第3章 空间向量与立体几何 §3.2 立体几何中的向量方法 (三)—— 利用向量方法求距离

第3章  空间向量与立体几何   §3.2 立体几何中的向量方法  (三)—— 利用向量方法求距离
第3章  空间向量与立体几何   §3.2 立体几何中的向量方法  (三)—— 利用向量方法求距离

§3.2 立体几何中的向量方法(三) —— 利用向量方法求距离

知识点一 求两点间的距离

已知矩形ABCD 中,AB =4,AD =3,沿对角线AC 折叠,使面ABC 与面ADC 垂直,求BD 间的距离.

解 方法一

过D 和B 分别作DE ⊥AC 于E ,BF ⊥AC 于F , 则由已知条件可知AC =5, ∴DE =3×45=125,BF =3×45=12

5.

∵AE =AD 2AC =9

5=CF ,

∴EF =5-2×95=7

5,

∴DB =DE →+EF +FB →

.

|DB |2= (DE →+B 1E →+FB →)2=DE →2+EF 2+FB →2+2DE →·EF +2DE →·FB →+2EF ·FB →

. ∵面ADC ⊥面ABC ,而DE ⊥AC , ∴DE ⊥面ABC , ∴ DE ⊥BF, DE → ⊥FB →

,

|DB |2=DE →2+B 1E →2+FB →2=14425+4925+14425=337

25,

∴|DB |=

3375

. 故B 、D 间距离是337

5

. 方法二

同方法一.过E 作FB 的平行线EP ,以E 为坐标原点,以EP ,EC ,ED 所在直线分别为x 、y 、z 轴建立空间直角坐标系如图.

则由方法一知DE =FB =

125

, EF =7

5,∴D ????0,0,125,B ????125,75,0, ∴BD =????125,75,-125, | BD |=

????1252+????752+????-1252=3375

. 【反思感悟】 求两点间的距离或某线段的长度的方法: (1)把此线段用向量表示,然后用|a |2=a·a 通过向量运算去求|a |.(2)建立空间坐标系,利用空间两点间

的距离公式d =(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2求解.

如图所示,正方形ABCD ,ABEF 的边长都是1,而且平面ABCD ⊥平面ABEF ,点M 在AC 上移动,点N 在BF 上移动,若CM =BN =a(0<a < 2).

(1)求MN 的长;

(2)当a 为何值时,MN 的长最小. 解 (1)

建立如图所示的空间直角坐标系,则A(1,0,0),F(1,1,0),C(0,0,1) ∵CM =BN =a(0

且四边形ABCD 、ABEF 为正方形, ∴M(

22a,0,1-22a),N(22a ,2

2

a,0), ∴|MN →=(0,22a ,22a -1),∴|MN →

|=a 2-2a +1.

(2)由(1)知MN =(a -

22)2+1

2

, 所以,当a =

22时,MN =2

2

. 即M 、N 分别移到AC 、BF 的中点时,MN 的长最小,最小值为2

2

. 知识点二 求异面直线间的距离

如图所示,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,

已知AB =2,BB 1=2,BC =1,∠BCC 1=π

3

,求异面直线AB 与EB 1的距离.

解.以B 为原点,BA →、BA →

所在直线分别为y 、z 轴,如图建立空间直角坐标系. 由于BC =1,BB 1=2, AB =2,∠BCC 1=π

3

在三棱柱ABC —A 1B 1C 1中有B(0,0,0),A(0,0,2),B 1(0,2,0), 设

E (,,02

a ),由EA ⊥EB 1,得EA ·1EB =0

即?

???-

32,-a ,2·???

?-32,2-a ,0=0, 得????a -12????a -32=0,即a =12或a =3

2(舍去), 故E ??

?

?

32,12,0.

设n 为异面直线AB 与EB 1公垂线的方向向量, 由题意可设n

=(x ,y,0), 则有n ·1EB =0. 易得n =(3,1,0), ∴两异面直线的距离d =

BE n n

?

???

???

??

32,12,0·(3,1,0)3+1

=1.

【反思感悟】 求异面直线的距离,一般不要求作公垂线,若公垂线存在,则直接求解即可;若不存在,可利用两异面直线的法向量求解.

如图所示,在长方体ABCD —A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,M 、N 分别为DC 、BB 1的中点,求异面直线MN 与A 1B 的距离.

解 以A 为原点,AD 、AB 、AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系, 则A 1(0,0,2),B(0,4,0),M(3,2,0),N(0,4,1).

∴|MN →

=(-3,2,1),1A B =(0,4,-2).

设MN 、A 1B 公垂线的方向向量为 n =(x ,y ,z),

则10,0,

n MN n A B ??=???=?? 即?????

-3x +2y +z =04y -2z =0

.

令y =1,则z =2,x =4

3,

即n =????43,1,2,|n |=613

. 1MA =(-3,-2,2)在n 上的射影的长度为

d =

1MA n n

?,

故异面直线MN 与A 1B 的距离为661

61

.

知识点三 求点到平面的距离

在三棱锥B —ACD 中,平面ABD ⊥平面ACD ,若棱长AC =CD =AD =AB =1,且∠BAD =30°,求点

D

到平面ABC 的距离.

如图所示,以AD 的中点O 为原点,以OD 、OC 所在直线为x 轴、y 轴,过O 作OM ⊥面ACD 交AB 于M ,以直线OM 为z 轴建立空间直角坐标系,

则A ????-12,0,0,B ? ????3-12,0,12, C ?

??

?

0,

32,0,D ????12,0,0, ∴AC =???

?12,3

2,0,

AB =????32,0,12,DC =????-12,3

2,0,

设n =(x ,y ,z)为平面ABC 的一个法向量,

则31·0,221·0,2AB x z AC x y ??=+=?????

??==????

n n , ∴y =-

3

3

x ,z =-3x ,可取n =(-3,1,3), 代入d =

DC n n

?,得d

32+3213

=39

13,

即点D 到平面ABC 的距离是

3913

. 【反思感悟】 利用向量法求点面距,只需求出平面的一个法向量和该点与平面内任一点连线表示的向量,代入公式求解即可.

正方体ABCD —A 1B 1C 1D 1的棱长为4,M 、N 、E 、F 分别为A 1D 1、A 1B 1、C 1D 1、B 1C 1的中点,求平面AMN 平面与EFBD 间的距离.

解 如图所示,建立空间直角坐标系D —xyz ,则A(4,0,0),M(2,0,4),D(0,0,0),B(4,4,0),E(0,2,4),F(2,4,4),N(4,2,4),

从而EF =(2,2,0),MN →

=(2,2,0),

AM =(-2,0,4),BF →=(-2,0,4), ∴EF =MN →, AM =BF →

∴EF ∥MN ,AM ∥BF , ∴平面AMN ∥平面EFBD.

设n =(x ,y ,z)是平面AMN 的法向量,

从而·220,·

240,MN x y AM x z ??=+=????=-+=???n n

解得?

????

x =2z

y =-2z .

取z =1,得n =(2,-2,1), 由于AB 在n 上的投影为

n AB n

?=

-8

4+4+1

=-8

3.

∴两平行平面间的距离d =n AB

n

?=8

3

. 课堂小结:

1.求空间中两点A ,B 的距离时,当不好建系时利用|AB|=|AB |

=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2来求.

2.两异面直线距离的求法.如图(1),n 为l 1与l 2的公垂线AB 的方向向量, d =|AB |=|CD →·n |

|n |

.

3点B 到平面α的距离:|

BO |=

AB n n

?.(如图(2)所示)

4.面与面的距离可转化为点到面的距离.

一、选择题 1.若O 为坐标原点,

OA =(1,1, -2),OB =(3,2,8),

OC =(0,1,0),则线段AB 的中点P 到点C 的距离为

A.1652

B .214

C.53

D.53

2

答案 D

解析 由题意OP =(1-t )OA →=12(OA →+OB →

)=(2,32

,3),

PC →=OC →-OP =(1-t )OA →=(-2,-12,-3),PC =|PC →

|= 4+14+9=532

.

2.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面ABC 1D 1的距离是( )

A .12

B.24

C.

22 D.3

2 答案 B

解析 以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x,y,z 轴建立空间直角坐标系,则有D 1(0,0,1),D (0,0,0),A (1,0,0),B (1,1,0),A 1(1,0,1),C 1(0,1,1).因O 为A 1C 1的中点,所以O (

12,1

2

,1),1C O =(12, -12,0),设平面ABC 1D 1的法向量为 n=(x,y,z ),则有10,

0,

n AD n AB ??=???=??

即0,0,x z y -+=??=?

则 n = (1,0,1),

∴O 到平面ABC 1D 1的距离为:1C O n d n

?=

,

.

3.在直角坐标系中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成120°的二面角后,则A 、B 两点间的距离为( )

A .211 B.11

C.22 D .311 答案 A

解析 AB AE EF =++FB →

AB 2=AE 2+EF 2+FB →2+2AE ·EF +2AE ·FB →+2EF ·FB →

=9+25+4+2×3×2×1

2

=44.

∴|AB |=211.

4.已知正方体ABCD —A 1B 1C 1D 1的棱长为2,点E 是A 1B 1的中点,则点A 到直线BE 的距离是( ) A.655 B.455

C.255

D.55

答案 B 解析 如图所示,

BA =(2,0,0)

, BE =(1,0,2),

cos θ=

BA BE

BA BE

?=225=5

5

, ∴sin θ=1-cos 2θ=2

5

5,

455

.

A 到直线BE 的距离d =|-*6]·OC →

|sin θ=2×255=二、填空题

5.已知A (2,3,1),B (4,1,2),C (6,3,7),D (-5,-4,8),则点D 到平面ABC 的距离为________.

答案 491717

解析 设平面ABC 的法向量为n =(x ,y ,z ),

则0,0,

n AB n AC ??=???=?? 即?

????

(x ,y ,z )·(2,-

2,1)=0,(x ,y ,z )·(4,0,6)=0. ∴n =????-3

2,-1,1, 又

AD =(-7,-7,7).

∴点D 到平面ABC 的距离d =

AD n

n

?

=491717

.

6.在正方体ABCD —A 1B 1C 1D 1中,棱长为2,E 为A 1B 1的中点,则异面直线D 1E 和BC 1间的距离是________.

答案 263

解析 如图所示建立空间直角坐标系,设n 为异面直线D1E 与BC1公垂线的方向向量,并设

n =(x,y,z),则有

110,

0,

n BC n D E ??=??

?=?? 易求得n =(1, -2,1),

∴d=

11D C n

n

?=|(0,2,0)·(1,-2,1)|1+4+1

=46=26

3.

7.在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,点A 到平面A 1BD 的距离为________.

答案 3

3

a

解析 以D 为空间直角坐标原点,以DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立坐标系, 则D (0,0,0),A (a,0,0),B (a ,a,0),A 1(a,0,a ). 设n =(x ,y ,z )为平面A 1BD 的法向量,

则有10,0,

n DA n DB ??=???=??,

即?????

(x ,y ,z )(a ,0,a )=0,(x ,y ,z )(a ,a ,0)=0. ∴?

????

x +z =0,x +y =0,令x =1, ∴n =(1,-1,-1).

∴点A 到平面A 1BD 的距离

d =

DA n

n

?=

a 3=33

a . 三、解答题

8.如图所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截而得到的,其中AB =4,BC =2,CC 1=3,BE =1.

(1)求BF 的长;

(2)求点C 到平面AEC 1F 的距离.

解 (1)建立如图所示的空间直角坐标系,

6.2 立体几何中的向量方法(A卷提升篇)【解析版】

专题6.2 立体几何中的向量方法(A 卷基础篇)(浙江专用) 参考答案与试题解析 第Ⅰ卷(选择题) 一.选择题(共10小题,满分50分,每小题5分) 1.(2020·全国高二课时练习)已知(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则下列向量是平面ABC 法向量的是( ) A .(1,1,1)- B .(1,1,1)- C .? ? ? ??? D .?? ? ??? 【答案】C 【解析】 (1,1,0),(1,0,1)AB AC =-=-, 设(,,)n x y z =为平面ABC 的法向量, 则00n AB n AC ??=??=? ,化简得00x y x z -+=??-+=?, ∴x y z ==,故选C. 2.(2020·全国高二课时练习)空间直角坐标中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB 与CD 的位置关系是( ) A .平行 B .垂直 C .相交但不垂直 D .无法确定 【答案】A 【解析】 ∵空间直角坐标系中, A (1,2,3), B (﹣1,0,5), C (3,0,4), D (4,1,3), ∴AB =(﹣2,﹣2,2),CD =(1,1,﹣1), ∴AB =﹣2CD , ∴直线AB 与CD 平行. 故选A .

3.(2020·全国高二课时练习)已知平面α的法向量为(2,2,1)n =--,点(,3,0)A x 在平面α内,则点(2,1,4)P -到平面α的距离为 103,则x =( ) A .-1 B .-11 C .-1或-11 D .-21 【答案】C 【解析】 (2,2,4)PA x =+-,而103n d n PA ?= =, 103=,解得1x =-或-11. 故选:C 4.(2020·全国高二课时练习)已知向量,m n 分别是直线l 和平面α的方向向量和法向量,若 1cos ,2 m n =-,则l 与α所成的角为( ) A .030 B .060 C .0120 D .0150 【答案】A 【解析】 设线面角为θ,则1sin cos ,,302 m n θθ=??==. 5.(2020·全国高二课时练习)设直线l 与平面α相交,且l 的方向向量为a ,α的法向量为n ,若2,3a n π= ,则l 与α所成的角为( ) A .23π B .3π C .6π D .56 π 【答案】C 【解析】 结合题意,作出图形如下:

(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法 平行垂直问题基础知识 (1) 线面平行: l ∥α? a ⊥u? a ·u =0? a 1a 3+ b 1b 3+c 1c 3= 0 (2) 线面垂直: l ⊥α? a ∥u? a =ku? a 1=ka 3,b 1= kb 3,c 1=kc 3 (3) 面面平行: α∥β? u ∥v? u =kv? a 3=ka 4,b 3=kb 4,c 3=kc 4 (4) 面面垂直: α⊥β? u ⊥v? u ·v = 0? a 3a 4+b 3b 4+c 3c 4=0 例 1、如图所示,在底面是矩形的四棱锥 P-ABCD 中, PA ⊥底面 ABCD , 的中点, PA =AB =1, BC =2. (1) 求证: EF ∥平面 PAB ; (2) 求证:平面 PAD ⊥平面 PDC. [证明] 以 A 为原点, AB ,AD ,AP 所在直线分别为 x 轴,y 轴,z 轴,建立 空 A(0,0,0),B(1,0,0),C(1,2,0), D(0,2,0),P(0,0,1),所以 E 12,1,12 , uuur uuur uuur 1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0), uuur ∥AB ,即 EF ∥AB. 又 AB? 平面 PAB , EF? 平面 PAB ,所以 EF ∥平面 PAB. uuur uuur uuur uuur (2)因为 AP ·DC =(0,0,1) (1,0·,0)= 0, AD ·DC =(0,2,0) (1,0·,0)=0, uuur uuur uuur uuur 所以 AP ⊥ DC , AD ⊥ DC ,即 AP ⊥DC ,AD ⊥DC. 又 AP ∩ AD = A ,AP? 平面 PAD ,AD? 平面 PAD ,所以 DC ⊥平面 PAD.因为 DC? 平面 PDC , 直线 l 的方向向量为 a =(a 1,b 1,c 1).平面 α, β的法向量 u = (a 3,b 3,c 3), v =(a 4,b 4,c 4) 1 uuur 1 uuur F 0 , 1, 2 ,EF = -2, 0, 0 ,PB = (1,0, uuur uuur E , F 分别是 PC , PD 间直角坐标系如图所示,则 DC =(1,0,0), AB =(1,0,0). uuur 1uuur uuur (1)因为 EF =- 2AB ,所以 EF

利用空间向量解立体几何 完整版

向量法解立体几何 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离

点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法

立体几何中的向量方法

立体几何中的向量方法(二)——求空间角和距离 1. 空间向量与空间角的关系 (1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小 1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉. 2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 2. 点面距的求法 如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到 平面α的距离d =|AB → ·n | |n | . 1. 判断下面结论是否正确(请在括号中打“√”或“×”)

(1)两直线的方向向量所成的角就是两条直线所成的角. ( × ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ( × ) (3)两个平面的法向量所成的角是这两个平面所成的角. ( × ) (4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π 2],二面角的 范围是[0,π]. ( √ ) (5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°. ( √ ) (6)若二面角α-a -β的两个半平面α、β的法向量n 1,n 2所成角为θ,则二面角α- a -β的大小是π-θ. ( × ) 2. 已知二面角α-l -β的大小是π 3 ,m ,n 是异面直线,且m ⊥α,n ⊥β,则m ,n 所成 的角为 ( ) A.2π3 B.π 3 C.π 2 D. π6 答案 B 解析 ∵m ⊥α,n ⊥β, ∴异面直线m ,n 所成的角的补角与二面角α-l -β互补. 又∵异面直线所成角的范围为(0,π 2], ∴m ,n 所成的角为π 3 . 3. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),

空间向量与立体几何(整章教案)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教

材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 ②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合, 则这些向量叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平 行直线;当我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与

空间向量与立体几何知识总结

已知两异面直线 b a,,,,, A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ? = u u u r u u u r u u u r u u u r 例题 【空间向量基本定理】 例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。 如图所示,取PC的中点E,连接NE,则。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。 (1)证明:PA方形ABCD—中,E、F分别是,的中点,求:(1)异面直线AE与CF所成角的余弦值; (2)二面角C—AE—F的余弦值的大小。

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。 (2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即 或 (3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。 【用空间向量求距离】 例4.长方体ABCD —中,AB=4,AD=6,,M 是A 1C 1的中点,P 在线段BC 上,且|CP|=2,Q 是DD 1的中点, 求: (1)异面直线AM 与PQ 所成角的余弦值; (2)M 到直线PQ 的距离; (3)M 到平面AB 1P 的距离。 本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。 (1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元 一次方程,联立后取其一组解。 (2)线面角的求法:设n 是平面的一个法向量,AB 是平面 的斜线l 的一个方向向量,则直线与平面 所成 角为n AB n AB ??= θθsin 则 (3)二面角的求法:①AB,CD 分别是二面角 的两个面内与棱l 垂直的异面直线,则二面角的大小为

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

立体几何中的向量方法总结

立体几何中的向量方法基础篇一(几何证明) 一.求直线方向向量 1.已知()()4,2,2,2,1,1B A -且),,6(y x a =为直线AB 的方向向量,求y x ,。 二.平面的法向量 2.在空间中,已知()()()0,1,1,1,1,0,1,0,1C B A ,求平面ABC 的一个法向量。 3.如图,在四棱锥ABCD P -中,底面ABCD 为正方形, 2,==⊥DC PD ABCD PD 平面,E 为PC 中点 (1)分别写出平面PDC ABCD PAD ,,的一个法向量; (2)求平面EDB 的一个法向量; (3)求平面ADE 的一个法向量。 三.向量法证明空间平行与垂直 1.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,M AF AB ,1,2== 为EF 的中点,求 证:BDE AM 平面//

2. 如图,正方体''''D C B A ABCD -中,F E ,分别为CD BB ,'的中点,求证:ADE F D 平面⊥'。 3. 如图,在四棱锥ABCD E -中,BCE CD BCE AB 平面平面⊥⊥, 0120,22=∠====BCE CD CE BC AB ,求证:平面ABE ADE 平面⊥。 巩固练习: 1. 如图,在正方体''''D C B A ABCD -中,P 是'DD 的中点,O 是底面ABCD 的中心, (1)求证:O B '为平面PAC 的一个法向量;(2)求平面CD B A ''的一个法向量。

2. 如图,在直棱柱'''C B A ABC -中,4',5,4,3====AA AB BC AC (1)求证:'BC AC ⊥ (2)在AB 上是否存在点D ,使得'//'CDB AC 平面,若存在,确定D 点位置,若不存在,说明理由。 3. 如图,已知长方体''''D C B A ABCD -中,2==BC AB ,E AA ,4'=为'CC 的上的点,C B BE '⊥, 求证:BED C A 平面⊥' 4. 在三棱柱'''C B A ABC -中,1',2,,'===⊥⊥AA BC AB BC AB ABC AA 平面,E 为'BB 的中点,求证:C C AA AEC '''平面平面⊥

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

高中数学讲义微专题64 空间向量解立体几何(含综合题习题)

微专题64 利用空间向量解立体几何问题 一、基础知识 (一)刻画直线与平面方向的向量 1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =-- 2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线 (2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组: 1112220 x y z x y x y z x y z z ++=?? ++=? 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量 解:设(),,n x y z =,则有20230x y x y z +=??++=? ,解得:2x y z y =-??=? ::2:1:1x y z ∴=- ()2,1,1n ∴=- (二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面 ,αβ的法向量) 1、判定类 (1)线面平行:a b a b ?∥∥ (2)线面垂直:a b a b ⊥?⊥ (3)面面平行:m n αβ?∥∥ (4)面面垂直:m n αβ⊥?⊥ 2、计算类: (1)两直线所成角:cos cos ,a b a b a b θ?==

用向量方法解立体几何的的题目

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin | ||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内

面角l αβ--的平面角α=arccos |||| a b a b 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n 2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. a 、 b 分别为异面直线a 、b 的方向 法二:在a 上取一点A, 在b 上取一点B, 设 向量,求n (n a ⊥,n b ⊥),则 异面直线a 、b 的距离

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

(精心整理)高中数学:向量法解立体几何总结

向量法解立体几何 1、直线的方向向量和平面的法向量 ⑴.直线的方向向量: 若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量: 若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作 n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量. ⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系. ②设平面α的法向量为(,,)n x y z =. ③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组0 n a n b ??=???=??. ⑤解方程组,取其中一组解,即得平面α的法向量. 2、用向量方法判定空间中的平行关系 ⑴线线平行。设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈. ⑵线面平行。设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明 a u ⊥,即0a u ?=. ⑶面面平行。若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 3、用向量方法判定空间的垂直关系 ⑴线线垂直。设直线12,l l 的方向向量分别是a b 、 ,则要证明12l l ⊥,只需证明a b ⊥,即0a b ?=. ⑵线面垂直 ①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明

a ∥u ,即a u λ=. ②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、 ,若0 ,.0 a m l a n α??=?⊥? ?=??则 ⑶面面垂直。 若平面α的法向量为u ,平面β的法向量为v ,要证αβ⊥,只需证u v ⊥,即证0u v ?=. 4、利用向量求空间角 ⑴求异面直线所成的角 已知,a b 为两异面直线,A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BD AC BD θ?= ⑵求直线和平面所成的角 求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为?, 则θ为?的余角或?的补角 的余角.即有:cos s .in a u a u ?θ?== ⑶求二面角 二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角. 如图: 求法:设二面角l αβ--的两个半平面的法向量分别为m n 、 ,再设m n 、的夹角为?,二面角l αβ--的平面角为θ,则二面角θ为m n 、 的夹角?或其补角.π?- 根据具体图形确定θ是锐角或是钝角: 如果θ是锐角,则cos cos m n m n θ??== , 即arccos m n m n θ?=; O A B O A B l

立体几何中的向量方法—证明平行和垂直

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积 的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与 垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】理解空间向量的概念;掌握空间向量的运算方法 在四棱锥 设直线,则 v

的正方体 I 2. 如图,在棱长为a (1) 试证:A1、G、C三点共线; (2) 试证:A1C⊥平面 3.【改编自高考题】如图所示,四棱柱 的正方形,侧棱A (1)证明:AC⊥A1B; (2)是否在棱A1A上存在一点P,使得C1【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问? 2017届高二数学导学案编写邓兴明审核邓兴明审批

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 【教学重点】灵活地运用各种方法求空间角 【教学难点】灵活地运用各种方法求空间角 —l—β的两个面α,β的法向量,则向量 的大小就是二面角的平面角的大小(如图②③). 【课堂合作探究】 利用向量法求异面直线所成的角 B1C1,∠ACB=90°,CA=CB=CC1,D 的正方体ABCD—A1B1C1D1中,求异面直线

向量法解立体几何

中山二中2011届空间向量解立体几何 一、空间直角坐标系的建立及点的坐标表示 (1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底 叫单位正交基底,用{,,}i j k 表示; (2)在空间选定一点O 和一个单位正交基底 {,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正 方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -, 点O 叫原点,向量,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为 xOy 平面,yOz 平面,zOx 平面。 (3)作空间直角坐标系O xyz -时,一般使135xOy ∠=(或45),90yOz ∠=; (4)在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系规 定立几中建立的坐标系为右手直角坐标系 (5)空间直角坐标系中的坐标:如图给定空间直角坐 标系和向量 a ,设,,i j k 123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 作向量a 在空间直角坐标系O xyz -123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任 一点A ,存在唯一的有序实数组(,,)x y z ,使 OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的 坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,) a b a b a b a b -=---, 123(,,)()a a a a R λλλλλ=∈, 112233//,,()a b a b a b a b R λλλλ?===∈, (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?=11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设,是空间两个非零向量,我们把数量><,cos |||| 规定:零向量与任一向量的数量积为0。 2、模长公式 2| |a a a x =?=+3、两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2 ||(AB AB = =, 或,A B d = 4、夹角:cos |||| a b a b a b ??= ?. 注:①0(,a b a b a b ⊥??=是两个非零向量); ②2 2||a a a a =?=。 5、 空间向量数量积的性质: ①||cos ,a e a a e ?=<>.②0a b a b ⊥??=.③2||a a a =?.

利用空间向量解立体几何完整

利用空间向量解立体几何(完整版)

————————————————————————————————作者:————————————————————————————————日期:

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 基本思路与方法 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为222212121()()()PQ x x y y z z =-+-+-u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 002 2 Ax By C A B +++ 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

相关文档
最新文档