状及前景 【摘要】焊接作为一门制造技术,在制造业中起着重要作用。没有一种技术能像焊接技术那样被制造商如此普遍地用于金属及合金的高效连接,并在其产品中产生如此多的附加值。 【关键词】现代;焊接技术;发展;现状;前景 目前焊接广泛应用于各种材料的连接,并采用了诸如激光、电子束焊等先进技术,无论是在建筑、桥梁行业,还是在车辆、计算机及医疗机械行业,绝大多数产品离开焊接技术就根本无法制造。特别是有了异种材料和非金属构料的连接技术和在产品形状与设计方面的创新制造方法,焊接技术的未来充满了希望。 1.焊接技术发展的现状 近年来随着制造业的蓬勃发展,提高焊接生产的生产率,保证产品质量,实现焊接生产的自动化和智能化越来越受到焊接生产企业的重视。现代智能控制技术、数字化信息处理技术、图像处理及传感器技术、高性能CPU芯片等现代高新技术的融入,使现代焊接技术取得了长足进步。 1.1焊接工艺高速高效化 以实现高速度、高熔敷率、高质量的焊接工艺为目标,国内外在多牡多弧焊接工艺、多元气体保护焊接工艺、活性化焊接新工艺等方面开展了广泛深入的研究,且取得了显著成效。 在多丝多弧焊接新:工艺方面,日本、瑞士、德国等国公司在多根焊丝配以单个或多个电源方面开展了大量的焊接研究丁作,在提高焊接生产速度和金属熔敷率方面取得了一些实用化的成果。例如日本的藤村告史开发的多丝焊接系统,可用于角焊缝的高速焊接,焊速可以达到1.8m/min。 基于上述思想,伴随着新型的功能强大的数字信息处理DSP的出现,Fronius 公司推出了全数字化焊接电源,随后Panosonic等公司也推出了各自的数宁化焊接电源产品,并相继;进入中国市场。数字化焊接电源实现了柔性化控制和多功能集成,具有控制精度高、系统稳定性好、产品一致性好、功能升级方便等优点。 1.2焊接质量控制智能化技术 焊缝跟踪是保证自动焊接质量的关键。在焊缝自动跟踪方面,采用的技术及获得的成果比较多。在熔滴过渡控制方面,由于焊接电源控制数字化技术的发展及先进电子元件在焊接领域的应用,使得对熔淌控制的研究达到了相当高水平。 1.3焊接生产自动化及智能化技术水平

生物酶解壳寡糖

生物酶解壳寡糖 壳寡糖又称壳聚寡糖、低聚壳聚糖、甲壳寡聚糖、氨基寡糖素等,是一种通过降解甲壳素或壳聚糖得到的聚合度在2~20之间的寡糖产品,是甲壳素、壳聚糖产品的升级产品;壳寡糖是自然界中唯一带正电荷阳离子碱性氨基低聚糖,是动物性纤维素。具有分子量低、水溶性好、功能作用大、更易被吸收等特点。 以海洋生物虾、蟹壳为原料,通过脱钙、脱蛋白后获得甲壳素,甲壳素通过酶解或强碱水解后脱去部分乙酰基获得壳聚糖,壳聚糖通过酶解或酸解得到壳寡糖。乐满地生物酶解壳寡糖:采用生物酶解技术制成壳寡糖,具有降解条件温和、无副反应、脱乙酰度高、分子量小,壳寡糖生物活性高等特点。 含量:5%、10% PH 值:6.5-7 分子量:≤ 2000Da 脱乙酰度:≥97% 状态:黄褐色液体 壳寡糖主要特性: 1、改良土壤:壳寡糖能促进有益微生物的生长繁殖,显著减少土壤有害菌及线 虫类,促进土壤团粒结构形成,改善土壤理化性质,增强透气性和保水保肥能力,为根系提供良好的土壤微生态环境。 2、提高肥效:壳寡糖能活化养分,使氮、磷、钾等养分能得到植物充分有效地 吸收,提高养分利用率,提高肥效,减少化学肥料用量;壳寡糖能螯合铁、铜、锌、锰、钼等微量元素,使肥料中微量元素有效态养分增加,同时使土壤中固定的微量元素养分释放出来,容易被作物吸收利用。 3、促进生长:壳寡糖是一种新型的生物刺激素,能促进根系生长,促进根部伤 口愈合及发育,作物根系发达,根毛、须根、次生根数量大大增加,增强植物吸收水肥能力,提高抗旱能力,促使茎秆粗壮,有利于养分供应传输,提高抗倒伏能力。 4、激发作物免疫系统:壳寡糖可诱导植物抗性,增强作物抗病、抗旱、抗冻能 力;壳寡糖可诱导植物产生抵御病原物质的抗性蛋白,抑制病菌的生长,诱导木质素形成,促进伤口愈合,壳寡糖对病害具有广谱性的抵御作用,增强作物对病毒病、真菌、细菌、线虫等病害的抵抗能力,减少农药使用,同时能缓解作物因肥害、药害产生的影响。 5、增产提质:壳寡糖是一种天然的植物营养生长促进剂,能增加营养吸收力, 有效促进植物生长,增加作物产量,壳寡糖能促进钙离子吸收,减少裂果等缺钙症状,提高座果率,促进微量元素吸收,增加甜度、促进早熟、延长保险贮藏期,提升作物品质。

RFID的应用现状及未来发展趋势

RFID的应用现状及未来发展趋势 RFID是英文Radio Frequency Identification的缩写,即无线射频识别技术。它是一种非接触式自动识别技术。RFID系统一般由电子标签、阅读器和信息处理软件系统三部分组成。电子标签中储存有商品的基本信息,当标签进入阅读器射频磁场中时,标签被激发产生感应电流,将标签中储存的信息发射到阅读器中,阅读器通过解码系统识别标签,并可将识别信息进一步传递到信息处理系统进行分析处理。按照RFID标签的能量供给方式,RFID标签可分为有源标签和无源标签;按照RFID工作时使用的无线电频率,RFID系统可分为低频、高频、超高频和微波系统。 与我们目前最常见的条形码相比,RFID具有很多优势。如信息存储量大,非接触识别、识别距离长、快速方便,信息可更新,标签可重复使用,标签能适应不同工作环境等。 RFID的基本技术原理起源于二战时期,最初盟军利用无线电数据技术来识别敌我双方的飞机和军舰。战后,由于较高的成本,该技术一直主要应用于军事领域,并未很快在民用领域得到推广应用。直到上世纪八九十年代,随着芯片和电子技术的提高和普及,欧洲开始率先将RFID技术应用到公路收费等民用领域。到二十一世纪初,RFID迎来了一个崭新的发展时期,其在民用领域的价值开始得到世界各国的广泛关注,特别是在西方发达国家,RFID技术大量应用于生产自动化、门禁、公路收费、停车场管理、身份识别、货物跟踪等民用领域中,其新的应用范围还在不断扩展,层出不穷。 本世纪初,RFID已经开始在中国进行试探性的应用,并很快得到政府的大力支持, 2006年6月,中国发布了《中国RFID技术政策白皮书》,标志着RFID的发展已经提高到国家产业发展战略层面。到2008年底,中国参与RFID的相关企业达数百家,已经初步形成了从标签及设备制造到软件开发集成等一个较为完整的RFID产业链,据专家估计,2008年中国RFID相关产值达到80亿元左右,并将在未来5-10年保持快速发展。

现代焊接技术发展的现状与展望

现代焊接技术发展的现状与展望 摘要:焊接技术是一种制造技术,我国的焊接技术出现在战国时代。不过技术 不是特别发达,然后就是随着时代的进步,在十九世纪英国逐步掌握比较成熟的 焊接技术,不过那时的焊接技术只是用于铁匠铸造,随着科学技术的飞速发展, 国民经济的不断提高,焊接技术也在不断的发展。焊接技术在现代制造业中有着 举足轻重的作用,是必不可少的。本文就主要分析了现代焊接技术的现状,并且 提出了一些有建设性的意见,希望可以得到采纳。 关键词:现代;焊接技术;发展;现状;前景 现代的焊接技术普遍的用于各种材料的连接,比如所一些机器的制造,需要 连接零件,现代的焊接技术是十分的发达的,存在激光,电子束焊等等十分先进 的焊接技术。无论是建筑行业,机器制造业,计算机行业,医学行业还是车辆制 造行业,都离不开焊接技术,这些行业的某些环节是需要用到焊接技术的。在目 前的工业国家中,焊接技术是必不可少的。所以焊接技术的发展前景十分的可观。 一、现代焊接技术的发展现状 在现代的社会发展中,制造业发展的越来越好,我国也是制造的大国。所以 焊接技术就得到了很好的发展。现代的焊接企业也越来越多,竞争也越来也大, 所以每一个企业都在想办法提高焊接生产的生产率,保障生产的质量。焊接企业 也在不断的引入新的技术,比如现代智能控制技术,数字化信息处理技术,图像 处理以及传感技术等等,这些技术的引入也是我国的焊接技术达到了一个新的高度。 1.1焊接技术的高效化 以实现高速度,高效率,高质量焊接工艺为目标,国内外有许许多多的焊接 企业都在讨论新型的焊接技术,他们在熔焊、钎焊等方面进行了深入的交流与讨 论并且取得了很显著的成效。并且技术人员还在不断的研究期待发现更加高效率 的焊接技术。 1.2焊接质量控制智能化 在焊接的过程中,判断焊接的是否完美的依据就是焊缝,焊缝是检验的标准 之一,焊缝越小焊接的越完美,焊缝的大小由人眼是观察不出来的,所以这就用 到了焊缝跟踪技术,焊缝跟踪技术是保证自动焊接质量的根本。在焊缝跟踪方面,采用到了多种技术,并且取得了十分可观的成效。 1.3焊接生产自动化和智能化 在焊接生产的自动化和智能化方面,可以一提的就是自动焊接机,它具有很 高的可靠性,通过数字化的时间、压力、功率等等,可以使焊接工艺达到客户的 理想效果,它还大大的节约了人力成本,一人可以操纵多台机器,还可以避免手 动操作产生的很多不良品,造成材料浪费。而且他还有高效率,耗能低,操作简 单等等特点,对于现代的焊接技术的发展有十分重要的影响。这种自动化机器的 使用大大的推动了我国焊接技术行业的发展。 二、现代焊接技术发展的成果 2.1激光焊接 激光焊接是利用高能量密度的激光热源来焊接的高度精密的焊接技术,来对 零件进行焊接,它的主要优点是没有电极的污染而且不会受到磁场的影响,使用 也十分的便捷,它不需要真空并且可以多个工作站传送。所以在现代的焊接技术

壳寡糖产业化可行性报告

国家“九五”攻关科技成果(96-C03-01-01) 壳寡糖产业化可行性报告 中国科学院大连化学物理研究所 天然产物与糖工程课题组 2001年7月

壳寡糖产业化可行性报告 第一部分:项目背景及进展 该课题是国家科技部“九五”攻关项目,于2000年8月通过由中国科学院组织的专家鉴定,该项工艺是首次利用酶工程、生化反应分离耦合技术和纳米滤膜浓缩和纯化技术制备低聚氨基葡萄糖,经查新,国内外未见报道。首次开发出低聚氨基葡萄糖保健食品和生物农药,同时研制开发的奥利奇善胶囊获得卫生部保健食品证书,中科6号(好普)生物农药获农业部农药检定所新农药登记证书。并率先实现了低聚氨基葡萄糖生物农药的产业化及在植物病害防治方面的应用,达到了国际领先水平。(意见详见成果鉴定证书)。 (一)项目的意义和必要性 由于我国保护知识产权法律的制定与实施,以及加入WTO日趋临近,研制创新药物是十分迫切的任务,需要下大力气研究开发具有我国自主知识产权的新型药物。开发治疗重大疾病的药物,关键在于发现具有生物活性的化合物或优秀的先导化合物,然后进行结构改造和优化,选择适宜的加工技术和产业化工程,进而开发出创新药物。我国具有丰富的生物资源和天然药物宝库,从生物资源中寻找新型先导化合物和创制新药,利用生物加工技术开发和利用我国的生物资源,从而促进生物来源药物生产的高技术化。 继基因工程、蛋白质工程之后,糖工程已成为最引人注目的生物技术新领域。近年来的研究表明,无论是在基本的生命过程中,如受精、发生、发育、分化、神经系统、免疫系统恒态维持方面,还是在疾病的发生、发展中,如炎症及自身免疫疾病、老化、癌细胞异常增生及转移、病原菌感染等过程中,都涉及寡糖链的参与。以寡糖片段干扰疾病的发生、发展以及致病菌的侵染,将是从病理上的根治与预防。因此,通过多糖降解、化学合成、转化及分子修饰等手段寻找具有生理活性的天然寡糖药物已成为国际上寡糖药物开发的热点,利用该技术开发寡糖类新型药物对人类健康意义重大。 地球上两大生物群体,即细胞壁中具有甲壳质的生物和具有纤维素的生物,具有甲壳质的生物进化为菌类、节足动物,具有纤维素的生物则进化为植物和脊椎动物。两大生物群体彼此互相攻击、防卫,又相互利用、依存,以维持自己的生命,形成食物链。在一个多世纪前就发现了甲壳质,但它的优异功能只是在近40年,特别是近十年才被人们逐步认识,已形成了一门新兴学科—甲壳质化学。 几丁质又名甲壳质,存在于昆虫、甲壳类动物外骨骼和真菌细胞壁及一些绿藻中,它是由

生物酶解堵技术的研究与应用

生物酶解堵技术的研究与应用 1、概述 濮城油田现处于开发后期,各种各样的问题都在一定程度上制约着油田的持续发展,其中油井因为地层堵塞,造成产量下降也是原因的一部分。对历年堵塞情况进行统计,发现造成油井堵塞的主要原因有三个方面,一是蜡质、沥青质沉积在出油通道的岩石内壁上,造成在近井地带出油通道堵塞,这种情况占45%;二是由于原油中固相微粒体积增大,从而造成地层出油孔道的堵塞,这种情况占37%;三是由于地层中泥质含量较高,因水化膨胀而降低了地层的渗透率,这种情况占12%。通常解决此类问题的办法是酸化,经过多年的现场实施证明酸化对于以上三种情况造成的堵塞都不能达到预期的效果,且造成一定的环境污染。生物酶解堵技术是近几年发展起来的一项新技术,解决了油田生产中很多难以解决的复杂问题,2010年,濮城油田通过推广实施生物酶解堵技术,取得了良好的增油效果,并见到了较大的经济效益和社会效益。 2、生物酶解堵机理及性能特点 2.1生物酶的基本组成 生物酶解是从自然界生物中提取产生,以酶为主导的多种生物化合物组成。主要成分:蛋白质-复合酶、复合生物活性物、生物活性物、异化菌、天然生物提取物等,有可靠的安全性和生物分解性。 2.2 解堵机理[1] 生物酶是一种水溶性产品,它与堵塞物的反应过程是一个生物反应过程。对于储层岩石表面的堵塞,能够改变储层岩石表面的润湿性,从油湿转换为水湿,从而改变储层岩石的润湿状态,降低油~岩层间的界面张力,释放储层岩石颗粒表面碳氢化合物,清洁油岩,使原油易于从岩石表面剥离下来。对于固体颗粒沉淀造成的堵塞,其解堵过程中生物酶与地层水配成溶液注入污染地层,它与堵塞物进行生物反应,生成酶与油的中间体和表面上吸附有酶的固体堵塞物,然后在采出过程中酶与油分离,固体堵塞物因表面吸附有酶,而改变其表面性能具有亲水性,在生产过程中可以采出,以达到油井解堵的目的。对于蜡质、沥青质造成的堵塞,生物酶具有非常高的释放储层岩石颗粒表面碳氢化合物的能力,它直接作用于堵塞物且不会改变原油的特性,不会生成新的衍生物,与碳氢化合物不会形成乳化作用,可以解除因蜡质、沥青质沉积造成的地层堵塞。生物酶在洗油过程完成后,生物酶还原为原始状态,吸附在固体上的可使固体改为亲水性,生物酶不受温度、压力、酸、碱、水矿化度的影响,具有较强的适应性及可控制性,从理论上讲,它不会被消耗掉。对于低渗透空隙孔隙,生物酶解堵剂成分可以渗流进去,通过渗流作用进入微小孔道,将原油剥落降粘带出孔隙,并将岩心转变为水湿,具有良好的的降粘降解作用,包括将饱和蜡选择性降解为不饱和烯烃的能力,降低原油粘度,从而降低了原油在地层孔隙中的流动阻力,通过改善粘度比和提高流速,将孤立原油降粘稀释,阻止沥青质、胶质、石蜡等重质组分沉积,提高了压力梯度和导流能力,使原油容易从四周流向井筒,从而达到稳定油藏结构,提高保护油藏的效果,达到增产增油的效果。

自动识别技术发展现状

自动识别技术发展现状 班级:物流 学号: 姓名: 指导老师: 2015年10月20日

目录 1、自动识别概念 (3) 2、自动识别技术简介 (3) 3、自动识别技术分类 (3) 4、自动识别技术特点 (4) 5、常见的自动识别技术 (4) 5.1、条码技术 (4) 5.2、磁条(卡)技术 (4) 5.3、IC卡技术 (5) 5.4、生物识别技术 (5) 5.4.1语音识别技术 (6) 5.4.2视觉识别技术 (6) 5.4.3人脸识别技术 (6) 5.4.4指纹识别技术 (7) 5.5图像识别技术 (7) 5.6.光学字符识别技术(OCR) (7) 5.7.射频识别技术(RFID) (8) 6、自动识别技术在经济发展中的作用 (8) 6.1、自动识别技术是国民经济信息化的重要基础和技术支撑 (8) 6.2、自动识别技术已成为我国信息产业的有机组成部分 (10) 6.3、自动识别技术可提升企业供应链的整体效率 (10) 7、自动识别技术的应用 (11) 8、自动识别技术的发展趋势 (11) 8.1、多种识别技术的集成化应用 (12) 8.2、无线通讯相结合是未来自动识别产业发展的重要趋势 (13) 8.3、自动识别技术将越来越多地应用于控制,智能化水平在不断提高 (14) 8.4、自动识别技术的应用领域将继续拓宽,并向纵深发展 (15) 8.5、新的自动识别技术标准不断涌现,标准体系日趋完善 (16)

1、自动识别概念 自动识别系统是现代工业和商业及物流领域中,生产自动化、销售自动化、流通自动化过程中所必备的自动识别设备以及配套的自动识别软件所构成的体系。 自动识别包括:条码识读、射频识别、生物识别(人脸、语音、指纹、静脉)、图像识别、OCR光学字符识别 自动识别系统几乎覆盖了现代生活领域中的各个环节,并具有及大的发展空间。其中比较常见应用有:条形码打印设备和扫描设备,手机二维码的应用,指纹防盗锁,自动售货柜,自动投币箱,POS机等. 2、自动识别技术简介 自动识别技术是将信息数据自动识读、自动输入计算机的重要方法和手段,它是以计算机技术和通信技术为基础的综合性科学技术。近几十年内自动识别技术在全球范围内得到了迅猛发展,目前已形成了一个包括条码、磁识别、光学字符识别、射频识别、生物识别及图像识别等集计算机、光、机电、通信技术为一体的高新技术学科。 3、自动识别技术分类 按照国际自动识别技术的分类标准,自动识别技术可以有两种分类方法: 1.按照采集技术进行分类,其基本特征是需要被识别物体具有特定的识别 特征载体(如标签等,仅光学字符识别例外),可以分为光存储器、磁存 储器和电存储器三种; 2.按照特征提取技术进行分类,其基本特征是根据被识别物体的本身的行 为特征来完成数据的自动采集,可以分为静态特征、动态特征和属性特 征。

生物酶解毒技术

饲料霉菌毒素生物酶解毒技术饲料中含有丰富的营养物质,极易受到霉菌污染而发生霉变,不仅影响适口性,降低动物采食量和饲料营养价值,而且霉菌分泌的毒素会造成动物拒食、呕吐、腹泻、生长停滞、生产力下降甚至中毒死亡。另外,霉菌毒素还能通过乳汁、鸡蛋及其他产品转移到人体,对人类健康造成危害。因此,如何抑制饲料中霉菌的生长繁殖,减少饲料中霉菌毒素的含量成为饲料行业的研究热点。1霉菌毒素的危害 霉菌毒素是霉菌在生长过程中产生的由多种次级代谢产物组成的有毒物质,目前已知的霉菌毒素有300 多种,其中最常见且对人和动物危害比较严重的主要有黄曲霉毒素、赭曲霉毒素、玉米赤霉烯酮、烟曲霉毒素、单端孢霉烯( 族) 化合物( 包括呕吐毒素、雪腐镰菌烯醇及 T -2 毒素等) 以及伏马毒素等。其危害主要是引起动物采食量下降、饲料转化率降低、体质下降、发病率升高以及繁殖机能下降等。霉菌毒素具有广泛的致癌性( 主要是肝脏和肾脏的癌变) 、致突变、致畸性、生殖抑制以及免疫抑制等代谢干扰作用,在饲料到动物畜产品再到人的传递过程中不断浓缩,对畜牧生产、食品安全和人类的健康造成严重的危害和巨大的经济损失[1]。 预防霉菌毒素的产生是防治霉菌毒素污染的最根本措施,谷物在田间生长及籽实收获的储藏和加工等各个阶段均可能感染霉菌,且谷物和饲料均是大宗产品,很难实现全过程温度和湿度等环境条件的严格控制,所以霉菌及其毒素对谷物和饲料的污染几乎是不可避免的。据报道,全球超过 25% 的谷物不同程度

地受到霉菌毒素污染]。近年的调查结果显示,我国饲料和原料霉菌毒素超标的比例高达 60% ~70% 以上。 2常见霉菌毒素的脱毒方法 降低饲料中霉菌毒素危害的方法主要有物理法( 清洗、热处理和吸附剂法等) 、化学法( 氢氧化钙、臭氧和氨破坏等) 和生物法( 生物酶解和微生物发酵法等) 。吸附法是物理法中应用最广泛,较为成熟的一种霉菌毒素去除方法,即通过在饲料中添加可以吸附霉菌毒素的物质,并与之紧密结合,使霉菌毒素在经过动物肠道时不被动物所吸收,直接排出动物体外,从而避免了霉菌毒素对动物的危害。 目前使用较多的霉菌毒素吸附剂主要有矿物吸附剂和酵母细胞壁提取物。化学脱毒法对霉菌毒素具有一定的脱毒作用,但所用的化学物质具有一定的腐蚀性,另外,这些化学物质会破坏饲料中的营养成分而降低饲料的营养价值和适口性,因此无法在饲料生产中采用。霉菌毒素生物降解法是指微生物、植物及其代谢产生的酶与毒素作用,使其结构中毒性基因被破坏而生成无毒降解产物的过程。生物酶解毒方法因为具有对粮食无污染,有高度的专一性,不影响食品的营养价值,而且能够避免毒素的重新产生等优点,近年来已成为霉菌毒素脱毒、解毒的研究热点。 3生物酶的研究进展 计成等报道,橙色黄杆菌、分支杆菌、红串红球菌、芽孢杆菌和小诺卡氏菌, 能降解 AFB1,进一步研究确定其解毒作用为酶解作用。

现代焊接技术发展现状及未来趋势

现代焊接技术发展现状及未来趋势 发表时间:2019-07-19T15:17:10.723Z 来源:《基层建设》2019年第12期作者:魏紫印 [导读] 摘要:现阶段我国工艺的实际发展情况来看,焊接在多种材料的连接中都有着广泛应用,而且随着各项科技的不断发展,焊接技术也得到了快速发展。 身份证号码:13018119890106XXXX 河北石家庄 050000 摘要:现阶段我国工艺的实际发展情况来看,焊接在多种材料的连接中都有着广泛应用,而且随着各项科技的不断发展,焊接技术也得到了快速发展。焊接技术在建筑行业、医疗设备、机械等各个方面都有着广泛应用,可以说没有了焊接技术的支持,这些行业都无法正常发展。 关键词:焊接技术;缺点;趋势;现状 1?我国焊接技术在应用过程中的缺点 从目前我国焊接技术的发展情况来看,焊接技术主要应用在钢结构加工制造中,随着人们对钢结构材料质量要求的不断提升,人们对加工钢结构过程中应用的焊接技术也提出了更高的要求,以确保焊接质量能够达到人们期望的要求。随着信息化和电子信息技术的快速发展,焊接技术在各个行业的应用都变得更加广泛,同时也使焊接技术实现了自动化。在焊接过程中,利用计算机对焊接的进程进行控制,可以使焊接的准确度和精度都得到提升,这也使我国焊接技术得到了进一步提高。从我国焊接技术的整体发展情况来看,我国焊接技术在整体发展过程中存在的缺陷仍然较多,主要体现在以下几个方面: (一)较长焊接和厚板焊接技术落后较为严重,这不仅会对焊机效率造成影响,而且还会对焊接的质量造成不良影响,从而会对企业的经济效益造成不良影响。 (二)焊接技术自动化水平偏低。在具体焊接过程中对自动化进行应用,可以降低成本。我国在焊接方面与发展国家相比,焊接自动化水平具有较大提升空间。企业要想取得长远发展,获取良好的经济效益,就必要加强对焊接自动化技术的合理应用。 (三)焊接构件容易出现热、冷裂纹。热裂纹是在高温环境下生成的,其会对焊接的质量造成不良影响。冷裂纹是焊缝在冷却时,温度未达到马氏体转变温度,从而形成裂纹,通常来说,冷裂纹会在焊接完成后,立即出现。 (四)焊接人员专业技术水平有待进一步提高。我国焊接行业的实际发展情况来看,人员对焊接技术知识掌握得较少,同行业标准相比,存在的差距较大,这样就导致焊接产品质量难以得到提升。 2?现代焊接技术的发展现状 经济的发展带动了制造业得到发展,焊接技术也得到了显著提升,焊接产品的生产效率也得到了进一步提高,而在实际生产过程中,通过何种方式,在确保焊接产品质量可以达到要求的基础上,实现焊接生产自动化和智能化已经成为了焊接行业发展过程中的核心任务。 2.1?焊接工艺高效化 为了促进焊接行业的发展,需要对现今的焊接工艺进行合理优化,使传统焊接工艺成为高质量、高效、高速的焊接工艺,从而满足焊接需求。从焊接工艺的发展情况来看,国内外都投入了大量的财力和精力,在活性焊接工艺、多元气体保护焊接工艺方面也都取得了不错的成绩。同时,在焊接速度的研究方面上也取得了一定进步,这也提升了焊接产品的效率。近几年,随着国内外对数字化焊接和高新信息处理技术各项内容的关注,我国在焊接市场也引入了相应的先进技术产品。通过对数字化焊接电源的合理应用,使原来刻板的刚性化控制能够得到改善,从而实现对整个焊接过程中的柔性化控制,以及多功能集成,而对于焊接精度、焊接过程稳定性、产品一致性等各个方面要求更高的产品,对焊接技术的发展可以起到一定的促进作用,从而使焊接工艺能够实现高效和高速化。 2.2?优化焊接质量 焊接产品的质量是其中最为关键的一项内容,如果在实际作业过程中,焊接质量无法达到产品对质量的要求,这会限制产品后期的应用寿命,在焊接过程中,对焊缝跟踪技术进行合理应用对于控制质量有着重要意义。焊接行业在发展、以及对焊接技术进行研究过程中,对焊缝跟踪技术方面的投入较多,也使其成为了一种成熟的焊接技术。例如,在先进的熔滴过渡控制中已经引入了数字化焊接电源,并且在系统中对先进的电子元件进行了合理应用,这也使得控制熔淌更为简单,在该方面已经达到了先进国家的水平,这也是焊接行业中的一项重要内容,是确保焊接产品质量能够达到要求标准的一项关键技术。 3?现代焊接技术未来发展的主要趋势 3.1?自动化,智能化 从现阶段的焊接技术的发展情况来看,焊接技术在实际应用过程中与现代制造技术、焊接自动化、焊接科学与工程等各项内容进行合理融合。现阶段,我国焊接工艺自动化率较低,焊接生产机械化及自动化水平都较低,但是,在实际作业过程中,在学习基础上,对现代自动化技术进行合理嫁接改造,通常可以实现突破。近几年,我国在焊接生产自动化、研究焊接生产线、过程中控制智能化等多个方面都取得了显著进步。计算机技术、人工智能、控制理论等都为焊机过程中自动化的实现提供强有力的基础,并且也合理地渗透到了焊机领域中,从实际情况来看,也取得了不错的成果,焊接过程中自动化已经成为了焊机技术在应用与发展过程中的一项要点。焊接过程中控制系统的智能化是焊接自动化的核心,同时也是人们在对焊接技术进行研究的主要方向。 3.2?加强对热源的研究 焊接热源应当具有以下特点:能量密度高度集中、可以快速完成焊接、确保焊缝具有较高质量、焊接热影响区小。现阶段,焊接热源十分丰富,常见的焊接热源有化学热、电弧焊、高频高应热、电子束等。人们对焊机技术的应用与研究过程中,始终都未停止对焊接热源的研究,焊接新热源开发将推动焊接工艺发展,促进新焊接方法产生,每出现一种新热源,都伴随着一批新焊接方法。焊接应用与发展过程中,对现有热源进行改善,对现有热源的开发,应从更加便利、经济方面入手。改善原有热源,在提高效率方面可以扩大激光器能量,对电子束能量进行合理应用,对焊机的性能进行改善,使能量的利用率得到进一步提高,开拓新的更高能量密度的热源,例如将激光添加到电子束中,就是一种不错的方法。 3.3?节能技术的深入研究? 节能技术是现代各个行业在发展过程中必须要考虑的一项内容,焊接行业更是如此。焊接行业在实际发展过程中,发展环保、节能已经成为了必然趋势;同时,采用高效焊接工艺,对于提高焊接作业的具体效率,以及减少能源消耗量来说都有着重大意义。在焊接工艺发

壳寡糖_综述

壳寡糖 1. 壳寡糖的基本概念 壳寡糖,又称寡聚氨基葡糖、甲壳低聚糖,是指2-10个氨基葡萄糖以β-1,4-糖苷键连接而成的低聚壳聚糖,是由壳聚糖解聚而制成的。以普通虾蟹壳为原料,经脱钙、脱蛋白、脱色、及脱乙酰基反应后,运用酶生物技术和先进分离技术制备而成的氨基寡聚糖类产品。是天然糖中唯一大量存在的碱性氨基多糖,壳寡糖是甲壳素、壳聚糖系列产品的高级产品,具备水溶性好、生物活性高、功能作用大、应用领域广、易被人体吸收等突出特点,在国外素有人体第六大生命要素、软黄金之美誉,在医药、功能性食品、日化、农业等领域应用广泛。壳寡糖作为新世纪前瞻性生物技术产品,具备广泛的应用前景。 图1 壳寡糖的生产工艺工程 2.壳寡糖的生物活性 2.1 壳寡糖的免疫调节作用 壳聚糖具有激活机体系统、介导机体系统的系列生物学效应,提高吞噬细胞的系统功能。巨噬细胞表面存在着细菌多糖的受体,而壳聚糖作为细

菌多糖的类似物,能刺激巨噬细胞活化,产生如下反应:促进其吞噬功能,增强它在其它免疫应答中的协同效应,从而实现机体对T细胞、NK细胞和B细胞的调节,介导机体的细胞免疫应答和体液免疫应答。因此,壳聚糖具有对机体的免疫调节作用。 2.2 控制胆固醇 人类健康的最大问题之一是胆固醇,它导致许多严重的疾病。壳聚糖有两个机制降低胆固醇。一个是阻止脂肪的吸收,另一个是将人体血液内的胆固醇排泄掉。首先,壳聚糖抑制那些助于脂肪吸收的脂肪酶的活性。脂肪酶分解脂肪使人体进行吸收。另外一个是排泄胆酸。一旦胆酸排泄,则血液中的胆固醇被用于制造胆酸。这两种机制使得壳聚糖成为强胆固醇清除剂。壳聚糖是一种天然材料,具有强大的阴离子吸附力,适用于降低胆固醇而没有任何副作用。 2.3 抑制细菌活性 壳聚糖在弱酸溶剂中易于溶解,这种溶液特别含有氨基(NH2+)。这些氨基通过结合负电子来抑制细菌。壳聚糖的抑制细菌活性,使其在医药、纺织和食品等领域有着广泛的应用。 2.4 预防和控制高血压 对高血压最有影响力的因素之一就是氯离子(Cl-)。它通常通过食盐摄入。近来许多人都过量消费盐。血管紧缩素转换酶(ACE:Angiotensin Converting Enzyme)产生血管紧缩素II,一种引起血管收缩的材料,其活力来自氯离子。高分子壳聚糖象膳食纤维一样发挥作用,在肠内不被吸收。壳聚糖通过自身的氯离子和氨根离子之间的吸附作用,排泄氯离子。因此,壳聚糖降低血管紧缩素II。它有助于防止高血压,特别是那些过量摄入食盐的人群。 2.5 吸附和排泄重金属 壳聚糖的一个显著特性是吸附能力。许多低分子量的材料,比如金属离子、胆固醇、甘油三酯、胆酸和有机汞等,都可以被壳聚糖吸附。特别是壳聚糖不仅可以吸附镁、钾,而且可以吸附锌、钙、汞和铀。壳聚糖的吸附活性可以有选择地发挥作用。这些金属离子在人体中浓度太高是有害的。比如,血液中铜离子(Cu2+)浓度过高会导致铜中毒,甚至产生致癌后

计算机图像识别技术的发展现状与展望

计算机图像识别技术的发展现状与展望 摘要:计算机图像处理技术与国民经济发展有着密切的关系,在这一领域我们要力争赶上直至超过发达国家,在计算机图像处理技术的研发方面,必须随时掌握国际动态,才能把握好方向。 关键词:计算机图像识别 前言:人类在社会实践活动中,是通过身体各感觉器官来接受信息,感知世界的,其中80%左右的信息是通过视觉系统获取的,人眼将获得的图像送大脑处理后并据此作出反映。在已经进入信息时代的今天,如何快速有效地获得所需要的信息,将直接影响到人们的思维和决策。毫无疑问,通过图像是我们获得信息的重要途径,而对图像的处理技术先进与否将决定其价值,利用计算机进行图像处理可以使我们快速准确地获得所需信息。可喜的是,随着计算机技术的不断发展,图像处理技术已经发生了很大发展,让我们的生产生活进入了丰富多彩的时代,我国在计算机图像处理技术上还需要下很大的力气,才能赶上时代的步伐。本文将就计算机图像处理技术的发展历程及趋势作些探讨。 1 计算机图像处理 计算机图像处理是将图像信号转换成数字信号并利用计算机对其进行处理。由于计算机的处理速度及快,且数字信号具有失真小、易保存、易传输、抗干扰能力强等特点,因而计算机图像处理的应用十分广泛,包括航空、航海、航天、遥测技术、工业自动化检测、安全识别、娱乐等各大领域。 2 计算机图像处理技术的发展历程 二十世纪20年代 Bartlane电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到3个小时之内。50年代,在美国出现了以电子管计算机配合滚筒式、平板式绘图仪等仅具有输出功能的设备的图像处理。60年代至70年代,计算机图像处理技术得到了快速发展,计算机图像处理已经可以用来改善图像质量,或是从图像中获得有效信息,并且能对图像进行体积压缩,便于传输和保存。此时的计算机图像处理已经就用到了卫星遥感、医学等方面。1964年美国喷气推进实验室对航天探测器徘徊者7号发回的月球照片由计算机进行图像处理,成功地绘制出月球表面地图,为人类探索宇宙奥妙奠定

相关文档
最新文档