8620H齿轮锻件锻造余热正火工艺

8620H齿轮锻件锻造余热正火工艺
8620H齿轮锻件锻造余热正火工艺

8620H齿轮锻件锻造余热正火工艺

正火是齿轮锻件毛坯常用的一种预备热处理工艺,锻件通过正火可以获得要求的硬度以及较稳定的金相组织,为后续机械加工做好准备。锻件的正火经历了普通箱式炉正火到连续炉等温正火的过程,目前等温正火已在国内大中型齿轮企业广泛应用。而随着热处理工艺和设备的不断发展以及人们对节约能源的要求,锻造余热正火则成为一种新的锻件正火发展方向。

8620H齿轮锻件的正火技术要求硬度要求160~197HB;金相组织按照“GB/T13320-1991钢质模锻件金相组织评定图及评定方法”,合格级别应为1~3级;参照国外某公司TES-019标准:正火后不能含有大于30%的断离珠光体组织以及不可以接受的带状组织。

由于毛坯在1000℃左右停锻,此时锻件仍处于奥氏体状态,通过控制冷却,使锻件停锻后在可控的温度范围内通过传送装置进入等温炉中保温,发生组织转变。从而获得要求的硬度和良好的组织状态。

由于余热正火没有对锻件进行重新加热奥氏体化,而停锻后锻件奥氏体晶粒比正常重新加热的晶粒显著增大,而且这种粗大晶粒的特性会在后续的渗碳加热时发生组织遗传,使最终的零件性能恶化,因此必须很好地控制锻件在终锻后的冷却和等温转变,使其产生均匀的铁素体和珠光体组织。工艺参数主要有锻件进入等温炉的温度即入炉温度、等温炉温度和保温时间等,而锻件的入炉温度则是控制锻件余热正火质量的关键工艺参数。将等温温度设定在珠光体转变温度范围内(630℃左右),要求锻件终锻后在传送装置上不能重叠,通过调整传送带转速来控制锻件的入炉温度,保温时间为90min。

合理地控制锻件的入炉温度(650~700℃)就可以得到均匀的平衡组织,而且将锻件硬度控制在156~170HB,部分品种锻件甚至在160~168HB,极大减少了锻件的硬度散差;当锻件入炉温度高于700℃,硬度偏低;当锻件入炉温度低于630℃就有可能产生断离珠光体组织。

由于等温正火重新对锻件进行奥氏体化加热,在一定程度上细化了晶粒,因此硬度接近的经余热正火和等温正火处理的锻件,在相同放大倍数下余热正火组织晶粒要大于等温正火,但组织级别仍在要求范围之内。

锻件采用锻造余热正火减少了二次奥氏体加热消耗的大量能源,一台锻造主机生产的所有锻件几乎可以全部经余热处理,生产效率高。锻件余热正火后表面光亮,氧化皮薄,后续

抛丸清理时间较等温正火节约近2/3。

锻造余热正火时,通过控制锻件的冷却速度将锻件入炉温度控制在650~700℃,再经过适当的保温就可以得到适合的硬度和良好的组织。余热正火可将锻件硬度控制在156~170HB,部分品种锻件甚至在160~168HB,更有利于后续机械加工。锻件余热正火可代替等温正火,而且可以节约能源和人力。

探讨利用锻造余热进行等温正火的可行性

在加热等温正火实验的基础上,研究利用锻造余热进行等温正火的工艺可靠性,以及可操作性,通过对比正火的工艺差异,阐述利用锻造余热等温正火的可行性和必要性。

1 问题的提出三维|cad|机械|汽车|技术|catia|pro/e|ug|inventor|solidedge|solidworks|caxa1 V5 W, m* I1 `( F

钢材淬透性超出上限要求,正火组织达不到标准要求,通常通过返修但易导致锻件氧化脱碳严重,甚至报废,因此,提出利用锻造余热进行等温正火的想法。

2 工艺可靠性试验研究

2.1 始锻温度和终端温度及锻件降温过程的测验

经过实验测得:始锻:l 230一l 28O℃,大部分零件始锻温度在上限上;终温度:940一l IO0"C,大部分在中限上,锻件从终锻温度空冷至800~C所需时间约3.5分钟。三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江* s3 Y' x5 ?% a( L7 w: ] H& V! a

2.2 锻造余热等温正火试验

等温炉采用15 kW箱式电阻炉,炉温650℃,考虑实际生产中车间之间空间间隔距离,实际到试验场所试验温度为850~C,装入等温炉。https://www.360docs.net/doc/802775625.html,# Z. }( N s B9 \+ R5 U' G3 z

2.3 试验结果分析https://www.360docs.net/doc/802775625.html,/ m* v( P! x( [3 ?- F

TES.019标准要求,正火硬度HB l56一l97,正火组织不允许出现大于30%的断离珠光体,贝氏体,魏氏组织,带状组织是允许的。

分析:通过设定不同的装炉温度,最终确定工件锻后冷至800"C进等温炉是装炉的下限温度。通过设定不同的等温时间最终确定在650~C的等温炉中65分钟是保温的下限时间,始锻温度过高,使锻造组织明显过热,但没有过烧,既然这种等温正火能够完全消除这种过热组织,使之转变为合格组织,同时晶粒也得到了细化,那么,试图降低始锻加热温度的努力就完全没有必要了。考虑实际试验时风冷可以提高硬度,但是应该在800"C以上。

3 锻造余热等温正火的显著特点) Q% A& x: ]9 [/ j

3.1 它的整个过程是降温到加热等温的过程

从终锻温度到积累批量锻件到入炉,不是每个锻件温度一致,就是说能保证第一个锻件是800~C,最后一个锻件就是终锻温度,入炉后都是降温过程,当接近炉温时就是加热等温过程。这样相对普通正火来说节能,使用寿命长,炉内热元件不易损坏。

31 操作条件十分宽松三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江' X9 W. t- m' Y% p& m; P* U8 n

只须保证锻件装炉温度不低于800"C,炉内等温时间不少于65分钟即可。实际试验可知:从终锻温度降至800"C需要3.5分钟,每分钟可锻3—4件,若采用推杆式连续炉,3分钟推一次料,每盘料装9_l2件,可以基本满足锻造与等温正火同步,即一个锻锤上的所有锻件能够由一个等温正火炉全部消化。

3.3 温度低,不产生氧化脱碳2 [- }, X8 e0 I. M; X* [' f( c

因为温度在相变温度以下,等温过程不产生氧化脱碳,氧化皮少。喷丸相对容易,缩短了喷丸时间,降低了污染。三维|cad|机械|汽车|技术|catia|pro/e|ug|inventor|solidedge|solidworks|caxa4 C) E8 I4 ?7 y7 x5 R

3. 4 最为显著的特点是,工艺稳定性强,能够得到均匀的平衡组织三维|cad|机械|汽车|技术|catia|pro/e|ug|inventor|solidedge|solidworks|caxa! S1 }1 K! H, t

这种均匀的平衡组织为最终处理提供了良好的组织准备,使最终热处理变形更小,变形规律性更强,易于控制,大大降低热处理废品率。生产中需要测定原材料淬透性,主要是为了给制定正火工艺提供依据,正由于该工艺保证了组织,所以,淬透性的测定失去了意义。

3.5 提供工效https://www.360docs.net/doc/802775625.html,* H# S% s* o4 Z0 e

同样一台连续炉,安装在锻工利用锻造余热等温正火与在锻热车间普通正火工效是不同的。单从时间上来说,等温正火只需65分钟,普通正火加热需要2.5小时,所以等温正火是普通正火工效的近4倍。

4 利用锻造余热等温正火的几个问题" L

5 _# M

6 l. v8 f# u2 _8 m& ], h

4.1 有无必要降低始锻温度的几个问题https://www.360docs.net/doc/802775625.html,. v! A" d& _# _1 x# s4 {0 [

始锻温度应控制在960—1 150~C,终锻温度应控制在850--900~范围。在此温度下锻锤显得没有力量,打活很费力,往往有填不满的工件出现。由于工人习惯在较高始锻温度下锻打,显然,锻造组织过热,却没有过热,在随后的等温正火过程中可以完全消除,降低始锻温度就没有必要。

4.2 风冷问题三维|cad|机械|汽车|技术|catia|pro/e|ug|inventor|solidedge|solidworks|caxa* Y d- h# `& Q2 ~9 C

专用锻造余热等温正火炉有专门风冷室,风冷可以适当提高硬度,使零件机加工光洁度更好,但资料表明,它们等温正火后保证晶粒度在4__6级,严格说,4__6级晶粒度为混晶而我们实验后得到7—8级晶粒,相比之下理想得多。空冷为锻件积累有3分钟时间,不用锻一件、装一件,而风冷锻件积累时间就少,加之它们采用较低的始锻温度,我们也实验了低于800"C装炉的情况,这就是它们只能保证4—6级晶粒度的原因所在。我们采用热电偶控温,因风冷有太过和不及之分,风冷太过就马上补充热量,而热电偶则有滞后现象,显然能量监控装置成本要高的多,相比之下,风冷操作难度大,且晶粒粗大不符合技术要求,加之要求锻件在切边时传输要快,具有不安全因素。我们最好不采用它,热电偶控温完全能满足要求。它们等温正火后保证晶粒度满足要求。

4.3 推料时间三维网技术论坛) E# X& F) y/ R; E: J

推料时间是由始锻温度空冷至所需时间确定的,试验中空冷至时间为3.5分钟,确定推料时间为3分钟。三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江0 m+ H; T$ S3 x+ N. Y 4.4 工艺的一致性三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江3 [% \5 ^9 ^ n4 {9 B) }# v

对于齿轮用钢,不外乎20CrMnTi、8620RH、8627RH等,观察它们的等温曲线,(C曲线或1]图)都在60(F-700~2之间,理论转变终了时间不到1小时,但实际上工件的实际温度到C曲线的鼻子时才开始转变,转变是从零件表面开始逐渐向里,转变的驱动力是等温温度下所提供的能量。正如实验所示,没有转变完了,一但出炉即终止转变,一旦转变完了,随着时间增长组织也不会再转变。等温温度范围60(F-700"C也够宽松,只是碰到C曲线的位置不一样,转变终了的结果是一样的。这是该工艺的一致性和可靠性,也是组织免检的依据。

利用锻造余热等温正火稳定渗碳淬火变形规律

一、概述

1. 汽车渗碳钢件的现状与发展

汽车齿轮、传动轴等重要零件一般均采用低合金渗碳钢制造,这类钢材是汽车用合金结构钢中使用最广、用量最大的钢种之一,一般都需要经过锻造、预先热处理、切削加工、渗

碳、淬火、回火等多道冷热加工工序,以获得高的表面硬度和较好的心部韧性,使工件具有耐磨、耐疲劳和耐点蚀等良好的特性。

由于各国资源和工业发展的经验不同,各国的各大工厂使用的渗碳钢种也不完全相同。目前,各国标准中列出的渗碳钢钢号比较多,汽车齿轮用渗碳钢主要是低碳合金钢,其中Cr 钢、Mn 钢和Mo 钢用于次要和小尺寸齿轮,Cr - Ni 钢、Cr - Mn 钢、Cr - Mo 钢、Mn - Mo钢和Cr - Ni - Mo 钢用于尺寸较大的重要零件。随着汽车产品技术水平的日益提高及市场竞争的日益激化,汽车齿轮用钢正处于由各大企业的经验型向科学化、国际化方向发展的过渡阶段,由各具特色的Cr - Ni 钢、Cr- Ni - Mo 钢、Ni - Mo 钢向低成本、通用的Cr - Mo 钢过渡。因此必须采用相应合理的热处理新工艺与之相配合。

2. 渗碳钢件锻造毛坯预先热处理的现状及存在的问题

锻造毛坯的预先热处理,不仅对切削加工性能有极大的影响,而且对最终热处理变形也有重大影响。为了提高齿坯的可切削性,消除锻造应力,使组织均匀化,目前国内对渗碳钢齿坯普遍采用正火处理。正火是将钢材或钢件加热到临界点Ac3 或Ac m 以上的适当温度,保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。正火是一种传统的老工艺,因其设备、工艺要求简单,能耗少,一直被广泛采用,但并非完美无缺。

随着汽车工业的发展及对产品质量要求的提高,特别是引进车型用钢材料的多样化,普通的正火处理已达不到齿坯预先热处理的目的。鉴于普通正火处理是将钢件加热到高温奥氏体化后在空气中( 有时吹风) 冷却到室温,属于毛坯热处理,加之以往对正火钢件要求的硬度范围较宽(156~207HBS) ,一般不检查显微组织,加之又多在锻造工厂( 车间) 进行,故通常容易被人们所忽视。对于锻件正火后究竟需要获得什么样的显微组织形态和硬度指标,既缺乏深入理论研究,又缺少生产性实践探讨。实际上我国目前普遍存在这类零件切削后表面粗糙、切削刀具使用寿命低、渗碳淬火前后变形波动较大等问题,这些与正火显微组织不良、硬度不佳有密切的关系。

在实际生产中,渗碳钢锻造毛坯经正火处理后,由于不能控制正火的冷却速度,因此奥氏体分解相变无法控制,必然在一个温度区间内连续进行,因而获得的显微组织和硬度也可能不同。有些钢件由于冷却速度较大,有可能局部甚至全部获得非平衡组织( α- Fe 魏氏组织、贝氏体等) ,这不仅影响切削加工性能,而且也会改变钢件渗碳淬火后的变形规律,会因变形过大而报废,这种情况在淬透性波动较大的钢中更易出现。对于冷却速度较小的钢件,由于钢的硬度过低,切削时易发生塑性变形,形成切削瘤,出现“粘刀”、“烧刀” 现象。一般热处理的变形量随机加工变形量的增大而增

大,由于机加工工艺不当,如拉削速度过快、刀具磨损切削时所造成的残余应力、拉削过程中基准面不平、存在铁屑等异物、齿轮拉花键孔时出孔方向不当等都可使热处理变形量增大。通过改进机加工工艺,加工变形量可得到有效控制。

近年来,随着引进车型带来齿轮材料多样化和对齿轮质量的高标准要求,采用普通正火处理已难以满足汽车生产的要求。锻件的正火处理不仅要求硬度在一个较窄的范围之内( 钢件切削加工时易断屑、表面光洁) ,而且要求获得稳定的显微组织( 较粗的铁素体晶粒加较细的珠光体) ,以改善切削加工性能及稳定渗碳淬火后的变形规律。美国金属学会向能源部提交的国际研发计划中,提出的目标之一就是“努力达到热处理零件的零变形和最大限度的均匀性”。为了满足上述要求,需对正火工艺进行改进,以获得正火所要求的显微组织和硬度范围。

二、渗碳钢的正火工艺

正火是渗碳钢锻件预先热处理的主要手段。其目的是消除或改善坯料制备时所造成的各种组织缺陷,获得最利于切削加工的组织和硬度,改善组织中相的形态和分布,细化晶粒,为最终热处理做好组织准备。

1. 钢的正火组织、硬度与切削加工性能

材料的切削加工性是指对某种材料进行切削加工的难易程度。钢件的切削性能,主要取决于其力学性能和显微组织,而力学性能又受显微组织的影响。被加工钢件的硬度、强度越高,刀刃插入和劈开表面层的阻力越大,切削热越高,刀具磨损也就越快; 钢件的硬度、强度过低时,塑性往往增大,切削时不易断屑,而且钢件容易与刀刃粘结,刀具容易发生冷焊磨损,使刀具的使用寿命降低,而且容易产生积屑瘤使加工表面质量恶化,增加钢件表面粗糙度。

利用锻造余热等温正火稳定渗碳淬火变形规律(2)

在相近的力学性能下,钢料的显微组织对切削加工性能有明显的影响。面心立方晶格的奥氏体与体心立方晶格的铁素体相比,因其形变硬化指数高、导热系数小、原子间结合力强等,使切削加工性能降低。贝氏体尤其是粒状贝氏体,因含有难加工的岛状马氏体和残留奥氏体,比珠光体切削加工性能差。在铁素体加珠光体的显微组织中,粒状珠光体因比片状珠光体的塑性高而使切削加工性降低。钢的显微组织中有硬质相或组织,如碳化物、氮化物、硼化物或马氏体等,对刀刃有机械磨损作用,它们的硬度越高、数量越多、尺寸越大、外形呈尖角、分布不均匀,损伤刀具越严重。严重的带状组织和混晶组织也会使钢料的切削加工性能恶化。

因此,为了提高钢料的切削加工性能,应使其既软( 低硬度、低强度) 又脆( 低塑性) ,并需要相应的显微组织与之配合。对于合金渗碳钢,硬度一般以170~180HBS为宜,但随着含碳量降低,硬度应适当提高。其显微组织应为:由较粗晶粒(3~5级) 的奥氏体形成的先共析铁素体加细片状珠光体( 渗碳体片薄易破裂)为宜,而且先共析铁素体大小和珠光体

层间距离应基本相同。此外,当先共析铁素体呈网状或断续网状时,钢料的拉削和切齿加工性能更好,然而要获得这样的硬度和显微组织,钢件不经过正确的预先热处理是不行的。

2. 钢的正火组织、硬度与渗碳淬火的变形

齿轮的设计结构尺寸、材料、锻造、预处理、机加工及热处理显微组织与应力分布所导致的变形都会影响成品齿轮的精度,明显的变形量产生于渗碳淬火冷却过程中。由于变形引起的齿轮几何形状的变化,实质上是产生噪声和局部应力集中的根源,这使其使用寿命降低。而且对于大多数汽车渗碳钢件,渗碳淬火后一般不进行磨削加工,其渗碳淬火后的变形直接影响到装配总成的最终质量,因此渗碳零件热处理时的变形必须严格控制。影响渗碳钢件变形的因素很多,主要有如下几个方面:零件形状;材料( 钢种、淬透性等) ;锻造;毛坯热处理;机械加工;渗碳淬火规范。对于大量生产的汽车零件,在影响渗碳钢件变形的诸多因素中,人们的注意力往往集中在渗碳淬火方面,而最易忽视的是锻坯的预先热处理———正火。在实际生产中常常出现的零件渗碳淬火后变形过大现象,往往是由于预先热处理不当引起的。变形的表现形式是多样的,但就其产生根源,可分为内应力(热应力和组织应力) 造成的应力塑性变形和比体积变化引起的体积变形(即体积容变形) 。由于渗碳淬火前后钢件的显微组织不同,而不同的显微组织的比体积是不同的,因而钢件渗碳淬火后的体积必然与渗碳淬火前不同。不同的体积变化,对于厚薄不均的零件又会引起形状变化。但是只要掌握其尺寸变化规律,通过控制切削加工前留好的预变形量,就可以使零件渗碳淬火后少量变形甚至不变形。

三、锻造毛坯等温正火对切削加工及渗

碳淬火后奥氏体晶粒度、变形的影响齿坯采用等温正火,能够对相变进行控制,即齿坯奥氏体化后,迅速冷却到A1以下的珠光体相变温度等温,使相变在等温温度下进行,由于等温正火能够有效地控制冷却时的相变,使相变在等温温度下进行,避免了带状组织超差,非平衡组织(α- Fe魏氏体组织、贝氏体组织、马氏体组织) 的出现,为切削加工及渗碳淬火做了组织和性能上的准备。

1. 等温正火对切削加工的影响

钢件的切削加工性能对于大批量、连续化、多刀切削生产的汽车制造至关重要。如前所述,钢件的切削加工性能主要取决于其力学性能和显微组织,而力学性能又受显微组织的影响,普通正火因其奥氏体化后在空气中连续冷却,使其冷却慢的部位容易形成铁素体带和珠光体带相互交错的带状组织。这类组织热处理变形大,带有各向异性,影响加工表面的粗糙度,冷却快的部位容易形成粒状贝氏体组织、增加毛坯的硬度,不利于零件的加工,并对其后的热处理变形产生影响。由于等温正火较普通正火能够有效地避免贝氏体组织,带状组织等非正常组织的出现,能够有效地控制正火后的硬度,满足160~180HBS的硬度要求。因此,等温正火处理的钢件切削加工性能较普通正火大大提高。

我厂于2001年1月份研制了等温自动正火线,将锻造毛坯的普通正火改为等温正火。锻造毛坯采用等温正火处理后,我厂下工序底盘厂钢件的切削加工性能明显提高,在产量提高的情况下,2001年全年刀具消耗较2000年降低1/3,且提高了零件加工精度,降低了废品率,降低了零件表面粗糙度。

2. 等温正火对渗碳淬火后奥氏体晶粒度的影响

实施利用锻造余热等温正火工艺,需要解决钢件停锻后奥氏体晶粒粗大且在冷却时不能细化、而在渗碳后又必须具有细小的奥氏体晶粒的问题,需对锻造余热等温正火渗碳淬火后的奥氏体晶粒大小进行测定。将经锻造余热等温正火炉处理的22CrMo 试样放入坩埚中,以石墨粉作保护剂,放入加热炉,模拟渗碳加热,重新加热到930℃,保温90min ,而后淬火冷却。经抛光后用60℃的含有0.5% ~1% 烷基璜酸盐苦味酸饱和水溶液腐蚀,测定奥氏体晶粒大小( 热蚀法) ,如图1 所示。同时将模拟锻后直接淬火处理的试样也用热蚀法腐蚀,测定奥氏体晶粒度,即为渗碳淬火前原始奥氏体晶粒度,如图2所示。锻造余热等温正火处理的试样经渗碳淬火后的晶粒大小( 见图1) 与原始晶粒(见图2) 比较,晶粒显著细化,晶粒度可达9级以上,而原始晶粒度达3 级左右。

利用锻造余热等温正火稳定渗碳淬火变形规律(3)

由此可以得出,经锻造余热等温正火获得的粗大铁素体+ 珠光体组织,在后序渗碳加热时可以重新细化,获得细小、均匀的奥氏体晶粒。研究证明,加热原始组织为有序粗晶粒组织( 非平衡组织马氏体、贝氏体等)时,可能导致形成的奥氏体晶粒与原始组织晶粒相同的形状、大小和取向,出现组织遗传现象。而加热原始组织为等轴状先共析铁素体和珠光体的平衡组织时,粗大晶粒的性质发生根本性改变,可以使晶粒重新细化。

3. 等温正火对零件渗碳淬火后变形的影响

对选用22CrMo钢制造的汽车后桥减速器从动锥齿轮分别进行普通正火与等温正火处理,经机械加工及渗碳淬火后,比较零件变形情况。在对比变形试验中,保证每种零件的机加工艺及热处理渗碳淬火工艺相同,从而对比普通正火与等温正火对零件变形的影响。后桥减速器从动锥齿轮变形要求为: 平面度≤0.10mm,椭圆度≤0.08mm。各随机抽样100件成品零件进行测量,预处理为普通正火的零件变形分布规律见图3;预处理为等温正火的零件变形分布规律见图4。

以后桥减速器从动锥齿轮为例进行变形分析,在预处理为普通正火的成品零件中随机抽样100件,椭圆度、平面度超差的不合格零件,共29件,其变形符合要求的合格品率为71% 。从图3中可以看出,无论是内孔变形还是平面变形,其变形数据集中在上限比例偏高,占60. 7% ,变形数据在下限比例仅占10% ~15 %,而且样本极差偏大,样本均值偏技术要求上限。由此可见,预处理为普通正火的零件,渗碳淬火后其变形统计数据的分布不是一个合理的分布,数据离散程度较大。在预处理为等温正火的成品零件中随机抽样100 件,椭圆度、平面度不合格零件共2 件,其变形符合要求的合格品率为98% 。从图4 中可以看出,内孔、平面变形数据比较集中,变形数据的85 %~90 % 落在中下限,而且样品极差和均值也比较小。由此可见,预处理为等温正火的零件,渗碳淬火后其变形统计数据的分布比较合理,概率密度曲线近似正态分布。

四、结语

( 1) 合金渗碳钢锻造毛坯的普通正火,由于其相变是在一个温度区间内连续进行,其奥氏体转变无法控制。等温正火能有效控制冷却时的相变,使相变在等温温度下进行,能够获得均匀一致、满足要求的显微组织及硬度。

( 2) 利用锻造余热等温正火,粗大的奥氏体晶粒形成的平衡组织( 铁素体加珠光体) ,在后序渗碳加热时可以重新获得细小均匀的奥氏体晶粒。

( 3) 由于等温正火较普通正火能够获得均匀一致需要的显微组织和硬度。预处理采用等温处理的零件,能够可靠地获得良好切削加工性能和稳定的淬火变形规律。

( 4) 采用锻造余热等温正火,能够大幅度地降低成本和提高产品质量,具有显著的经济和社会效果。

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造工艺 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避 零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等, 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定

1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择 根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。

锻造工种测试题(高级教育)

锻造工考试试卷 工厂:车间:姓名:成绩: 一.填空题:(每题1分,共20分) 1. 一般情况下,链轨节预锻件的厚度比终锻件的厚度厚 2 mm 2. 锻造工厂4000T锻造生产线锻造工序包括压扁、预锻、终锻、冲孔、切边、校正。 3. 锻造工厂棒料加热采用的方法是中频感应加热法,加热后棒料的温度检测所用的仪器 名称是红外线测温仪。 4. 通常所说的“锻造三恶”是混料、过烧、锻件裂纹。 5. 料加热时,由于加热超过规定温度,或在高温下保温时间过长,引起奥氏体晶粒显著粗 化的现象叫做过热。 6. 测量锻件厚度的工具是游标卡尺。 7. 安全生产的方针是安全第一,预防为主。 8 热模锻压力机的构成部分主要有:床身部分、工作机构、传动机构、操纵系统、润滑系 统、过载安全机构和工艺机构等。 9.单位换算:1m=100_㎝=1000㎜; 10. 模具的预热温度在150—250℃ 11.模锻是利用模具使毛坯变形而获得锻件的锻造方法。 12.锻模模膛包括预锻模膛和终锻模膛两种。 二.选择题:(16分) 1、根据VOLVO公司的要求, 190MV链轨节的心部晶粒度要求在以上。 (A) 3级(B)4级(C) 5级(D) 6级 2、大多数链轨节的回火温度要求在之间,视不同品种锻件有所不同。

(A) 430—450℃(B)460--480℃(C)480--500℃(D)500—520℃ 3、大多数链轨节锻造加热温度在之间 (A)900—1000℃(B)1000--1100℃(C)1150-1250℃(D)1250—1350℃ 4、链轨节锻造后采取的热处理方法为以此方法来提高链轨节的综合机械性能。 (A)退火(B)正火(C)回火(D)锻造余热淬火、回火 5、链轨节锻造后淬火介质为。 (A)水(B)空气(C)淬火油(D)盐水 6. 液压传动中,控制和调节液压系统流量的液压阀是:。 (A)换向阀(B)节流阀(C)溢流阀(D)减压阀 7、在图样上所标注的法定长度计量单位为:(C) A、米(m) B、厘米(cm) C、毫米(mm) 8、模具工作时,靠(A)进行上下模具的定位导向。 A、导向元件 B、连接装置 C、缓冲装置 三.判断题 1、设备运转前要起动设备检查电动机、齿轮箱等部位声音是否异常;(√) 2、模具破损后,可不用处理,继续使用。(×) 3、不准随意去除机械设备上的安全护罩,若加工特殊零件需要摘取的,必须经相关部门批准并要作好安全防范措施;(√) 4、对设备清扫完成后,将机器所有部件归位至原位,回到机器动作的原始状态;(√) 5、使用游标卡尺时应先将游标卡尺两卡爪测量面擦干净。(√) 6、模具更换时,需对更换下的模具进行检查确认,或送去修模处理。(√)

大型锻件

大型锻件、锻件、锻造件 大型锻件属于锻件的规格体积较大的一种,是金属被施加压力,这种力量典型的通过使用铁锤或压力来实现。经过锻造的工件质量好、密度高、使用寿命增长、生产安全大大提高了保证。锻件过程建造了精致的颗粒结构,并改进了金属的物理属性。优质锻件可以保证磁粉、UT超声波、机械性能、原材料化学成分合格。山西永鑫生锻造有限公司提供。 中文名外文名生产商 锻件forging 山西永鑫生锻造 简介 按规格分为:轴类、齿轮、车轮、筒类、模块、环形、异形件。山西永鑫生锻造可按图纸尺寸、化学成分、技术要求锻造、机加工、热处理、同步完成。出口锻件材质可咨询定制。 锻件需要每片都是一致的,没有任何多孔性、多余空间、内含物或其他的瑕疵。这种方法生产的元件,强度与重量比有一个高的比率。这些元件通常被用在飞机结构中。锻件的优点有可伸展的长度、可收缩的横截面;可收缩的长度、可伸展的横截面;可改变的长度、可改变的横截面。锻件的种类有:自由锻造/手锻、热模锻/精密锻造、顶锻、滚锻和模锻。

飞机锻件 按重量计算,飞机上有85%左右的的构件是锻件。飞机发动机的涡轮盘、后轴颈(空锻件 心轴)、叶片、机翼的翼梁, 机身的肋筋板、轮支架、起落架的内外筒体等都是涉及飞机安全的重要锻件。飞机锻件多用高强度耐磨、耐蚀的铝合金、钛合金、镍基合金等贵重材料制造。为了节约材料和节约能源,飞机用锻件大都采用模锻或多向模锻压力机来生产。汽车锻按重量计算,汽车上有71.9%的锻件。一般的汽车由车身、车箱、发动机、前桥、后桥、车架、变速箱、传动轴、转向系统等15个部件构成汽车锻件的特点是外形复杂、重量轻、工况条件差、安全度要求高。如汽车发动机所使用的曲轴、连杆、凸轮轴、前桥所需的前梁、转向节、后桥使用的半轴、半轴套管、桥箱内的传动齿轮等等,无一不是有关汽车安全运行的保安关键锻件。

锻造毛坯工艺设计说明书

锻造毛坯工艺设计说明书 课程名称:机械制造工艺设计 设计题目:轴自由锻毛坯制造工艺设计设计单位:机自1103 设计人学号: 设计人姓名:郑晓虎 指导教师:张锁梅贾志新 2014年6月

目录 1 锻件加工余量、余块、公差的确定 (1) 锻造方式及毛坯类型的选择 (1) 锻件加工余量、余块、公差的确定 (1) 2 毛坯质量和尺寸的计算 (3) 毛坯质量的计算 (3) 毛坯尺寸的计算 (4) 3 自由毛坯变形步骤、温度和冷却 (5) 毛坯变形步骤 (5) 锻造温度 (5) 冷却方式 (6) 4 设备的选择 (6) 5 参考文献 (7)

1锻件加工余量、余块、公差的确定 锻造方式及毛坯类型的选择 锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定的机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。根据坯料的移动方式,锻造方式分为自由锻,模锻,闭式模锻,闭式镦锻等,本课程采用自由锻的方式。 零件为阶梯轴类零件,材料选择45钢。阶梯轴零件工作时,些部位如轴颈(主要是与滑动轴承配合的轴颈)往往要承受摩擦、磨损,严重时可能发生咬死(又称抱轴)现象,使轴类零件运转精度下降,有时还需要承受多种载荷的作用。为增强阶梯轴的强度和冲击韧度,获得纤维组织,毛坯选用锻件。 锻件加工余量、余块、公差的确定 锻件图是编制锻造工艺、设计工具、指导生产和验收锻件的主要依据。它是在零件图的基础上考虑加工余量、锻造公差、锻造余块和操作用夹头等因素绘制而成的,如下图1。 图1 轴的锻件图 余量:为了保证零件机械加工尺寸和表面粗糙度,在零件外表面需要加工部分,留一层

齿轮锻造工艺设计说明书(Gear forging process design manual)

齿轮锻造工艺设计说明书(Gear forging process design manual)Gear forging process design manual Abstract: the purpose of forging blank molding, and control of its internal organizational performance reached the desired geometry, size and quality of forgings, steel and non-ferrous metal and alloy has the most plastic in different degrees, can be plastic molding process in cold or hot. The forging of gears adopts the free forging process. This paper mainly introduces the free forging process of gears. Free forging is the use of pressure or impact force is the metal between the upper and lower iron deformation between plastic deformation, so as to obtain the shape and size of the required method. The determination of free forging becomes the key to free forging. This article focuses on the process of free forging of gears. Keywords: free forging, gear processing, plastic deformation, process flow. Catalog I. introduction............................................... ............. One Two. Overall design plan................................................ One Three. Specific design methods and steps.................................... Three

锻造余热淬火工艺

锻造余热淬火工艺 锻造余热淬火可以略去正火和调质的奥氏体化重新加热过程,是一项重要的热处理节能措施。即在1050-1250℃加热锻制后利用锻件自身的热量直接淬火,使锻件余热得到利用,同时改善了综合机械性能。研究表明:与普通热处理相比,工件锻造余热淬火后大幅度提高力学性能:硬度提高10%、抗拉强度提高3%-10%、伸长率提高10%-40%、冲击韧性提高20%-30%。此外,经锻造余热淬火后,工件具有很高的回火抗力,强化效果可保持到600℃以上。 锻造余热淬火工艺参数对其强化效果有很大影响,其中尤以锻造温度和锻造后淬火前的停留时间影响最大。锻造加热温度较低时,淬火后获得的冲击韧性较高,所以从获得最佳强韧化效果出发,希望锻造温度不宜过高,对于中碳低合金结构钢,锻造加热温度应控制在1220℃内,以避免工艺过程中奥氏体的后续动态再结晶的发生。锻造后淬火前的停留时间,是现场作业的重要工艺参数,随停留时间的延长,钢的硬度、强度和冲击韧性同时降低,所以,锻后应立即淬火。如操作上有困难,对碳钢可有3-5s的停留,合金钢停留时间可稍长。一般认为,终锻后至淬火前的停留时间不应超过60s。另外,形变量对提高锻造余热淬火的硬度、强度是有利的,形变量越大,强化效果越好,对多元低合金钢尤其是这样。 亚共析钢锻造余热淬火加工工艺为:锻造成形——余热淬火——高温回火——粗加工——精加工。 过共析钢锻造余热淬火加工工艺为:锻造成形——余热淬火——高温回火——粗加工——淬火——低温回火——精加工。 锻造余热淬火处理除了基本的简化工艺及提高性能外,还有以下优点: 1、节约能源:由于省略了调质淬火加热工序,每吨锻件可节电约 400KW.h。一般调质件在调质淬火前往往还需要进行一次正火,将正火加热工序考虑进去,每吨锻件可节电850KW.h。

7-大型锻件及其制造工艺-聂绍珉

研究生课程教学大纲 课程所属类别:硕士 课程编号:2080503007 课程名称:大型锻件及其制造工艺概论 开课院系:机械学院塑性成形系任课教师:聂绍珉 先修课程:适用学科范围: 学时:24 学分:1.5 开课学期: 2 开课形式:讲授 课程目的和基本要求:(200字左右) 讲述大型锻件在国民经济、国防建设、特别是在装备制造中的作用和意义,国内外主要大锻件的生产水平。使学生了解大型锻件的力学基础和制造工艺过程、大型锻件在制造过程各环节中存在的主要问题、大型锻件的特殊锻造方法及其力学机理、典型大锻件的锻造工艺。 要求学生对大锻件的特殊质量要求、特殊制造工艺及其存在的主要问题有基本的了解。 课程主要内容及学时分配:(1000~1500字) 第一章绪论介绍大型锻件的特点及基本概念、国内外大型锻件及主要工艺装备的发展水平、主要研究方向及课程内容。(2学时) 第二章金属塑性加工的经典理论及现代方法应力分析;应变分析;基本方程:平衡方程、几何方程、物理方程;屈服条件及其几何表达;全量理论及增量理论; 变形力学简图;金属的塑性及其影响因素、提高塑性的工艺因素;变形抗力及其影响因素;研究金属塑性变形的现代方法。(3学时) 第三章现代炼钢技术电弧炉炼钢的发展概况及电弧炉的结构。碱性电炉炼钢工艺过程:炉料及其准备,熔化期,氧化期,还原期,出钢。大锻件用钢的炉外精炼:钢包吹氩法,钢液的真空处理,炉外精炼的基本手段(LD法、LL法、TD 法、RH法、DH法)。大锻件用钢钢包精炼的主要工艺:ASEA-SKF法及Finkl—Mohr法,LF和LFV法,VOD法,V AD法,AOD法。钢包喷射冶金法:TN法,SL法,CAB法。电渣重熔法—ESR。(4学时) 第四章大型锻件用钢锭及铸锭技术大型钢锭的类型:普通钢锭,短粗型钢锭,短冒口钢锭,细长型钢锭,空心钢锭,多锥度钢锭,电渣重熔钢锭。铸锭工艺:

齿轮锻造工艺设计说明书

齿 轮 锻 造 工 艺 设 计 说 明 书 姓名:xxx 学号:xxxxxxxx 班级:xxxxxxx 日期;xxxxxxx

齿轮锻造工艺设计说明书 摘要:锻造生产的目的是坯料成型、及控制其内部组织性能达到所需的几何形状,尺寸以及品质的锻件,钢和大多数非铁金属及合金具有不同程度的塑性,均可在冷态或热态下进行塑性加工成型。齿轮的锻造采用的是自由锻工艺。本文主要介绍的是齿轮的自由锻工艺。自由锻是利用压力或冲击力是金属在上下抵铁之间产生塑性变形,从而获得所需锻件形状及尺寸的方法。确定自由锻的工艺成为了自由锻加工的关键。本文着重介绍的就是齿轮的自由锻的工艺流程。 关键词:自由锻、齿轮加工、塑性变形、工艺流程。

目录 一.绪论 (1) 二.总体设计方案 (1) 三.具体的设计方法与步骤 (3) 3.1绘制锻件图 (3) 3.2确定变形工艺 (3) 3.2.1镦粗 (3) 3.2.2冲孔 (4) 3.2.3扩孔 (4) 3.2.4修整锻件 (4) 3.3计算坯料质量和尺寸 (4) 3.4选定设备及规范 (5) 四.工艺流程(工艺卡) (6) 五.结论 (7) 六.致谢 (7) 七.参考文献 (8)

一、绪论 锻造的目的是使坯料成形及控制其内部组织性能达到所需的几何形状,尺寸以及品质的锻件。锻造的基本工艺有自由锻、模锻、板料冲压等,其中自由锻和模锻是热塑性成型,而板料冲压是冷塑性成形,两者的基本原理相同。 锻造件占得比例说明了一个国家生产水平、生产率、材料利用率、生产成本及产品品质在国际竞争中的地位。在新中国成立之前,锻造基本上是手工作坊式的延续,生产效率低,劳动强度大。然而在改革开放之后我国的锻造工艺水平得到了迅猛的发展,从而带动了诸如汽车工业的跨越式发展。但我们还应该清醒的看到我们的锻造工艺水平与欧美发达国家还有一定差距,这更加促使我们努力发展新技术,赶超国际先进水平。 齿轮是现代工业大量使用的零件,本文就是讨论齿轮的自由锻生产。自由锻能进行的工序很多,可分为基本工序、辅助工序、及精整工序三大类。它的基本工序是使金属产生一定程度的塑性变形以达到所需的形状和尺寸的工艺过程,如镦粗,拔长、冲孔、弯曲、切割、扭转及错移等工序。 二、总体设计方案 1.绘制锻件图 根据零件图的基本图样,结合自由锻工艺特点考虑余块、锻件余量和锻造公差等因素绘制而成。 2.计算坯料质量及尺寸 (1)坯料质量的计算 根据锻件的形状和尺寸,可先计算锻件的质量,再考虑加热时的氧化损失,冲孔时冲掉的芯料以及切头的损失,可先计算锻件所用的坯料的质量,其计算公式为 m坯=m锻+m烧+m头+m芯 (2)坯料尺寸确定 皮料尺寸与所用第一个基本工序有关,由于齿轮是饼块类或空心类锻件,用镦粗工序锻造时,为了避免镦弯,应使坯料高度h不超过直径D的2.5倍,即坯

典型铸铁件铸造工艺设计与实例

典型铸铁件铸造工艺设计与实例叙述铸造生产中典型铸铁件——气缸类铸件、圆筒形铸件、环形铸件、球墨铸铁曲轴、盖类铸件、箱体及壳体类铸件、阀体及管件、轮形铸件、锅形铸件及平板类铸件的铸造实践。内容涉及材质选用、铸造工艺过程的主要设计、常见主要铸造缺陷及对策等。 第1章气缸类铸件 1.1 低速柴油机气缸体 1.1.1 一般结构及铸造工艺性分析1.1.2 主要技术要求 1.1.3 铸造工艺过程的主要设计1.1.4 常见主要铸造缺陷及对策1.1.5 铸造缺陷的修复 1.2 中速柴油机气缸体 1.2.1 一般结构及铸造工艺性分析1.2.2 主要技术要求 1.2.3 铸造工艺过程的主要设计1.3 空气压缩机气缸体 1.3.1 主要技术要求 1.3.2 铸造工艺过程的主要设计第2章圆筒形铸件 2.1 气缸套 2.1.1 一般结构及铸造工艺性分析2.1.2 工作条件 2.1.3 主要技术要求 2.1.4 铸造工艺过程的主要设计2.1.5 常见主要铸造缺陷及对策2.1.6 大型气缸套的低压铸造2.1.7 气缸套的离心铸造 2.2 冷却水套 2.2.1 一般结构及铸造工艺性分析2.2.2 主要技术要求 2.2.3 铸造工艺过程的主要设计2.2.4 常见主要铸造缺陷及对策2.3 烘缸 2.3.1 结构特点 2.3.2 主要技术要求 2.3.3 铸造工艺过程的主要设计2.4 活塞 2.4.1 结构特点 2.4.2 主要技术要求 2.4.3 铸造工艺过程的主要设计2.4.4 砂衬金属型铸造 第3章环形铸件 3.1 活塞环3.1.1 概述 3.1.2 材质 3.1.3 铸造工艺过程的主要设计 3.2 L形环 3.2.1 L形环的单体铸造 3.2.2 L形环的筒形铸造 第4章球墨铸铁曲轴 4.1 主要结构特点 4.1.1 曲臂与轴颈的连接结构 4.1.2 组合式曲轴 4.2 主要技术要求 4.2.1 材质 4.2.2 铸造缺陷 4.2.3 质量检验 4.2.4 热处理 4.3 铸造工艺过程的主要设计 4.3.1 浇注位置 4.3.2 模样 4.3.3 型砂及造型 4.3.4 浇冒口系统 4.3.5 冷却速度 4.3.6 熔炼、球化处理及浇注 4.4 热处理 4.4.1 退火处理 4.4.2 正火、回火处理 4.4.3 调质(淬火与回火)处理 4.4.4 等温淬火 4.5 常见主要铸造缺陷及对策 4.5.1 球化不良及球化衰退 4.5.2 缩孔及缩松 4.5.3 夹渣 4.5.4 石墨漂浮 4.5.5 皮下气孔 4.6 大型球墨铸铁曲轴的低压铸造 第5章盖类铸件 5.1 柴油机气缸盖 5.1.1 一般结构及铸造工艺性分析 5.1.2 主要技术要求 5.1.3 铸造工艺过程的主要设计 5.2 空气压缩机气缸盖 5.2.1 一般结构及铸造工艺性分析 5.2.2 主要技术要求 5.2.3 铸造工艺过程的主要设计 5.3 其他形式气缸盖 5.3.1 一般结构 5.3.2 主要技术要求 5.3.3 铸造工艺过程的主要设计 第6章箱体及壳体类铸件 6.1 大型链轮箱体 6.2 增压器进气涡壳体 6.3 排气阀壳体 6.4 球墨铸铁机端壳体 6.5 球墨铸铁水泵壳体 6.6 球墨铸铁分配器壳体 第7章阀体及管件 7.1 灰铸铁大型阀体 7.2 灰铸铁大型阀盖 7.3 球墨铸铁阀体 7.4 管件 7.5 球墨铸铁螺纹管件 7.6 球墨铸铁管卡箍 7.6.1 主要技术要求 7.6.2 铸造工艺过程的主要设计 7.6.3 常见主要铸造缺陷及对策 第8章轮形铸件 8.1 飞轮 8.2 调频轮 8.3 中小型轮形铸件 8.4 球墨铸铁轮盘 第9章锅形铸件 9.1 大型碱锅 9.2 中小型锅形铸件 第10章平板类铸件 10.1 大型龙门铣床落地工作台 10.2 大型立式车床工作台 10.3 大型床身中段 10.4 大型底座 中国机械工业出版社精装16开定价:299元

锻造工艺常见缺陷

锻造工艺不当产生的缺陷通常有以下几种: 1.大晶粒 大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。 2.晶粒不均匀 晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。耐热钢及高温合金对晶粒不均匀特别敏感。晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。 3.冷硬现象 变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。严重的冷硬现象可能引起锻裂。 4.裂纹 裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允

许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。 5.龟裂 龟裂是在锻件表面呈现较浅的龟状裂纹。在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。③燃料含硫量过高,有硫渗人钢料表面。 6.飞边裂纹 飞边裂纹是模锻及切边时在分模面处产生的裂纹。飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。 7.分模面裂纹 分模面裂纹是指沿锻件分模面产生的裂纹。原材料非金属夹杂多,模锻时向分模面流动与集中或缩管残余在模锻时挤人飞边后常形成分模面裂纹。 8.折叠 折叠是金属变形过程中已氧化过的表层金属汇合到一起而形成的。它可以是由两股(或多股)金属对流汇合而形成;也可以是由一股金属的急速大量流动将邻近部分的表层金属带着流动,两者汇合而形成的;也可以是由于变形金属发生弯曲、回流而形成;还可以是部

淬火工艺规程

淬火工艺规程 一、淬火前的准备 1、检查工件表面,不允许有碰伤、裂纹、锈斑、油垢及其他脏 物存在,油垢可用碱煮洗,锈斑可用喷砂或冷酸清洗。 2、准备淬火所用的工具,检查设备是否完好。 3、检查控温仪表指示是否正确。 4、工件形状复杂的,其中有不需要淬硬的孔眼、尖角或厚度变 化大的地方,为了防止变形和淬裂的危险均应采用堵塞或缠 绕石棉的方法,使工件各部分加热及冷却温度均匀。 5、要求工件表面不允许有氧化脱碳现象,要用硼砂酒精溶液涂 覆。 二、淬火规范 1、加热温度 (1)亚共析钢淬火加热温度为Ac3+30~50℃,一般在空气炉中加热比在盐浴中加热高10~30℃,采用油、硝盐淬火介质时, 淬火加热温度应比水淬提高20℃左右。 (2)共析钢、过共析钢淬火加热温度为Ac1+30~50℃,一般合金钢淬火加热温度为Ac1或Ac3+30~50℃。 (3)高速钢、高铬钢及不锈钢应根据要求合金碳化物溶入奥氏体的程度选择。过热敏感性强及脱碳敏感性强的钢,不易取上 限温度。 (4)低碳马氏体钢淬透性较低,应提高淬火温度以增大淬硬性;

中碳钢及中碳合金钢应适当提高淬火温度来减少淬火后片状 马氏体的相对量,以提高钢的韧性;高碳钢采用低温淬火或 快速加热可限制奥氏体固溶碳量,而增加淬火后板条马氏体 的含量,减少淬火钢的脆性。另外,提高淬火温度还会增加 淬火后的残余奥氏体量。 2、加热方法 (1)模具:室温进炉或300—400℃进炉,并在550—600℃时等温一段时间。 (2)弹簧或原材料(调质处理),可在淬火温度时进炉。 3、保温时间 加热与保温时间由零件入炉到达指定工艺温度所需升温时间(ι1),透热时间(ι2)及组织转变所需时间(ι3)组成。ι1+ι2由设备功率、加热介质及工件尺寸、装炉数量等因素决定,ι3则与钢材的成分、组织及热处理技术要求有关。普通碳钢及低合金钢在透热后保温5~15min即可满足组织转变的要求,合金结构钢透热后应保温15~25min。高合金工具钢、不锈钢等为了溶解原始组织中的碳化物,应在不使奥氏体晶粒过于粗化的前提下,适当提高奥氏体化温度,以缩短保温时间。 4、加热速度 对于形状复杂,要求畸变形小,或用合金钢制造的大型铸锻件,必须控制加热速度以保证减少淬火畸变及开裂倾向,一般以30~70℃/h限速升温到600~700℃,在均温一段时间后再以

锻造基本知识

锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。

阶梯轴锻造工艺设计说明书

阶梯轴锻造工艺设计说明书 一、绘制锻件图第1页 二、确定锻造工序第2页 三、计算坯料质量和尺寸第2页 四、锻造设备及吨位第4页 五、锻造温度范围加热冷却及热处理规范第4页

阶梯轴锻造工艺设计说明书 1、绘制锻件图 原理:锻件图是拟定锻造工艺规程、选择工具、指导生产和验收锻件的主要依据,它是以机械零件图为基础,结合自由锻工艺特点,考虑到机械加工余量、锻造公差、工艺余块、检验试样及工艺卡头等绘制而成。 根据零件图上阶梯轴长340mm、最大直径为100mm,对照《金属成形工艺设计》中表3-3中所列的零件总长为630∽1000mm、最大直径80∽120mm,可查得锻造精度为F级的锻件余量及公差为10±4mm。 作图大概步骤:先用双点划线按照已知尺寸画出零件尺寸轮廓,再按照求的的尺寸用粗实现画出锻件的轮廓形状,并用细实线划出各尺寸引出线及标注线。然后,再在下面标出名义尺寸,并加上括号,如图1-1所示。 图1-1 阶梯轴的锻件图

2、确定锻造工序 原理:根据锻件形状、尺寸、技术要求等进行选择,并且先确定锻件成形所需的基本工序、辅助工序、修整工序,再选择所需的工具并确定工序顺序和工序尺寸等。 由于阶梯轴是形状较简单的轴杆类锻件,变形工艺简单,且材料为常用45钢,塑性较好、容易变形,因此其主要变形工艺一般为下料、拔长、镦粗、拔出锻件等,如下图: 3、计算坯料质量及尺寸 (1)坯料质量计算 m坯=m锻+m烧+m头 根据阶梯锻件图,可将锻件自左至右分为四个圆柱体,分别计算其质量m1、m2、m3、m4、m5、m6,单位为kg,即

m1= π×1.12×0.4×7.8=2.97 4 m2= π×0.72×0.3×7.8=0.90 4 m3= π× 0.642×0.7×7.8=1.77 4 m4= π×0.52×1.5×7.8=2.30 4 m5= π×0.452×0.3×7.8=0.37 4 m6= π×0.342×0.3×7.8=0.21 4 锻件质量(单位kg)为 m锻=m1+m2+m3+m4+m5+m6=8.52 任务书给出加热烧损率按锻件质量的2%计算 m烧=2%×m锻=0.17 截料损失按锻件质量的4%计算 m头=4%×m锻=0.34 坯料质量m坯=m锻+m烧+m头=9.03kg (2)坯料尺寸计算 此锻件以钢材为坯料,锻比取1.2,可按锻件最大截面Ф110mm对照《金属成形工艺设计》中表3-11所列热轧圆钢标准直径,并结合S坯>Y·S锻 m=Vρ算出坯料体积为1157.7cm3再max选用Ф120m的热轧圆钢。并由公式

锻造工艺的设计说明书

阶梯轴锻造工艺 设计说明书 题目:阶梯轴锻造工艺设计 专业:机械设计制造及其自动化班级:机设1301 学生:亮学号: 7 指导教师:浩舸 完成日期: 机械工程学院 2016年9月

目录 1.引言 (1) 2.设计方法与步骤 (2) 2.1绘制锻件图 (3) 2.2 确定变形工艺 (3) 2.2.1镦粗 (3) 2.2.2冲孔 (4) 2.2.3扩孔 (4) 2.2.4修整锻件 (4) 2.3 计算坯料质量和尺寸 (4) 2.4选定设备及规 (5) 2.5确定锻造温度及规 (5) 2.6确定冷却方法及规 (5) 3.工艺流程卡 (6) 4.结论 (8) 5.致 (8) 6.参考文献 (8)

1. 引言 锻造的目的是使坯料成形及控制其部组织性能达到所需的几何形状,尺寸以及品质的锻件。轴是现代工业大量使用的零件,本文讨论阶梯轴的自由锻生产。 2. 设计方法与步骤 2.1绘制锻件图 锻件图是根据零件图的基本图样,结合锻造工艺特点考虑余块、锻件余量和锻造公差等因素绘制而成。 阶梯轴材料为40Cr,生产批量小,采取自由锻锻造轴坯。 轴上的键槽等部分,采用自由锻方法很难成形这些部位,因此考虑到技术上的可行性和经济性,决定不锻出,并采用附加余块简化锻件外形,以利于锻造。锻造出轴坯后可以进一步进行切削加工,最后成形。 根据零件图的尺寸规格,对照表所列中零件的高度和直径围,可以查出齿环锻件加工余量和公差。由L=203,Φ=46,对照《金属成形工艺设计》中表3-3中所列的零件总长为0∽315mm、最大直径0∽50mm,可查得锻造精度为F级的锻件余量及公差为7±2mm。,然后按查得的公差数值,可绘阶梯轴的锻件图。阶梯轴锻件图见图1。 图1 阶梯轴锻件图 2.2确定变形工艺

Cr12MoV锻造工艺

Cr12MoV钢的锻造 为了减轻或消除Cr12MoV钢共晶碳化物分布不均匀性对模具机械性能和变形等方面的不良影响,需要对原材料进行锻造,要想不经过锻造,单纯从热处理上寻求改善碳化物分布不均匀性的不利影响是极为困难的。 一、Cr12MoV钢的锻造工艺 Cr12MoV钢合理的锻造工艺如下: 预热温度:750~850℃; 加热温度:1080~1120℃; 始锻温度:1050~1100℃; 终锻温度:850~900℃; 冷却方式:缓冷(坑冷或砂冷) Cr12MoV钢种其导热性较差,因而在锻造过程中,加热和冷却的速度不宜过快,以免在模具坯料截面上造成温差过大而开裂。要严格控制锻造温度,如果停锻温度过高,引起晶粒长大粗化,发生碳化物聚集,则可能使钢的机械性能降低;而停锻温度过低,则因钢的塑性较差,应力增大,易导致坯料开裂而报废。 为了改善Cr12MoV钢的碳化物分布不均匀性,在锻造过程中务必注意采用正确的方法。一般采用多方向、多次数的反复镦粗与拔长,例如三镦三拔或不少于三镦三拔的锻造方法,还有二轻一重、二均匀的锻造经验。二轻一重是指锻造开始时(1050℃以上范围)轻打,锤击力度要小,在中间温度段(950~1050℃)之间重打,以保证击碎碳化物,950℃以下再度轻打,以防止开裂。所谓的二均匀是指变形均匀、温度均匀。 对于使用性能不同的模具,其锻造后所允许的碳化物分布不均匀性级别也有时不同。一般对冲击韧性和变形要求较高的模具,应控制在3级以下,若对硬度、强度、耐磨性、冲击韧性和变形均要求较高时,其碳化物分布不均匀性级别应严加控制,一般要求在2级以下,对冷挤压模最好控制在1~1.5级。 二、Cr12MoV钢的锻造 不能把锻造简单地理解为毛坯成形,锻造是提高钢材内在质量、延长模具使用寿命的重要关键。通过合理的锻造不但可以提高锻坯的致密度,将铸锭或型材中的气孔、疏松、缩孔、微裂纹焊合起来,而且可以碎化和细化共晶碳化物,将粗大的枝晶状共晶碳化物打散打碎,提高碳化物分布的均匀性,细化碳化物的粒度。 1、Cr12MoV钢材料的锻造特点 (1)钢的塑性差 Cr12MoV钢属于莱氏体钢,钢中碳化物数量多,且硬而脆,可塑性极差,尤其当共晶碳化物枝晶非常发达、碳化物块度又很粗大时,最容易锻裂。 (2)钢的变形抗力大 由于钢中碳及合金元素含量高,奥氏体再结晶温度升高,其变形抗力比碳素工具钢要高2~3倍。 (3)钢的导热性差 由于钢的导热性能差,加热时必须分阶段预热,否则在加热时就会出现开裂。 (4)加热时容易过烧 未经锻造的钢中,共晶碳化物多呈堆集状、网状分布,该处熔点最低,很容易熔化,因此锻造加热温度不能太高。另一方面由于钢材变形抗力大,锻造加热温度又不能太低,因此锻造温度区间相对比较狭窄。 2、六面锻造

大锻件锻造方法简介

大锻件锻造方法简介 1.钢锭的结构特点 1.1钢的冶炼和浇注 大型钢锭用钢的冶炼一般在碱性电炉中进行。通过电炉冶炼,获得所需要的化学成分, 控制好S、P等杂质含量。 对于重要的锻件,钢水还要经过精炼。精炼多在精炼炉中进行,精炼的主要任务是微调 化学成分和真空除气,还可以调整钢水的温度。 钢锭的浇注有上注法和下注法两种,大型钢锭以上注法为多。对于重要的锻件,在钢锭 浇注时往往有特殊的要求,如真空浇注、真空碳脱氧等等。 在精炼炉中真空,和在浇注时真空,都需要有专门的,巨大的真空系统。真空的目的是 尽可能排除钢中所含的氢、氧等有害气体。提高钢的纯净度,并为缩短锻件第一热处理周期 创造条件。 1.2大型钢锭的宏观组织: 钢锭内部的组织结构,主要取决于钢锭浇注时 钢水过冷与传热条件。 锭身表面层冷却速度快,为细小的等轴晶; 锭身中间带为柱状晶,距中心愈近晶粒愈粗 大; 锭心区为粗大等轴晶,晶间夹杂较多,组织 较疏松。 钢锭底部:冷却速度快晶粒细,但该区在钢 锭凝固过程中形成一锥形沉积堆,含有大量夹杂 物。 冒口:钢水因有保温帽保温,冷却速度最慢。 该区组织结构极松,存在有收缩孔、收缩疏松等 大量缺陷。 因此在大锻件的订货技术条件中往往规定水 冒口的最小切除量。在锻造工艺中也要确定水冒 口的实际切除量。 1.3大型钢锭内部的主要缺陷: 大型钢锭的主要缺陷是偏析、气体、夹杂和 疏松。它们是冶金过程中固有的缺陷,只能减少, 不能消除。 偏析:指的是结晶过程造成钢锭的不同部位的 化学成分不一样。 气体:在熔炼过程中钢水大量地吸收氢(还有氮)。当钢中的氢含量超过一定值时,锻造后冷却时就可能产生白点而使锻件报废。比如国外某公司在核岛锻件订购技术条件中规定钢包分析氢含量不得超过0.8ppm(1ppm=百万分之一)。含氢量高的钢锭在锻成锻件后,要在锻后热处理中花费大量的时间来扩散氢气以避免白点。 夹杂:夹杂的来源有来自熔炼过程和脱氧产物的,也有来自出钢槽、盛钢桶等外来夹杂。 缩孔和疏松:液态钢和固态钢,都随温度降低而发生体积收缩;从液态变为固态时,也 有体积收缩。钢液在锭模(或砂型)中凝固时,先凝固成与注入钢液差不多高的外壳,中 间随着凝固收缩就会向下凹下去。于是在头部形成大的空洞,即开放缩孔。如果上部比下

小齿轮锻造工艺设计

小齿轮锻造工艺设 计说明书 课程设计题目:小齿轮

目录 锻造工艺说明书 (1) 一.前言 (3) 二.设计步骤 (3) 1.审查零件图 (3) 2.绘制锻件图 (4) 3参数选择 (5) 3.1工艺参数 (5) 3.2选择数据 (5) 3.3确定方法 (5) 3.4数据处理 (6) 4.锻造工艺 (6) 5.修整锻件 (8) 三.锻造工艺流程卡(见附表) (10) 四.总结 (10) 五、参考文献: (11) 附件: (13)

一.前言 锻造生产的目的是坯料成型、及控制其内部组织性能达到所需的几何形状,尺寸以及品质的锻件,钢和大多数非铁金属及合金具有不同程度的塑性,均可在冷态或热态下进行塑性加工成型。本次锻造工艺设计课程设计的是小齿轮,相对于同组同学的设计任务,小齿轮的设计工序内容会比较少,所以我会有更多的时间去完善细节设计,争取做到无瑕疵设计。该齿轮所选材料为40MnB。锻造过程中需要将坯料加热到其再结晶温度之上。钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。该齿轮生产采用单件小批量生产方式,故对其采用自由锻工艺。自由锻造是利用冲击力或压力使金属在上下砧面间各个方向自由变形,不受任何限制而获得所需形状及尺寸和一定机械性能的锻件的一种加工方法。自由锻造的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。制定自由锻的工艺规程包括绘制锻件图、确定变形工步,计算坯料质量和尺寸,选定设备和工具,确定锻造温度和加热范围和加热、冷却及修整处理的方法和规范。最终完成齿轮设计。 二.设计步骤 1.审查零件图 当收到零件图时,要根据设计要求检查零件图是否存在不合适之处,相对的技术要求能否满足加工要求。如果存在不合适之处在和老师交流后,作以正确更改。 此小齿轮零件图没有标明齿根高系数,所以不能确定齿根圆半径,通过观察

钢的五种热处理工艺精编版

钢的五种热处理工艺公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

钢的五种热处理工艺 热处理工艺——表面淬火、退火、正火、回火、调质工艺: 1、把金属材料加热到相变温度(700度)以下,保温一段时间后再在空气中冷却叫回火。 2、把金属材料加热到相变温度(800度)以上,保温一段时间后再在炉中缓慢冷却叫退火。 3、把金属材料加热到相变温度(800度)以上,保温一段时间后再在特定介质中(水或油) 快速冷却叫淬火。 ◆表面淬火 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 感应表面淬火后的性能:

1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通 淬火高 2~3 单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层 马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对 同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。 一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能 或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。

铸造工艺设计步骤

铸造工艺设计: 就是根据铸造零件的结构特点,技术要求,生产批量和生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程.设计依据: 在进行铸造工艺设计前,设计者应掌握生产任务和要求,熟悉工厂和车间的生产条件,这些是铸造工艺设计的基本依据.设计内容: 铸造工艺设计内容的繁简程度,主要决定于批量的大小,生产要求和生产条件.一般包括下列内容: 铸造工艺图,铸件(毛坯)图,铸型装配图(合箱图),工艺卡及操作工艺规程.设计程序: 1零件的技术条件和结构工艺性分析;2选择铸造及造型方法;3确定浇注位置和分型面;4选用工艺参数;5设计浇冒口,冷铁和铸肋;6砂芯设计;7在完成铸造工艺图的基础上,画出铸件图;8通常在完成砂箱设计后画出;9综合整个设计内容.铸造工艺方案的内容: 造型,造芯方法和铸型种类的选择,浇注位置及分型面的确定等.铸件的浇注位置是指浇注时铸件在型内所处的状态和位置.分型面是指两半铸型相互接触的表面.确定砂芯形状及分盒面选择的基本原则,总的原则是: 使造芯到下芯的整个过程方便,铸件内腔尺寸精确,不至造成气孔等缺陷,使芯盒结构简单.1保证铸件内腔尺寸精度;2保证操作方便;3保证铸件壁厚均匀;4应尽量减少砂芯数目;5填砂面应宽敞,烘干支撑面是平面;6砂芯形状适应造型,制型方法.铸造工艺参数通常是指铸型工艺设计时需要确定的某些数据.1铸件尺寸公差: 是指铸件各部分尺寸允许的极限偏差,它取决于铸造工艺方法等多种因素.2主见重量公差定义为以占铸件公称质量的百分率为单位的铸件质量变动的允许值.3机械加工余量: 铸件为保证其加工面尺寸和零件精度,应有加工余量,即在铸件工艺设计时预先增加的,而后在机械加工时又被切去的金属层厚度,称为机械加工余量,简称加工余量.代号用MA,由精到粗分为ABCDEFGH和J9个等级。

相关文档
最新文档