桥式起重机大车啃道问题的探讨

桥式起重机大车啃道问题的探讨
桥式起重机大车啃道问题的探讨

桥式起重机大车啃道问题的探讨

【摘要】桥式起重机在使用一段时间后,会出现不同程度的大车行走啃轨现象,尤其是使用多年的陈旧桥式起重机。本文作者微软这一问题,首先分析了大车啃轨造成的不良后果,然后对桥式起重机大车啃轨原因进行了分析,最后对此提出来一些意见和建议

【关键词】桥式起重机;大车啃轨;原因

【Abstract 】Bridge crane in use after period of time, can appear different degree of cart walk chew rail phenomena, especially used for many years of old bridge crane. In this paper the author Microsoft the problem, the first analysis of the cart chew rail’s harmful consequences, and then the bridge crane rail cart chew were analyzed, and finally to this out some opinions and Suggestions

【Key Words 】bridge cranes; rail cart; reason

中图分类号:TU74 文献标识码:A 文章编号

1、引言

通常,桥式起重机的大车车轮在专用轨道上运行,轨道支承起重机的全部重量并引导运行方向。桥式起重机的轨道应满足的技术条件是:①轨顶表面能承受车轮的压力;②轨底有一定的宽度,以减少基础的沉降;③具有良好的抗磨性能。起重机运行中,会出现轴向移动或轴向歪斜,使车轮与轨道侧面接触摩擦,双轮缘与轨道互相制约。运行时,车轮轮缘与轨道的接触状态如图l所示。

图l 车轮轮缘与轨道的接触状态

起重机车轮与钢轨之间有2个接触点,1个接触点在踏面上,称为承载点,1个接触点在轮缘上或过度圆弧处,称为导向点。这种接触摩擦方式造成车轮轮缘磨损及轨道侧面磨耗,此现象通常称之为啃轨。

如桥式起重机大车运行时发出吭吭声,目测轨道侧面有斑痕,轨道顶面有点斑,车轮轮缘内侧有亮斑,在短距离内轮缘与轨道的间隙有明显改变,即可

论桥式起重机“啃轨”现象的原因和处理方法示范文本

论桥式起重机“啃轨”现象的原因和处理方法示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

论桥式起重机“啃轨”现象的原因和处 理方法示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 文章通过分析桥式起重机在“啃轨”现象的原因,从 不同方面分析桥式起重机“啃轨”的处理方法,以减少起 重机工作时啃轨现象的发生。 桥式起重机在工作中出现“啃轨”现象非常常见,主 要表现在几个方面:一是起重机的轨道侧面或车轮轮缘内 侧有斑痕,甚至有毛刺或掉铁屑;二是起重机在工作运行 中车体出现歪斜,使得车轮走偏和扭摆,这种情况在起重 机起动或制动时更明显;三是起重机在运行过程中发出金 属啃咬“嘶嘶”或“吭吭”声;四是起重机运行中出现爬 轨或脱轨等严重现象。下文在处理桥式起重机“啃轨”现 象时,从现场观察判断以及做相关数据检测,提出了解决

措施并对其进行了整改。 桥式起重机“啃轨”现象的原因 桥式起重机“啃轨”现象发生的原因较多,车轮、轨道、传动系统都可能造成这种现象。理论上产生“啃轨”的主要原因有以下几点: 第一,车轮的原因。车轮导致桥式起重机“啃轨”可能是由于机器制造和加工过程中存在误差、投入实际使用中磨损不均、维修过程中更换单边零件等,使得起重机两侧车轮直径存在差异,在转速一致的情况下,直径较大的车轮会逐步超强,两侧运行不同步,车体倾斜导致“啃轨”。如果起重机的四个车轮不在矩形的四角,或者同侧的车轮中心不在一条直线上,这将发生车轮中心线偏斜造成啃轨。如果同侧车轮的中心线与轨道顶面未处于垂直状态,致使车轮踏面和钢轨顶面的接触面积变小,单位面积的压力增大,造成车轮磨损不均匀,甚至会在踏面上磨出

起重机啃轨分析及处理修订稿

起重机啃轨分析及处理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

起重机啃轨原因分析及处理方法 摘要:叙述桥式起重机大车运行中的啃轨现象及造成后果,从轨道缺陷、车轮缺陷、桥架变形等方面分析了桥式起重机的啃轨原因,对各个方面的问题提出了处理措施,并对板带厂热轧车间的五号行车进行了整改,现今运行正常。 关键词:桥式起重机车轮啃轨原因分析整改 前言: 桥式起重机是起重设备的主要机种,国家列入特殊设备管理,在冶金生产中已成为必不可少的设备。桥式起重机在使用一定的时间后,由于工况条件和运行频繁,都会出现不同程度的大车或小车运行啃轨现象。起重机运行过程中大车或小车的轮缘与钢轨侧面接触,发生强烈的磨损,称为啃轨。轻微的啃轨不影响使用,常常被人们忽视,严重的啃轨,使车轮与轨道剧烈磨损,并且大大增加附加载荷,运行阻力比正常状态时增大三倍左右,致使起重机运行扭摆,发出响声,运行电动机和传动机构超载运转,随着啃轨的加重,会发生烧坏电动机或扭断传动轴的设备事故,还有脱轨的危险。啃轨严重可影响企业的正常生产,引发安全隐患,所以要及早发现及早修复,下面针对桥式起重机大车运行啃轨现象进行探讨分析。 1、啃轨现象及其造成不良的后果 啃轨现象 通常车轮轮缘与轨道侧面之间设计有一定的间隙,在正常运行情况下,它们不会接触。但有时车轮不在轨道中心部位运行,从而发生车轮轮缘与轨道侧面相接触(摩擦)的啃轨现象。 轨道侧面或车轮轮缘内侧有斑痕,严重时痕迹上有毛刺或掉铁屑。 桥式起重机行驶时,在短距离内轮缘与轨道间隙有明显的改变。 桥式起重机在运行中,车体产生歪斜,车轮走偏。 大车运行时会发出较响亮的“嘶嘶”啃轨声。 啃轨特别严重时,大车运行会发出“坑坑”的撞击声,甚至出现爬轨。 1.2车轮啃轨造成不良的后果

桥式起重机的常见故障及排除方法

桥式起重机的常见故障及排除方法 下面就从机械、电气和金属结构三个方面阐述桥式起重机的常见故障及排除方法。 一、机械传动方面的常见故障 1、制动器刹车不灵、制动力矩小,起升机构发生溜钩现象;在运行机构中发生溜车现象。其原因分析及其解决方法叙述于后: (1) 制动轮表面有油污、摩擦系数减小导致制动力矩减小故刹不住车。可用煤油或汽油将表面油污清洗干净即可解决。 (2) 制动瓦衬磨损严重、铆钉裸露,制动时铆钉与制动轮表面接触,不但降低制动力矩刹不住车而且又拉伤制动轮表面,危害较大。更换制动瓦衬即可。 (3) 主弹簧调整不当、张力小而导致制动力矩减小、刹不住车而产生溜车或溜钩现象。重新调整制动器使其主弹簧张力增大。 (4) 主弹簧疲劳、材料老化或产生裂纹、无弹力、张力显著减小而刹不住车。应更换新弹簧并调整之。 (5) 制动器安装不当、其制动架与制动轮不同心或偏斜而导致溜钩或溜车现象。通常先把制动器闸架地脚螺栓松开,然后将制动器调紧,使闸瓦抱紧制动轮,这时再将悬浮的制动器闸架底部间隙填实,然后再紧固地脚固定螺栓,即可达到二者同心。 (6) 电磁铁冲程调整不当或长行程制动电磁铁水平杆下面有支承物,导致刹不住车。通常重新调整磁铁冲程或去掉支承物即可解决。 (7)液压推动器的叶轮转动不灵活,导致刹车力矩减小。调整叶轮消除卡塞阻力,使叶轮转动滑块即可解决。 2、制动器打不开。导致制动器打不开的原因及排除方法有以下几种: (1) 主弹簧张力过大、电磁铁磁拉力小于主弹簧的张力,故打不开闸,重新

调整制动器,使主弹簧张力减小即可。 (2) 制动器杠杆传动系统有卡住现象,松闸力在传递中受阻,故打不开闸。检查传动系统,消除卡塞现象即可解决。 (3) 制动器制动螺杆弯曲,螺杆头顶碰不到磁铁动铁芯,故无法推开制动闸瓦。拆开制动器,取下螺杆将其调直或更换螺杆即可。 (4) 制动瓦衬胶粘在有污垢的制动轮工作面上。 消除制动轮表面上的污垢即可解决。 (5) 电磁铁线圈被烧毁或其接线折断、制动电磁铁无磁拉力所致。 更换制动线圈或接通线圈接线即可。 (6) 液压推动器的叶轮卡住。 消除叶轮卡塞故障即可。 (7) 线路电压降过大,导致制动电磁铁线圈电压低于额定电压的80%、磁铁磁拉力小于主弹簧的张力,故打不开闸。 消除电压降和原因,恢复正常电压值即可解决。 3、制动器工作时,制动瓦衬发热,“冒烟”,并有烧焦味道产生,瓦衬迅速磨损。 (1) 制动瓦衬与制动轮间的间隙调整不当、间隙过小、工作时瓦衬始终接触制动轮工作面而摩擦生热所致。 重新调整瓦衬与制动轮间的间隙,使其均匀且在工作时完全脱开,不与制动轮接触。 (2) 短行程制动器的副弹簧失效,推不开制动闸瓦,使闸瓦始终贴于制动轮表面上工作,长期摩擦生热所致。 更换副弹簧且重新调整制动器。 (3) 制动器闸架与制动轮不同心,制动瓦边缘与制动轮工作面脱不开而摩擦

天车啃轨的原因及分析及解决办法

天车啃轨的原因分析及解决办法 一.什么是天车的啃轨啃轨有哪些危害 啃轨:即天车大车或小车在运行过程中,轮缘与轨道侧面接触,产生水平侧向推力,引起轮缘与轨道的摩擦及磨损。 危害:1.正常使用条件下车轮的寿命在10年左右,发生啃轨现象使车轮的使用寿命不到1年、甚至几个月。同时由于磨损 是相对的,严重时也会大大降低钢轨的使用寿命。 2.由于啃轨摩擦运行时阻力大,起动难,电气元件易损坏, 甚至出现电机烧损,传动轴断裂,减速机内部齿轮断齿, 轴承损坏等极端现象。 3.严重时会出现车轮轮缘爬上轨顶,造成脱轨事故,发生人 身或设备事故。 4.啃轨必然在运行中产生水平侧向推力使厂房结构承受 附加的横向载荷。导致固定轨道的螺栓松动。 5.运行过程中发生啃轨现象,还会引起整台天车的较大振动, 使主梁、端梁、轨道等连接部位松动、断裂、开焊,整机 结构产生变形,同时也使厂房钢结构遭受冲击载荷引起不 同程度的损坏。 二.啃轨的现象: 1、天车轨道侧面或车轮轮缘内侧有斑痕,严重时斑痕有毛刺或 掉铁屑。 2、天车在短距离行驶时轮缘与轨道之间间隙有明显改变。

3、天车在行驶时车体产生歪斜,车轮走偏。 4、天车在行驶时会发出"嘶嘶"的啃轨声。 5、天车啃轨严重时发出"吭吭"的撞击声,甚至出现爬轨。三.啃轨原因的分析: 1. 车轮因素:车轮安装偏斜,包括水平方向及垂直方向的偏斜。 两主动轮直径偏差较大。 2、车体因素:大梁的上拱度不合要求。对角线偏差超标。 3、轨道因素:轨道安装偏差过大。如跨度偏差、高低不平、弯曲 变形等。 4、其他方面的因素:大车在行走过程中两侧车轮不同步,如电机 不同步、制动器松紧不同、轨道或车轮上有油污造成车轮打 滑跑偏等造成的啃轨现象。 三.车轮啃轨的解决办法: 1.车轮方面: (1)。车轮在垂直方向的检查和矫正。 检查手段:可在车体上挂一根带有重锤的细钢丝或鱼线,然后分别测量出车轮在垂直方向上的直径上、下两点与钢丝或鱼线之间 的距离,则车轮在垂直方向上的倾斜数值是所测量值之差的 一半。 解决办法:松开固定车轮或车轮组的螺钉,用千斤顶顶起需要调整的车轮侧端梁(注意千斤顶的支点选择,要在端梁有立筋的平 整底面,并且支取方便),高度以车轮角轴承箱离开水平定

桥式起重机小车及大车运行机构(参考模板)

毕业设计 32/5t桥式起重机小车及大车运行机构设计

毕业设计任务书 32/5t桥式起重机小车及大车机构设计

32/5t桥式起重机小车及大车机构设计 摘要 桥式起重机是一种工作效率较高,性能稳定的常用起重机。桥式起重机的使用提高了工厂,矿山等工作环境的机械化程度。本次设计结合生产实践并参阅了众多的相关书籍,介绍了32/5t标准桥式起重机的主要结构组成以及在生产中是如何进行工作的;论述了国内外桥式起重机的最新动态和研发成果。按照现有的设计理论进行了方案设计。主要做了桥式起重机中的提升机构、小车行走机构和大车行走机构等方面的设计计算和校核。大体内容包含起升机构和行走机构的传动方案,零部件的空间位置分布,起升机构中卷筒,钢丝绳,滑轮组和吊钩组的设计以及运行机构中车轮和运行轨道的设计。选择并校核了如联轴器、减速器、电动机、传动轴等重要零部件的工作性能。 关键词桥式起重机起升机构大车运行机构小车运行机构

32/5t bridge crane lifting and travelling mechanism design Abstract Bridge crane is a kind of common cranes which have high efficiency and stable performance. The use of bridge crane improved the degree of mechanization in factories, mines and other work environments. The design introduced 32/5t standard bridge cranes and the main structural component and their way to work in the production; discusses the latest developments at home and abroad of bridge crane and R & D results by combined production practice and refer to a large number of books. Make the program design in accordance with the existing design theory. Mainly carried out the design and calculations of the hoisting mechanism, crane trolley and travelling mechanism’s operating mechanism in the bridge crane . Generally contains the transmission scheme of hoisting mechanism and operating mechanism, the distribution of position of the parts ,the drum of lifting mechanism, wire rope, pulley and hook block design and the design of the wheels and running track in the working mechanism. Selected and checked the parts like coupling, reducer, motor, drive shafts and other important parts of the job performance. Keywords Bridge crane hoisting mechanism crane traveling mechanism cart mechanism

桥式起重机车轮与轨道常见机械事故障分析及预防措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 桥式起重机车轮与轨道常见机械事故障分析及预防 措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8021-63 桥式起重机车轮与轨道常见机械事故障分析及预防措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 起重机在运行过程中车轮与轨道常见的故障为车轮的啃道及小车的不等高、打滑。其中造成啃道的原因是多方面的,且啃道的形式是多样的。啃道轻者影响起重机的寿命,重者会造成严重的伤亡事故,因此特种设备管理人员对于啃道要引起足够的重视。造成啃道的主要原因是安装时产生不符合要求误差的、不均匀摩擦及大车传动系统中零件磨损过大、键连接间隙过大造成制动不同步。 因此各单位的特种设备主管部门在安装、维修起重机时一定要找有资质的单位进行安装、维修,从而保证设备安全及运行寿命;同时特种设备管理人员要加强平时的检查管理,避免起重机发生啃道的机械故障,在检查过程中要认真、细致地找出啃道的原因,

桥式起重机啃轨现象分析及改进措施

桥式起重机啃轨现象分析及改进措施 摘要:介绍了大跨度桥式吊机大车在行进中经常出现的运行啃轨现象,分析了桥式起重机大车在运行中出现啃轨的原因,提出了有效的改进措施,且应用于设备改造实践中,取得了较好的效果。 关键词:桥式起重机啃轨改进措施 1、引言 在现代化大生产中,桥式起重机是起重设备的重要机种,已成为许多工矿企业必不可少的生产设备。由于其跨度大而刚度低,其传动机构的制造安装精度很难保证,经过长期运行的桥式起重机,其传动机构的积累误差很大,都会发生不同程度的大车啃轨现象,且在运行时会发出刺耳的金属挤压声。这严重威胁了起重机的安全运行,同时也会增加运行维护费用。针对这一现象,我们从理论上进行了分析并提出了相应的改进措施。 大车轮啃轨表现 啃轨又称“啃道”、“咬道’,,是指起桥式重机运行机构出现轴向移动或轴向歪斜,使车轮轮缘与轨道侧面发生接触,产生水平侧向推力,在运行过程中产生摩擦,以致轮缘很快磨损和变形。在大车运行时,轮缘与轮轨的接触状态如图1所示,此时车轮与轮轨有2个接触点,A点在踏面上被称为承载点或受力点,B 点在车轮轮缘上或过度圆弧处称为导向点。 车轮啃轨的表现形式主要有以下几种:(1)轨道侧面有一条明亮的痕迹或车轮轮缘内侧有亮斑,严重时痕迹上有毛刺或掉铁屑。(2)起重机大车运行时,在短距离内轮缘与轨道间隙变化明显。(3)起重机大车运行时,尤其在起动或制动时,,车体产生歪斜,车轮走偏。(4)起重机大车运行时,会发出异常的摩擦声响,特别严重时会发出响亮的“嘶嘶”啃轨声。(5)严重的车轮啃轨,起重机大车运行时会发出“吭吭”的撞击声,甚至发生爬轨;会使车轮轮缘与轮轨发生切削,甚至有铁屑出现。(6)严重的车轮啃轨,起重机大车甚至难以启动,电器元件与电机损毁。 啃轨原因分析。桥式起重机啃轨原因比较复杂,归纳起来主要有轨道缺陷、车轮缺陷、 桥架变形、电气等方面的原因,而以车轮缺陷最为常见。 (1)车轮轮缘磨损,一般轮缘磨损量超过1mm时,啃轨现象比较严重。(2)两个主动轮直径相差过大。如果桥式起重机两主动轮直径不同,每转行走的距离就不等,直径大的一侧就要逐渐超前,使车体歪斜而产生啃轨。(3)如果车轮在安装时,同侧两车轮中心不在同一直线上,无论是被动轮还是主动轮,只要车轮偏斜都会造成啃轨。如图2所示,车轮位置呈平行四边形,四顶点布置,对角线L1=L2,D1L2,啃轨位置在同一直线上。若轮距过小,则啃轨道外侧,反之,则啃轨道内侧。 (4)车轮的水平偏斜超差。车轮的水平偏斜,即踏而中心线与轨道的中心线在水平方向上有一个夹角。 起重机轨道重合度、规矩、倾斜度等允许偏差见表1。 车轮缺陷的改进措施。 (1)根据实际改进轮缘与轨道接触处结构,加入轮缘润滑,减小轮缘与轨道摩擦。 (2)减小车轮间的直径差。车轮的2个主动轮和被动轮之间的直径差要保证

行车啃轨

1 判定啃轨的条件 桥式起重机系有轨运行,是车轮在专用的轨道上运行。.起重机轨道是用来支承起重机的全部重量,保证设备正常、定向运行的。所以选用桥式起重机轨道应满足以下技术条件: (1)轨顶表面能承受车轮的挤压力;(2)轨底有一定的宽度以减轻对基础的承压;(3)应有良好的抗磨弯度。 起重机在运行中,由于多种原因常出现轴向移动或轴向歪斜,从而使车轮与轨道侧面接触摩擦,受到轮缘与轨道构成的约束。在约束运行时,轮缘车轮的轮轨接触状态(如图1),这时车轮与钢轨有两个接触点,A点在踏面上称为承载点,B点在轮缘上或过度圆弧处称为导向点。这种接触摩擦方式造成了车轮缘摩损及轨道的侧面摩耗,这种现象习惯上称啃轨。 我厂两个车间的起重机大车行走时发出吭吭声,目测轨道侧面有斑痕,轨道顶面有点斑,车轮轮缘内侧有亮斑。起重机运行时,在短距离内,轮缘与轨道间隙有明显的改变,根据这现现状可初步判断为大车行走啃轨。 2 啃轨造成的严重后果 (1)啃轨对基础、房梁、桥架的影响。起重机的运行啃轨,必然产生水平侧向力。这种侧向力将导致轨道横向位移,引起设备振动,致使固定轨道的螺栓松动,另外,还会引起整台行车的振动,这些都不同程度的影响了房梁、桥架结构的稳固。 (2)啃轨对生产、人身、设备造成的威胁。严重的啃轨会使起重机轨道严重磨损,导致行车运行时和车轮接触不好而不能使用,直至更换,造成人力、物资的浪费,同时也给生产造成很大的影响。 起重机属高空作业,在运行中,特别是当轨道接头间隙过大时,极易造成重大人身伤亡和设备事故。 (3)啃轨对电气设备系统的影响。行车在运行中啃轨会产生相当的阻力,从而增加了电力系统的负荷,由于运行中电流的增大而造成电气元件和电动机功率的耗损。特别是大车运行开车时,由于啃轨增大了运行阻力,使电机在运行中超负荷运转,很容易造成电机过载烧毁。同时由于运行阻力大,也容易使传动系统部件如轴等扭坏,我厂起重机在啃轨现象消除前,也经常出现此故障。 图片: 3 啃轨原因的分析 3.1.1大车在运行中出现啃轨,这是很严重的问题。在正常运行情况下,起重机车轮轮缘和轨道之间有一定的间隙,一般设计最大间隙为30-40mm,但由于某些原因如吊装、运行中的一些因素造成车轮歪斜,使运行中的车轮与轨道的接触面不在踏面中间,造成车体偏斜。当车体偏斜时,起重机的一侧轮缘和轨道侧面相挤压,轮缘和轨道就产生了侧面摩擦,从而造成轮缘和轨道的侧面摩损,这是起重机偏斜啃轨的主要原因,也就是说尽管轮距和轨道跨度是正确的,但是车轮踏面的中心线与轨道的中心线不重合,当车体偏斜时,整个起重机靠着轨道一侧接触而行走,因此造成了车轮轮缘与轨道间的一侧强行接触,并使车轮和轨道严重磨损,因此就产生了啃轨。 轻微的啃轨会造成轮缘及轨道的侧面有明显的磨损痕迹,严重啃轨会造成轮缘和轨道的侧面金属剥落或轮缘向外变形。啃轨的原因还有许多,如行车的桥架及基础变形,必将引起车轮的歪斜和跨度大小的变化,从而导致大车运行啃轨。因桥架变形,促成端梁产生水平弯曲,造成车轮水平偏斜超差,这也是啃轨的主要原因。 当大车运行制动时,则产生纵向或横向力。如大、小车同时制动,便产生一个合成制动力,使轨道承受一个斜向推力。这时如果轨道安装成一侧高于另一侧时,起重机重心就会整个移向低的一侧,从而增加了轨道所承受的横向力,使轨道的一侧车轮紧夹在轨道外侧,造成啃轨,我们对以下几方面做个重点分析: 3.1.2 车轮 首先检查车轮外观有无裂纹、踏面剥落、压陷等。早期的磨损使车轮出现踏面压溃或磨成平面.轮缘的厚度磨损≤5%,踏面磨损≤1.5%,踏面无麻点,则车轮合乎使用标准。 (1)当两边主、被动轮的直径不相等(因制造和磨损不均匀所致)大车运行时,在相同的转速下,两边的行程不相等,造成啃轨。 (2)车轮的安装位置不正确,也容易造成啃轨。主要有以下几种: A 四个车轮的安装位置不在矩形的四角。同侧中心不在一条直线上,车轮偏斜,这时不管是主、被动轮都会造成啃轨。 ①、如图2所示,车轮位置呈平行四边形,对角线D1>D2,啃轨车轮在对角线位置。

桥式起重机啃轨原因分析及处理1

桥式起重机啃轨原因分析及处理 梁凤平 摘要:叙述桥式起重机车轮啃轨的现象,并对故障原因进行分析,提出了处理方法。 关键词:桥式起重机;车轮;啃轨 前言:桥式起重机在我车间生产中扮演着十分重要的角色,其运行状况的好坏对安全生产有直接影响。车间桥式起重机在工作过程中,有时发生啃轨现象并造成不良后果。 一、啃轨现象的分析 通常车轮轮缘与轨道侧面之间设计有一定的间隙,在正常运行情况下,它们不会接触。但有时车轮不在轨道中心部位运行,从而发生车轮轮缘与轨道侧面相接触(摩擦)的啃轨现象。 1.车轮啃轨现象表现形式 (1)轨道侧面或车轮轮缘内侧有斑痕,严重时痕迹上有毛刺或掉铁屑。 (2)桥式起重机行驶时,在短距离内轮缘与轨道间隙有明显的改变。 (3)桥式起重机在运行中,车体产生歪斜,车轮走偏。 (4)大车运行时会发出较响亮的“嘶嘶”啃轨声。 (5)啃轨特别严重时,大车运行会发出“吭吭”的撞击声,甚至出现爬轨。

2.车轮啃轨造成的不良后果 (1)缩短车轮寿命。在正常情况下,中级(A4-A5)工作级别的桥式起重机,其车轮可以使用15年以上;重级(A6-A8)及冶金桥式起重机的车轮可使用8年左右。但是对于一些啃轨较严重的桥式起重机,车轮只能使用1-2年。 (2)加快轨道磨损。啃轨产生的侧向力能使轨道位臵偏移,直到不能使用。 (3)增大运行阻力。增大电动机功率消耗和机械机构的传动负荷。 (4)厂房受载状况恶化。 3.桥式起重机啃轨程度 (1)轻度啃轨。凸轮控制器一挡时启动缓慢,停车后惯性运行距离短。 (2)中度啃轨。凸轮控制器一挡不启动、二挡启动缓慢,停车时,有时无惯性运行,轮缘磨损快,有卷边。 (3)严重啃轨。凸轮控制器二挡不启动,反向运行l 0m 以内,车体歪斜达到最大值并开始啃轨。 4.啃轨的原因分析 起重机运行时啃轨,有的是轨道问题,有的是车轮问题,还有的是桥架问题,有的是电机问题,啃轨的原因多种多样。 1、轨道问题

桥式起重机运行机构大车设计说明

东北林业大学 起重机械课程设计 学院工程技术学院 专业班级08级森工三班 姓名XXX 学号20080611 指导老师孟春 组号21000 设计部分大车运行机构 2011年7 月16 日

起重机设计参数 :32 m):28 m/s):0.5 工作级别:M4 JC%值:40 大车运行机构:采用分别传动的方案 方案:采用4车轮、对面布置、分别驱动。 部件:电机、减速器、联轴器、车轮、轨道。 桥架自重G=0.45Q+0.82L=37.36t=373.6kN,小车自重q=0.4Q=12.8t=128kN,小车运行极限位置距轨道中心线距离l=2m。 (1)车轮与轨道 269.4kN 空载最大轮压:120.8kN 66kN 使用双轮缘车轮,轮缘高为25mm—30mm。根据工作级别M40.86,大车运行速度30m/min,初选车轮踏面直径,车轮材料,轨道及其材料。 根据表3-8-12查得:车轮直径700mm,轨道型号QU70,许用轮压30.7t,车 轮材料ZG310-570、HB320。轴承型号为7524 车轮踏面疲劳验算:按照点接触验算

与材料有关的许用点接触应力常数(N/mm2);根据表3-8-6选取,K2=0.1; R —曲率半径,取车轮曲率半径与轨面曲率半径中之大值(mm),R=700mm; m—有轨道顶面与车轮的曲率半径之比(r/R)所确定的系数,根据表3-8-9选取,m=0.468。 转速系数,根据表3-8-7选取,C1=1; 工作级别系数,根据表3-8-8选取,C2=1.12。 故车轮的踏面的疲劳强度满足要求。 (2)阻力计算 只考虑摩擦阻力。 320+373.6+128)*0.006=4.93kN=4930N 式中。G—桥架自重载荷; Q—起升载荷; q—小车自重载荷; 摩擦阻力系数,初步计算时按表8-12。 (3)电机的计算与选择 3.1静功率 1.37kW m—驱动电动机总数,m=2; v—初选运行速度,0.5m/s; F j —起重机(小车)只考虑摩擦阻力运行时的静阻力,F j kW 室工作及装卸桥小车运行机构的,取1.2~2.6(对应速度30~180m/min)

桥式起重机啃轨原因分析及解决方式

桥式起重机啃轨原因分析及解决方式 起重机是一种常用设备,不仅在陆地上我们可以见到各种类型的起重机,被广泛应用于冶金、矿山、机械制造加工等行业。随着企业的使用频率越来越高,在正常使用保养中,桥式起重机会经常出现啃轨的现象。下文我们将对这一现象进行分析。 1啃轨的定义 啃轨是指在起重机大车或小车运行过程中,大车或者小车的车轮轮缘与轨道侧面应该保持一定间隙,但由于车轮轮缘与轨道侧面接触产生水平侧向推力,引起轮缘与轨道的摩擦及磨损,通常称为啃轨。 2啃轨的危害 ①. 降低车轮的使用寿命

由于起重机的车轮的材料一般是使用铸钢,经过淬火等工序之后,一般可以使用10年以上。但是由于啃轨的原因,车轮的寿命会大大减小,这会严重影响生产安全和生产效率。 ②.磨损轨道 啃轨情况的发生,车轮和轨道由于是刚性接触,会在一定程度上加剧轨道的磨损,随着磨损量的增大,起重机大小车的稳定性减小,严重影响安全。 ③.脱轨危险 当车轮或轨道磨损严重时,车轮可能会爬到轨道顶面,致使大车或小车脱轨,引发安全事故。 ④影响厂房的结构 用于起重机啃轨时会发出噪声、引起震动,而且起重机运行时会产生水平侧向力,使起重机产生不正常的振动,从而是厂房建构产生振动,受到一定程度的损害。 3啃轨的判定及表现形式 ①.在起重机轨道的侧面有很明显摩擦很光亮的平面,导轨上有很锋利的棱角,轨道顶面有雪白色的亮斑。 ②.桥式起重机行驶时,轮缘与轨道之间的间隙有明显的变大或者变小现象。 ③.桥式起重机在运行中,车体产生歪斜,车轮走偏。

④.大车运行时会产生刺耳啃轨声,啃轨严重时,大车不仅会产生刺耳的噪声,而且会引起大车轻微的跳动,这也就是我们通常说的爬轨现象。 4 啃轨原因分析 引起起重机啃轨的原因很多,但主要原因有这两个方面:一是轨道变形;二是起重机工业制造技术上存在缺陷以及安装者安装能力及技术不足。 引起轨道形变的原因有以下几个方面: ①.由于起重机的大车和小车经常在轨道上来回行走,轨道上承受的这种压力在外部表现为间歇性的,而在轨道内的应力表现形式为交变应力,这来来回回反复的作用,就会使轨道产生变形或位移。 ②.起重机大小车行走机构在理想设计下,是按直线行走的。但在实际工作中,是负重行走的,这本不会有什么影响,但是不同的企业有不同的管理方式、工作人员的操作技能也有差异,这就会存在外拉斜吊的现象,这现象势必会啃轨。 ③.轨道基础发生变化。比如地质下陷。起重机能否行走正常,主要取决于轨道的状态。而目前最常用的办法是经常不断地调整轨道。 车轮的安装质量以及车轮本身的质量问题,也是造成啃轨现象的重要原因:①.起重机长时间超载运行,或起重机主梁残余应力等引起起重机的主梁、端梁、车架产生形变,引起车轮的歪斜,造成啃轨。 ②.两主动轮踏面的直径不对等。起重机运行时,因为轮直径不同,两侧车轮在电动机转速相同的情况下,运行速度必然不同,这就会引起“画圆”现象,从而使得轮缘与轨道两侧刚性接触,造成啃轨现象。

起重机司机模拟试题解(9)

2.制定《特种设备安全监察条例》,就是要从(C)上保证特种设备生产、使用单位有序地开展生产经营活动,避免和减少安全事故,从而促进和保障经济的发展。 A.思想 B.组织 C.制度 D.措施 3凸轮控制器不具有零位保护的作用。(×) 解:采用凸轮控制器控制的电路在每次重新起动时,还必须将凸轮控制器旋回中间的零位,使触点12接通,才能够按下SB 接通电源,这就防止在控制器还置于左右旋的某一档位、电动机转子电路串入的电阻较小的情况下起动电动机,造成较大的起动转矩和电流冲击,甚至造成事故。这一保护作用称为“零位保护”。 4.申请《特种设备作业人员证》的人员,应当首先向发证部门指定的特种设备作业人员(B)机构报名参加考试。 A.培训 B.考试 C.审查 5.起重机吊钩在最低位置时,卷筒上必须留有设计规定的安全圈数。(√) 6.持证作业人员以考试作弊或者其他欺骗方式取得《特种设备作业人员证》的,吊销《特种设备作业人员证》,(B)不得申请《特种设备作业人员证》。 A.5年内 B.3年内 C.4年内 D.终生 7.塔式起重机带着额定起升载荷回转时的转速是最小稳定转速。(×) 解:额定回转速度是带着额定起升载荷回转时的最大稳定转速。 8.如下图所示,小臂伸向侧前上方,手心朝上高于肩部,以腕部为轴,重复向上摆动手掌的手势代表吊钩(C)。 A.上升 B.水平移动 C.微微上升 D.微微下降 9.为了提高提升高度或增大臂根铰点高度,都需要顶升塔身并接高。(√) 10.俯仰变幅臂架的最大仰角一般为(C)°。 A.55 B.65 C.75 D.85 11.双小车桥式起重机具有两台起重小车,两台小车的起重量相同,可以单独作业,但不能联合作业。(×)解:双小车桥式起重机具有两台起重小车,两台小车的起重量相同,可以单独作业,也可以联合作业。 12.液压系统中安全阀的作用是(C)。 A.防止泄漏 B.防止油液倒流 C.限制最高压力 13.桥式起重机经常超载或超工作级别下使用是主梁产生下挠超标的主要原因。(√) 14.求几个已知力的合力的方法叫做力的(B)。 A.分解 B.合成 15.起重机主梁垂直弹性下挠度是起重机主梁在空载时,允许的一定的弹性变形。(×) 解:起重机主梁垂直弹性下挠度是起重机主梁在满载时,允许的一定的弹性变形。 16.流过人体的电流越大,(C)。 A.越安全 B.致命的危险性也就越小 C.致命的危险性也就越大 17.电动抓斗是本身带有供抓斗开启与闭合的装置,可以在任意高度卸料。(√) 18.PQS起升机构控制屏,下降第三档为(C)制动。 A.反接 B.单相 C.回馈 19.吊装提升重物时可以调整制动带间隙。(×) 解:吊装提升重物时禁止调整制动带间隙。

桥式起重机车轮与轨道常见机械事故障分析及预防措施

仅供参考[整理] 安全管理文书 桥式起重机车轮与轨道常见机械事故障分析及预防 措施 日期:__________________ 单位:__________________ 第1 页共3 页

仅供参考[整理] 桥式起重机车轮与轨道常见机械事故障分析及预防措施起重机在运行过程中车轮与轨道常见的故障为车轮的啃道及小车 的不等高、打滑。其中造成啃道的原因是多方面的,且啃道的形式是多样的。啃道轻者影响起重机的寿命,重者会造成严重的伤亡事故,因此特种设备管理人员对于啃道要引起足够的重视。造成啃道的主要原因是安装时产生不符合要求误差的、不均匀摩擦及大车传动系统中零件磨损过大、键连接间隙过大造成制动不同步。 因此各单位的特种设备主管部门在安装、维修起重机时一定要找有资质的单位进行安装、维修,从而保证设备安全及运行寿命;同时特种设备管理人员要加强平时的检查管理,避免起重机发生啃道的机械故障,在检查过程中要认真、细致地找出啃道的原因,并采取相应的措施。小车车轮的不等高是起重机运行中的极不安全的因素,小车的不等高使小车在运行中一个车轮悬空或轮压太小可能引起小车车体的震动。造成小车车轮不等高的因素是由多方原因引起的,但是主要原因是安装误差不符合要示求及小车设计本身重量不均匀,因此对小车不等高的故障要全面分析,把小车不等高的问题解决好。 起重机在运行过程中由于轨道不清洁、启动过猛、小车轨道不平、车轮出现椭圆、主动轮之间的轮压不等的原因使得小车产生打滑环象,这就要求特种设备管理人员在检查过程中一定要认真仔佃,发现问题要及时解决,避免产生小车打滑的现象。 第 2 页共 3 页

仅供参考[整理] 安全管理文书 整理范文,仅供参考! 日期:__________________ 单位:__________________ 第3 页共3 页

桥式起重机大车啃轨原因分析及调整

桥式起重机大车啃轨原因分析及调整 张龙军 (攀钢钒热轧板厂) 摘 要: 通过理论知识和现场实际,对起重机大车啃轨进行了原因分析、检验,提出了解决方案,对啃轨严重的起重机进行调整试验。有利于减少和避免啃轨对设备、人身带来的严重影响,节约备件资金,减少了设备事故,为企业提高经济效益提供了有力的保证。 关键词:起重机;车轮组;啃轨 0 引言 桥式起重机使用一段时间后,都会不同程度出现大车行走啃轨现象,热轧板厂桥式起重机大车行走过程中也出现过啃轨现象, 这一设备故障的发生,大大增加了设备备件消耗和维修工作量,影响了热轧板厂的正常生产。针对这一现象,从理论上进行了分析,从而提出解决措施,改进后,备件消耗、设备事故、故障停机率大大降低,确保热轧板厂的正常生产。 1 热轧板厂桥式起重机啃轨分析及处理试验 1.1 热轧板厂磨辊间33# 桥式起重机(32/5 t )啃轨分析及处理试验 (1) 啃轨分析 33# 桥式起重机大车轮啃轨主要是东面的两个车轮,啃轨导致车轮轮缘磨损得很快,并且运行中伴随着“嘶嘶”的啃轨声。 当反向行驶时,侧。由于啃轨是主动轮,影响从动轮的使用寿命,磨损导致车轮组最多能使用一年。斜,如图1所示。 图1:车轮偏斜图 (2)处理试验 对啃轨的两个车轮进行垂直偏斜的 调整:在调整车轮之前,先用千斤顶将桥架端梁顶起,使车轮在悬空状态下进行。松开水平键板处紧固螺栓,分别在两个轮子的水平键板处加垫板(如图2所示)。 1—弯板;2—水平键板;3—紧固螺栓;4—垂直键板;5—固定板 图1 车轮偏斜图

(3)综合效果 处理完毕后进行试车,原来啃轨的两个车轮的轮缘在运行过程中已经不再与轨道相接触,同时,也消除了啃轨的“嘶嘶”声。 处理前一年更换大车车轮组4件,一年消耗备件费用4×1.3万元=5.2万元,更换一次大车轮需要4 h,则一年需要4×4=16 h,按小时作业能力400 t/h,每吨钢利润为300元计算,吊车作业率按照30%计算则一年节约故障时间所创造效益为16×400×300×30%=57.6万元;总效益为:备件节约费用5.2万元+节约事故时间效益57.6万元=62.8万元 1.2 主轧线21#桥式起重机(100/20 t)啃轨分析 (1)啃轨分析 21#桥式起重机的大车轮在运行过程中啃轨十分严重,新更换的大车轮只能使用3~4个月,轮缘就磨损报废(50%以上)。而且,21#桥式起重机运行轨道的23.5柱~28.5柱两侧大车轨道磨损也达到 2.7~3.7 mm不等的磨损量。③④⑤ 21#桥式起重机出现啃轨症状后,经检查、检测发现两个问题:①其啃轨主要发生在23.5柱~28.5柱之间,是轨道的轨距水平弯曲过大,最大误差达到22 mm,如图3-2。 ②轨道同跨度高低误差过大,最大误差达20 mm,严重超标,如图3-1。 由于轨道偏差过大而造成啃轨有三种情况:一是两条轨道相对标高偏差过大,使起重机在运行过程中容易产生横向移动,这样轨道标高的一侧,车轮轮缘与轨道外侧相挤而啃轨,标高低的一侧车轮轮缘啃轨道的内侧(如图3-1)。二是同一侧两根相邻的钢轨顶面(踏面)不在同一水平面内,这种啃轨表现为车轮在轨道接头处常常发出金属的撞击声。三是轨道水平弯曲过大,两条轨道在某段或多段区域内轨距偏差太大(如图3-2),这种啃轨表现是车轮运行到这段距离内就发生啃道。 图5-1:大车轨道安装高低差 (2)处理试验 由于轨道安装偏差过大而出现的啃轨,其解决方案是:①对23.5柱~28.5柱之间的轨道进行更换;消除轨距水平弯曲。②要调整轨道安装的高低误差,采用加垫板法来调整,选用普通钢板,其厚度按轨道实测高低误差选定,垫板要求表面平整、无凹凸,外形尺寸宽度不得超过轨道压板20 mm,轨道下面要填实,不得有悬空现象,用带螺栓的压板固定在下面梁上。 (3)综合效果 经过上述的施工处理,23.5柱~28.5柱之间的轨道磨损情况至今良好;且21#桥式起重机车轮使用寿命也提高到2年. 处理前一年大车车轮组更换量最少为8件,一年消 图3 大车轨道安装高低差

桥式起重机啃轨原因分析及处理方法

桥式起重机啃轨原因分析及处理方法 (09级机电设备维修与管理业余班 XX 云南安宁:650302) 摘要:叙述桥式起重机大车运行中的啃轨现象及造成后果,从轨道缺陷、车轮缺陷、桥架变形等方面分析了桥式起重机的啃轨原因,对各个方面的问题提出了处理措施,并对板带厂热轧车间的五号行车进行了整改,现今运行正常。 关键词:桥式起重机车轮啃轨原因分析整改 前言: 桥式起重机是起重设备的主要机种,国家列入特殊设备管理,在冶金生产中已成为必不可少的设备。桥式起重机在使用一定的时间后,由于工况条件和运行频繁,都会出现不同程度的大车或小车运行啃轨现象。起重机运行过程中大车或小车的轮缘与钢轨侧面接触,发生强烈的磨损,称为啃轨。轻微的啃轨不影响使用,常常被人们忽视,严重的啃轨,使车轮与轨道剧烈磨损,并且大大增加附加载荷,运行阻力比正常状态时增大三倍左右,致使起重机运行扭摆,发出响声,运行电动机和传动机构超载运转,随着啃轨的加重,会发生烧坏电动机或扭断传动轴的设备事故,还有脱轨的危险。啃轨严重可影响企业的正常生产,引发安全隐患,所以要及早发现及早修复,下面针对桥式起重机大车运行啃轨现象进行探讨分析。 1、啃轨现象及其造成不良的后果 1.1啃轨现象 1.1.1通常车轮轮缘与轨道侧面之间设计有一定的间隙,在正常运行情况下,它们不会接触。但有时车轮不在轨道中心部位运行,从而发生车轮轮缘与轨道侧面相接触(摩擦)的啃轨现象。 1.1.2轨道侧面或车轮轮缘内侧有斑痕,严重时痕迹上有毛刺或掉铁屑。 1.1.3桥式起重机行驶时,在短距离内轮缘与轨道间隙有明显的改变。 1.1.4桥式起重机在运行中,车体产生歪斜,车轮走偏。 1.1.5大车运行时会发出较响亮的“嘶嘶”啃轨声。 1.1.6啃轨特别严重时,大车运行会发出“坑坑”的撞击声,甚至出现爬轨。 1.2车轮啃轨造成不良的后果 1.2.1缩短车轮使用寿命。在正常情况下,中级(A 4—A 5 )工作级别的桥式起重机其车轮可以使用15 年以上,重级(A 6—A 8 )及冶金桥式起重机的车轮可使用8年左右,但是对于一些啃轮较严重的桥式 起重机,车轮只能使用1-2年。 1.2.2加快轨道磨损。啃轨产生的侧向力能使轨道位置偏移或磨出台阶。 1.2.3增大运行阻力,增大电动机功率消耗和机构的传动负荷。 1.2.4对房梁结构的影响。由于起重机运行啃轨,必然产生水平侧向力,这种侧向力将导致轨道横向位移,致使固定轨道的压板及螺栓松动。另外,由于运行啃轨,将引起整台起重机较大的震动,这些都不同程度的影响房梁结构。 2、啃轨的原因分析 啃轨原因是多种多样的,轨道的原因、车轮的原因、桥架变形而引起的,还有可能是几者之间的问题。据相关资料,由于轨道问题,车轮问题引起的啃轨情况占大部分。 2.1轨道 2.1.1轨道安装质量不合格:“轨道承轨梁安装时倾斜导致轨道安装在承轨梁上时随着倾斜,使运行

桥式起重机大车运行机构的计算

第三章桥式起重机大车运行机构的计算 3.1原始数据 起重机小车大车 载重量(T) 跨度 (m) 起升高度 (m) 起升速度 () m in m 重量 (T) 运行速度 () min m 小车重量 (T) 运行速度 () m in m 16 16.5 10 7.9 16.8 44.6 4 84.7 大车运行传动方式为分别传动;桥架主梁型式,桁架式。工作类型为中级。 3.2确定机构的传动方案 本次设计采用分别驱动,即两边车轮分别由两套独立的无机械联系的驱动装置驱动,省去了中间传动轴及其附件,自重轻。机构工作性能好,受机架变形影响小,安装和维修方便。可以省去长的走台,有利于减轻主梁自重。 图大车运行机构图 1—电动机2—制动器3—高速浮动轴4—联轴器5—减速器6—联轴器7低速浮动轴8—联轴器9—车轮 3.3车轮与轨道的选择 3.3.1车轮的结构特点 车轮按其轮缘可分为单轮缘形、双轮缘形和无轮缘形三种。 通常起重机大车行走车轮主要采用双轮缘车轮。对一些在繁重条件下使用的起重机,除采用双轮缘车轮外,在车轮旁往往还加水平轮,这样可避免起重机歪斜运行时轮缘与轨道侧面的接触。这是,歪斜力由水平轮来承受,使车轮轮缘的磨损减轻。 车轮踏面形状主要有圆柱形、圆锥形以及鼓形三种。从动轮采用圆柱形,驱动轮可以采用圆柱形,也可以采用圆锥形,单轮缘车轮常为圆锥形。采用圆锥形踏面车轮时须配用头部带曲率的钢轨。 在工字梁翼缘伤运行的电动葫芦其车轮主要采用鼓形踏面。

图 起重机钢轨 图 大车行走车轮 3.3.2车轮与轨道的初选 选用四车轮,对面布置 桥架自重:kN t L Q G 3.20773.2082.045.0==+=起 式中 起Q ——起升载荷重量,为16000kg L ——起重机的跨度,为16.5m 满载最大轮压:m ax P = L l L q Q q G -?++-24起 式中 q ——小车自重,为4t l ——小车运行极限位置距轨道中心线距离,为1.5m 代入数据计算得:kN P 7.132max = 空载最大轮压:? max P = L l L q q G -?+-24 代入数据得? max P =60kN 空载最小轮压:L l q q G P ?+-= 24min 代入数据得m in P =43.64kN 载荷率: 772.03 .207160 ==G Q 查《机械设计手册 第五版起重运输件?五金件》表8-1-120,当运行速度在 m in 90~60m ,772.0=G Q 起,工作类型为中级时,选取车轮直径为600mm 时,

相关文档
最新文档