考点14 热学

考点14  热学
考点14  热学

温馨提示:

此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。

考点14 热学

一、选择题

1.(2016·全国卷I·T33(1))关于热力学定律,下列说法正确的是( )

A.气体吸热后温度一定升高

B.对气体做功可以改变其内能

C.理想气体等压膨胀过程一定放热

D.热量不可能自发地从低温物体传到高温物体

E.如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡

【解题指南】解答本题时应从以下两点进行分析:

(1)理解热力学第一定律ΔU=W+Q。

(2)理解热力学第二定律热传递的方向性。

【解析】选B、D、E。对气体做功可以改变其内能,气体吸热后可以全部用来对外做功而内能不变,A错、B对;理想气体等压膨胀过程,温度升高,气体吸热,C错;据热力学第二定律可知热量不可能自发地从低温物体传到高温物体,D对;如果两个系统分别与状态确定的第三个系统达到热平衡,则温度相等,这两个系统彼此之间也必定达到热平衡,E对。故选B、D、E。

2.(2016·全国卷II·T33(1))一定量的理想气体从状态a开始,经历等温或等压过程ab、bc、cd、da回到原状态,其p-T图象如图所示,其中对角线ac的延

长线过原点O 。下列判断正确的是 ( )

A.气体在a 、c 两状态的体积相等

B.气体在状态a 时的内能大于它在状态c 时的内能

C.在过程cd 中气体向外界放出的热量大于外界对气体做的功

D.在过程da 中气体从外界吸收的热量小于气体对外界做的功

E.在过程bc 中外界对气体做的功等于在过程da 中气体对外界做的功 【解析】选A 、B 、E 。一定量的理想气体,在体积不变时,压强和热力学温度成正比,即

c

c

a a T p T p

,V a =V c ,选项A 正确;气体在状态a 时的温度高于在状态c 时的温度,而温度是分子平均动能的标志,理想气体忽略分子间的相互作用力,气体的分子势能不变,所以气体在状态a 时的内能大于它在状态c 时的内能,选项B 正确;cd 过程为恒温升压过程,压强增大体积减小,外界对系统做正功,但系统内能不变,故放热,放出热量Q=W 外,选项C 错误;da 过程为恒压升温过程,内能增大,体积增大对外做功,故吸热,但吸收热量Q=W 外+ΔE 内,故Q>W 外,选项D 错误;bc 过程恒压降温,体积减小,外界对气体做功,因为ab 和cd 过程都是等温过程,p a V a =p b V b ,p c V c =p d V d ,则有p a V a -p d V d =p b V b -p c V c ,又因p d =p a ,p c =p b ,p a (V a -V d )= p b (V b -V c ),所以W bc =W ad ,故在过程bc 中外界对气体做的功等于在过程da 中气体对外界做的功,选项E 正确。

3.(2016·全国卷III ·T33(1))关于气体的内能,下列说法正确的是 ( ) A.质量和温度都相同的气体,内能一定相同

B.气体温度不变,整体运动速度越大,其内能越大

C.气体被压缩时,内能可能不变

D.一定量的某种理想气体的内能只与温度有关

E.一定量的某种理想气体在等压膨胀过程中,内能一定增加

【解析】选C、D、E。质量和温度相同的气体,分子的平均动能相同,但是可能是不同的气体,其摩尔质量不同,分子数不同,故内能不一定相同,A错误;内能是微观意义上的能量,与宏观运动无关,B错误;气体被压缩时,外界对气体做功,气体可能放热,由ΔU=W+Q得内能可能不变,C正确;一定量的某种理想气体的内能不考虑分子势能,只与分子动能有关,而温度是分子平均动能的标志,所以一定量的某种理想气体的内能只与温度有关,D正确;一定量的某种理想气体在等压膨胀过程中,温度一定升高,故内能一定增加,E正确。

4.(2016·江苏高考·T12A(1))在高原地区烧水需要使用高压锅。水烧开后,锅内水面上方充满饱和汽,停止加热,高压锅在密封状态下缓慢冷却,在冷却过程中,锅内水蒸气的变化情况为( )

A.压强变小

B.压强不变

C.一直是饱和汽

D.变为未饱和汽

【解析】选A、C。温度降低,锅内水蒸气的压强减小,因为是缓慢冷却,所以液体和气体间不断达到新的动态平衡,所以高压锅内的气体一直是饱和汽,A、C选项正确。

5.(2016·海南高考·T15(1))一定量的理想气体从状态M可以经历过程1或

者过程2到达状态N,其p -V图象如图所示。在过程1中,气体始终与外界无热量交换;在过程2中,气体先经历等容变化再经历等压变化。对于这两个过程,下列说法正确的是( )

A.气体经历过程1,其温度降低

B.气体经历过程1,其内能减小

C.气体在过程2中一直对外放热

D.气体在过程2中一直对外做功

E.气体经历过程1的内能改变量与经历过程2的相同

【解析】选A、B、E。气体经历过程1,气体始终与外界无热量交换,压强减小,体积变大,对外做功。根据热力学第一定律,其内能减小,温度降低,选项A、B正确;气体在过程2中,先经历等容过程,体积不变,压强减小,则温度一定降低,对外放热,不对外做功;再经历等压过程,体积变大对外做功,又升温,所以是一个吸热过程,所以选项C、D错误;因为气体经历过程1和过程2的初、末状态相同,所以内能的改变量相同,选项E正确。

6.(2016·北京卷·T20)雾霾天气是对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果。雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示球体直径小于或等于10μm、2.5μm的颗粒物(PM是颗粒物的英文缩写)。某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度

的增加明显减小,且两种浓度分布基本不随时间变化。据此材料,以下叙述正确的是( )

A.PM10表示直径小于或等于1.0×10-6m的悬浮颗粒物

B.PM10受到的空气分子作用力的合力始终大于其所受到的重力

C.PM10和大悬浮颗粒物都在做布朗运动

D.PM2.5浓度随高度的增加逐渐增大

【解题指南】解答本题应把握以下三点:

(1)明确PM10、PM2.5是颗粒物而不是分子。

(2)能根据PM10、PM2.5运动状态分析受力情况。

(3)能根据题目的信息分析浓度随高度的变化情况。

【解析】选C。PM10表示直径小于或等于1.0×10-5m的悬浮颗粒物,A错;由于PM10在空中静止不动,受到的空气分子作用力的合力始终等于其所受到的重力,B错;PM10的浓度随高度的增加略有减小,由此推知PM2.5的浓度随高度增加逐渐减小,D错;PM10和大悬浮颗粒物都在做布朗运动,C对。

二、填空题

7.(2016·江苏高考·T12 A(2))如图甲所示,在斯特林循环的p-V图象中,一定质量理想气体从状态A依次经过状态B、C和D后再回到状态A,整个过程由两个等温和两个等容过程组成,B→C的过程中,单位体积中的气体分子数目

(选填“增大”“减小”或“不变”),状态A和状态D的气体分子热运动速率的统计分布图象如图乙所示,则状态A对应的是(选填“①”或“②”)。

【解析】初末状态气体的质量和体积都没变,所以单位体积中的气体分子数目不变;状态A 的温度低于状态D 的温度,所以状态A 对应的速率小的分子比例较大,状态A 对应的是①。 答案:不变 ① 三、计算题

8.(2016·全国卷I ·T33(2))在水下气泡内空气的压强大于气泡表面外侧水的压强,两压强差Δp 与气泡半径r 之间的关系为Δp=

r

σ

2,其中σ=0.070N/m 。现让水下10m 处一半径为0.50 cm 的气泡缓慢上升。已知大气压强p 0=1.0×105Pa,水的密度ρ=1.0×103kg/m 3,重力加速度大小g 取10m/s 2。 ①求在水下10m 处气泡内外的压强差。

②忽略水温随水深的变化,在气泡上升到十分接近水面时,求气泡的半径与其原来半径之比的近似值。

【解题指南】解答本题时应从以下三点进行分析: (1)利用题中信息Δp=

r

σ

2求解。 (2)明确各状态对应的压强和体积。

(3)综合利用力的平衡、玻意耳定律以及理想化条件进行求解。

【解析】①当气泡在水下h=10m 处时,设其半径为r 1,气泡内外压强差为Δp 1,则 Δp 1=

1

2r σ

代入题给数据得 Δp 1=28Pa ②

②设气泡在水下10m 处时,气泡内空气的压强为p 1,气泡体积为V 1;气泡到达水面附近时,气泡内空气压强为p 2,内外压强差为Δp 2,其体积为V 2,半径为r 2。 气泡上升过程中温度不变,根据玻意耳定律有 p 1V 1=p 2V 2 ③ 由力学平衡条件有 p 1=p 0+ρgh+Δp 1 ④ p 2=p 0+Δp 2 ⑤ 气泡体积V 1和V 2分别为

V 1=3143r π ⑥

V 2=324

3

r π ⑦ 联立③④⑤⑥⑦式得

3

02

1201p p r r gh p p ρ??+?=

?++???

⑧ 由②式知,Δp i ?p 0,i=1、2,故可略去⑧式中的Δp i 项。代入题给数据得

21

1.3r r =≈ 答案:①28Pa ②1.3

9.(2016·全国卷II ·T33(2))一氧气瓶的容积为0.08m 3,开始时瓶中氧气的压强为20个大气压。某实验室每天消耗1个大气压的氧气0.36 m 3。当氧气瓶中的压强降低到2个大气压时,需重新充气。若氧气的温度保持不变,求这瓶氧气重新充气前可供该实验室使用多少天。

【解析】设氧气开始时的压强为p 1,体积为V 1,压强变为p 2(2个大气压)时,体积为V 2。

根据玻意耳定律得p 1V 1=p 2V 2 ①

重新充气前,用去的氧气在p 2压强下的体积为V 3=V 2-V 1 ② 设用去的氧气在p 0(1个大气压)压强下的体积为V 0,则有 p 2V 3=p 0V 0 ③

设实验室每天用去的氧气在p 0下的体积为ΔV,则氧气可用的天数为

V N=

V

④ 联立①②③④式,并代入数据得N=4(天) 答案:4天

10.(2016·全国卷III ·T33(2))一U 形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞。初始时,管内汞柱及空气柱长度如图所示。用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止。求此时右侧管内气体的压强和活塞向下移动的距离。已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p 0=75.0cmHg 。环境温度不变。

【解析】设初始时,右管中空气柱的压强为p 1,长度为l 1;左管中空气柱的压强为p 2=p 0,长度为l 2。活塞被推下h 后,右管中空气柱的压强为p 1′,长度为l 1′;左管中空气柱的压强为p 2′,长度为l 2′。以cmHg 为压强单位,由题给条件得 p 1=p 0+(20.0-5)cmHg

l1′=(20.0-

200 .5

0.

20-)cm

根据玻意耳定律p1l1=p1′l1′联立解得p1′=144cmHg

根据题意可得p1′=p2′,l2′=4.00cm+

200 .5

0.

20-cm-h

根据玻意耳定律可得p2l2=p2′l2′,解得h=9.42cm。

答案:144cmHg 9.42cm

11.(2016·江苏高考·T12 A(3))如图所示,在A→B和D→A的过程中,气体放出的热量分别为4J和20J。在B→C和C→D的过程中,气体吸收的热量分别为20J和12 J。求气体完成一次循环对外界所做的功。

【解析】完成循环气体内能不变,即ΔU=0,吸收的热量Q=(20+12-4-20)J=8J,由热力学第一定律

ΔU=Q+W得W=-8J,即气体对外做功为8J。

答案:8J

【误区警示】在解答时要分清气体是吸热还是放热,是对外做功还是外界对其做功,也就是要分清正负号含义。

12.(2016·海南高考·T15(2))如图,密闭汽缸两侧与一U形管的两端相连,汽缸壁导热;U形管内盛有密度为ρ=7.5×102kg/m3的液体。一活塞将汽缸分成左、右两个气室,开始时,左气室的体积是右气室的体积的一半,气体的压强均为p0=4.5×103Pa。外界温度保持不变。缓慢向右拉活塞使U形管两侧液面的高度差h=40cm,求此时左、右两气室的体积之比。重力加速度g取10m/s2,U形管中

气体的体积和活塞拉杆的体积忽略不计。

【解析】设初始状态时汽缸左气室的体积为V 01,右气室的体积为V 02;当活塞拉至汽缸中某位置时,左、右气室的压强分别为p 1、p 2,体积分别为V 1、V 2,由玻意耳定律得 p 0V 01=p 1V 1 ① p 0V 02=p 2V 2 ②

依题意有V 01+V 02=V 1+V 2 ③ 由力的平衡条件有p 2-p 1=ρgh ④ 联立①②③④式,并代入题给数据得

22

101101239V V V V +-=0 ⑤

由此解得V 1=2

3

V 01(另一解不合题意,舍去) ⑥ 由③⑥式和题给条件得V 1∶V 2=1∶1 ⑦ 答案:1∶1

分析化学第14章练习题

复习提纲:第十四章气相色谱法 色谱法的基本原理 1.色谱法的起源(了解)、基本原理(掌握)、仪器基本框图(掌握)、分类、特点及应用(了解) 2.色谱流出曲线及相关术语:基线:可用于判断仪器稳定性及计算检出限(掌握)峰面积(峰高):定量基础(掌握) 保留值:定性基础(掌握);死时间、保留时间、调整保留时间;死体积、保留体积、调整保留体积;相对保留值(选择性因子)等(掌握) 峰宽的各种表示及换算(掌握) 3.色谱基本原理: 热力学(掌握):分配系数K ,仅与两相和温度有关,温度增加K 减小 分配比k,k 除与两相和温度有关外(温度增加k 减小)还与相比有关(相比的概念)k=t r /t0;k=K/ ;=K2/K 1=k2/k1 分离对热力学的基本要求:两组份的>1 或K 、k 不相等;越大或K 、k 相差越大越容易实现分离 动力学:塔板理论:理论(或有效)塔板数(柱效)及理论(有效板高)的计算公式及有关说明(掌握);塔板理论的贡献及不足(了解) 速率理论:H=A+B/u+Cu 中H、A、B、C、u的含义(掌握);减小A 、B、C的手段(掌握);u 对H 的影响及最佳流速和最低板高的计算公式(掌握);填充物粒径对板高的影响(掌握) 4.分离度分离度的计算公式;R=1.5 时,完全分离;R=1 时基本分离(掌握) 5.基本色谱分离方程两种表达形式要熟练掌握;改善分离度的手段:增加柱效n(适当增加柱长的前提下减小板高)、增加选择性因子(GC:改变固定相和柱温)和控制适当的容量因子k (GC:改变温度及固定相用量)(掌握) 分离度与柱效、柱长、分析时间(即保留时间)之间的关系(掌握);柱温对分离度的影响(了解);相关例题(熟练掌握) 6. 定性分析常规检测器用保留时间(相对保留值也可以)定性,但该法存在的不足要知道,双柱或多柱可提高保留时间定性的可靠性;质谱或红外等检测器有很强的定性能力(了解) 7. 定量分析 相对校正因子和绝对校正因子的概念(掌握);归一化法各组分含量的计算公式(掌握);内标法定 量的计算公式(掌握相关作业)归一化法和内标法不受进样量和仪器条件变化的影响,外标法受进样量和仪器条件变化的影响较大 (了解) 气相色谱法 1.气相色谱法流程和适用对象;气固和气液色谱的适用对象(掌握) 2.气相色谱法的仪器: 气路系统:通常采用N2、H2、Ar、He 等惰性气体做载气(高压钢瓶提供),载气纯度、流速的大小及稳定性对色谱柱柱效、仪器灵敏度及整机稳定影响很大,因此载气纯度要高、流速要适当而且稳定。

基于ANSYS有限元的热学力模拟分析全文

基于ANSYS有限元的热学力模拟分析全文 第1章绪论 1.1选题背景及意义 随着时代的发展,现代各个领域包括船舶,航天等对于新型高分子纳米材料的诉求越来越高,基于这种背景下,石墨烯(G)和碳纳米管(CNTs)诞生了。虽然二种材料从发明开始,就受到了极大的推崇,但是不能否认的是,它们也有一些缺陷,比如团聚现象;这一种现象在某些特殊的背景下应用,缺陷暴露的就更加明显了。因此,必众多学者从本质上出发,根据二种材料的最外层电子为4的特性,从共价非共价改性进行探索,进而拓宽了二种材料的应用。 并且基于实际情况的需求,由于离子液体(ILs)一些优良性能,比如不易挥发等;完美的契合了这些实际情况的需求,并且ILs对于石墨烯材料以及碳纳米管材料有着很好地改良作用,进而进一步得到了推崇。 本文最大的创新就在于对于三者的综合应用,本文选用的离子液体是绿色溶剂离子液体,选用此溶剂是因为其对于石墨烯材料以及碳纳米管材料有着物理吸附作用,物理吸附可以不破外这些材料本身的化学结构,并且使得二种材料在基体中具有之前没有的特性:分散性,进而得到导电润滑脂。这一新的研究,是一种三种元素结合起来的新的研究方向。最后,把本文比较了ILs改性后和未改性后的二种高分子纳米材料作为润滑添加剂的各项性能。 1.2 石墨烯 1.2.1 石墨烯的结构与性质 对于石墨烯(G)这样一种新型高分子纳米材料而言,本质是碳原子组成的

二维晶体,其各个维面是六边形蜂窝状。首次发现是在21世纪初期,是由Novoselov[1]等通过胶带法首次获得的。石墨烯具有一个特殊的离域大π键,其穿透了只有一个碳原子厚度的石墨烯。这一特性使得石墨烯具有强度高,导电性好[2]、几乎完全透明、比表面积大[3]、载流子迁移率高[4]。 1.2.2石墨烯的制备方法 对于石墨烯(G)获得的方法划分可以分为三种、石墨烯超声研磨法制取、石墨烯热剥离法制取、、石墨烯电化学法制取,三种方法具体情况如下:(1)超声研磨法 第一种方法主要是根据超声波的原理,使得完整的石墨内部承受超过其承受能力的剪切应力,进而其二侧会造成缺陷,也就得到了石墨烯;该方法对于石墨的剥落产生了极大地便利。但是这种方法也是有着一定的缺陷的,由于巨大的剪切应力会造成所使用的石墨片层不完整[5],进而影响生成的石墨烯的产量以及性能。 2010 年,Wang 等[6]最早采用超声进行剥离。从一种叫做三氟甲磺酰基形成的亚胺盐使用石墨烯超声研磨法制取得到,并且经过试验,最好的时候,获得了0.95 mgmL?1 的悬浮液,然后利用得到的悬浮液经过相应的离心干燥处理,就可以得到石墨烯片。基于Wang 等研究,著名学者Nuvoli 等[7]进一步改进,采用了改进的1-己基-3-甲基六氟磷酸盐,使用同样的方法,经过试验,最好的时候,获得了5.33 mgmL?1 的悬浮液。 Shang 等[8]在上面二者的研究基础上,直接物理层面的对于使用研钵和杵研磨,对于1-丁基-3-甲基咪唑六氟硼酸盐进行了处理,进而进一步得到了相应的凝胶。然后加入化学原料二甲基甲酰胺以及化学原料丙酮,继续进行离心操作,然后对于所得物进行改造,就得到了需要的石墨烯。Shang 等改进的方法在一定程度上来说,可以一定程度的降低成本,操作也变得更为简单了,但是制取的产品会变得隔更加容易破碎。 (2)热剥离法 对于石墨烯的制取的研究从未停止,在2012年的时候,著名学者Safavi 等[9]通过对于大于或者等于12个碳阳离子的烃基链进行研究,发现了烃基链如果

第十四章热力学基础学习知识习题集解

第十四章 热力学基础 14-1 一定量的气体,吸收了1.71×10 3 J 的热量,并保持在1.0×10 5 Pa 的压强下膨胀,体积从1.0×10-2 m 3增加到1.5×10-2 m 3,问气体对外界作了多少功?它的内能改变了多少? 解: 气体等压膨胀过程中对外作功为: W = P(V 2-V 1) = 5.0?102 J 其内能的改变为: ?E = Q -W = 1.21?103 J 14-2 2.0 mol 的某种气体从热源吸收热量2.66×105 J ,其内能增加了4.18×105 J ,在这过程中气体作了多少功?是它对外界作功还是外界对它作功? 解: 由热力学第一定律得气体所作的功为 W = Q -?E = -1.52?105J 负号表示外界对气体作功。 14-3 1mol 范德瓦耳斯气体等温地由体积v 1膨胀到v 2的过程中对外作功多少? 解: 由范德瓦耳斯方程可知 P= 2m m V a b V RT -- 等温过程中气体对外做的功为 A= ???? ??----=??? ? ? ?--=?? 2112v v 2 112 12 1 V V a b V b V RTIn dV V a b V RT pdV V V 若式中a=b=0,则A=RTIn 1 2 V V ,即理想气体等温过程对外做功的表示式。 14-4 压强为1.0×105 Pa ,体积为1.0×10-3 m 3的氧气自0℃加热到100℃,问:(1)若为等压过程,则系统需要吸收多少热量?对外作功多少?(2)若为等体过程又如何? 解: 查表知,氧气的定压摩尔热容C p ,m =29.44 Jmol -1 K -1 ,定体摩尔热容C v ,m =21.12J mol -1 K -1 。根据所给初态条件,求得氧气的物质的量为 ν= mol 104.412111-?==/RT V P M m (1)等压过程 等压过程系统吸热 Q P = νC p,m (T 2-T 1) = 129.8 J

高等工程热力学14题全

1、简述温度的定义、物理意义及温度测量的工程应用意义。 温度是表征物体冷热程度的物理量,是物质微粒热运动的宏观体现。根据热力学第零定律说明,物质具备某种宏观性质,当各物体的这一性质不同时,它们若相互接触,其间将有净能流传递;当这一性质相同时,它们之间达到热平衡。人们把这一宏观物理性质称为温度。 物理意义:从微观上看,温度标志物质分子热运动的剧烈程度。温度和热平衡概念直接联系,两个物系只要温度相同,它们间就处于热平衡,而与其它状态参数如压力、体积等的数值是否相同无关,只有温度才是热平衡的判据。 温度测量的工程应用意义:温度是用以判别它与其它物系是否处于热平衡状态的参数。被测物体与温度计处于热平衡,可以从温度计的读书确定被测物体的温度。 2简述热与功的联系与区别 区别: 功是系统与外界交换的一种有序能,有序能即有序运动的能量,如宏观物体(固体和流体)整体运动的动能,潜在宏观运动的位能,电子有序流动的电能,磁力能等。在热力学中,我们这样定义功:“功是物系间相互作用而传递的能量。当系统完成功时,其对外界的作用可用在外间举起重物的单一效果来代替。”一般来说,各种形式的功通常都可以看成是由两个参数,即强度参数和广延参数组成,功带有方向性。功的方向由系统与外界的强度量之差来决定,当系统对外界的作用力大于外界的抵抗力时,系统克服外界力而对外界做功。功的大小则由系统与外界两方的较小强度量的标值与广延量的变化量的乘积决定,而功的正号或负号就随广延量的变化量增大或减小而自然决定。 热量是一种过程量,在温差作用下,系统以分子无规则运动的热力学能的形式与外界交换的能量,是一种无序热能,因此和功一样热量也可以看成是由两个参数,即强度参数和广延参数组成的量。传递热量的强度参数是温度,因此有温差的存在热量传递才可以进行。热量的大小也可以由系统的与外界两方的较小强度量的标量与广延量变化量的乘积决定。热量也有方向性。热量的方向由系统与外界的温度之差来决定,当外界的温度高于系统的温度时,外界对系统传热。热力学习惯把这种外界对系统的传热,即系统吸收外界的热量取为正值;反之,把系统对外界放热取为负值。热力学把与热量相关的广延参数取名为“熵”。 联系: 1系统对外做功为正,外界对系统做功为负。系统吸收外界的热量取为正值,系统对外界放热取为负值。 2 热和功不是体系性质,也不是状态函数,而是系统与环境间能量传递过程中的物理量,热和功与过程有关,只有在过程进行中才有意义。 3 热和功都只对封闭系统发生的过程才有明确的意义。而对既有能量交换又有物质交换的敞开体系而言,热和功的含义就不明确了。 4功和热都可以看做两个参数决定,分别是强度参数和广延参数。 3刚性容器绝热或定温充放气的计算(包括充放气过程可用能损失的计算) 以刚性容器中气体为研究对象,其能量方程的一般表达式为:

第7章 热力学基础

第7章 热力学基础 7.16 一摩尔单原子理想气体从270C 开始加热至770C (1)容积保持不变;(2)压强保持不变; 问这两过程中各吸收了多少热量?增加了多少内能?对外做了多少功?(摩尔热容 11,11,78.20,46.12----?=?=K mol J C K mol J C m P m V ) 解(1)是等体过程,对外做功A =0。J T C U Q m V 623)2777(46.12,=-?=?=?= (2)是等压过程,吸收的热量J T C Q m p 1039)2777(78.20,=-?=?= J T C U m V 623)2777(46.12,=-?=?=? J U Q A 4166231039=-=?-= 7.17 一系统由如图所示的a 状态沿acb 到达状态b ,有334J 热量传入系统,而系统做功126J 。 (1)若沿adb 时系统做功42J ,问有多少热量传入系统? (2)当系统由状态b 沿曲线ba 返回态a 时,外界对系统做功84J , 试问系统是吸热还是放热?传递热量是多少? (3)若态d 与态a 内能之差为167J ,试问沿ad 及db 各自吸收的热量是多少? 解:已知J A J Q acb acb 126.334== 据热力学第一定律得内能 增量为 J A Q U acb acb ab 208126334=-=-=? (1) 沿曲线adb 过程,系统吸收的热量 J A U Q adb ab adb 25042208=+=+?= (2) 沿曲线ba J A U A U Q ba ab ba ba ba 292)84(208-=-+-=+?-=+?=, 即系统放热292J (3) J A A A adb ad db 420 === J A U Q ad ad ad 20942167=+=+?= J U U A U Q ad ab db db db 41167208=-=?-?=+?=,即在db 过程中吸热41J. 7.18 8g 氧在温度为270C 时体积为34101.4m -?,试计算下列各情形中气体所做的功。 (1)气体绝热地膨胀到33101.4m -?; (2)气体等温地膨胀到33101.4m -?; 再等容地冷却到温度等于绝热膨胀最后所达到的温 7.17题示图

第5章热力学基础

第5章热力学基础 5-1 (1) P V 图上用一条曲线表示的过程是否一定是准静态过程 (2)理想气体向真空自由膨胀后, 状态由(p,V 1)变至(P 2,V 2),这一过程能否在 P V 图上用一条曲线表示, (3)是否有PV : PV ;成立 答:(1)是; (2) 不能; (3) 成立,但中间过程的状态不满足该关系式。 5-2 (1)有可能对物体加热而不升高物体的温度吗 系统的 温度发生变化吗 答:(1)可能,如等温膨胀过程; (2)可能,如绝热压缩过程,与外界没有热交换但温度升高。 5-3 (1)气体的内能与哪些因数有关(2)为什么说理想气体的内能是温度的单值函数 答:(1)气体的内能与温度、体积及气体量有关; (2)理想气体分子间没有相互作用,也就没有势能,所以内能与分子间距离无关, 也就与体 积无关,因而理想气体的内能是温度的单值函数。 内能的变化: E 2 100 J; 对外做的功:A 200J 5-5内能和热量的概念有何不同,下面两种说法是否正确( 热量愈 多;(2)物体的温度愈高,则内能愈大。 答:内能是状态量,热量是过程量。 (1) 物体的温度愈高,7则热量愈多。错。 (2) 物体的温度愈高,则内能愈大。对。 (2 )有可能不作任何热交换,而使 5-4如图所示,系统沿过程曲线 热量500J ,同时对外做功 400J , 并向外放热300J 。系统沿过程曲线 的变化及对外做的功。 解:据热力学第一定律计算 abc 从a 态变化到c 态共吸收 后沿过程曲线 cda 回到a 态, cda 从c 态变化到a 态时内能 a7 b7 c : Q 1 500 J, A i 400 J, 巳 100J C7 d7 a : Q 2 300 J, E 2 100 J, A 200 J 临 I 系统沿过程曲线 cda 从c 态变化到a 态时 物体的温度愈高,7则

第十三章 热力学基础 习题解答上课讲义

§13.1~13. 2 13.1 如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程【C 】 (A) 是准静态过程,它能用p ─V 图上的一条曲线表示 (B) 不是准静态过程,但它能用p ─V 图上的一条曲线表示 (C) 不是准静态过程,它不能用p ─V 图上的一条曲线表示 (D) 是准静态过程,但它不能用p ─V 图上的一条曲线表示 分析:从一个平衡态到另一平衡态所经过的每一中间状态均可近似当作平衡态(无限缓慢)的过程叫做准静态过程,此过程在p-V 图上表示一条曲线。题目中活塞迅速移动,变换时间非常短,系统来不及恢复平衡,因此不是准静态过程,自然不能用p -V 图上的一条曲线表示。 13.2 设单原子理想气体由平衡状态A ,经一平衡过程变化到状态B ,如果变化过程不知道,但A 、B 两状态的压强,体积和温度都已知,那么就可以求出:【B 】 (A ) 体膨胀所做的功; (B ) 气体内能的变化; (C ) 气体传递的热量; (D ) 气体的总质量。 分析:功、热量都是过程量,除了与系统的始末状态有关外,还跟做功或热传递的方式有关;而内能是状态量,只与始末状态有关,且是温度的单值函数。因此在只知道始末两个状态的情况下,只能求出内能的变化。对于答案D 而言,由物态方程RT PV ν=可以计算气体的物质的量,但是由于不知道气体的种类,所以无法计算气体总质量。 13.3 一定量的理想气体P 1、V 1、T 1,后为P 2、V 2、T 2, 已知V 2>V 1, T 2V 1, T 2。 13.4 在某一过程中,系统对外放出热量1100J ,同时对外所做的功是190J ,则该系统内能的增量是_-1290J _。 分析:由热力学第一定律W E Q +?=,Q =-1100J ,W =190J 。很容易计算内能增量。 13.5 1mol 氧气由初态A(p 1,V 1)沿如图所示的直线路径变到末态B(p 2,V 2),试求上述过程中,气体内能的变化量,对外界所作的功及从外界吸收的热量(设氧气可视为理想气体,且C V ,m =5R/2) 。

几种热力学模拟软件比较

Thermo-Calc 概述:(原产地:瑞典)热力学计算软件的开拓者,软件开发历史比较悠久,因此软件功能比较完善和强大,所涉及的领域比较广泛,包括冶金、金属合金、陶瓷、熔岩、硬质合金、粉末冶金、无几物等等,产品主要包括TCC、TCW、DICTRA、二次开发工具和数据库。 软件功能:1、热力学——相图、热力学性能、凝固模拟、液相面、热液作用、变质、岩石形成、沉淀、风化过程的演变、腐蚀、循环、重熔、烧结、煅烧、燃烧中的物质形成、CVD 图、薄膜的形成、CVM 计算,化学有序- 无序等等。2、动力学(DICTRA)——扩散模拟,如合金均匀化、渗碳、脱碳、渗氮、奥氏体/铁素体相变、珠光体长大、微观偏析、硬质合金的烧结等等。 数据库:TC的数据库比较多,甚至可以说杂来形容,呵呵,TC自己做的最好的数据库应该是Fe,当然现在也有像Ni等等的自己开发的数据库,但是大部分数据库都是利用第三方的,如有色金属(Al、Mg、Ti等)是英国ThermoTech的。当然TC的同盟战线非常广,所以相应可用的数据库也就非常多,包括众多无几物数据库、陶瓷数据库、硬质合金数据库、核材料数据库等等。 优势:软件功能强大、用户群较大方便交流、软件扩展性能好、灵活性强、适用范围广。 缺点:操作界面不是很友好,很难上手,动力学(扩散)数据目前不是很全,计算引擎技术滞后(主要表现在初始值方面)。 适用范围:适合于科学研究,尤其是理论研究,从行上来讲非常适合黑色金属行业,当然陶瓷、化工等行业也是首选(因为其他没有软件有这方面的数据库和功能)。 Pandat 概述:(原产地:美国,全是中国人开发,呵呵)热力学计算软件的后起者,或者说新秀吧,呵呵!主要是抓住竞争对手界面不友好和需要计算初值的弱点发展起来的,目前主要是在金属材料也就是合金行业中发展,产品包括Pandat、PanEngine和数据库。 软件功能:相图计算、热力学性能、凝固模拟、液相投影面、相图优化以及动力学二次开发(注意二次开发要在C++环境中进行)等。 数据库:Pandat的数据库主要的优势还在于有色金属方面,尤其是Mg和Al的数据应该是全球最优秀的,除此之外还有自己开发的Ti、Fe、Ni、Zr等,以及日本的Cu和Solder数据库。 优势:界面非常友好,容易上手不要很多的计算机知识,计算引擎先进(其实就是算法比较好),可二次开发。 缺点:功能不是很完善,适用面比较窄(暂时只能用于金属行业) 适用范围:适合于科学研究,工程应用,但目前只推荐用于金属行业。

2020版高考物理(山东版)总复习:第十四章 第3讲 热力学定律与能量守恒

第3讲热力学定律与能量守恒 1.(多选)健身球是一个充满气体的大皮球,现把健身球放在水平地面上。若在人体压向健身球的过程中球内气体温度保持不变,则() A.气体分子的平均动能增大 B.气体的密度增大 C.气体的内能增大 D.外界对气体做功 答案BD在人压向健身球的过程中,外界对球做功,气体所占的体积减小,故气体的密度增大;气体温度不变,故气体分子的平均动能不变;由于外界对气体做功,但气体温度不变,故内能不变;由热力学第一定律可知,气体对外放热。故A、C错误,B、D正确。 2.下列说法正确的是() A.物体放出热量,其内能一定减小 B.物体对外做功,其内能一定减小 C.物体吸收热量,同时对外做功,其内能可能增加 D.物体放出热量,同时对外做功,其内能可能不变 答案C根据热力学第一定律ΔU=Q+W判断,只有C项正确。 3.如图是密闭的汽缸,外力推动活塞P压缩气体,对缸内气体做功800 J,同时气体向外界放热200 J,缸内气体的() A.温度升高,内能增加600 J B.温度升高,内能减少200 J C.温度降低,内能增加600 J

D.温度降低,内能减少200 J 答案A根据热力学第一定律,气体内能增量ΔU=W+Q=800 J-200 J=600 J,对于一定质量的理想气体,内能增加温度必然升高,故A选项正确。 4.(多选)[2018课标Ⅲ,33(1),5分]如图,一定量的理想气体从状态a变化到状态b,其过程如p-V 图中从a到b的直线所示。在此过程中() A.气体温度一直降低 B.气体内能一直增加 C.气体一直对外做功 D.气体一直从外界吸热 E.气体吸收的热量一直全部用于对外做功 =答案BCD本题考查热力学第一定律、理想气体状态方程。对于一定量的理想气体有pV T 恒量。从a到b,p逐渐增大,V逐渐增大,所以p与V的乘积pV增大,可知T增大,则气体的内能一直增加,故A错误、B正确。由于V逐渐增大,可知气体一直对外做功,故C正确。由热力学第一定律ΔU=Q+W,因ΔU>0,W<0,可知Q>0,即气体一直从外界吸热,且吸收的热量大于对外做的功,故D正确、E错误。 5.如图,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空。现将隔板抽开,气体会自发扩散至整个汽缸。待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积。假设整个系统不漏气。下列说法正确的是() A.气体自发扩散前后内能相同

哈工大-传热学虚拟仿真实验报告

哈工大-传热学虚拟仿真实验报告

Harbin Institute of Technology 传热学虚拟仿真实验报告 院系:能源科学与工程学院 班级:设计者: 学号: 指导教师:董士奎 设计时间:2016.11.7

传热学虚拟仿真实验报告 1 应用背景 数值热分析在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、以及日用家电等各个领域都有广泛的应用。 2 二维导热温度场的数值模拟 2.1 二维稳态导热实例 假设一用砖砌成的长方形截面的冷空气通道,其截面如图2.1所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。 图2.1一用砖砌成的长方形截面的冷空气通道截面 2.2二维数值模拟 基于模型的对称性,简化为如图所示的四分之一模

型。 图2.2 二维数值模拟 2.3 建立离散方程 此时对于内部节点,如图2.3: ,1,,1,,,1,,1=? ? - +??-+??-+??--++-x y t t x y t t y x t t y x t t j t j i j t j i j t j i j t j i λ λ λ λ 对于平直边界上的节点,如图2.4: 2 22,,1,,1,,,1=?+Φ??+??-+??-+??-? -+-w j i j t j i j t j i j t j i yq y x x y t t x y t t y x t t λλλ 对于外部和内部角点,如图2.5: 2 43220 2422,,,1,1,,1,,,1,,1,,,1=?+?+Φ??+??-+??-+??-+??-=?+?+Φ??+??-+??-?+-+-?--w n m n m n m n m n m n m n m n m n m w n m n m n m n m n m q y x y x y x t t x y t t x y t t y x t t q y x y x x y t t y x t t λλλλλλ

高考物理一轮复习 第十四章 热学 第2讲 热力学定律与能量守恒检测

第2讲热力学定律与能量守恒 基础巩固 1.(2017北京东城一模,13)能直接反映分子平均动能大小的宏观物理量是( ) A.物体的温度 B.物体的体积 C.物体的压强 D.物体所含分子数 2.(2015北京理综,13,6分)下列说法正确的是( ) A.物体放出热量,其内能一定减小 B.物体对外做功,其内能一定减小 C.物体吸收热量,同时对外做功,其内能可能增加 D.物体放出热量,同时对外做功,其内能可能不变 3.(2017北京西城一模,13)下列说法正确的是( ) A.液体分子的无规则运动称为布朗运动 B.两分子间距离减小,分子间的引力和斥力都减小 C.热力学温度T与摄氏温度t的关系是T=t+273.15 K D.物体对外做功,其内能一定减小 4.(2013北京理综,13,6分)下列说法正确的是( ) A.液体中悬浮微粒的无规则运动称为布朗运动 B.液体分子的无规则运动称为布朗运动 C.物体从外界吸收热量,其内能一定增加 D.物体对外界做功,其内能一定减少 5.(2017北京丰台二模,13)下列说法中不正确的是( ) A.布朗运动不是分子的热运动 B.物体的温度越高,分子热运动越剧烈,分子的平均动能越大 C.当分子间距离增大时,分子间的引力和斥力都增大 D.气体压强产生的原因是大量气体分子对器壁持续频繁地撞击 6.(2017北京石景山一模,14)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。假设袋内气体与外界没有热交换,当充气袋四周被挤压时,袋内气体( )

A.对外界做负功,内能增大 B.对外界做负功,内能减小 C.对外界做正功,内能增大 D.对外界做正功,内能减小 7.如图是密闭的汽缸,外力推动活塞P压缩气体,对缸内气体做功800 J,同时气体向外界放热200 J,缸内气体的( ) A.温度升高,内能增加600 J B.温度升高,内能减少200 J C.温度降低,内能增加600 J D.温度降低,内能减少200 J 综合提能 1.如图,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空。现将隔板抽开,气体会自发扩散至整个汽缸。待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积。假设整个系统不漏气。下列说法正确的是( ) A.气体自发扩散前后内能相同 B.气体在被压缩的过程中内能增大 C.在自发扩散过程中,气体对外界做功 D.气体在被压缩的过程中,外界对气体做功 E.气体在被压缩的过程中,气体分子的平均动能不变

第一章热力学基础

第一章热力学基础 1.1mol 的理想气体,初态体积为25L,温度为100℃。计算分别通过下列四个不同过程,恒温膨胀到体积为100L时,物系所做的功。 (1)可逆膨胀; (2)向真空膨胀; (3)先在外压等于体积为50L时气体的平衡压力下,使气体膨胀到50L,然后再在外压等于体积为100L时气体的平衡压力下进行膨胀; (4)在外压等于终态压力下进行膨胀。 计算的结果说明什么问题? (①4299.07J ②0 ③3101162J ④2325.84J )2.1 mol理想气体由202650Pa、10L时恒容升温,使压力升到2026500Pa。 再恒压压缩至体积为1L。求整个过程的W、Q、ΔU及ΔH。 3.已知1molCaCO3 ( s )在900℃、101325Pa下分解为CaO(s)和CO2(g)时吸热178KJ,计算此过程的Q、W、ΔU及ΔH。 4.已知水蒸气的平均恒压摩尔热容C p,m=34.1J·K-1?mol-1,现将1 Kg100℃的水蒸气在101325Pa下,升温至400℃,求过程的W、Q及水蒸气的ΔU 和ΔH。 5.1Kg空气由25℃经绝热膨胀到-55℃。设空气为理想气体,相对分子质量近似取29,C v,m为20.92 J·K-1?mol-1。求过程的Q、W、ΔU及ΔH。6.在容积为200L的容器中放有20℃、253313Pa的某理想气体,已知其C p,m=1.4C v,m,求其C v,m值。若该气体的热容近似为常数,试求恒容下加热该

气体至80℃时所需的热是多少。 7.2 mol理想气体,分别经下列三个过程由298K、202650Pa变到298K、101325Pa,分别计算W、Q、ΔU和ΔH的值。 (1)自由膨胀; (2)始终对抗恒外压101325Pa膨胀; (3)可逆膨胀。 8.计算下列相变过程的W、Q、ΔU及ΔH。 (1)1g水在101325Pa、100℃下蒸发为蒸汽(设为理想气体)。 (2)1g水在100℃、当外界压力恒为50662.5Pa时,恒温蒸发,然后,将蒸气慢慢加压到100℃、101325Pa。 (3)将1g、100℃、101325Pa的水突然移放到恒温100℃的真空箱中,水气即充满整个真空箱,测其压力为101325Pa。(正常沸点时,水的摩尔汽化热为40662 J?mol-1)。 比较三个过程的计算结果,可以说明什么问题? 9.计算在298K、101325Pa时下列反应的ΔrH°。 Fe2O3 ( s )+3CO( g ) →2Fe(s)++3CO2 ( g ) 有关热力学数据如下: 物质Fe2O3 ( s ) CO( g ) Fe(s) CO2 ( g )

使用Solidworks进行热设计仿真

使用Solidworks进行热设计仿真 1 引言 通常对电子设备进行热分析主要有4个步骤:建模、确定边界条件、网格划分及计算、后处理。其中建模的工作量最大,要进行准确的热分析,必须建立一个良好的热分析模型,但在实际工程中模型往往非常复杂,很难精确建模。 一般建模的流程是先由结构设计工程师建立设备的计算机辅助设计(CAD)模型,然后由热设计工程师在该CAD模型上进行适合热仿真软件的二次建模。二次建模的方法可以是由热仿真软件自带的转换程序进行CAD 模型导入,也可以在热仿真软件中手动重新建模。当模型热设计优化完成后还需要反馈CAD 模型修正信息给结构设计工程师,由结构设计工程师对CAD模型进行更改,完成整个设计闭环。在这个过程中,存在CAD模型的转换,不能完全重新利用,CAD模型需要修改乃至重新建模,这些都会占用设计人员相当多的时间和精力,且限制于热仿真软件的建模能力,某些CAD模型需要简化或变通才能使用,而这些改变往往会影响仿真精度。SolidWorks三维设计软件具有结构建模和热仿真分析同时进行的能力和优点,能够克服上述缺陷,简化设计过程。 2 FlOEFD流体分析工具 Solidworks软件是结构设计工程师们广泛使用的三维设计软件,其具有良好的人机操作界面,强大的在线帮助系统,同时还有数量众多的设计插件,利用其中的FlOEFD流体分析工具能够很方便地进行热分析和仿真。 FlOEFD流体分析工具是Flomerics公司的产品,是可以无缝集成于主流CAD 软件中的通用计算流体动力学分析软件,是针对工程师开发,因此工程师只需要很少的流体动力学以及热传导知识,无需更多理解数值分析方法,即可在熟悉的CAD 软件界面中完成热仿真分析。FlOEFD 流体分析工具在Solidworks软件中的嵌入式版本为流体仿真(FlowSimulation),是Solidworks软件中的一款插件。FlOEFD流体分析工具的分析步骤包括CAD模型建立、自动网格划分、边界施加、求解和后处理等,这些都完全可以在CAD软件界面下完成,整个过程快速高效。FlOEFD流体分析工具直接应用CAD 实体模型,自动判定流体区域,自动进行网格划分,无需对流体区域再建模。在做CAD 结构优化分析时,对一个CAD 模型进行一次分析定义,同类结构的CAD 模型只需应用FlOEFD流体分析工具独有的项目克隆Project Clone)技术,即可马上进行不同配置下的计算。 3 应用实例

单、双级压缩空气源热泵的热力学仿真与研究对比分析

单、双级压缩空气源热泵的热力学仿真与研究对比分析 空气源热泵以其使用方便、能源利用率高、不产生环境污染等特点在我国广大地区得到了广泛的应用。而由于我国地域辽阔,东西和南北跨度较大,又受到海洋气流和西伯利亚寒流的交替影响,气候复杂多样。 面对复杂多样的气候,空气源热泵在冬季应用的过程中出现了一些问题。首先,在长江中下游等夏热冬冷地区,由于冬季环境湿度较高,室外蒸发器结霜较为严重,导致蒸发器的换热效果严重降低,进而导致空气源热泵的整体的热效率下降和供热能力衰减;其次,在我国北方寒冷地区,冬季室外环境温度很低,室外蒸发器的蒸发温度和蒸发压力也会变得很低,导致空气源热泵的压缩机的排气温度上升,使系统热效率下降和系统运行的不稳定性增加。 本文针对现在最为常用的单级压缩空气源热泵系统在寒冷地区供暖的应用中所出现的问题,研究了一种带有中间冷却器的双级压缩空气源热泵系统。基于传热学和热力学第二定律,建立单、双级压缩空气源热泵系统的热力学仿真模型,对比了双级压缩空气源热泵优于单级压缩空气源热泵的特点。 本次研究对于空气源热泵的更新换代和在寒冷地区的推广应用具有重要的意义。本此研究主要集中在以下几个方面:选取一种带有中间冷却器的双级压缩空气源热泵系统和普通的单级压缩空气源热泵为研究对象,分别建立他们的热力学仿真模型。 该仿真模型综合了空气的性能参数、制冷剂工质的热力学参数、部件的型号类别等方面,能够较为真实地反映出空气源热泵的工作原理和实际运行状况。在模型建立的方法上,采用动态分布参数法,使模型的计算精度更高。 同时引入PID控制算法,建立一种基于PID控制算法的全过程循环分布参数

模型,使模型的计算速度和精度大幅度提高。在制冷剂工质的状态参数和空气的状态参数的选取上,一方面在前人研究的基础上,采用经验公式,并对比已有的实验数据进行验证;另一方面利用已有的实验数据,通过matlab工具进行拟合出较为准确的计算模型。 以建立的单、双级压缩空气源热泵的热力学仿真模型为研究基础,分别改变模型运行的环境温度和蒸发温度等参数,使模型运行出计算的结果。通过对比单、双级压缩空气源热泵的COP、压缩机的排气温度、冷凝器的换热量、空气的出风温度等性能参数,进而对比得出单、双级压缩空气源热泵的性能。 通过调节双级压缩空气源热泵的中间压力、蒸发器的换热管的长度、中间换热器换热管的长度等参数,再次运行双级压缩空气源热泵的模型,分别得出双级压缩空气源热泵的运行结果参数,得出使双级压缩空气源热泵的运行在最佳状态的中间压力、蒸发器换热管的长度、中间换热器换热管的长度等参数。提出一种新型的空气源热泵系统,该系统能够根据不同的环境温度,调节空气源热泵的运行方式。 当夏季、过渡季运行和冬季室外环境温度较高的情况运行时,系统调整为单级压缩模式运行;当冬季室外环境温度变得很低时,系统调整为双级压缩模式运行。此运行模式能够很好地解决空气源热泵对环境的适应性较低的问题。 本次研究针对空气源热泵在冬季低温环境运行时出现的问题,建立了一种较为可靠的热力学仿真模型,提出了一种方便可靠的运行方法,对于解决空气源热泵的适应性差的问题会有很大的帮助。本次研究对空气源热泵的更新换代具有重要的指导意义,对空气源热的继续推广应用也会产生积极的影响。

第六章 热力学基础

第六章 热力学基础 热力学第零定律:系统A 、B 、C ,设A 与B 热平衡,且A 与C 热平衡,则B 与C 热平衡,即存在一个态函数:T §6-1 热力学第一定律 一. 内能、热量、功 1. 内能:所有分子运动动能及所有分子势能的总和:p k E E E += 对理气: RT i E ν2 = 2. 改变内能的方法:传热和作功 ① 热量:由于温度差的存在,系统与外界以非功的形式传递的能量,是热力学中第二类相互作用。 ② 功A (此处讨论准静态过程中的膨胀压缩功)第一类相互作用 pdV pSdl l d f dA ==?= ??==2 1 V V pdV dA A 对应于 V ~p 图曲线下的面积 等容过程:02 1 ==?V V pdV A 等压过程:)V V (p pdV A V V 122 1 -== ? 等温过程:1 2 02 1 V V ln RT pdV A V V ν==? A 、Q 都是过程量,量值与过程有关 二. 热力学第一定律 1. 定律:系统从外界吸收的热量,部分用于增加系统的内能,部分用于克服外力对外作功。即: A E Q +?= pdV dE dQ += 2. 适用条件 惯性系 初、终态是平衡态 准静态过程,膨胀压缩功 3. 符号规定 Q :吸热为正; A :对外作功为正 第一类永动机违反热力学第一定律

§6-2 气体的摩尔热容 一. 摩尔热容(量) 1. 比热:T m Q c ??= 2. 热容量:T Q mc C ??= = 3. 摩尔热容量:1摩尔某物质的热容量 mol m )T Q (c C 1??==μ dT C dQ m ν= 二. 定容摩尔热容: R i dT dE dT )dQ (C V V 2 === T C E V ν= ? T C E V ?=?ν 三. 定压摩尔热容 R R i )dT pdV (dT dE dT )dQ (C p p p +=+= = 2 R C R R i C V p +=+= 2 R 的物理意义:mol 1理气,温升K 1,等压过程比等容过程多吸收的热量。 四. 比热容比(绝热指数γ) i C C V p 2 1+==γ 12-=γi 注意:γ,C ,C p V 值要记! 若要搞研究,必须对γ及p V C ,C 值修正P289表6-1,表6-2 例1. 如图:沿b a →的等容和沿c a →的等压过程,试求在这两个过程中,气体对外所作的功,内能的增量和吸收的热量是否相同? (P.296)质量g .23、压强atm 1、温度C o 27 的氧气,先等体升压 到atm 3,再等温膨胀降压到atm 1,然后又等压压缩使体积缩小一半;试求氧气在全过程中内能的改变量、所作的功和吸收的热量;并将氧气的状态变化过程表示在V p -图中。 §6-3 热力学第一定律对理想气体等值过程的应用 1 3

2020届高考物理一轮复习讲义:第十四章 第3讲 热力学定律与能量守恒(含答案)

第3讲热力学定律与能量守恒 板块一主干梳理·夯实基础 【知识点1】热力学第一定律Ⅰ 1.改变物体内能的两种方式 (1)做功; (2)热传递。 2.热力学第一定律 (1)内容 一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。 (2)表达式:ΔU=Q+W。 (3)ΔU=Q+W中正、负号法则 (4)ΔU=Q+W的三种特殊情况 ①若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加。 ②若过程是等容的,即W=0,Q=ΔU,物体吸收的热量等于物体内能的增加。 ③对于理想气体,若过程是等温的,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量。 【知识点2】热力学第二定律Ⅰ 1.热力学第二定律的三种表述 (1)克劳修斯表述 热量不能自发地从低温物体传到高温物体。 (2)开尔文表述 不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。或表述为“第二类永动机是不可能制成的。” (3)用熵的概念表示热力学第二定律。 在任何自然过程中,一个孤立系统的总熵不会减小。 2.热力学第二定律的微观意义 一切自发过程总是沿着分子热运动的无序性增大的方向进行。

【知识点3】能量守恒定律Ⅰ 1.能量守恒定律的内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。 2.条件性:能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的。例如,机械能守恒定律具有适用条件,而能量守恒定律是无条件的,是一切自然现象都遵守的基本规律。 3.两类永动机 (1)第一类永动机:不需要任何动力或燃料,却能不断地对外做功的机器。 违背能量守恒定律,因此不可能实现。 (2)第二类永动机:从单一热库吸收热量并把它全部用来对外做功,而不产生其他影响的机器。 违背热力学第二定律,不可能实现。 4.能源的利用 (1)存在能量耗散和品质降低。 (2)重视利用能源时对环境的影响。 (3)要开发新能源(如太阳能、生物质能、风能、水能等)。 板块二考点细研·悟法培优 考点1 热力学第一定律[对比分析] 1.改变内能的两种方式的比较

第八章 热力学基础答案

一、选择题 [ A ]1. (基础训练2)一定量的某种理想气体起始 温度为T ,体积为V ,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中 (A) 气体向外界放热 (B) 气体对外界作正功 (C) 气体内能增加 (D) 气体内能减少 【提示】因为是循环过程,故0= ?E ;又知是逆循环,所以 0< A ,即气体对外界作负功;由热力学第一定律0>; 再由热力学第一定律:E A Q ?+=,得 AD 过程0=Q ; AC 过程AC A Q =; AB 过程()AB B A Q A E E =+-,且0B A E E ->;所以等压过程吸热最多。 [ B ]3.(基础训练6) 如图所示,一绝热密闭的容器,用隔板分成相等的两部分, 左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律 Q A E =+?得:0E ?=,∴温度不变;根据状态方程p V R T ν=得 P 0V 0=PV ;已知V=2V 0,∴P=P 0/2. [ D ]4.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?, 熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。 V

相关文档
最新文档