【课堂新坐标】(教师用书)2013-2014学年高中数学 第一章 导数及其应用综合检测 新人教A版选修2-2

【课堂新坐标】(教师用书)2013-2014学年高中数学 第一章 导数及其应用综合检测 新人教A版选修2-2
【课堂新坐标】(教师用书)2013-2014学年高中数学 第一章 导数及其应用综合检测 新人教A版选修2-2

第一章 导数及其应用

(时间90分钟,满分120分)

一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.设曲线y =ax 2

在点(1,a )处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.1

2 C .-1

2

D .-1

【解析】 y ′=2ax ,于是切线斜率k =y ′|x =1=2a ,由题意知2a =2,∴a =1. 【答案】 A

2.若f (x )=x 2

-2x -4ln x ,则f (x )的单调递增区间为( ) A .(-1,0) B .(-1,0)∪(2,+∞) C .(2,+∞)

D .(0,+∞)

【解析】 f ′(x )=2x -2-4x =2 x 2

-x -2 x =2 x +1 x -2

x

,由f ′(x )>0得

x >2.

【答案】 C

3.f (x )=ax 3

+2x ,若f ′(1)=4,则a 的值等于( ) A.12 B.1

3 C. 2

D .1

【解析】 f ′(x )=3ax 2

+1

x

,∴f ′(1)=3a +1=4,

∴a =1. 【答案】 D

4.使函数y =x sin x +cos x 是增函数的区间可能是( ) A .(π2,3π

2)

B .(π,2π)

C .(3π2,5π

2

)

D .(2π,3π)

【解析】 y ′=sin x +x cos x -sin x =x cos x ,故当x ∈(3π2,5π

2)时,y ′>0,函

数为增函数.

【答案】 C

5.一汽车沿直线轨道前进,刹车后列车速度为v (t )=18-6t ,则列车的刹车距离为

( )

A .27

B .54

C .81

D .13.5

【解析】 令v (t )=0得18-6t =0得t =3, ∴列车的刹车距离为??03v (t )d t =??0

3(18-6t )d t

=(18t -3t 2)???

3

=27.

【答案】 A

图1

6.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图1所示,则下列结论中一定成立的是( )

A .函数f (x )有极大值f (2)和极小值f (1)

B .函数f (x )有极大值f (-2)和极小值f (1)

C .函数f (x )有极大值f (2)和极小值f (-2)

D .函数f (x )有极大值f (-2)和极小值f (2)

【解析】 由图可知,当x <-2时,f ′(x )>0;当-2

f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数在x =-2处取得极大值,在x =2处取

得极小值,选D.

【答案】 D

7.由y =-x 2

与直线y =2x -3围成的图形的面积是( ) A.53 B.

323

C.643

D .9

【解析】 解???

?

?

y =-x 2

,y =2x -3,

得交点A (-3,-9),B (1,-1).

由y =-x 2

与直线y =2x -3围成的图形的面积

【答案】 B

8.若函数f(x)=-x3+3x2+9x+a在区间[-2,-1]上的最大值为2,则它在该区间上的最小值为( )

A.-5 B.7

C.10 D.-19

【解析】∵y′=-3x2+6x+9=-3(x+1)(x-3),

所以函数在[-2,-1]内单调递减,

所以最大值为f(-2)=2+a=2.

∴a=0,最小值f(-1)=a-5=-5.

【答案】 A

9.已知定义在实数集R上的函数f(x)满足f(1)=2,且f(x)的导数f′(x)在R上恒有f′(x)<1(x∈R),则不等式f(x)<x+1的解集为( )

A.(1,+∞) B.(-∞,-1)

C.(-1,1) D.(-∞,-1)∪(1,+∞)

【解析】不等式f(x)<x+1可化为f(x)-x<1,设g(x)=f(x)-x,

由题意g′(x)=f′(x)-1<0,g(1)=f(1)-1=1,

故原不等式?g(x)<g(1),故x>1.

【答案】 A

10.(2013·课标全国卷Ⅰ)函数f(x)=(1-cos x)sin x在[-π,π]的图象大致为

( )

【解析】在[-π,π]上,

∵f(-x)=[1-cos(-x)]sin(-x)

=(1-cos x)(-sin x)=-(1-cos x)sin x=-f(x),

∴f (x )是奇函数,

∴f (x )的图象关于原点对称,排除B.

取x =π2,则f (π2)=(1-cos π2)sin π

2=1>0,排除A.

∵f (x )=(1-cos x )sin x ,

∴f ′(x )=sin x ·sin x +(1-cos x )cos x =1-cos 2

x +cos x -cos 2

x =-2cos 2

x +cos x +1. 令f ′(x )=0,则cos x =1或cos x =-12

.

结合x ∈[-π,π],求得f (x )在(0,π]上的极大值点为2

3π,靠近π,选C.

【答案】 C

二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 11.(2013·江西高考)设函数f (x )在(0,+∞)内可导,且f (e x

)=x +e x

,则f ′(1)=________.

【解析】 令e x

=t ,则x =ln t ,所以f (x )=ln x +x ,即f ′(x )=1+1x

,则f ′(1)

=1+1=2.

【答案】 2

12.已知函数f (x )=13x 3-12(a +1a )x 2

+x (a >0),则f (x )在点(1,f (1))处的切线的斜率

最大时的切线方程是________.

【解析】 f ′(x )=x 2

-(a +1a

)x +1,故f (x )在点(1,f (1))处的切线斜率k =2-(a +

1

a ),显然当a =1时,a +1a 最小,k 最大为0,又f (1)=13,∴切线方程为y =1

3

. 【答案】 y =1

3

13.若函数f (x )=

4x

x 2

+1

在区间(m,2m +1)上单调递增,则实数m 的取值范围是________. 【解析】 f ′(x )=4-4x

2

x 2+1 2,令f ′(x )>0,得-1

1,1).

又f (x )在(m,2m +1)上单调递增,

所以????

?

m ≥-1,m <2m +1,

2m +1≤1.

解得-1

【答案】 (-1,0]

14.周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________. 【解析】 设矩形的长为x ,则宽为10-x (0

(10-x )=10πx 2

-πx 3

∴V ′(x )=20πx -3πx 2

.

由V ′(x )=0得x =0(舍去),x =203

且当x ∈(0,203)时,V ′(x )>0,当x ∈(20

3,10)时,V ′(x )<0,

∴当x =203时,V (x )取得最大值为4 00027π cm 3

.

【答案】

4 00027

π cm 3

三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分12分)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;

(2)若f (x )在(0,1]上的最大值为1

2,求a 的值.

【解】 函数f (x )的定义域为(0,2),

f ′(x )=1x -1

2-x

+a .

(1)当a =1时,f ′(x )=-x 2

+2

x 2-x ,

所以f (x )的单调递增区间为(0,2), 单调递减区间为(2,2). (2)当x ∈(0,1]时,f ′(x )=

2-2x

x 2-x

+a >0,即f (x )在(0,1]上单调递增,故f (x )在

(0,1]上的最大值为f (1)=a ,因此a =1

2

.

16.(本小题满分12分)(2013·课标全国卷Ⅰ)已知函数f (x )=e x

(ax +b )-x 2

-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.

(1)求a ,b 的值;

(2)讨论f (x )的单调性,并求f (x )的极大值. 【解】 (1)f ′(x )=e x

(ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8. 从而a =4,b =4.

(2)由(1)知,f (x )=4e x (x +1)-x 2

-4x ,

f ′(x )=4e x (x +2)-2x -4=4(x +2)?

??

??

e x

-12

.

令f ′(x )=0,得x =-ln 2或x =-2.

从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.

故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2

).

17.(本小题满分12分)(2013·合肥高二检测)已知函数f (x )=-x 3

+ax 2

+bx 在区间(-2,1)内x =-1时取极小值,x =2

3

时取极大值.

(1)求函数y =f (x )在x =-2时的对应点的切线方程; (2)求函数y =f (x )在[-2,1]上的最大值与最小值. 【解】 (1)f ′(x )=-3x 2

+2ax +b .

又x =-1,x =2

3分别对应函数取得极小值、极大值,

所以-1,23为方程-3x 2

+2ax +b =0的两个根.

所以23a =-1+23,-b 3=(-1)×23.

于是a =-1

2,b =2,

则f (x )=-x 3

-12

x 2+2x .

当x =-2时,f (-2)=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(-2)=-8, 所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.

(2)当x 变化时,f ′(x )及f (x )的变化情况如下表:

则f (x )在[-2,1]上的最大值为2,最小值为-2

.

18.(本小题满分14分)已知函数f (x )=x 3

+ax 2

+bx +c 在x =-1与x =2处都取得极

值.

(1)求a ,b 的值及函数f (x )的单调区间;

(2)若对x ∈[-2,3],不等式f (x )+32c

恒成立,求c 的取值范围.

【解】 (1)f ′(x )=3x 2

+2ax +b ,由题意得

?

??

??

f ′ -1 =0,f ′ 2 =0,即?

??

??

3-2a +b =0,

12+4a +b =0,

解得?????

a =-32,

b =-6.

∴f (x )=x 3-32x 2-6x +c ,f ′(x )=3x 2

-3x -6.

令f ′(x )<0,解得-10,解得x <-1或x >2. ∴f (x )的减区间为(-1,2), 增区间为(-∞,-1),(2,+∞).

(2)由(1)知,f (x )在(-∞,-1)上单调递增;在(-1,2)上单调递减;在(2,+∞)上单调递增.

∴x ∈[-2,3]时,f (x )的最大值即为

f (-1)与f (3)中的较大者. f (-1)=72

+c ,f (3)=-92

+c .

∴当x =-1时,f (x )取得最大值. 要使f (x )+32c

只需c 2

>f (-1)+32

c ,

即2c 2

>7+5c ,解得c <-1或c >72

.

∴c 的取值范围为(-∞,-1)∪(7

2,+∞).

高中数学导数知识点归纳

高中数学选修2----2 知识点 第一章导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数y f ( x) 在x x0处的瞬时变化率是 lim f ( x0x)f ( x ) , x0x 我们称它为函数y f ( x) 在x x0处的导数,记作 f ( x0 ) 或 y |x x, 即 f (x0 ) =lim f ( x0x) f (x0 ) x 0x 2.导数的几何意义:曲线的切线.通过图像 ,我们可以看出当点P n趋近于P时,直线PT与曲线相切。容易 知道,割线 PP n的斜率是k n f ( x n )f ( x ) ,当点 P n趋近于P时,函数y f ( x) 在x x0处的导 x n x0 数就是切线 PT 的斜率 k,即k f (x n ) f ( x0) lim f ( x0 ) x 0x n x0 3.导函数:当 x变化时, f ( x) 便是x的一个函数,我们称它为 f (x) 的导函数.y f ( x) 的导函数有 时也记作 y ,即 f ( x)lim f ( x x) f ( x) x 0x 二 .导数的计算 1)基本初等函数的导数公式: 2若 f ( x)x ,则 f (x)x 1 ; 3若 f ( x)sin x ,则 f(x)cos x 4若 f ( x)cos x ,则 f(x)sin x ; 5若6若f ( x) a x,则 f ( x) a x ln a f ( x)e x,则 f ( x) e x 7若 f ( x)log a x,则f ( x)1 x ln a 8若 f ( x)ln x ,则 f ( x)1 x 2)导数的运算法则 2.[ f (x)g( x)] f ( x)g( x) f ( x) g (x)

高中数学导数概念的引入

一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是 000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即 0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义: 当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的 斜率k ,即 000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数 二.导数的计算 1. 基本初等函数的导数公式 2. 导数的运算法则 3. 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 三.导数在研究函数中的应用 1.函数的单调性与导数: 2.函数的极值与导数 极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数 函数极大值与最大值之间的关系. 求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值. 四.生活中的优化问题

导数概念及意义

导数概念及意义 1.已知函数()y f x =的图象在点()() 1,1f 处的切线方程210x y -+=,则()()121f f +'的值是( ). A. B. 1 C. D. 2 2.设函数在x =1处存在导数,则=( ) A. B. 3f ′(1) C. ′(1) D. f ′(3) 3.设函数()2 f x x x =+,则=( ) A. -6 B. -3 C. 3 D. 6 4.设 是可导函数,且 ,则 ( ) A. B. C. D. 0 5.若 ,则 ( ) A. B. C. D. 6.设函数()f x 可导,则 ) A. ()1f ' B. C. D. ()31f -' 7.函数()x f x xe =在点()() 0,0A f 处的切线斜率为( ) A. 0 B. D. e 8在点()1,4P 处的切线与直线l 平行且距离为,则直线l 的方程为( ) A. 490x y -+= B. 490x y -+=或4250x y -+= C. 490x y ++=或4250x y +-= D. 以上均不对 9.设()1 f x x =,则()()lim f x f a x a x a -→-等于( ) A. 1a - B. 2a C. 21a - D. 21a ()() 011lim 3x f x f x ?→+?-?

10.已知()y f x =的图象如图所示,则()'A f x 与()'B f x 的大小关系是( ) A. ()()''A B f x f x > B. ()()''A B f x f x = C. ()()''A B f x f x < D. ()'A f x 与()'B f x 大小不能确定 11.若曲线()y h x =在点()() ,P a h a 处的切线方程为210x y ++=,那么( ) A. ()'0h a = B. ()'0h a < C. ()'0h a > D. ()'h a 不确定 12( ) A. 30? B. 45? C. 135? D. 60? 13.如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=( ) A. 1 2 B. 3 C. 4 D. 5 14.已知函数()3 1f x x x =-+,则曲线()y f x =在点()0,1处的切线与两坐标轴所围 成的三角形的面积为( ) A. B. C. D. 2 15.曲线 在点 处的切线方程是( ) A. B. C. D. 16.设曲线2 y x =在其上一点P 处的切线斜率为3,则点P 的坐标为________. 17.设函数()y f x =的0x x =处可导,则()0f x '等 于__________.

重点高中数学导数知识点归纳总结

高中导数知识点归纳 一、基本概念 1. 导数的定义: 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 ()f x 在点0x 2 函数)(x f y =的切线的斜率, ②()1;n n x nx -'= ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 二、导数的运算 1.导数的四则运算: 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ()()()()f x g x f x g x '''±=±????

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()() f x g x f x g x f x g x ''' ?=+ ?? ?? 常数与函数的积的导数等于常数乘以函数的导数:). ( )) ( (' 'x Cf x Cf=(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: () () ()()()() () () 2 f x f x g x f x g x g x g x ' ??'' - =≠ ?? ?? 。 2.复合函数的导数 形如)] ( [x f y? = 三、导数的应用 1. ) (x f在此区间上为减函数。 恒有'f0 ) (= x,则)(x f为常函数。 2.函数的极点与极值:当函数)(x f在点 x处连续时, ①如果在 x附近的左侧)('x f>0,右侧)('x f<0,那么) (0x f是极大值; ②如果在 x附近的左侧)('x f<0,右侧)('x f>0,那么) (0x f是极小值. 3.函数的最值: 一般地,在区间] , [b a上连续的函数) (x f在] , [b a上必有最大值与最小值。函数) (x f在区间上的最值 ] , [b a值点处取得。 只可能在区间端点及极 求函数) (x f在区间上最值 ] , [b a的一般步骤:①求函数) (x f的导数,令导

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

高考积分,导数知识点精华总结

定积分 一、知识点与方法: 1、定积分的概念 设函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……把区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上取任一点(1,2,,)i i n ξ=…作和式 1 ()n n i i I f x ξ== ?∑ (其中x ?为小区间长度) ,把n →∞即0x ?→时,和式n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作:?b a dx x f )(,即?b a dx x f )(=1 lim ()n i n i f x ξ→∞ =?∑ 。 这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式。 (1)定积分的几何意义:当函数()f x 在区间[,]a b 上恒为正时,定积分()b a f x dx ?的几何意 义是以曲线()y f x =为曲边的曲边梯形的面积。 (2)定积分的性质 ① ??=b a b a dx x f k dx x kf )()((k 为常数);② ???± = ±b a b a b a dx x g dx x f dx x g x f )()()()(; ③???+ = b a c a b c dx x f dx x f dx x f )()()((其中a c b <<)。 2、微积分基本定理 如果()y f x =是区间[,]a b 上的连续函数,并且()()F x f x '=,那么: ()()|()()b b a a f x dx F x F b F a ==-? 3、定积分的简单应用 (1) 定积分在几何中的应用:求曲边梯形的面积由三条直线 ,()x a x b a b ==<,x 轴及一条曲线()(()0)y f x f x =≥围成的 曲边梯的面积? = b a dx x f S )(。 如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a

高中数学导数及其应用电子教案

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量;

②求平均变化率; ③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。

高中数学导数知识点归纳

导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是 000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于 P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00 ()() n n n f x f x k x x -= -,当点n P 趋近于 P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有 时也记作y ',即0 ()() ()lim x f x x f x f x x ?→+?-'=? 例一: 若2012)1(/=f ,则x f x f x ?-?+→? )1()1(l i m 0 = ,x f x f x ?--?+→?) 1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 二.导数的计算 1)基本初等函数的导数公式: 2 若()f x x α =,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '=

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

高中数学导数知识点归纳总结

核心出品 必属精品 免费下载 导 数 考试内容: 导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c 为常数)、y=xn(n ∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. §14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做

)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时, 1-=??x y ,故x y x ??→?0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) )0(2''' ≠-=?? ? ??v v u v vu v u 注:①v u ,必须是可导函数. ②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、 积、商不一定不可导. 例如:设x x x f 2sin 2)(+=,x x x g 2 cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导. 5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?= 复合函数的求导法则可推广到多个中间变量的情形.

高中数学学案-导数的概念及计算

高中数学学案 导数及其应用 第1讲导数的概念及计算 考点导数的概念及其几何意义 知识点 1 导数的有关概念 (1)导数:如果当Δx→0时,Δy Δx有极限,就说函数 y=f(x)在x=x0处可导,并把这个极限叫 做f(x)在x=x0处的导数(或瞬时变化率).记作f′(x0)或y′|x=x ,即f′(x0)=lim Δx→0Δy Δx=lim Δx→0 f x0+Δx-f x0 Δx. (2)导函数:如果函数f(x)在开区间(a,b)内每一点都可导,那么其导数值在(a,b)内构成一个新的函数,我们把这个函数叫做f(x)在开区间(a,b)内的导函数.记作f′(x)或y′. 注意点 如果函数f(x)在x=x0处可导,那么函数y=f(x)在x=x0处连续. 2 导数的几何意义 函数f(x)在x=x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-f(x0)=f′(x0)(x-x0). 3 几种常见函数的导数 原函数导数 y=C(C为常数)y′=0 y=x n(n∈Q*)y′=nx n-1 y=sin x y′=cos x y=cos x y′=-sin x y=e x y′=e x y=ln x y′=1 x y=a x(a>0,且a≠1)y′=a x ln_a

y =log a x (a >0,且a ≠1) y ′= 1 x ln a 4 导数的四则运算法则 若y =f (x ),y =g (x )的导数存在,则 ①[f (x )±g (x )]′=f ′(x )±g ′(x ); ②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); ③?? ?? ??f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0). 注意点 “过某点”和“在某点”的区别 曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0, y 0)为切点,而后者P (x 0,y 0)不一定为切点. 入门测 1.思维辨析 (1)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (2)曲线的切线不一定与曲线只有一个公共点.( ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( ) (4)若f (x )=f ′(a )x 2+ln x (a >0),则f ′(x )=2xf ′(a )+1 x .( ) 答案 (1)× (2)√ (3)× (4)√ 2.(1)设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2 B .e C.ln 2 2 D .ln 2 (2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2 D .0 答案 (1)B (2)B 解析 (1)由f (x )=x ln x 得f ′(x )=ln x +1. 根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. (2)f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2.

高中数学导数知识点归纳.

高中数学选修 2----2知识点第一章导数及其应用 一.导数概念的引入1.导数的物理意义:瞬时速率。一般的,函数()y f x 在0x x 处的瞬时变化率是000()() lim x f x x f x x ,我们称它为函数()y f x 在0x x 处的导数,记作0()f x 或0|x x y ,即0()f x =000()() lim x f x x f x x 2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点 n P 趋近于P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00()()n n n f x f x k x x ,当点n P 趋近于P 时,函数()y f x 在0x x 处的导数就是切线PT 的斜率k ,即0000()()lim () n x n f x f x k f x x x 3.导函数:当x 变化时,()f x 便是x 的一个函数,我们称它为()f x 的导函数. ()y f x 的导函数有时也记作y ,即0()() ()lim x f x x f x f x x 二.导数的计算 1)基本初等函数的导数公式 : 2 若() f x x ,则1()f x x ; 3 若() sin f x x ,则()cos f x x 4 若() cos f x x ,则()sin f x x ; 5 若() x f x a ,则()ln x f x a a 6 若() x f x e ,则()x f x e 7 若() log x a f x ,则1()ln f x x a 8 若()ln f x x ,则1 ()f x x 2)导数的运算法则2. [()()]()()()()f x g x f x g x f x g x

高中数学导数及其应用

高中数学导数及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高中数学导数及其应用 一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如

在点处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间 ()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时,

高中数学选修2-2导数的概念

导数的概念 教学目标与要求:理解导数的概念并会运用概念求导数。 教学重点:导数的概念以及求导数 教学难点:导数的概念 教学过程: 一、导入新课: 上节我们讨论了瞬时速度、切线的斜率和边际成本。虽然它们的实际意义不同,但从函数角度来看,却是相同的,都是研究函数的增量与自变量的增量的比的极限。由此我们引出下面导数的概念。 二、新授课: 1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数)(x f Y =相应地有增量)()(00x f x x f y -?+=?,如果0→?x 时,y ?与x ?的比 x y ??(也叫函数的平均变化率)有极限即 x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即 x x f x x f x f x ?-?+=→?)()(lim )(0000/ 注:1.函数应在点0x 的附近有定义,否则导数不存在。 2.在定义导数的极限式中,x ?趋近于0可正、可负、但不为0,而y ?可能为0。 3.x y ??是函数)(x f y =对自变量x 在x ?范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ?+?+)的割线斜率。 4.导数x x f x x f x f x ?-?+=→?)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度,它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率。因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为))(()(00/0x x x f x f y -=-。 5.导数是一个局部概念,它只与函数)(x f y =在0x 及其附近的函数值有关,与x ?无关。 6.在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因此,导数的定义式可写成0 0000/)()(lim )()(lim )(0x x x f x f x x f x x f x f x x o x --=?-?+=→→?。

高中数学导数知识点

导数知识点 考试要求: (1)了解导数概念的某些实际背景 (2)理解导数的几何意义 (3)掌握函数的导数公式 (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、 极大值、极小值及闭区间上的最大值和最小值. (5)会利用导数求某些简单实际问题的最大值和最小值. 知识要点 1.导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为 ).)((0' 0x x x f y y -=- 2. 导数的四则运算法则: ' ' ' )(v u v u ±=±) (...)()()(...)()(' '2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ' '''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) ) 0(2 ' ' ' ≠-= ?? ? ??v v u v vu v u 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

3.函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导, 如果)('x f >0,则)(x f y =为增函数; 如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法; 如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数. 4. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0① . 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使) (' x f =0,但0 =x 不是极值点. ②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0 =x 是函数的极小值点. 5. 极值与最值区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 6. 几种常见的函数导数: I.0'=C (C 为常数) x x c o s )(s i n ' = 1 ' )(-=n n nx x (R n ∈) x x s i n )(c o s ' -= II. x x 1)(ln ' = e x x a a l o g 1)(l o g ' = x x e e =' )( a a a x x ln )(' =

高中数学导数及其应用

高中数学导数及其应用 一、知识网络 二、高考考点?1、导数定义的认知与应用; ?2、求导公式与运算法则的运用; ? 3、导数的几何意义; ?4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。??三、知识要点? (一)导数?1、导数的概念?(1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果

时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作 ,即 。 ?(Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值 ,都对应着一个确定的导数 ,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间( )内的导函数(简称导数),记作或, 即。??认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当 时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量 ;? ②求平均变化率; ③求极限?上述三部曲可简记为一差、二比、三极限。?? (2)导数的几何意义:?函数在点处的导数,是曲线在点 处的切线的斜率。? (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别:?(Ⅰ)若函数在点处可导,则在点处连续;?若函数在开区间()内可导,则在开区间()内连续(可

导一定连续)。??事实上,若函数在点处可导,则有 此 时,? ? ? ?记 ,则有即在点处连续。?(Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。?反例:在点处连续,但在点处无导数。 事实上,在点处的增量?当 时,, ;?当时,, 由此可知,不存在,故在点处不可导。??2、求导公式与 求导运算法则 (1)基本函数的导数(求导公式) 公式1 常数的导数:(c为常数),即常数的导数等于0。??公式2 幂函 数的导数:。? 公式3 正弦函数的导数:。??公式4 余弦函数的导数: ??公式5 对数函数的导数:? (Ⅰ); ?(Ⅱ)

(精心整理)高中数学导数知识点归纳总结

§14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)] ()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→

高中数学知识点总结-导数的定义及几何意义

导数的定义及几何意义 1.x x f x x f x f x ?-?+=→?)()(lim )(0000/ 叫函数)(x f y =在0x x →处的导数,记作0|/x x y = 。 注:①函数应在点0x 的附近有定义,否则导数不存在。②在定义导数的极限式中,x ?趋近 于0可正、可负、但不为0,而y ?可能为0。③x y ??是函数)(x f y =对自变量x 在x ?范围内的平均变化率,它的几何意义是过曲线)(x f y =上点(0x ,)(0x f )及点(0x +x ?, )(00x x f ?+)的割线斜率。④导数x x f x x f x f x ?-?+=→?)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在0x 点处变化的快慢程度,它的几何意义是 曲线)(x f y =上点(0x ,)(0x f )处的切线的斜率。⑤若极限x x f x x f x ?-?+→?)()(lim 000不存在,则称函数)(x f y =在点0x 处不可导。⑥如果函数)(x f y =在开区间),(b a 内每一点 都有导数,则称函数)(x f y =在开区间),(b a 内可导;此时对于每一个x ∈),(b a ,都对应 着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f ,称这个函数)(/ x f 为函数)(x f y =在开区间),(b a 内的导函数,简称导数;导数与导函数都称为导数,这要加以区分: 求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。 [举例1]若2)(0/=x f ,则k x f k x f k 2)()(lim 000--→等于: (A) -1 (B) -2 (C) 1 (D) 1/2 解析:∵2)(0/=x f ,即k x f k x f k ---+→-)()]([lim 000=2?k x f k x f k 2)()(lim 000--→=-1。 [举例2] 已知0,a n >为正整数设()n y x a =-,证明1'() n y n x a -=- 解析:本题可以对()n y x a =-展开后“逐项”求导证明;这里用导数的定义证明: x a x a x x y n n x ?---?+=→?)()(lim 0/= x a x x C x a x C x a x C a x n n n n n n n n n x ?--?++?-+?-+---→?)()()()()()(lim 222110 =

相关文档
最新文档