安捷伦信号发生器选型指南

安捷伦信号发生器选型指南
安捷伦信号发生器选型指南

接近开关的选型与性能测定

接近开关的选型与性能测定 1.概述 接近开关是一种毋需与运动部件进行机械接触而可以操作的位置开关,当物体接近开关的感应面到动作距离时,不需要机械接触及施加任何压力即可使开关动作,从而驱动交流或直流电器或给计算机装置提供控制指令。接近开关是种开关型传感器(即无无触点开关),它即有行程开关、微动开关的特性,同时具有传感性能,且动作可靠,性能稳定,频率响应快,应用寿命长,抗干扰能力强等、并具有防水、防震、耐腐蚀等特点。产品有电感式、电容式、霍尔式、交、直流型。 接近开关又称无触点接近开关,是理想的电子开关量传感器。当金属检测体接近开关的感应区域,开关就能无接触,无压力、无火花、迅速发出电气指令,准确反应出运动机构的位置和行程,即使用于一般的行程控制,其定位精度、操作频率、使用寿命、安装调整的方便性和对恶劣环境的适用能力,是一般机械式行程开关所不能相比的。它广泛地应用于机床、冶金、化工、轻纺和印刷等行业。在自动控制系统中可作为限位、计数、定位控制和自动保护环节。接近开关具有使用寿命长、工作可靠、重复定位精度高、无机械磨损、无火花、无噪音、抗振能力强等特点。因此到目前为止,接近开关的应用范围日益广泛,其自身的发展和创新的速度也是极其迅速。 2.接近开关的主要功能 2.1检验距离 检测电梯、升降设备的停止、起动、通过位置;检测车辆的位置,防

止两物体相撞检测;检测工作机械的设定位置,移动机器或部件的极限位置;检测回转体的停止位置,阀门的开或关位置;检测气缸或液压缸内的活塞移动位置。 2.2尺寸控制 金属板冲剪的尺寸控制装置;自动选择、鉴别金属件长度;检测自动装卸时堆物高度;检测物品的长、宽、高和体积。 2.3检测物体存在有否检测生产包装线上有无产品包装箱;检测有无产品零件。 2.4转速与速度控制 控制传送带的速度;控制旋转机械的转速;与各种脉冲发生器一起控制转速和转数。 2.5计数及控制 检测生产线上流过的产品数;高速旋转轴或盘的转数计量;零部件计数。 2.6检测异常 检测瓶盖有无;产品合格与不合格判断;检测包装盒内的金属制品缺乏与否;区分金属与非金属零件;产品有无标牌检测;起重机危险区报警;安全扶梯自动启停。 2.7计量控制 产品或零件的自动计量;检测计量器、仪表的指针范围而控制数或流量;检测浮标控制测面高度,流量;检测不锈钢桶中的铁浮标;仪表量程上限或下限的控制;流量控制,水平面控制。

安捷伦高效液相色谱仪的规范操作

安捷伦高效液相色谱仪的规范操作 1. 目的:明确安捷伦高效液相色谱仪的规范操作,确保数据的准确性。 2. 范围:适用于安捷伦高效液相色谱仪。 3. 职责:检验人员对此负责。 4.操作规程: 系统组成 本系统由1个溶剂二元输送泵(分主/A泵和副/B泵)、手动进样阀、柱温箱、检测器、化学工作站和电脑等组成。 准备 4.2.1使用前应根据待检样品的检验方法准备所需的流动相,用合适的μm滤膜过滤,超声脱气20min。 4.2.2 根据待检样品的需要更换合适的色谱柱(柱进出口位置应与流动相流向一致)和定量环。 4.2.3 配制样品和标准溶液(也可在平衡系统时配制),用合适的μm滤膜过滤。 4.2.4 检查仪器各部件的电源线、数据线和输液管道是否连接正常 将待测样品按要求前处理,准备HPLC 所需流动相,检查线路是否连接完好,废液瓶是否够用等。 开机: 4.3.1 打开计算机,进入中文Windows XP画面,并运行CAG Bootp Server程序。4.3.2 打开1200 LC 各模块电源。 4.3.3 待各模块自检完成后,双击[Instrument 1 Online]图标,化学工作站自动与1200LC 通讯,进入的工作站画面如下所示。 4.3.4 从[视图]菜单中选择[方法和运行控制]画面, 点击[视图]菜单中的[显示顶部工具栏],[ 显示状态工具栏],[系统视图],[样品视图],使其命令前有[√]标志,来调用所需的界面。 4.3.5 把流动相放入溶剂瓶中。

4.3.6 打开冲洗阀。 4.3.7 点击[泵]图标,点击[设置泵…]选项,进入泵编辑画面。 4.3.8 设流速:5ml/min,点击[确定]。 4.3.9 点击[泵] 图标,点击[控制…]选项,选中[启动],点击[确定] ,则系统开始冲洗,直到管线内(由溶剂瓶到泵入口)无气泡为止,切换通道继续冲洗,直到所有要用通道无气泡为止。 4.3.10 点击[泵] 图标,点击[控制…]选项,选中[关闭],点击[确定]关泵,关闭冲洗阀。 4.3.11 点击[泵]图标,点击[设置泵…选项],设流速:min。 4.3.12 点击泵下面的瓶图标,如下图所示(以单元泵为例),输入溶剂的实际体积和瓶体积。也可输入停泵的体积,点击[确定]。 数据采集方法编辑 4.4.1开始编辑完整方法:从[方法]菜单中选择[编辑完整方法…] 项,如下图所示选中除[数据分析]外的三项,点击[确定],进入下一画面。 4.4.2方法信息 4.4.2.1在[方法注释]中加入方法的信息(如:测试方法)。 4.4.2.2 点击[确定],进入下一画面。 4.4.3 泵参数设定 4.4.3.1 在[流速]处输入流量,如1ml/min,在[溶剂B]处输入,(A=100-B) ,也可[插入]一行[时间表] ,编辑梯度。在[压力限]处输入柱子的最大耐高压,以保护柱子。 4.4.3.2 点击[确定],进入下一画面。 4.4.4 柱温箱参数设定 4.4.4.1 在[温度]下面的空白方框内输入所需温度,如:40度。并选中它,点击[更多>>] 键,如图所示,选中[与左侧相同],使柱温箱的温度左右一致。 4.4.4.2 点击[确定],进入下一画面。 4.4.5 检测器参数设定:检测波长:一般选择最大吸收处的波长。样品带宽:一般选择最大吸收值一半处的整个宽度。参比波长:一般选择在靠近样品信号的无吸收或低吸收区 域。参比带宽:至少要与样品信号的带宽相等,许多情况下用100nm作为缺省

Agilent 2000系列示波器

InfiniiVision 2000 X 系列示波器 技术资料 新一代示波器: 突破性技术为同等预算提供性能更优异的示波器

突破性技术为寻求经济型示波器的客户带来更高性能 Agilent InfiniiVision X 系列示波器概览 InfiniiVision 2000 X 系列 InfiniiVision 3000 X 系列 模拟通道2?和?4?个模拟通道 数字通道数MSO 型号标配?8?通道 可通过?DSOX2MSO 升级MSO 型号标配?16?通道 可通过?DSOX3MSO 升级带宽?(可升级)70、100、200 MHz 100、200、350、500 MHz 采样率1 GSa/s, 通道全开2 GSa/s, 半通道交叉模式2 GSa/s, 通道全开4 GSa/s, 半通道交叉模式存储器深度100 kpts 每通道2 Mpts 标配, 4 Mpts 可选(选件?DSOX3MemUp)波形更新速率 50,000?个波形/秒1,000,000?个波形/秒WaveGen 内置?20 MHz 函数发生器有?(选件?DSOX2WAVEGEN)有?(选件?DSOX3WAVEGEN)搜索和导航无有 串行协议分析无 有(多个选件)分段存储器有?(选件?DSOX2SGM)有?(选件?DSOX3SGM)模板极限测试有?(选件?DSOX2MASK)有?(选件?DSOX3MASK)AutoProbe 接口 无 有 安捷伦科技公司是市场上发展最为快速的示波器厂商: 我们致力于投资技术发展,为您解决测量难题。安捷伦对高新技术的孜孜以求为您带来了 InfiniiVision X 系列示波器,以满足较少的预算仍需求出色的性能、功能与灵活性客户的需求。无论您在工作中需要基础入门级的 示波器还是有较多分析能力的示波器,您都希望获得最大程度的投资回报。InfiniiVision X 系列示波器共有 26 种型号,确保为您提供既满足当前需求,又可在未来进行升级的产品。 是否需要更深的存储器或更多带宽? 请看?InfiniiVision 7000B 系列示波器 ● 2?或?4?个模拟通道以及?16?个可选的数字通道● 100 MHz ~ 1 GHz 带宽● 8 Mpts 存储器?(标配)● 搜索和导航功能 ● 提供串行协议分析应用软件● 提供?FPGA 动态探头应用软件 更多详情,请见 https://www.360docs.net/doc/8212844332.html,/find/7000

接近开关的选型

接近开关的选型 对于不同的材质的检测体和不同的检测距离,应选用不同类型的接近开关,以使其在系统中具有高的性能价格比,为此在选型中应遵循以下原则: 4.1.1.当检测体为金属材料时,应选用高频振荡型接近开关,该类型接近开关对铁镍、a3钢类检测体检测最灵敏。对铝、黄铜和不锈钢类检测体,其检测灵敏度就低。 4.1.2.当检测体为非金属材料时,如;木材、纸张、塑料、玻璃和水等,应选用电容型接近开关。 4.1.3.金属体和非金属要进行远距离检测和控制时,应选用光电型接近开关或超声波型接近开关。 4.1.4.对于检测体为金属时,若检测灵敏度要求不高时,可选用价格低廉的磁性接近开关或霍尔式接近开关。 在各类开关中,有一种对接近它物件有“感知”能力的元件——位移传感器。利用位移传感器对接近物体的敏感特性达到控制开关通或断的目的,这就是接近开关。 当有物体移向接近开关,并接近到一定距离时,位移传感器才有“感知”,开关才会动作。通常把这个距离叫“检出距离”。不同的接近开关检出距离也不同。 有时被检测验物体是按一定的时间间隔,一个接一个地移向接近开关,又一个一个地离开,这样不断地重复。不同的接近开关,对检测对象的响应能力是不同的。这种响应特性被称为“响应频率”。 种类 因为位移传感器可以根据不同的原理和不同的方法做成,而不同的位移传感器对物体的“感知”方法也不同,所以常见的接近开关有以下几种: 1.涡流式接近开关 这种开关有时也叫电感式接近开关。它是利用导电物体在接近这个能产生电磁场 接近开关时,使物体内部产生涡流。这个涡流反作用到接近开关,使开关内部电路参数发生变化,由此识别出有无导电物体移近,进而控制开关的通或断。这种接近开关所能检测的物体必须是导电体。 2.电容式接近开关 这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。这个外壳在测量过程中通常是接地或与设备的机壳相连接。当有物体移向接近开关时,不论它是否为导体,由于它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。这种接近开关检测的对象,不限于导体,可以绝缘的液体或粉状物等。 3.霍尔接近开关 霍尔元件是一种磁敏元件。利用霍尔元件做成的开关,叫做霍尔开关。当磁性物件移近霍尔开关时,开关检测面上的霍尔元件因产生霍尔效应而使开关内部电路状态发生变化,由此识别附近有磁性物体存在,进而控制开关的通或断。这种接近开关的检测对象必须是磁性物体。 4.光电式接近开关

倍加福P+F接近开关选型样本

P+F倍加福接近开关 From:上海贵伦自动化设备有限公司https://www.360docs.net/doc/8212844332.html,/product_list.asp?id=341 【产品介绍】 接近传感器 ■电感式传感器 ■电感式特殊型传感器 ■位置传感器,阀位回讯传感器 ■电容式传感器 ■磁式传感器 ■传感器安装附件 ●电感式传感器可广泛应用于对物体进行非接触式的高精度的位置测量的场合,可覆盖大多数的工业领域 特性: ■动作距离:0.2-100mm ■外壳材料:不锈钢,黄铜镀镍 ■极性反转保护 ■短路保护 ■LED显示在中间或四周 ■M8或M12连接器或端子连接

■传感器带PVC,PUR或硅电缆输出 ■2线,3线或4线DC,AC,NAMUR和AS-I技术 特殊系列: ■0mA…20mA模拟量输出 ■集成的速度监控达100Hz ■高压型传感器达350bar ■危险区域型传感器 ■不锈钢感应面 ■衰减系数为1 ■防护等级为IP68/IP69K ■防磁防焊型 ■铁质金属和非铁质金属选择型 ■温度扩展型:-40℃-+250℃ ●电容式传感器可用来检测包括金属物体和非金属物体在内的所有物体,其中包含有液位和流体控制 特性: ■不锈钢或塑料外壳的圆柱型,12,18或30mm ■矩形外壳从:5mm到80mm*80mm*40mm,感应距离在40mm内 ■可用于危险区域 ●磁式传感器 P+F公司的磁式传感器有M12外壳用于传统磁式物质检测,以及防护等级IP67,透过25mm不锈钢气缸检测气缸位置的磁式开关。 ●位置传感器 位置传感器主要用于监控电枢或阀门。它是在一个简单外壳下组合有两个传感器,这样安装简单,维护方便。P+F几十年的产品经检验NAMUR型位置传感器可用于危险区域。 位置传感器有安装于"传统盒子"内的,和直接安装于执行器上的两种。用户可以选择端子连接,连接器连接和电缆连接方式。阀门可通过传感器直接控制。 特性: ■可直接安装 ■在盒子中安装 ■可安装于盒中的线路板 ■直接AS-Interface连接 ■简单方便的安装 ■集成的阀门控制 (1)用字母表示 N-电感式 C-电容式 M-磁式

液相色谱柱的选择和介绍

液相色谱分离速度提高及选择性优化
安捷伦液相色谱柱介绍与选择
1
How to fast your LC separation Agilent LC colmns 2008.10.23 Dalian

液相色谱方法开发中如何选择色谱柱 液相色谱方法开发中如何选择色谱柱?
1.根据样品特性选择分离模式 2 色谱柱的适应性和选择性 2.色谱柱的适应性和选择性 3.色谱柱规格的选择
我要一根ODS柱
2
How to fast your LC separation Agilent LC colmns 2008.10.23 Dalian

HPLC模式选择
溶于有机溶剂
硅胶的正相色谱 溶于正己烷 用不同键合相的正相色谱
溶于甲醇或甲醇/水 或乙腈或乙腈/水
用不同键合相的反相色谱 用不同键合相的反相色谱
分子量<2,000
溶于四氢呋喃
低分子凝胶渗透色谱 用不同键合相的反相色谱
溶于水
非离子化
抑制电离反相键合相色谱 离子对键合相的反相色谱
样品
离子化 硅胶基质的反相色谱 离子交换色谱 溶于有机溶剂 凝胶渗透色谱 凝胶过滤色谱 溶于水 大孔填料的离子交换色谱 用大孔填料的反相色谱
分子量>2,000
3
How to fast your LC separation Agilent LC colmns 2008.10.23 Dalian

分离模式的选择实例-三聚氰胺分析
三聚氰胺是强极性,弱碱性化合物(pKa=8),微溶于水。
模式一:离子对键合相的反相色谱 对应国标方法GB/T 22388-2008第一法(反相离子对方法) 流动相:离子对试剂(辛烷磺酸钠)溶液:乙腈 = 92:8 色谱柱:ZORBAX SB-C8 4.6x250mm,5um 模式二:硅胶基质的反相色谱(HILIC) 对应安捷伦开发的HILIC模式方法 流动相: 10mM乙酸铵:ACN=11:89 色谱柱:Zorbax Rx-Sil, Rx-Sil 2.1 2 1×150mm, 150mm 5um
4
Page 4
模式三:离子交换色谱 对应安捷伦开发的离子交换方法 流动相:50mM 甲酸铵(pH3.0):乙腈=15:85 色谱柱: ZORBAX 300SCX 4 4.6 6×150mm, 150mm 5um
How to fast your LC separation Agilent LC colmns 2008.10.23 Dalian

信号发生器的基本原理

信号发生器的基本原理- 信号发生器使用攻略 信号发生器的基本原理 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率 稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后 也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡 器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。 随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其 优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器 采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。大频率范围的高精度衰减器和高精度信号输出属于高科技技术,这也是国内很少有企业能制造高端信号发生器的原因之一。信号发生器的信号输出范围和输出电平的精度和准确度也是标志信号发生器性能的重要指标。

如何选择色谱柱

如何选择色谱柱? 要选择色谱柱,首先需要确定要使用的是填充柱还是毛细管柱。 填充柱或毛细管柱?填充柱比毛细管柱具有更高的样品容量,虽然这一差距由于HP 发明了大孔 530mm 毛细管而大大缩小。检测器灵敏度的改进也减少了对大剂量样品的需要。填充柱可能具有优势的领域是气体样品的分析。 对于几乎所有的其他样品,毛细管柱具有高很多的效率(窄峰),这可以大大改进峰分离。实际上,分离能力很大,以至于许多分析物在很简单的分析中使用非常短的色谱柱就可以完成分离了。节省的时间可以直接转化为循环时间的缩短和样品通量的增加。 对于新的或更新的方法,如果没有非常具有说服力的理由使用填充柱的话,我们推荐使用毛细管柱。 色谱柱材料 这种材料必须尽可能是惰性的,尤其是对于痕量分析或容易拖尾的化合物,例如硫醇或类似的活性化合物。对于毛细管柱,熔融石英是可选的材料。 有两种类型的熔融石英毛细管柱:壁涂开管柱 (WCOT) 色谱柱和多孔层开管柱(PLOT) 色谱柱。WCOT 色谱柱是固定相液膜涂渍在去活的色谱柱壁上。这是气相色谱中最常用的色谱柱。PLOT 色谱柱中固定相是固体物质涂渍到色谱柱壁上。填充柱可以是玻璃或金属,通常是不锈钢的。金属虽然比较有活性,但其对非极性物质比较稳定。但是如果样品中有极性组分需要分析,请选择玻璃柱。如果玻璃柱还是活性强(引起峰拖尾、样品丢失等),请进行去活处理。 固定相 选择毛细管柱时,首先需要确定是否需要 PLOT 色谱柱。下面是 3 种 PLOT 色谱柱的典型应用领域: 分子筛不挥发气体,对水比较敏感 二乙烯基苯 (DVB) — HP-PLOT Q C1 到 C3 全部异构体的分离,部分 C4 和更高的(直到 C14)的异构体分离,极性化合物,挥发性溶剂可以允许含水 氧化铝 Al2O3 C1 到 C10 异构体的分离, 对水比较敏感 如果上面提到的应用没有感兴趣的,则您可以选择一个 WCOT 类型色谱柱。 当面对一种未知样品时,首先尝试目前在 GC 上的色谱柱。如果不能获得满意的结果,请考虑所了解的样品信息。基本原理是分析物与具有相似化学性质的固定相间更容易相互作用。这意味着了解的样品信息越多,越容易找到最佳分离固定相。 最重要的步骤是确定分析物的极性特征: § 非极性分子—通常只包含碳氢原子没有偶极距。 § 直链碳氢化合物(n-烷烃)是非极性化合物的例子。 § 极性分子—主要包含碳氢,也包含氮、氧、磷、硫或卤原子。例如醇、胺、硫醇、酮、腈、有机卤化物等。 § 可极化的分子—主要包含碳氢,也包含不饱和键。例如烯烃、炔烃和芳香族化合物。 针对特定分离需要提供正确的固定相:样品是具有相同化学类型的非极性物质的混合物吗?例如大多数石油馏分中的碳氢化合物?请尝试非极性色谱柱,如 HP-1,可以将它们按(近似)沸点顺序分离。如果怀疑有一些芳香族化合物,请尝试 HP-5 或 HP-35 等适用苯基化合物的色谱柱。

安捷伦脉冲发生器81104A使用说明

华中师范大学 本科生课程论文 课程名称通信系统测试仪器及使用论文题目 脉冲信号发生器81104A 使用简介考试时间 2013年1月25日专 业电子信息科学与技术年级2010级成绩评卷人姓 名黄兴学号2010210839

目录 一、仪器简介 二、注意事项 三、基本原理及操作 四、应用范围 五、心得体会

一、仪器简介 脉冲码型发生器产生的所有标准脉冲,数字需要测试模式,多层次的波形目前所有的逻辑技术(如TTL,CMOS,ECL,PECL,LVDS,GTL)和其他数字化设计为330MHz。该仪器能够提供一个可靠的和广泛的信号,使用中的应用程序比它的前辈,更安捷伦8110A。这是由于在功能设置的增强和安捷伦8110A的规格。毛刺和辍学自由变任何定时参数和定时校准功能的安捷伦81110A/81104A有助于得到更准确,更可靠的仪器设备。 二、注意事项 在打开仪器之前,您必须将保护地球终端仪器的保护接地导体(主)电源线。只能插在插座上的电源插头必须与保护接地的电源插座。不要否定的保护使用没有保护接地的扩展电源线的行动 导体。接地两芯的插座的一个导体是不足够的保护。服务指令是训练有素的服务人员。为了避免 触电危险,不要进行内部维修或调整,除非另一个人,能够提供急救和复苏,是存在的。如果该仪器通电使用自耦变压器(电压减少),确保共同的终端被连接到接地端子的电源。每当它是可能的接地保护减值,则必须使仪器不工作,并且确保不会被意外操作。不要操作仪器存在易燃气体或 烟雾。任何电子仪器的操作在这样的环境构成了一定的安全隐患。

一、仪器开关:在打开仪器显示表明仪器自检运行。这可能需要几秒钟来完成。如果自检失败,你看到一个闪烁的E在屏幕的底部。 二、基本屏幕 在这个屏幕中,您可以设置信号被选通,开始或连续的,并且是一个脉冲流,突发(几个脉冲其次停顿)或图案。 定时屏幕和电平屏幕允许您指定的时间并将所产生的信号电平参数。 在计时屏可以设置时钟频率,输出12,对信号的时间(延迟,脉冲宽度,占空比,……)。 电平屏幕允许您在指定级别的参数信号产生。你可以选择不同的预设值技术或调整值,根据个人的要求。在高/低电平或偏移/幅度设置值。 三、后面板 后面板总是提供两连接器:外部输入(外部输入)可以用来连接一个外部 保险源(开始或门控模式)。输入连接器的外部时钟或PLL参考(时钟/REF输入)的话可

气相色谱法检测时色谱柱的选择

气相色谱法检测时色谱柱的选择 气相色谱柱是样品中残留溶剂测定的理论与物质基础,所以对色谱柱的选择也是最关键的步骤。气相色谱柱可分为填充柱和毛细管柱两大类,其中填充柱又分玻璃柱和不锈钢柱;毛细管柱按柱__口直径一般又有0153mm和0132mm两种规格,前者又叫大口径毛细管柱,柱容量大,在残留溶剂测定中应用较多。由于毛细管柱造价高,中国药典2000年版结合中国国情,用填充柱测定,美国药典24版(USPXXIV)和英国药典2000年版(BP2000)要求用毛细管柱。从填料来分,填充柱一般选用高分子多孔小球系列(GDX101,GDX102,GDX103,GDX301,GDX401)直接测定。GDX的表面积大(1~500m2/g),有一定的机械强度,可在250℃以下应用。无论极性还是非极性物质,在这种固定相上的拖尾现象都降到最低限度;它和羟基的化合物亲和力极小,可使水、醇类物质大大提前流出柱子;氧化氮、HCN、NH3、SO2、COS等活泼气体可以很快流出,不干扰测定,这些优点对残留溶剂测定来说是比较理想的。 这类填料的应用约占填充柱测定残留溶剂的文献的90%。GDX既是性能优良的吸附剂,能直接作为气相色谱的固定相,直接用于气固分析,也能作为担体涂布 PEG系(PEG20M,PEG2M,PEG10000,PGE5000),DEGS(丁二酸二乙二醇酯),DG (缩二甘油),丙二醇乙二酸聚酯,OV- 225,SE52(苯基甲基硅酮)等固定液,用于残留溶剂测定,当然担体的选择也有多种,如6201、硅藻土、PoraparkQ等。在柱子的选择上,一般选用GDX系列就能解决问题,但对于某些样品,就需要用某些固定液来进行分离才能满足要求,如二甲基甲酰胺26。选择原则是相似相溶,对于醇、胺等能形成氢键的物质,除上面介绍的GDX外,也可选择极性固定液。另外也可将不同极性的固定液混合涂布在担体上进行分离27。 毛细管柱的种类也很多,如 OV-101,SE-54,CP-Sil-5CB28,AC-20,SE-30,HP-5,HP-20M,100%二甲基硅氧 烷,AT- 624,TFAP等,一般长10~30m不等。填充柱价格便宜,易得,一直占据溶剂残留量检测的主导地位,只是柱效较低,只有500~1000左右,分离复杂样品的能力差。杨绍英、陈志华在测定心痛定中两种残留溶剂时就分别用两种色谱条件,比较麻烦29。但填充柱仍然是我们的首要选择。张咏梅、洪铮在紫杉醇原料药中有机溶剂残留量的气相色谱分析中,应用GDX401填充柱同时检测甲醇、乙酸乙酯、二氯甲烷,方法准确可靠30。王卫、高立勤在测定盐酸莫索尼定有机溶剂残留量时以正丙醇为内标,用GDX-401填充柱测定乙醚和异丙醇的残留量,方法灵敏、准确、可信31。 邓湘昱也用GDX-401填充柱测定盐酸土霉素中残留甲醇,结果证明方法简单可靠32。黄剑英、顾以振用GDX-401填充柱、用恒温条件建立同时测定中国药典规定的7种溶剂的测定方法,方法分离度较好,准确可靠33。这些均说明填充柱在测定残留溶剂中的重要作用。近年来,毛细管柱应用越来越多,有取而代之的趋势。特别是近两年,文献报道关于残留溶剂测定的文章中,用毛细管柱测定的约占总数的90%,填充柱只占10%,由此可见其趋势。毛细管柱的理论塔板数约为10万左右,与填充柱相比柱效和灵敏度均要高的多,对复杂和微量残留溶剂的分析能力有极大的提高,所以选择毛细管柱一般都能解决分离问题。其中柱口直径为0153mm的大口径毛细管柱因其柱容量大尤其应用广泛。姚倩、李章万、张

色谱柱选择

氰基柱与C18柱都是以球形硅胶微粒(通过无孔硅胶聚集成)为基质,只不过氰基柱键合的有机分子中含有极性基团,吸附活性较空白硅胶低,常用于正相操作。氰基柱能与某些含有双键的化合物发生选择性相互作用,因而对双键异构体或含有不等量双键的环状化合物有更好的分离能力。所以在选择极性键合相的柱子中,氰基柱是首选。 氰基柱可用于非极性、弱极性和中等极性化合物分析,在反相模式下,其保留性弱于C18,但对强极性化合物的保留强于C18(C18基本不保留强极性化合物)。氰基柱还可用于正相模式。 所以C18与氰基柱能够分析的化合物有一定的重合,但是两者的选择性有很大不同。C18是目前适用范围最广的色谱柱,适用于非极性、弱极性和中等极性化合物分析,某些强极性化合物配合离子对流动相也可以用C18分析,C18为纯反相柱。通常来说,化合物在正辛醇-水中的分配系数有一定差异,C18就能很好的分离它们。氰基柱上有极性基团,所以它对化合物的极性相互作用的强弱是分离化合物的基础,一般,化合物上极性基团的种类、数量或位置有差异,往往就能在氰基柱上较好分离。 氨基和氰基柱的使用和保养 氰基柱的使用和保养 CN基柱作反相色谱,操作和维护和C18柱完全相同。CN柱用于反相条件时,CN键会水解,尤其是在pH1.5-7.0范围以外,在极端酸性和碱性条件下柱寿命会下降很快,如果在这个条件下使用,需要清洗一下,也需要用10倍柱体积溶液冲洗,如下:95%水/5%乙腈、THF 四氢呋喃、95%乙腈/5%水并保持95%乙腈/5%水继续冲洗,以低流速0.2-0.5mL/min过夜冲洗。在pH1.5-7.0条件时,也比较伤柱子,使用完以后要注意冲洗,可以参照上述方法,时间不需要那么长,可适当减少。柱子使用一定时间后,柱效下降,老化,也可如正相时清洗一下柱子恢复柱性能,清洗时用10倍柱体积的下列溶液冲洗:95%水/5%乙腈THF四氢呋喃95%乙腈/5%水再走流动相即可。 CN柱用于正相使用时没什么问题,当柱子使用一定时间后,柱效下降,柱子老化,可清洗一下恢复柱性能。清洗时用10倍柱体积的下列溶液冲洗:氯仿、异丙醇、二氯甲烷再走流动相即可。 如果在pH 2.0-5.0条件时用流动相平衡一下即可,这是最理想的pH范围。 CN柱子不使用时,可用异丙醇或正己烷保存,两端封好。流动相改变时要注意过渡,比如缓冲盐过渡到有机相时需要先用水冲洗再走有机相。

倍加福接近开关选型

倍加福接近开关选型 P+F接近开关选型德国倍加福接近开关选型接近开关选型电感式接近开关 "电感式传感器—可广泛用于对金属物体进行非接触式的高精度的位置测量的场合 基本品种:NBB、NBN、NEB、NCB、NJ、SJ、FJ、RJ、NMB系列。 外形:圆柱形、矩形、扁平形、槽形及环形、VaiKont(头部可转换)形。 感应范围:0.2-100mm 输入:AC、DC或AC/DC 输出:2、3或4线制、常开(NO)、常闭(NC)、常开常闭转换以及模拟量输出。输出电流:开关量输出(10-500mA)、模拟量输出(0-20mA)。 保护功能:具备极性保护、短路或过载保护、断路监视、过压保护 电容式接近开关 "电容式传感器—可用来检测包括金属和非金属物体在内的所有物体 基本品种:CJ系列 外形:圆柱形、矩形及扁平形。 感应范围:1-40mm 输入:AC、DC或AC/DC。 输出:开关量输出常开(NO)或常闭(NC),2,3或4线制。 保护功能:具有极性保护、短路保护。" 磁式传感器 "磁式传感器—能检测磁体(永磁体或电磁体)、铁磁体 基本品种:MJ系列、MB系列 外形:圆柱形及矩形 感应范围:25-60mm 输入:DC 输出:常开(NO)、常闭(NC)2线或3线制" 特殊传感器 说明:有耐高温型、防磁防焊型、金属检测无衰减型、材料选择型及增强型防护等级 IP68/IP69K、耐高压型350bar 等特殊传感器。欢迎来电来函索取更详细的资料。

选型对照如下: N B B 5 - 18 G M 50 - E2 (1)(2)(3)(4)(5)(6)(7)(8)(9) (1)用字母表示 N-电感式 C-电容式 M-磁式 R-环型(电感式) IA-模拟量(电感式) (2)用字母表示 B-基本系列 C-标准系列 J-原始系列 E-感应距离增大型(电感式) (3)用字母表示 B-齐平安装(电感式、电容式) N-非平安装(电感式、电容式) (4)用数字表示(mm) 0.2-100-开关距离(电感式) 10-43-环型传感器直径 2-30槽型传感器槽宽 (5)用数字(mm)或字母表示 圆柱型传感器直径采用数字表示 用字母F、F1、F2、F9、F10、F11、 F17、F29、F33、F41及V3,L1/L2 表等示各种形状的矩型传感器。 FP-方型(扁平型) U-感应头部可转换型(VariKont) (限位开关型) MIK-感应头部可转换型(小型限位开 关型)(VariKontM) (6)用字母表示 G-有螺纹 无字母-光杆 (7)用字母表示 M-金属外壳

安捷伦函数发生器使用详解

如何使用安捷论函数信号发生器(上) (原载《无线电》杂志07年第四期,因版面所限,现将“如何使用安捷伦函数信号发生器”详细原稿分上、下两部分登在网站上供读者学习) 在电子仿真软件MultiSIM 9的虚拟仪器工具条中,有三台跨国公司安捷伦仪器虚拟仪器,其中的安捷伦函数信号发生器由于功能多,操作比较复杂,在此对它的设置和使用方法作比较详细地介绍,以飨读者。 虚拟安捷伦函数信号发生器的面板各按钮、旋钮和输入、输出端口等被设计成和实物安捷伦函数信号发生器面板一模一样,这使我们坐在电脑前就能享受到在实验室操作高级仪器的愉悦,且无损坏仪器的担忧。图1是电子仿真软件MultiSIM 9中的虚拟安捷伦函数信号发生器面板图及各按钮的功能说明,它的型号是Agilent33120A,频宽为15MHz,不仅能产生一般的正弦波、方波、三角波和锯齿波,而且还能产生按指上升或下降的波形等一些特殊的波形,并且还可以由8~256点描述的任意波形。 图1 下面结合几个具体例子介绍虚拟函数信号发生器Agilent 33120A的用法: 一、选择波形和设置幅度操作: 按下“电源开关”(Power)按钮,屏幕默认显示正弦波幅值100.0mVpp~,见图1所示,且百位数“1”处于跳动状态,见鼠标箭头所指。这时可以按“单位输入”的“∧”、“∨”按钮逐步调整你所需要的正弦波百位数的幅度大小(注:面板上“单位输入”的上、下、左、右箭头和键盘上的上、下、左、右箭头通用,操作效果一样。);第二种方法是直接按键盘上的数字键,可以改变处于跳动位的数值;第三种方法是用鼠标按住“调节旋钮”作快速调整,顺时针增大,反之减小,适用大范围改变数据。百位数据调好后,按“单位输入”的“<”、“>”按钮,只要其它位的数字处于跳动状态,即可对该位数字实施上述调整;同样可以按“>”使“mVpp”跳动,配合“∧”、“∨”按钮或“调节旋钮”设置正弦波幅值单位大小,但只能在100mVpp、1.000Vpp和10.00Vpp三者之间选择。 按下“波形频率”(Freq)按钮,见图2中鼠标手指所指,屏幕默认显示正弦波频率为“1.0000000KHz~”,且个位数“1”处于跳动状态,这时可以对正弦波的频率进行调整,调整方法和上述完全一样,不再赘述。 若要选择波形只要分别用鼠标按下“方波”、“三角波”、“锯齿波”等按钮即可,并会在“KHz”右旁有相应的波形标志出现。

如何选择色谱柱

如何选择色谱柱,比较一下C-18及C-8柱的硅烷基质 C-18和C-8硅烷色谱柱是高效液相色谱(HPLC)中最常使用的色谱柱,而且,在美国市场上有多于100种C-18和C-8色谱柱出售。面对这么多可供选择的色谱柱,分析工作者很难从中选出适当的色谱柱来具体使用,同时更难选择出一根合适的替换柱。 对于非极性样品(如小分子芳烃)或弱极性样品(如对羟基苯甲酸酯),C-18和C-8色谱柱是最容易选择的。对于这类样品,色谱柱之间的主要差异在于保留因子(k);而在选择性方面却只有微小的差异。但对于极性和中等极性样品色谱柱的选择却相当困难。例如含氨基或酸性基团的药物化合物。分析工作者会发现极性样品在保留时间、选择性和峰形都有很大的差别。 色谱柱的选择性和峰形受到担体硅胶的影响远大于键合相的影响。另外,有研究报道在反相色谱中表面硅烷醇、硅酸及金属杂质的影响。在特殊情况下,选择性的差异可由填料制备时使用的键合过程决定的。 通常情况下,色谱工作者选择HPLC色谱柱是通过比较由色谱柱供应商所提供的填料介质的规格来决定的。这些规格内容包括:表面积、末端封尾、含碳量、颗粒形状、颗粒尺寸、孔径、孔容积、装填密度和键合度。含碳量和键合度仅由色谱制造商提供,没有这些规格使用者不可能计算出碳的克数,也不可能计算出一根色谱柱中键合相的微分子数。分析工作者可使用这两个数据来估计一根色谱柱的疏水性质。然而,即使制造商提供所有上述规格数据,使用者也不可能精确地预测出色谱柱对含有极性官能团的化合物的选择性。 由于色谱的保留时间是基于分析物和填充基质之间许多微妙的相互作用,我们建议使用混合物测试来比较填充基质的规格与性能。Engelhardt 和他的同伴回顾了硅烷反相色谱的特性,并且提出用溶解物试验来描述固定相的疏水性和亲硅基醇特性。另外有一些人也改进了测试条件和方法来解释那些色谱数据,但他们只测试了很少的商品色谱柱,并且在他们的测试混合物中没有羧酸。在本文中,我们使用了一个含有羧酸的测试混合物来收集了86根C-18和C-8硅烷色谱柱(见表1)的数据。我们将测试结果详细描述如下。表1:研究中所使用的色谱柱的生产商(略)。 在我们的比较中,我们使用了含有6种物质的测试混合物,此6种物质列于图1。每一种物质在测试混合物中都起特殊的作用。尿嘧啶是用于产生空体积。甲苯是测试色谱柱的疏水性。吡啶和N,N-二甲基苯胺是用来测试硅醇基对碱性物质的活性的碱性胺类物质。苯酚是一种弱酸,用于与吡啶联合起来确定活性担体硅的数量。4-正丁基苯甲酸是一种用于测试硅醇基对酸性物质的活性羧酸,此方面是色谱柱制造者开发碱性去活色谱柱来作胺类物质分析时经常忽略的。 我们使用的流动相是含有65%的乙腈和35%的浓度为0.05M的磷酸钾混合溶液,pH值为3.2。pH=3.2的缓冲溶液可使4-正丁基苯甲酸质子化,同时可提高吡啶和N,N-二甲基苯胺的保留时间的重现性。我们发现使用没有加缓冲溶液的流动相,如65%乙腈和35%水,即使我们使用同一瓶流动相,也无法得到重现性较好的保留时间和峰形。高离子强度的缓冲溶液,如本次测试所使用的0.05M的缓冲溶液,会抑制一些硅醇基的活性(2,5),但对于将胺从一些非碱性去活的反相色谱柱中洗脱下来,有一些抑制作用是必要的。 我们测试过另外两种缓冲溶液,但它们的作用均少于pH=3.2的0.05M磷酸钾溶液。0.01M 磷酸钾缓冲溶液在pH=3.2时,胺类化合物在有些色谱柱中产生前移峰。0.05M磷酸钾缓冲溶液在pH=7时,胺类物质产生的峰形比在pH=3.2时更好。吡啶和N,N-二甲基苯胺的pKa 均大约为5.2;因此,这些组分在pH=7时未质子化并且呈中性,同时并不与强酸性的硅醇基发生离子交换作用。 液相色谱柱原理

接近开关原理

接近开关原理 接近开关 一,电感式接近开关工作原理 电感式接近开关由三大部分组成:振荡器、开关电路及放大输出电路。振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的 电路板图: 原理图:

电感式接近开关传感器的选型及使用、调试方法 电感式接近开关由于其具有体积小,重复定位精度高,使用寿命长,抗干扰性能好,可靠性高,防尘,防油,乃振动等特点,被广泛用于各种自动化生产线,机电一体化设备及石油、化工、军工、科研等多种行业。 一.工作原理 电感式接近开关是一种利用涡流感知物体的传感器,它由高频振荡电路、放大电路、整形电路及输出电路组成。 振荡器是由绕在磁芯上的线圈而构成的LC振荡电路。振荡器通过传感器的感应面,在其前方产生一个高频交变的电磁场,当外界的金属物体接近这一磁场,并达到感应区时,在金属物体内产生涡流效应,从而导致LC振荡电路振荡减弱或停止振荡,这一振荡变化,被后置电路放大处理并转换为一个具有确定开关输出信号,从而达到非接触式检测目标之目的。 二.电感式接近开关传感器的电气指标 1.工作电压:是指电感式接近开关传感器的供电电压范围,在此范围内可以保证传感器的电气性能及安全工作。 2.工作电流:是指电感式接近开关传感器连续工作时的最大负载电流。

3.电压降:是指在额定电流下开关导通时,在开关两端或输出端所测量到的电压, 4.空载电流:是指在没有负载时,测量所得的传感器自身所消耗的电流。 5.剩余电流:是指开关断开时,流过负载的电流。 6.极性保护:防止电源极性误接的保护功能。 7.短路保护:超过极限电流时,输出会周期性地封闭或释放,直至短路被清除。 三.电感式接近开关传感器的选型 1.根据安装要求,合理选用外形及检测距离。 2.根据供电,合理选用工作电压。 3.根据实际负载,合理选择传感器工作电流。 国内、国际常用色线对照:(供参考) 类型国际国内 +V 棕红 GND 兰黑 Vout 黑绿 四.使用方法 1.直流两线制接近开关的ON状态和OFF状态实际上是电流大、小的变化,当接近开关处于OFF状态时,仍有很小电流通过负载,当接近开关处于ON状态时,电路上约有5V的电压降,因此在实际使用中,必须考虑控制电路上的最小驱动电流和最低驱动电压,确保电路正常工作。 2.直流三线制串联时,应考虑串联后其电压降的总和。 3.如果在传感器电缆线附近,有高压或动力线存在时,应将传感器的电缆线单独装入金属导管内,以防干扰。 4.使用两线制传感器时,连接电源时,需确定传感器先经负载再接至电源,以免损坏内部元件。当负载电流<3mA 时,为保证可靠工作,需接假负载。 R≤U S/(I L-3) P>U S2/R

示波器说明书安捷伦---2015.2.9

安捷伦示波器说明书 解决multisim仿真速度慢multisim11.0中仿真时间步长的设定方法 multisim10示波器的使用方法——同电子仿真软件MultiSIM 9中的虚拟示波器使用方法2011-06-13 22:16:43| 分类:IC -- 电子| 标签:|字号大中小订阅 电子仿真软件MultiSIM 9中的虚拟示波器使用方法 朱晓欣 (原载《无线电》杂志07年第五期) 在电子仿真软件MultiSIM 9中,除了虚拟双踪示波器和虚拟四踪示波器以外,还有两台高性能的先进示波器,它们分别是:跨国"安捷伦"公司的虚拟示波器"Agilent54622D"和美国"泰克"公司的虚拟数字存贮示波器"TektronixTDS2024"。本刊06年第五期曾对Multisim7中的安捷伦虚拟示波器设置和显示有过简单介绍,读者可以参阅该文相关内容。本文主要介绍安捷伦虚拟示波器的一些特殊其它功能和美国"泰克"公司的虚拟数字存贮示波器这两台高档次的示波器使用方法。 一、安捷伦虚拟示波器"Agilent54622D"的使用方法举例 Agilent54622D虚拟示波器的带宽为100MHz,具有两个模拟通道和16个逻辑通道。图一是它的放大面板图,它的各个开关、按钮及旋钮的排列和调节都和实物仪器完全一样,我们在自己的电脑里也能享受到使用高档次测量仪器的愉悦,且没有损坏仪器的担忧。

图一 一、显示基本波形操作(这里以模拟通道1为例说明) 首先在电子仿真软件MultiSIM 9电子平台上调出安捷伦虚拟函数信号发生器和安捷伦虚拟示波器各一台。并按图二连好电路;双击安捷伦虚拟函数信号发生器图标"XFG1"打开电源开关,不作任何设置使用它的默认值,即:频率1kHz,幅值100mVpp的正弦波(可参阅上期介绍)。

相关文档
最新文档