ARIMA模型预测

ARIMA模型预测
ARIMA模型预测

基于ARIMA模型下的时间序列分析与预测

龙源期刊网 https://www.360docs.net/doc/8014422251.html, 基于ARIMA模型下的时间序列分析与预测 作者:万艳苹 来源:《金融经济·学术版》2008年第09期 摘要:大多数的时间序列存在着惯性,或者说具有迟缓性。通过对这种惯性的分析,可以由时间序列的当前值对其未来值进行估计。本文以1949年到2004年江苏省社会消费品零售总额数据为研究对象,将这些数据平稳化并做分析,发现ARIMA(1,1,2)模型能比较好的对江苏省社会消费品零售总额进行市时间序列分析和预测,。 关键词:ARIMA;江苏省消费品零售总额;时间序列分析 一、引言 江苏省是一个经济大省,经济一直保持平稳较快增长,城乡居民收入都位于全国前茅,消费品需求旺盛,人们生活水平比较高。其中社会消费品零售总额是反映人民生活水平提高的一个很好的指标。所以对社会消费品零售总额做分析就比较重要。但是影响社会消费品零售总额的因素有很多,包括收入、住房、医疗、教育以及人们的预期等很多因素,而且这些因素之间又保持着错综复杂的联系。因此运用数理经济模型来分析和预测较为困难。所以本文采用ARIMA模型对江苏省的社会消费品零售总额进行分析,得出其规律性,并预测其未来值。 二、ARIMA模型的说明和构建 ARIMA模型又称为博克斯-詹金斯模型。ARIMA模型是由三个过程组成:自回归过程(AR(p));单整(I(d));移动平均过程(MA(q))。AR(p)即自回归过程,是指一个过程的当前值是过去值的线性函数。如:如果当前观测值仅与上期(滞后一期)的观测值有显著的线性函数关系,则我们就说这是一阶自回归过程,记作AR(1)。推广之,如果当前值与滞后p期的观测值都有线性关系则称p阶自回归过程,记作AR(p)。MA(q),即移动平均过程,是指模型值可以表示为过去残差项(即过去的模型拟合值与过去观测值的差)的线性函数。如:MA(1)过程,说明时间序列受到滞后一期残差项的影响。推广之,MA(q)是指时间序列受到滞后q期残差项的

arima模型

ARIMA模型(英语:A uto r egressive I ntegrated M oving A verage model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),是时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是“自回归”,p为自回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。“差分”一词虽未出现在ARIMA的英文名称中,却是关键步骤。简介 对时间序列数据进行分析和预测比较完善和精确的算法是博克 思-詹金斯(Box-Jenkins)方法,其常用模型包括:自回归模型(AR 模型)、滑动平均模型(MA模型)、(自回归-滑动平均混合模型)ARMA模型、(差分整合移动平均自回归模型)ARIMA模 型。 ARIMA(p,d,q)模型是ARMA(p,q)模型的扩展。 ARIMA(p,d,q)模型可以表示为: 其中L是滞后算子(Lag operator), 定义 非平稳时间序列,在消去其局部水平或者趋势之后,其显示出 一定的同质性,也就是说,此时序列的某些部分与其它部分很相似。这种非平稳时间序列经过差分处理后可以转换为平稳时间序

列,那称这样的时间序列为齐次非平稳时间序列,其中差分的次数就是齐次的阶。 将记为差分算子,那么有 对于延迟算子,有 因此可以得出设有d阶其次非平稳时间序列,那么有是平稳时间序列,则可以设其为ARMA(p,q)模型,即其中 , 分别为自回归系数多项式和滑动平均系数多项式。为零均值白噪声序列。可以称所设模型为自回归求和滑动平均模型,记为ARIMA(p,d,q)。 当差分阶数d为0时,ARIMA模型就等同于ARMA模型,即这两种模型的差别就是差分阶数d是否等于零,也就是序列是否平稳,ARIMA模型对应着非平稳时间序列,ARMA模型对应着平稳时间序列。 建立ARIMA模型的方法步骤 1.时间序列的获取 时间序列的获取可以通过实验分析获得,亦或是相关部门的统计数据。对于得到的数据,首先应该检查是否有突兀点的存在,分析这些点的存在是因为人为的疏忽错误还有有其它原因。保证所获得数据的准确性是建立合适模型,是进行正确分析的第一步保障。 2.时间序列的预处理

实验三:ARIMA模型建模与预测实验报告

课程论文 (2016 / 2017学年第 1 学期) 课程名称应用时间序列分析 指导单位经济学院 指导教师易莹莹 学生姓名班级学号 学院(系) 经济学院专业经济统计学

实验三ARIMA 模型建模与预测实验指导 一、实验目的: 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念: 所谓ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,我们主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验任务: 1、实验内容: (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。 2、实验要求: (1)深刻理解非平稳时间序列的概念和ARIMA 模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA 模型;如何利用ARIMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。 四、实验要求: 实验过程描述(包括变量定义、分析过程、分析结果及其解释、实验过程遇到的问题及体会)。 实验题:对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。

股票预测模型【运用ARIMA模型预测股票价格】

股票预测模型【运用ARIMA模型预测股票价格】 [摘要]ARIMA模型是时间序列中十分常见和常用的一种模型,应用与经济的各个领域。本文基于ARIMA模型,采用了莱宝高科近67个交易日的数据,对历史数据进行分析,并且在此基础上做出一定的预测,试图为现实的投资提供一些参考信息。[关键字]ARIMA模型;股价预测;莱宝高科一、引言时间序列分析是从一段时间上的一组属性值数据中发现模式并预测未来值的过程。ARIMA模型是目前最常用的用于拟合非平稳序列的模型,对于满足有限参数线形模型的平稳时间序列的分析,ARIMA在理论上已趋成熟,它用有限参数线形模型描述时间序列的自相关结构,便于进行统计分析与数学处理。有限参数线形模型能描述的随机现象相当广泛,模型拟合的精度能达到实际工程的要求,而且由有限参数的线形模型结构可推导出适用的线形预报理论。利用ARIMA 模型描述的时间序列预报问题在金融,股票等领域具有重要的理论意义。本文将利用ARIMA模型结合莱宝高科的数据建立模型,并运用该模型对莱宝的股票日收盘价进行预测。二、ARIMA模型的建立 2.1ARIMA模型简介ARIMA是自回归移动平均结合模型的简写形式,用于平稳序列或通过差分而平稳的序列分析,简记为ARIMA(p,d,q)用公式表示为:△dZt=Xt=ψ1Xt-1+ψ2Xt-2+?+ψpXt-p+at-θ1at-1-θ2at-2-?-θqat-q 其中,p、d、q分别是自回归阶数、差分阶数和滑动平均阶数;Zt是时间序列;Xt是经过d阶差分后的时间序列值;at-q是时间为t-q的随机扰动项;ψp、θq分别是对应项前的系数。 2.2模型建立流程(1)平稳性检验以2010-3-4到2010-6-10的“莱宝高科”(002106)股票的收盘价作为模型的数据进行建立时间序列模型:做出折线图观察数据的特征:进行单位根检验,判别序列是否为平稳序列;若一阶差分后的数据为平稳序列,可以建立时间序列模型。说明原数据为一阶单整。(2)模型的选择和参数的估计根据数据的平稳性特征,初步确定建立ARIMA模型。观察一阶差分以后的序列的自相关函数和偏自相关

ARIMA模型在SPSS中的推算过程

1 ARIMA The ARIMA procedure computes the parameter estimates for a given seasonal or non-seasonal univariate ARIMA model. It also computes the fitted values, forecasting values, and other related variables for the model. Notation The following notation is used throughout this chapter unless otherwise stated: y t (t =1, 2, ..., N ) Univariate time series under investigation N Total number of observations a t (t = 1, 2, ... , N ) White noise series normally distributed with mean zero and variance σa 2 p Order of the non-seasonal autoregressive part of the model q Order of the non-seasonal moving average part of the model d Order of the non-seasonal differencing P Order of the seasonal autoregressive part of the model Q Order of the seasonal moving-average part of the model D Order of the seasonal differencing s Seasonality or period of the model φp B () AR polynomial of B of order p , φ???p p p B B B B ()...=????1122 θq B () MA polynomial of B of order q , θ???q q q B B B B ()...=????1122 ΦP B () SAR polynomial of B of order P , ΦΦΦΦP P P B B B B ()...=????1122 ΘQ B () SMA polynomial of B of order Q , ΘΘΘΘQ Q Q B B B B ()...=????1122 ? Non-seasonal differencing operator ?=?1B ?s Seasonal differencing operator with seasonality s , ?=?s s B 1 B Backward shift operator with By y t t =?1and Ba a t t =?1

季节ARIMA模型建模与预测实验指导

季节ARIMA模型建模与预测实验指导

————————————————————————————————作者: ————————————————————————————————日期: ?

实验六季节ARIMA模型建模与预测实验指导 学号:20131363038 姓名:阙丹凤班级:金融工程1班 一、实验目的 学会识别时间序列的季节变动,能看出其季节波动趋势。学会剔除季节因素的方法,了解ARIMA模型的特点和建模过程,掌握利用最小二乘法等方法对ARIMA模型进行估计,利用信息准则对估计的ARIMA模型进行诊断,以及如何利用ARIMA模型进行预测。掌握在实证研究如何运用Eviews软件进行ARIMA模型的识别、诊断、估计和预测。 二、实验内容及要求 1、实验内容: 根据美国国家安全委员会统计的1973-1978年美国月度事故死亡率数据,请选择适当模型拟合该序列的发展。 2、实验要求: (1)深刻理解季节非平稳时间序列的概念和季节ARIMA模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA模型;如何利用ARIMA模型进行预测; (3)熟练掌握相关Eviews操作。 三、实验步骤 第一步:导入数据 第二步:画出时序图

6,000 7,000 8,000 9,000 10,000 11,000 12,000 510152025303540455055 606570 SIWANGRENSHU 由时序图可知,死亡人数虽然没有上升或者下降趋势,但由季节变动因素影响。 第三步:季节差分法消除季节变动 由时序图可知,波动的周期大约为12,所以对原序列作12步差分,得到新序列如下图所示。

数学建模预测股市走向

2012年A股市场涨跌预测 摘要 本文主要解决了预估未来一年时间内A股市场的涨跌变化的问题。 首先通过收集2011年的上证A股指数每天开盘后的收盘价,对其进行分析处理,作出A股收盘价指数的走势图观察后,然后对数据作级比分析,得知一部分级比数据不在区间() 0.9474中,故先对数据进行变换,变换后的数据 , 1.0555 的级比都落在了上述区间中。然后通过分析建立灰色预测)1,1( GM模型,代入数据求解模型,并进行参数检验,先进行残差检验,得出预测模型的精度为:96.69%;然后进行相关度检验,检验合格;但是在进行后验差检验中的小概率检验时不合格,故又对模型进行残差修正后,用修正模型预测出2012年的上证A股指数的收盘价,但是由于灰色预测模型在预测长期数据时误差有可能增大,故用2011年的实际数据与用灰色预测模型预测2011年收盘价值之间的误差值修正了2012年A股指数的预测值。为使预测值更准确,又采用了马尔科可夫链模型预测出每天的涨幅情况来进一步修正预测值,得到了更精确的预测结果。预测上证A 股指数在2012年233天的收盘价分别为:2236.5 2221.5…1574.7 1601.9。其收盘价走势图为: 关键词:A股灰色预测马尔可夫链模型预测

问题重述 未来一年时间A股市场涨跌的评估预计 A股即人民币普通股票,是中国大陆机构和个人投资的主要股票。A股市场的涨跌受经济形势,国家政策,外部环境以及投资者心态等多个因素影响。2011年A股市场的上证指数和深成指数都出现暴跌,使投资者蒙受了很大的损失。 请查阅网上的资料和数据。建立数学模型,定量分析并预估未来一年时间内A股市场的涨跌变化。 符号说明 α----------为发展灰度数 μ---------为内生控制灰度 )(t X------表示在时间244 ... 2,1 ,= t t时的股票收盘价 r----------表示关联度 S1-------- 表示序列)(t X的标准差 S2--------表示绝对误差序列的标准差 C----------表示方差比 A i---------表示对数据划分区间,244) 1,2, (i? = p ij --------表示第i状态转移到第j状态的概率18 .... 2,1 ,= j i I0------------表示时刻0处于状态18 ... 2,1 = j的概率 i k j1+-----------表示经过k步转移后处于状态18 ... 2,1 = j的概率 模型假设 (1)运用的数据的来源是有效的,在统计过程中无错误 (2)假设无人为操纵股市的走向,为随机数据 (3)假设2009年到2011年无统计数据的日期为股市休息日 模型分析 一、问题的分析 因为A股指数包括上证A股指数与深成A股指数,选择其中一个进行分析即可,所以就不妨选择上证A股指数2011年1月4日到2011年12月30日的每天

基于BP网络的股票数据预测模型

基于BP网络的股票数据 预测模型 姓名:江政 班级:控制2015级 学号:2015028081100015 2016 年6月 26日

需求分析和网络结构设计 根据我们对自然神经系统的构造和机理的认识,神经系统是由大量的神经细胞(神经元)构成的复杂的网络,人们对这一网络建立一定的数学模型和算法,设法使它能够实现诸如基于数据的模式识别,函数映射等带有“智能”的功能,这种网络就是神经网络。其中,BP (Back Propagation )神经网络是1986年由Rumelhart 和McCelland 为首的科学家小组提出,是一种按误差反向传播算法训练的多层前馈网络。BP 网络能学习和存贮大量的输入—输出模式映射关系,而 其他神经网络具有重要作用。 针对150组股票数据进行拟合(详细数据请见《附件1》),选取其中的开盘、最高、最低、收盘和成交次数五组数据,用当日的这五组数据来预测次日的收盘数据,从而等效建立一个股票数据预测模型。采用包括输入层、隐含层和输出层的三层BP 网络结构,如图1所示,输入层包含五个神经元,隐含层包含三个神经元,输出层为一个神经元。其中,隐含层神经元的激活函数采用非对称型Sigmoid 函数,函数表达式为:))exp(1/(1)(x x f -+=,输出层神经元的激活函数采用线性函数,表达式为:x x f =)(。将150组数据分为三等份,其中两份作为训练样本,用来对网络进行训练学习;另外一份作为测试样本,用来检验所训练出的网络的泛化能力。采用BP 算法对隐含层和输出层权值进行修正,以达到计算输出和实际样本输出相差最小,最终实现较精确预测的目的。 图1 预测模型的网络结构

AR,MA,ARIMA模型介绍及案例分析

BOX-JENKINS 预测法 1 适用于平稳时序的三种基本模型 (1)()AR p 模型(Auto regression Model )——自回归模型 p 阶自回归模型: 式中,为时间序列第时刻的观察值,即为因变量或称被解释变量;, 为时序的滞后序列,这里作为自变量或称为解释变量;是随机误 差项;,,,为待估的自回归参数。 (2)()MA q 模型(Moving Average Model )——移动平均模型 q 阶移动平均模型: 式中,μ为时间序列的平均数,但当{}t y 序列在0上下变动时,显然μ=0,可删除此项;t e ,1t e -,2t e -,…,t q e -为模型在第t 期,第1t -期,…,第t q -期 的误差;1θ,2θ,…,q θ为待估的移动平均参数。 (3)(,)ARMA p q 模型——自回归移动平均模型(Auto regression Moving Average Model ) 模型的形式为: 显然,(,)ARMA p q 模型为自回归模型和移动平均模型的混合模型。当q =0,时,退化为纯自回归模型()AR p ;当p =0时,退化为移动平均模型()MA q 。 2 改进的ARMA 模型 (1)(,,)ARIMA p d q 模型 这里的d 是对原时序进行逐期差分的阶数,差分的目的是为了让某些非平稳(具有一定趋势的)序列变换为平稳的,通常来说d 的取值一般为0,1,2。 对于具有趋势性非平稳时序,不能直接建立ARMA 模型,只能对经过平稳化处理,而后对新的平稳时序建立(,)ARMA p q 模型。这里的平文化处理可以是差分处理,也可以是对数变换,也可以是两者相结合,先对数变换再进行差分处理。 (2)(,,)(,,)s ARIMA p d q P D Q 模型 对于具有季节性的非平稳时序(如冰箱的销售量,羽绒服的销售量),也同样需要进行季节差分,从而得到平稳时序。这里的D 即为进行季节差分的阶数; ,P Q 分别是季节性自回归阶数和季节性移动平均阶数;S 为季节周期的长度, 如时序为月度数据,则S =12,时序为季度数据,则S =4。 在SPSS19.0中的操作如下

R 语言环境下用ARIMA模型做时间序列预测

R 语言环境下使用ARIMA模型做时间序列预测 1.序列平稳性检验 通过趋势线、自相关(ACF)与偏自相关(PACF)图、假设检验和因素分解等方法确定序列平稳性,识别周期性,从而为选择适当的模型提供依据。 1.1绘制趋势线 图1 序列趋势线图 从图1很难判断出序列的平稳性。 1.2绘制自相关和偏自相关图

图2 序列的自相关和偏自相关图

从图2可以看出,ACF拖尾,PACF1步截尾(p=1),说明该现金流时间序列可能是平稳性时间序列。 1.3 ADF、PP和KPSS 检验平稳性 图3 ADF、PP和KPSS检验结果 通过ADF检验,说明该现金流时间序列是平稳性时间序列(p-value for ADF test <0.02,拒绝零假设).pp test和kpss test 结果中的警告信息说明这两种检验在这里不可用。但是这些检验没有充分考虑趋势、周期和季节性等因素。下面对该序列进行趋势、季节性和不确定性因素分解来进一步确认序列的平稳性。 1.4 趋势、季节性和不确定性因素分解 R 提供了两种方法来分解时间序列中的趋势、季节性和不确定性因素。第一种是使用简单的对称过滤法,把相应时期内经趋势调整后的观察值进行平均,通过decompose()函数实现,如图4。第二种方法更为精确,它通过平滑增大规模后的观察值来寻找趋势、季节和不确定因素,利用stl()函数实现。如图5。

图4 decompose()函数分解法 图5 stl()函数分解法 两种方法得到的结果非常相似。从上图可以看出,该现金流时间序列没有很明显的长期趋势。但是有明显的季节性或周期性趋势,经分解后的不确定因素明显减少。

SAS学习系列39.时间序列分析Ⅲ—ARIMA模型(可编辑修改word版)

39. 时间序列分析Ⅱ——ARIMA 模型 随着对时间序列分析方法的深入研究,人们发现非平稳序列的确定性因素分解方法(如季节模型、趋势模型、移动平均、指数平滑等)只能提取显著的确定性信息,对随机性信息浪费严重,同时也无法对确定性因素之间的关系进行分析。 而非平稳序列随机分析的发展就是为了弥补确定性因素分解方法的不足。时间序列数据分析的第一步都是要通过有效手段提取序列中所蕴藏的确定性信息。Box 和Jenkins 使用大量的案例分析证明差分方法是一种非常简便有效的确定性信息的提取方法。而Gramer 分解定理则在理论上保证了适当阶数的差分一定可以充分提取确定性信息。 (一)ARMA 模型 即自回归移动平均移动模型,是最常用的拟合平稳时间序列的模型,分为三类:AR 模型、MA 模型和ARMA 模型。 一、AR(p)模型——p 阶自回归模型 1.模型: x t = + 1 x t-1 + p x t-p + t 其中,≠ 0 ,随机干扰序列εt为0 均值、2方差的白噪声序列(p E( t s )=0 , t≠s),且当期的干扰与过去的序列值无关,即E(x tεt)=0.

1 1 1 p 1 p t t 1 p 由于是平稳序列,可推得均值= 1 - - - . 若0 = 0 ,称为 中心化的 AR (p )模型, 对于非中心化的平稳时间序列, 可以令 = (1 - - - ), x * = x - 转化为中心化。 记 B 为延迟算子, Φ (B ) = I -B - -B p 称为 p 阶自回归多 项式,则 AR (p )模型可表示为: Φ p (B )x t = t . 2. 格林函数 用来描述系统记忆扰动程度的函数,反映了影响效应衰减的快慢程度(回到平衡位置的速度),G j 表示扰动 εt-j 对系统现在行为影响的 权数。 例如,AR(1)模型(一阶非齐次差分方程), G j =j , j = 0,1, 2, 模型解为 x t = ∑G j t - j . j =0 3. 模型的方差 ∞ 2 2 对于 AR(1)模型,Var ( x t ) = ∑G j Var (t - j ) = . 4. 模型的自协方差 j =0 1 -2 对中心化的平稳模型,可推得自协方差函数的递推公式: 用格林函数显示表示: ∞ ∞ ∞ (k ) = ∑∑G G E (- - - ) =2 ∑G + G i j t j t k j j k j i =0 j =0 j =0 对于 AR(1)模型, ∞ p

股市预测模型

股市预测模型 基于混合ARMA模型和支持向量机 摘要:股市预测在以往的文献中已经吸引了大量的研究兴趣。传统上,ARMA模型已经成为时间序列中应用最为广泛的线性模型之一。但是,ARMA模型不能够轻易的捕捉非线性模式。并且最近的研究表明,人工神经网络(ANN)方法比传统的统计的人实现了更好的性能。人工神经网络方法在泛化(generalization)方面经历了一定的困难,但是其生产模式可以过度拟合数据。支持向量机(SVM)一种新型的神经网络技术,在解决非线性回归估计问题上已经得到成功的应用。因此,此次调查提出了在股市预测问题的支持向量机模型上,利用ARMA模型的独特优势试图向用户提供更好的解释力模型的混合方法。股市的真实数据集被使用来研究该模型的预测精度。计算的测试结果是很有前景的。 关键字:BP神经网络,金融时间序列,预测,支持向量机1.引言 股市预测因其高波动和不规则性被认为是具有挑战性的任务。因此,许多模型已经被描绘为投资者提供更精确的预

测。尤其是,人工神经网络(ANN)方法在以前的文献中最为频繁被使用,因为其已知的预测的效率优于其他模型。然而,由于解释神经网络的难度,大多数应用神经网络的研究集中在预测精度。在文献中已被报道,利用人工神经网络模型,以很少的努力提供对破产预测过程更好的理解。此外,由于神经网络的过度拟合在泛化方面具有困难,并且完全取决研究人员的经验或是知识,用于选择大量的包括相关的输入变量,隐含层的大小,学习率以及动量控制参数的预处理。 最近,在1995年首次由Vapnik提出的支持向量机(SVM)方法近来被使用在一系列应用中,包括金融股市预测。支持向量机(SVM)的基础已经被Vapnik开发,由于许多吸引人的特点以及在广泛的问题上优异的泛化性能使其越来越受欢迎。该制定(formulation)体现了结构风险最小化(SRM)原则被常规神经网络采用,且已被证明优于传统的经验风险最小化原则。SRM泛化误差上限的最小化,用术语来说,就是在训练数据中误差最小化。 此外,SVM的解决方案可能是全局最优解,而其他神经网络模型往往会陷入局部最优解。一般来说,支持向量机技术被广泛认为是艺术分类的状态(the state of art classifier),并且以往的研究表明,SVM预测方法优于神经网络的方法。 最初为解决分类问题开发的SVM技术可以成功地在回归中应用。与模式识别问题只需输出是离散值不同,支持向

arima模型

ARIMA模型(英文:自回归综合移动平均模型),差分综合移动平均自回归模型(也称为综合移动平均自回归模型(移动也称为滑动))是时间序列预测和分析的方法之一。在ARIMA(P,D,q)中,AR 是“自回归”,P是自回归项的数量;Ma是“移动平均值”,q是移动平均值项的数量,D是使其成为固定序列的差异度(阶数)。尽管ARIMA的英文名称中没有出现“ difference”一词,但这是关键的一步。 建立ARIMA模型的方法和步骤 采集时间序列 时间序列可以通过相关部门的实验分析或统计数据获得。对于获得的数据,首先应检查是否存在突变点,并分析由于人为疏忽等原因而存在的突变点。确保获得的数据的准确性是建立合适的模型,是确保正确分析的第一步。 时间序列的预处理 时间序列的预处理包括测试的两个方面:静态测试和白噪声测试。ARMA模型可以分析和预测的时间序列必须满足平稳非白噪声序列的条件。测试数据的平稳性是时间序列分析中的重要一步。通常,时间序列的稳定性通过时间序列图和相关图进行测试。时序图的特点是直观,简单,但误差很大。自相关图,即自相关和部分自相关函数图,相对较复杂,但结果更为准确。本文使用时序图进行直观判断,然后使用相关图进行进一步测试。对于非平稳时间序列,如果存在上升或下降趋势,则需要进行差分处理,然后进行平稳性测试,直到稳定为

止。从理论上讲,差异数是模型ARIMA(P,D,q),差异数越多,时间序列信息的非平稳确定性信息的提取就越充分。但是从理论上讲,差异的数量并不是更好。每次差异操作都会导致信息丢失。因此,应避免差异太大。通常,在应用中,差异的顺序不超过2。 模型识别 模型识别是从已知模型中选择与给定时间序列过程一致的模型。有多种模型识别方法,例如box Jenkins模型识别。 型号订单确定 确定模型的类型后,我们需要知道模型的顺序,可以通过BIC准则方法确定。 参数估计 模型参数的估计方法通常包括相关矩估计,最小二乘估计和最大似然估计。 模型验证 模型的验证主要是为了验证模型的拟合效果。如果模型完全或基本解释了系统数据的相关性,则模型的噪声序列为白噪声序列,则模型验证也是噪声序列的独立性测试。可以使用巴雷特定理构造检验统计量Q。如果获得的模型没有通过经验,则应重新安装模型,直到模型可以通过自噪声测试为止。

股票预测模型

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

回归分析在股票价格预测中的应用

回归分析在股票价格预测中的应用 摘要:随着我国市场经济环境的日益成熟,股市规模的不断扩大,股票价格成为投资者、经济、系统科学领域研究的热点问题,影响股票价格的因素越来越多,预测未来的股票价格变得十分有必要。股票市场的价格数据呈时间序列,本文将运用Eviews软件对股票价格进行多元线性回归模型预测,以国电电力的历史价格为例,预测该股票的次日收盘价。通过对比消除共线性前后的两个模型对次日收盘价的预测结果,验证了利用主成分分析消除共线 性后的多元线性回归方程预测效果更好。 关键词:股票价格;Eviews;多元线性回归;主成分分析 Abstract:With the growing maturity of China's market economy environment, the scale of stock market is expanding.Stock price has become a hot topic in the field of investor, economy and system science.There are more and more factors influencing stock prices,so it is very necessary to predict future stock prices.The price data in stock market being time series,this article will use Eviews software to predict stock price by multiple linear regression model.Taking the historical price of Guodian power as an example,we predict the next closing price of the stock.By comparing the prediction results of the two models before and after collinearity to the closing price of the next day,it is proved that the effect of the multivariate linear regression equation after the use of principal component analysis is better than that of the multi linear regression equation after the elimination of the collinearity. Key words:Eviews; Multiple linear regression; Principal component analysis

实验指导书ARIMA模型建模与预测范本

实验指导书ARIMA 模型建模与预测

实验指导书(ARIMA模型建模与预测) 例:中国1952- 的进出口总额数据建模及预测 1、模型识别和定阶 (1)数据录入 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated –regular frequency”,在“Date specification”栏中分别选择“Annual”(年数据) ,分别在起始年输入1952,终止年输入,文件名输入“im_ex”,点击ok,见下图,这样就建立了一个工作文件。 在workfile中新建序列im_ex,并录入数据(点击File/Import/Read Text-Lotus-Excel…, 找到相应的Excel数据集,打开数据集,出现如下图的窗口,

在“Data order”选项中选择“By observation-series in columns”即按照观察值顺序录入,第一个数据是从B15开始的,因此在“Upper-left data cell”中输入B15,本例只有一列数据,在“Names for series or number if named in file”中输入序列的名字im_ex,点击ok,则录入了数据): (2)时序图判断平稳性 双击序列im_ex,点击view/Graph/line,得到下列对话框:

得到如下该序列的时序图,由图形能够看出该序列呈指数上升趋势,直观来看,显著非平稳。 IM_EX 240,000 200,000 160,000 120,000 80,000 40,000 556065707580859095000510 (3 因为数据有指数上升趋势,为了减小波动,对其对数化,在Eviews命令框中输入相应的命令“series y=log(im_ex)”就得到对数序列,其时序图见下图,对数化后的序列远没有原始序列波动剧烈:

股价预测模型-数学建模-优秀论文

2014年高教社杯全国大学生数学建模竞赛 校内选拔赛 2013年12月2日 股票市场的股价模型研究

摘要 股票本身没有价值,但它可以当做商品买卖,并且有一定的价格,股票的市场价格即股票在股票市场上买卖的价格。目前,股票已经成为我国大众投资的主要渠道之一。本文以上海股市2011年1月到2012年12月的数据为依据,分别对三个问题建立模型求解。 问题(1),根据上海股票市场在该段时间内综合指数历史交易,以市场布林线算法为评价标准划分时期,并建立不同时期的多指标模糊综合评价模型;并据此划分为四个时期,并且分析每一阶段的具体情况。 问题(2),根据2011/1/1到2012/11/30每天的收盘价,采用三次指数平滑方法对上证指数进行预测;我们利用了12月1日至12月4日的上证指数与预测的验证,其结果相差仅为0.00003,在实际中可以接受,验证了我们模型的准确性。 问题(3),我们建立成交量进程时间假设,描述股价变化所依托的经济学期。根据2011-2012这短时间的成交量与对应收盘价的数据,分析得出成交量与收盘价的关系,并利用这一结论去预测2013年部分月份的股价情况,得出相应的结果,这就证明了我们模型的正确性。 最后,对该问题做了更深刻的探讨,对模型的优缺点进行评价。 关键词:布林线算法;模糊综合评价法; 三次指数平滑法.成交量进程时间假设;成交量;收盘价; 一问题重述

中国股市上证指数数据为例,选取2011年1月到2012年12月的数据,分析以下问题: 1、对中国股市上证指数在该时间段(2011.1—2012.12)的走势情况做出定量的综合评价,并按照你划定的时期分析各个时期的发展状况。 2、依照2012年12月以前的主要统计数据,对中国股市上证指数股票市场的发展趋势做出预测分析,并利用中国股市上证指数12月以后的统计数据验证你的模型。 3、对于股票价格的研究,传统的股价研究方法是按照均匀日历时间间隔采样,即假定股价是基于均匀的日历时间间隔推进的。但后期的研究者研究表明:成交量影响股票收益率的自相关性、互自相关性和惯性效应。股价的变化与市场上的信息有很大的关系,实证表明:股价的调整并不是以均匀的日历时间进程推进的,它有自己独立的时间推进进程。后期的大多数研究者将成交量作为金融或宏观经济事件的信息量的一种度量方法,这大大推动了股价的以成交量推进的实证和理论的研究。试建立成交量推进进程下的股价模型,并进一步分析所建立的模型的有效性和可行性。 二问题分析 关于问题一:根据上海股票市场在该段时间内综合指数历史交易,以市场布林线算法确定股市涨跌震荡强弱并据此划分时期,。并建立不同时期的多指标模糊综合评价模型。 关于问题二:通过对2011年11月到2012年12月上海交易所综合股价指数变化趋势的分析, 可以看出上海证券交易所上证指数走势曲线存在非线性趋势, 因此采用三次指数平滑方法进行对其滤波处理, 消除其中的跳点和拐点, 以获得更有规律性的数据, 然后对滤波后的数据用三次指数平滑方法。 关于问题三:传统的股价分析都是建立在以日历时间为基础的固件数据上,但事实上股价不是完全跟随绝对的日历时间而变化的,比如信息的快速传播就有可能会导致股价在很短的时间巨变,所以基于这种数据的分析是不完善的,股价的变化有着它自己的经济学周期。我们引入成交量进程时间来描述这一周期。通过分析成交量与收盘价的相关性,得出成交量进程下的股价变化趋势,并且用2012年12以后的成交量与对应的收盘价验证模型的合理性。 三模型假设 1 未来的行情由现在的行情决定 2 股市仅受股市平均市盈率,经济增长数据,人民银行公布和调整存货利率与国家公布的宏观经济数据CPI影响。 3.股市受股市信息的影响,成交量发生变化,进而有股价的变化,在成交量进程时间内股价与成交量有相关性。 四符号说明

时间序列和ARIMA模型

实验五 ARIMA模型的概念和构造 一、实验目的 了解AR,MA以及ARIMA模型的特点,了解三者之间的区别联系,以及AR与MA的转换,掌握如何利用自相关系数和偏自相关系数对ARIMA模型进行识别,利用最小二乘法等方法对ARIMA模型进行估计,利用信息准则对估计的ARIMA模型进行诊断,以及如何利用ARIMA模型进行预测。掌握在实证研究如何运用Eviews软件进行ARIMA模型的识别、诊断、估计和预测。 二、基本概念 所谓ARIMA模型,是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及ARIMA过程。 在ARIMA模型的识别过程中,我们主要用到两个工具:自相关函数(简称ACF),偏自相关函数(简称PACF)以及它们各自的相关图(即ACF、PACF相对于滞后长度描图)。对于一个序列来说,它的第j阶自相关系数(记作 )定义为它的j阶自协方差除以它的方差,即=,它是关于j的函数,因此我们也称之为自相关函数,通常记ACF(j)。偏自相关函数PACF(j)度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验内容及要求 1、实验内容: 根据1991年1月~2005年1月我国货币供应量(广义货币M2)的月度时间数据来说明在Eviews3.1 软件中如何利用B-J方法论建立合适的ARIMA(p,d,q)模型,并利用此模型进行数据的预测。 2、实验要求: (1)深刻理解上述基本概念; (2)思考:如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA模型;如何利用ARIMA模型进行预测; (3)熟练掌握相关Eviews操作。 四、实验指导 1、ARIMA模型的识别 (1)导入数据 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,出现“Workfile Range”对话框,在“Workfile frequency”框中选择“Monthly”,在“Start date”和“End date”框中分别输入“1991:01”和“2005:01”,然后单击“OK”,选择“File”菜单中的“Import--Read Text-Lotus-Excel”选项,找到要导入的名为EX6.2.xls的Excel文档,单击“打开”出现“Excel Spreadsheet Import”对话框并在其中输入相关数据名称(M2),再单击“OK”完成数据导入。 (2)模型的识别 首先利用ADF检验,确定d值,判断M2序列为2阶非平稳过程(由于具体操作方法我们在第五章中予以说明,此处略),即d的值为2,将两次差分后得到的平稳序列命名为W2;下面我们来看W2的自相关、偏自相关函数图。打开W2序列,点击“View”—“Correlogram”菜单,会弹出如图5-1所示的窗口,

相关文档
最新文档