DLT5044-1995火力发电厂、变电所直流系统设计技术规定

DLT5044-1995火力发电厂、变电所直流系统设计技术规定
DLT5044-1995火力发电厂、变电所直流系统设计技术规定

火力发电厂、变电所直流系统

设计技术规定

D C systen technical code for designing

fossil fuel power plants a nd substation

DL/T5044-95

主编部门:电力工业部华北电力设计院

批准部门:中华人民共和国电力工业部

施行日期:1995年12月1日

关于发布《火力发电厂电气试验室设计

标准》两项电力行业标准的通知

电技[1995]506号

各电管局,各省、自治区,直辖市电力局,电力规划设计总院,各有关单位:《火力发电厂电气试验室设计标准》等两项电力行业标准,经审查通过,批准为推荐性标准,现予发布。编号、名称如下:

DL/T5043-95,火力发电厂电气试验室设计标准。

DL/T5044-95,火力发电厂火力发电厂、变电所直流系统设计技术规定。

以上标准自1995年12月上日起实施。

请将执行中的问题和意见告电力规划设计总院,并抄送部标准化领导小组办公室。

中华人民共和国电力工业部

一九九五年八月十一日

1 总则

1.0.1 为适应电力建设发展的需要,搞好火力发电厂、变电所直流系统的设计(以下简称直流设计),总结建国以来直流设计建设和运行经验,吸收国内外先进技术,特制定本规定。

1.0.2 直流设计应贯彻安全可靠、技术先进、经济合理、力求简单并便于安装、运行维护的要求。

直流设计宜积极采用经过审定的标准设计和典型设计。

1.0.3 本规定适用于单机容量50~600MW的火力发电厂和220~500kV变电所新建工程采用固定型防酸式铅酸蓄电池和镉镍碱性蓄电池作为直流电源的直流设计。

1.0.4 直流设计除应执行本规定外,尚应执行国家、行业现行有关标准的规定。

2 直流电源系统

2.0.1 发电厂、变电所应装设蓄电池组向控制负荷和动力负荷以及直流事故照明负荷供电。蓄电池组正常应以全浮充电方式运行。

2.0.1.1 控制负荷包括电气和热工控制、信号、继电保护、自动装置等负荷。2.0.1.2 动力负荷包括直流润滑油泵、氢密封油泵、断路器电磁合闸机构、交流不停电电源装置、事故照明等负荷。

2.0.2 直流负荷应按性质分类:

(1)经常性负荷:要求直流电源在各种工况下均应可靠供电的负荷。

(2)事故性负荷:要求直流电源在交流电源事故停电时间的全过程可靠供电的负荷,并应按事故初期负荷和事故持续负荷以及随机负荷分类。

2.0.3 直流系统额定电压宜按下列要求确定:

(1)控制负荷专用蓄电池组(对于网络控制室可包括直流事故照明负荷)的电压采用110V。

(2)动力负荷和直流事故照明负荷专用蓄电池组的电压采用220V。

(3)控制负荷、动力负荷和直流事故照明共用蓄电池组的电压采用220V或110V。

(4)当采用弱电控制或信号时,装设较低电压的专用蓄电池组。

2.0.4 控制负荷专用蓄电池组不应设置端电池,其它蓄电池组也不宜设置端电池。当只有1组蓄电池但由于不设端电池为满足电压要求需加大蓄电池容量太多或需要增加复杂的降压设施而使技术经济不合理时,也可设置端电池。

铅酸蓄电池组设置端电池时,应有防止端电池硫化的措施。

2.0.5 蓄电池组在正常浮充电方式下,直流母线电压应为直流系统额定电压的105%;其它运行方式下直流母线电压不应超出直流用电设备所允许的电压波动范围:

(1)控制负荷系统的直流母线电压应在直流系统额定电压的85%~110%范围内。

(2)动力负荷系统直流母线电压应在直流系统额定电压的87.5%~112.5%范围内。

2.0.6 硅整流充电装置与蓄电池并联运行时,由充电设备引起的波纹系数不应大于2%。

2.0.7 110kV及以下变电所和发电厂远离主厂房的辅助车间,宜选用成套蓄电池直流电源屏(柜)作为直流电源。

2.0.8 允许短时停电的直流负荷,如运煤系统的电磁分离器等所需的直流电源,应采用单独的硅整流设备供电。

3 蓄电池组

3.1 蓄电池组数

3.1.1 对于设有主控制室的发电厂,当机组台数为3台及以上,且总容量为100MW 及以上,宜装设2组蓄电池。其它情况下可装设1组蓄电池。

容量为100~125MW的机组,当采用单元控制室的控制方式时,每台机组可装设1组蓄电池。容量为200MW的机组,且其升高电压为220kV及以下时,每台机组可装设2组蓄电池,其中1组对控制负荷供电,另1组对动力负荷和直流事故照明负荷供电,也可只装设1组蓄电池合并供电。容量为300MW的机组,每台机组宜装设3组蓄电池。容量为600MW的机组应装设3组蓄电池。3组蓄电池中2 组对控制负荷供电,另1组对动力负荷和直流事故照明负荷供电;也可装设2组蓄电池合并供电。

当发电厂的网络控制室或单元控制室控制的元件包括500kV电气设备时,应装设2组蓄电池对控制负荷供电;规划容量为800MW及以上发电厂的220kV网络控制室,宜装设2组蓄电池对控制负荷供电。其它网络控制室可装设1组蓄电池。

3.1.2 500kV变电所宜装设2组蓄电池,220~330kV变电所应装设1组蓄电池。

当采用弱电控制、信号系统时,还应装设2组较低电压蓄电池。

3.2 蓄电池型式

3.2.1 火力发电厂、变电所宜采用固定型防酸式铅酸蓄电池;在技术经济合理时,也可采用中倍率镉镍蓄电池。当变电所蓄电池布置位置受到限制或直流负荷电流较小但冲击负荷较大时,可采用高倍率镉镍蓄电池。

铅酸蓄电池容量宜选择在100~3000Ah范围内。电压为220V的蓄电池组容量大于2000Ah时,电压为110V的蓄电池组容量大于800Ah时,均应进行直流系统短路电流计算。

中倍率镉镍蓄电池容量宜选择在30~800Ah范围内。

高倍率镉镍蓄电池容量宜选择在10~40Ah范围内。

3.2.2 单体蓄电池的浮充电压、均衡充电电压及放电末期电压的选择应符合下列规定:

(1)铅酸蓄电池的浮充电压宜取2.15~2.17V;均衡充电电压范围为2.25~

2.35V,宜取2.30~2.33V;放电末期电压对有端电池直流系统宜取1.75V,对无端电池直流系统的动力专用蓄电池宜取1.75~1.80V,而对控制负荷专用和控制与动力合并供电的蓄电池宜取1.80V。

(2)中倍率镉镍蓄电池的浮充电压宜取1.42~1.45V;均衡充电电压宜取1.52~1.55V;放电末期电压最低值宜取1.07V。

(3)高倍率镉镍蓄电池的浮充电压宜取1.36~1.39V;均衡充电电压宜取1.47~1.48V;放电末期电压最低值宜取1.10V。

3.3 蓄电池组容量选择

3.3.1 发电厂、变电所蓄电池组的负荷统计,应符合下列规定:

(1)当控制室(主控制室或网络控制室)装设2组相同电压的蓄电池组时,对于控制负荷,每组应按属于该控制室的全部负荷考虑;对于直流事故照明负荷,每组应按属于该控制室供电的全部负荷的60%(变电所可按100%)考虑;对于断路器合闸冲击负荷按随机负荷考虑;对于动力负荷和通信远动的事故负荷,宜平均分配在两组蓄电池上。

(2)对于发电厂单元控制室,当两组蓄电池互联时,每组按所连接的负荷考虑,不因互联而增加负荷统计。

(3)电压低于110V的蓄电池组,每组按全部负荷的100%考虑。

3.3.2 计算蓄电池组容量时,与电力系统连接的发电厂,交流厂用电事故停电时间应按1h计算,其中氢密封直流油泵和直流润滑油泵的计算时间应符合3.3.3

条规定。

变电所全所事故所用电停电时间应按1h计算。

3.3.3 直流负荷应分别按性质和计算时间进行统计。其中事故负荷计算时间和负荷系数应符合下列规定:

(1)直流润滑油泵计算时间,对25MW及以下机组宜按0.5h计算;50~300MW 机组宜按1h计算;600MW机组宜按1.5h计算。

起动电流宜按2倍额定电流计算。负荷系数应按实际计算;当无数据时,对有端电池直流系统宜取0.8,对无端电池直流系统宜取0.9。

(2)氢密封油泵计算时间宜按1h计算;对300MW及以上机组宜按3h计算。起动电流宜按2倍额定电流计算。负荷系数对有端电池直流系统宜取0.7,对无端电池直流系统宜取0.8。

(3)交流不停电电源装置计算时间宜按0.5h计算。静态逆变装置的负荷系数宜取0.6;电动发电机组的负荷系数宜取0.8。

(4)事故初期的瞬间冲击负荷:当备用电源断路器采用电磁合闸线圈时,应按

备用电源实际自投断路器台数计算,其冲击负荷系数宜取0.5。低电压跳闸回路宜按实际数计算,其冲击负荷系数宜取0.6。热工及电气控制、保护回路等宜按实际负荷之和计算,其负荷系数宜取0.6。

(5)事故停电时间内电磁合闸冲击负荷,应按断路器最大1台合闸电 流计算,计算时间宜取5s。该负荷应按随机负荷统计,并应与事故初期之外的最大负荷或出现最低电压时的负荷相叠加。

3.3.4 发电厂、变电所蓄电池容量选择计算条件,应满足全厂(所)事故停电时间内的放电容量,应计及事故初期直流电动机起动电流和其它冲击负荷电流,并应计及蓄电池组持续放电时间内叠加随机负荷电流。

确定蓄电池容量后,应按最严重的事故放电阶段计算直流母线的实际电压水平。

3.3.5 蓄电池容量选择宜采用下列计算方法并参见附录D。

3.3.5.1 电压控制法

(1)按事故放电时间,分别统计事故放电电流和事故放电容量。

(2)按不同的蓄电池型式,不同的放电终止电压,确定1h放电的容量系数。

(3)根据事故放电电流和事故放电容量,分别计算出电流比例系数和容量比例系数。

(4)取电流比例系数或容量比例系数超过允许值的事故放电阶段,进行容量计算;如果各阶段的比例系数均小于允许值,则以1h事故放电容量为依据,进行容量计算。

(5)选取与计算值接近的蓄电池标称容量,做为蓄电池的选择容量。

(6)进行直流母线电压水平的计算,可根据需要求出事故放电初期、末期或其他各放电阶段的直流母线电压实际值,作为选择电缆截面的依据。

3.3.5.2 阶梯负荷法

(1)按事故放电时间,分别统计事故放电电流,并确定阶梯负荷曲线。

(2)按不同蓄电池型式、不同的放电终止电压和不同的放电时间,确定相应的容量换算系数。

(3)根据事故放电电流,按事故放电阶段逐段进行容量计算。

(4)计算中应计及随机负荷。

(5)选取与计算容量最大值接近的蓄电池标称容量,做为蓄电池的选择容量。

3.4 蓄电池个数

3.4.1 铅酸蓄电池的直流系统每组蓄电池个数,应按2.0.5条的规定满足浮充电运行及事故放电末期直流母线电压。可参见附录B.3。

3.4.2 镉镍蓄电池的直流系统每组蓄电池个数,宜按直流母线电压在事故放电末期为直流系统额定电压的90%,每个蓄电池电压按1.1V(高倍率)或1.07V(中倍率)计算,并宜考虑持续负荷电流与冲击负荷电流比例的影响,但其上限值应与接线方式相适应。基本电池个数应按浮充电方式下直流母线电压为直流系统额定电压的105%计算。

4 系统接线

4.1 接线方式

4.1.1 发电厂、变电所直流系统宜采用单母线或单母线分段接线:

单母线适用于设有2组蓄电池的直流系统。

单母线分段适用于全厂(所)只有1组蓄电池的直流系统。蓄电池宜经2组刀开关分别接于两个分段上;变电所也可将蓄电池接于一个分段上。

4.1.2 采用单母线接线的直流系统,2组单母线间应实现联络,并应有防止2组蓄电池并联运行的闭锁措施。宜采用联络开关与蓄电池组电源开关机械闭锁或电气闭锁。但系统接线应考虑在运行中切换时不中断直流负荷供电的要求,将1组充电设备接至直流母线。

联络线只应承担1组母线上所连接的经常负荷或检修负荷。

4.1.3 充放电设备的连接方式应符合下列规定:

(1)单母线接线的浮充电设备宜经刀开关接于母线上;2组蓄电池的公共备用充电设备应分别经刀开关与蓄电池并接。

(2)单母线分段接线宜将充电设备和备用充电设备分别接在两个分段上。充电和浮充电兼用的充电设备与蓄电池组应分别接在两个分段上。

(3)放电设备宜经试验刀开关直接与蓄电池组并接。

4.1.4 无端电池的蓄电池组设有降压装置时,该装置可接于蓄电池组与直流母线间或接于直流母线与控制母线之间。

4.1.5 变电所有端电池的直流系统需设置专用合闸母线时,该母线宜从端电池调节器的充电端引接。

4.1.6 铅酸蓄电池组防止端电池硫化的设施,对小容量的蓄电池组,端电池部分可并接可调电阻,使蓄电池处于全浮充状态;对容量为300Ah以上的蓄电池组,宜采用硅整流装置对端电池单独进行浮充电。

4.1.7 交流不停电电源装置的直流电源应按直流动力馈线引接。当采用静态逆变装置时,引自蓄电池的直流电源应经二极管闭锁。

4.1.8 除直接为电子负荷供电的直流系统外,直流系统宜采用不接地方式。

4.2 直流屏配置

4.2.1 直流主屏应包括充电及备用充电设备进线、蓄电池组进线、母线联络及放电试验等回路。

4.2.2 直流馈线屏宜将动力馈线和控制馈线分屏配置,当馈线数量较少时也可合并布置。

4.2.3 直流负荷较集中的地方宜设置直流分电屏,并按控制馈线和动力馈线分屏配置。

4.3 网络设计

4.3.1 下列供电网络宜采用辐射状供电方式:

(1)事故照明、直流动力合闸和直流电动机以及交流不停电电源设备、远动通信装置的备用电源等,宜分别设置馈线。

(2)直流主屏至直流分电屏应以双回路馈线供电。

(3)直流分电屏对直流负荷分别设置馈线供电。

4.3.2 下列供电网络宜采用环状供电方式:

(1)对距离直流主屏较远且分散的动力负荷和断路器合闸网络,两回电源线宜从不同的直流母线段引接,环状网络干线引接负荷处的两侧应分别设置隔离设施。

(2)控制及信号系统的直流电源小母线的两回电源线应从不同直流母线段引接。

4.3.3 同一安装单位的各直流负荷宜由同一组蓄电池直流系统供电。

当设置有两组蓄电池时,双重化保护安装单位的双重化回路宜分别由两组蓄电池直流系统供电。

4.4 保护与监测接线

4.4.1 直流屏主回路及馈线回路的操作设备宜采用刀开关,也可采用自动开关。

4.4.2 蓄电池组和充电浮充电设备宜用熔断器保护,直流馈线可用熔断器或自动开关保护。

4.4.3 直流系统表计配置应符合下列规定:

(1)蓄电池组、充电和浮充电装置的输出回路应装设直流电流表。当蓄电池组电流表不能指示放电回路电流时,应在放电试验回路装设直流电流表。

(2)直流主母线、直流分电屏母线、蓄电池组和充电浮充电装置的输出回路应装设直流电压表。

(3)蓄电池回路宜装设浮充电流表。

4.4.4 直流主母线每段(组)应装设过电压和低电压的电压监察装置。

4.4.5 直流主母线每段(组)应装设绝缘监察装置。当直流母线绝缘电阻低于规定值时,应能发出灯光和音响信号。绝缘监察装置仪表应能测出正、负极母线对地的电压值及绝缘电阻值。

容量为200MW及以上发电厂和330~500kV变电所的绝缘监察装置可采用接地自动巡检装置。

直流分电屏馈线宜包括在绝缘监察装置的监测范围内。

4.4.6 直流系统应装设直流接地、母线电压过高、母线电压过低、蓄电池熔断器熔断(当熔断器带信号接点时)、充电器交流失电、充电器故障等灯光和音响信号。

直流屏布置在控制室主环外时,应在主环屏上设置直流系统故障的总信号光字牌和直流主母线电压表。

4.4.7 当闪光装置不随中央信号装置配套而在直流系统设置时,应在每段(组)直流母线装设一套。对于容量为200MW及以上机组,当设置闪光装置时,宜分区设置,不集中配置在直流屏内。

5 设备选择

5.1 充放电设备

5.1.1蓄电池组的充电设备宜采用硅整流装置。

硅整流装置宜具有稳压、稳流及限流性能,应为定电流、恒电压电站型充电整流设备,并能适应浮充电、自动均衡充电的要求及具有手动充电方式。也可按浮充电与充电功能分别设置硅整流装置。硅整流装置应为长期连续工作制。充电设备的交流输入宜为三相制,额定频率为50Hz,额定电压为380V±10%。小容量充电设备的交流输入额定电压可采用单相220V±10%。

硅整流装置的波纹系数不应大于2%,充电时稳流精度不应大于±5%,浮充电时稳压精度不应大于±2%,机械噪声不应大于60dB(屏柜前1m处)。

5.1.2 发电厂、变电所1组蓄电池应装设2套充电设备。2组相同电压的蓄电池应装3 套充电设备。

当充电硅整流装置不能满足浮充电要求或投资相差较大时,每组蓄电池可设1 套浮充电硅整流装置,两组蓄电池共用1套充电硅整流装置。

电压低于110V的蓄电池组,每组宜设1套充电与浮充电兼用的硅整流装置。5.1.3 浮充电硅整流装置的输出电流应按经常负荷电流与蓄电池自放电电流之和选择。

充电设备的额定电流的选择应满足下列条件:

(1)大于初充电电流;

(2)大于事故放电后的补充电流;

(3)大于核对性放电后的充电电流。

5.1.4 充电硅整流装置的输出电压调节范围应满足蓄电池组放电末期和充电末期电压的要求。

浮充电硅整流装置直流侧的长期工作电压对于220V和110V蓄电池组分别为230V和115V。

5.1.5 安装或大修后蓄电池组进行放电容量试验时,放电电流对铅酸蓄电池不宜超过10h放电率;镉镍蓄电池不宜超过5h放电率。放电终止电压不应低于规定值。

放电容量试验可采用下列方法:

(1)放电电阻法。可用金属电阻丝、碳精板或无明火电阻制成放电器。

(2)反馈电机法。用于交流电动机 直流发电机组作为充电机时。

5.2 压设备

5.2.1 有端电池的直流系统宜选用手动或电动端电池调节器;也可采用低电压自动投入装置。其额定电流应按蓄电池1h放电率选择。

5.2.2 降压装置的压降值应满足蓄电池输出电流经常变化时基本不变的要求,宜采用硅二极管、硅堆或硅链构成的降压装置。

降压装置的额定电流应满足所在回路最大持续负荷电流的要求,并应校验冲击电流不超过硅元件的短时过载能力。

降压装置硅元件的额定电压,对220V直流系统宜选用500V;对于110V直流系统宜选用300V。

5.3 直流屏(柜)及网络设备

5.3.1 直流屏和整流柜宜采用封闭式加强型结构,其防护等级不应低于IP20级。直流屏正面仪表板应能开启,屏后应开门,前门下部和后门上部宜设百叶窗。外形尺寸宜采用800mm×600mm×2200mm(宽×深×高)。当有模拟母线时屏面模拟母线应为褐色,其横向模拟母线的宽度宜为12mm,纵向模拟分支线的宽度宜为8mm。

5.3.2 直流屏主母线宜采用阻燃绝缘铜母线,应按1h放电率或充电设备的额定电流计算长期允许载流量,并应按3.2.1条要求进行短路电流计算校验热稳定和按短时大负荷校验其温度不超过绝缘体的相应允许温度。

5.3.3 电池出口保护元件的额定电流,应按蓄电池1h放电率再加大一级选择,并应与直流馈线回路保护设备相配合。

5.3.4 开关和转换开关应按回路额定电压和额定工作电流选择。

5.3.5 熔断器和自动开关的选择应符合下列规定:

(1)其额定电压应大于或等于回路的额定电压。

(2)熔断器熔件和自动开关热脱扣器的额定电流,对于直流电动机馈线应考虑电动机起动电流;对于控制、信号馈线应按短时最大工作电流选择,并应保证短路时各级保护设备的选择性。

(3)电磁型操动机构合闸线圈回路的熔断器熔件,可按0.2~0.3倍额定合闸电流选择,但熔件的熔断时间应大于断路器固有合闸时间。

5.4 电缆

5.4.1 当蓄电池引出线为电缆时,正负极引出线应采用单独电缆。当有端电池时负极及端电池引线可合用三芯电缆,其允许载流量可按同截面单芯电缆计算。

5.4.2 蓄电池与直流屏之间的联络电缆及动力馈线的电缆截面选择应符合下列规定,可参见附录E。

(1)蓄电池与直流屏之间的联络电缆长期允许载流量,应按蓄电池1h放电率选择。电压降按蓄电池1min放电率计算,不应大于直流系统额定电压的1%。

(2)直流动力馈线电缆截面,应根据最大负荷电流选择并按直流母线计算最低电压和用电设备的允许最低电压校验。

5.4.3 合闸回路电缆截面的选择应符合下列规定:

(1)当蓄电池浮充电运行时,应保证最远1台断路器可靠合闸所需电压(合闸网络为环状供电时,应按任一电源侧电缆断开的条件)。

(2)当事故放电直流母线电压处在最低电压值时,应保证恢复供电断路器能可靠合闸所需电压。

5.4.4 由直流屏引出的控制、信号馈线电缆截面应保证足够的机械强度,铜芯电缆截面不宜小于4mm2。由直流屏至环网最远断开点的电压降不应超过直流系统额定电压的5%。

5.4.5 直流电缆的选型和敷设应符合SDJ26《发电厂、变电所电缆选择与敷设设计规程》的规定。

6 设备布置

6.0.1 蓄电池组宜布置在电气控制楼(包括主控制楼、网络控制楼、单元控制楼)底层。不同容量不同电压的蓄电池可以同室布置,但酸性蓄电池和碱性蓄电池不应在同一室内。布置在主厂房内时应避开潮湿和多灰尘的场所。

直流主屏宜布置在蓄电池室附近单独的电源室内或电气继电器室内,对于变电所和网络控制室,也可布置在控制室内。

硅整流设备宜与直流主屏同室布置。

直流分电屏宜布置在相应负荷中心处。

6.0.2 蓄电池室内应有运行检修通道。通道一侧装设蓄电池时,通道宽度不应小于800mm;两侧均装设蓄电池时,通道宽度不应小于1000mm。

蓄电池的裸露导电部分间的距离,当其两部分间的正常电压(非充电时)超过65V但不大于250V时,不应小于800mm,电压超过250V时,不应小于1000mm。导线与建筑物或其它接地体之间的距离不应小于50mm,母线支持点间的距离不应大于2000mm。

6.0.3 电源室的直流屏、硅整流充电设备和静态逆变电源装置等电源设备之间的距离和通道宽度,应考虑运行维护及装置调试的方便,可按附录F确定。

6.0.4 碱性镉镍蓄电池可在屏(柜)架内采用阶梯式堆积组装,也可在室内成架式排列,但均应保证蓄电池组的绝缘性能并便于观察液面,便于维护与检修。

成套直流装置可安装在控制室内。

7 对外专业的要求

7.0.1 蓄电池室应为防酸(碱)、防火、防爆建筑,入口宜经过套间(或贮藏室),设有贮藏酸(碱)、纯水(蒸馏水)及配制电解液器具的场地。蓄电池室和套间的门应装设弹簧锁且向外开启,应采用非燃烧体或难燃烧体的实体门。

门的尺寸不应小于750mm×1960mm(宽×高)。

窗玻璃应用毛玻璃或涂以半透明油漆,阳光不应直射室内。

7.0.2 蓄电池室应用非燃材料建造,顶棚宜作成平顶,不宜采用折板盖和槽形天花板。铅酸蓄电池室内的门窗、地面、墙壁、天花板、台架均应进行耐酸处理,地面采用易于清洗的面层材料。

7.0.3 蓄电池室应有良好的通风采暖设施,室温宜保持在5~35℃之间。走廊墙面不得开设通风百页窗或玻璃采光窗。

采暖设备与蓄电池之间的距离,不应小于750mm。蓄电池室内的采暖散热器应为焊接的光滑钢管,室内不允许有法兰、丝扣接头和阀门等。

铅酸蓄电池室的通风换气量,应按保证室内含氢量(按体积计)低于0.7%,含酸量小于2mg/m3计算。

通风电动机应为防爆式,并应直接连接通风空气过滤器。

7.0.4 蓄电池室应有给水和排水,套间内应砌水池,水池内外及水龙头应做耐酸(碱) 处理,管道宜暗敷,管材应采用耐腐蚀材料。

蓄电池室到地面应有0.5%左右的排水坡度,并应有泄水孔,污水应进行酸碱中和或稀释后排放。

7.0.5 蓄电池室、调酸室、通风机室应有经常照明,蓄电池室还应有事故照明。蓄电池室内照明灯具应布置在走道上方,照明应采用防爆防腐灯具,地面上最低照度为20lx。事故照明最低照度为2lx。

蓄电池室内照明线宜穿管暗敷,室内不应装设开关、插座。

7.0.6 抗震设防烈度为7度及以上地区,蓄电池组应有抗震加固措施。

附录A蓄电池应用曲线及图表

A.1 电压控制计算法所用曲线,见图A.1-1~图A.1-4,使用时应注意:

(1)对应不同的放电终止电压及所要求的放电时间,由图A.1-1中曲线查出容量百分值。

图 A.1-1 GF-1000Ah蓄电池放电容量与放电时间的关系曲线

(2)根据事故放电的放电率,由图A.1-2中曲线查出对应于给定的放电时间,找出单体电池电压以校验直流母线电压水平。

图 A.1-2 GF-1000Ah蓄电池不同放电率时,时间与电压关系曲线

(3)对于事故冲击负荷计算的冲击系数,由图A.1-3或A.1-4中曲线查出对应于 该事故放电阶段的放电率的单体电压值以校验直流母线电压水平。

A.2 阶梯负荷计算法所用曲线,见图A.2-1~图A.2-3和表A.2-1~表A.2-3,使用 时应注意:

(1)根据直流母线最低允许电压及蓄电池个数,确定单体蓄电池的终止电压, 然后以终止电压及事故负荷所需放电时间,在蓄电池的放电特性曲线上相应查出 其放电电流的百分数值,此百分数值即为蓄电池在上述条件下放电电流与蓄电池 10h 放电率标称容量的比值,这个比值是给定终止电压值下的某一放电时间的容 量换算系数

K C C 110 (A.2-1)

式中 I ——直流事故负荷电流(A);

C 10——蓄电池10h 放电率标称容量(Ah);

K C ——容量换算系数(1/h)。

图A.1.3 GF —1000Ah 蓄电池持续放电1h 冲击放电曲线族

图A.1.4 GF—1000Ah铅蓄电池持续放电0.5h冲击放电曲线族

(2)图A.2-1与表A.2-1对应,适用于GFD-2000Ah及以下容量的蓄电池1~480min放电。

图A.2.1 GF—2000Ah及以下容量换算系数曲线(1~480min)

表 A.2-1 GF-2000Ah及以下容量不同时间放电率和不同放电

终止电压时的容量换算系数

图 A.2-2 GF-3000Ah蓄电池容量换算系数曲线(1~480min)

(3)图A.2-2与表A.2-2对应,适用于GF-3000Ah蓄电池1~480min放电。

(4)图A.2-3与表A.2-3对应,适用于GFD-3000Ah 及以下容量的蓄电池1~ 480min 放电。

A.3 镉镍蓄电池应用曲线及图表。适用于阶梯负荷计算法的图A.3-1~图A.3-4分 别与表A.3-1~表A.3-4对应,分别代表中倍率(GNZ)镉镍蓄电池和高倍率 〔GNG(C)〕镉镍蓄电池的不同容量的容量换算系数曲线及容量换算系数表,使用 时应注意:

容量换算系数K C =1

5C ,这个比值是给定终止电压值下的某一放电时间的容 量

换算系数,镉镍蓄电池是以5h 放电率为标称容量。

表 A.2-2 GF-3000Ah 蓄电池不同时间放电率和不同放电

终止电压时的容量换算系数

图 A.2-3 GFD-3000Ah 及以下容量换算系数曲线(1~480min)

表 A.2-3 GFD-3000Ah及以下容量不同时间放电率和不同放电

终止电压时容量换算系数

图 A.3-1 GNZ-200Ah及以下容量

换算系数曲线

图 A.3-2 GNZ-200Ah及以上容量

换算系数曲线

图 A.3-3 GNG(C)-20Ah及以下容量

换算系数曲线

图 A.3-4 GNG(C)-40Ah及以上容量

换算系数曲线

表 A.3-1 GNZ-200Ah以下容量换算系数

表 A.3-2 GNZ-200Ah及以上容量换算系数

表 A.3-3 GNG(C)-20Ah及以下容量换算系数

表 A.3-4 GNG(C)-40Ah及以上容量换算系数

附录B 直流回路主要设备选择

B.1 铅酸蓄电池回路设备选择见表B.1-1,表中蓄电池回路设备的额定电流按1h 放电率选择,试验回路的设备按10h放电率选择。

表 B.1-1 固定型防酸式铅酸蓄电池回路设备选择

《220kV变电站电气部分初步设计》开题报告

电气与信息学院 毕业设计(论文)开题报告

《220kV变电站电气部分初步设计》开题报告 一、课题的目的和意义 随着国民经济的迅速发展,电力工业的腾飞,人们对能源利用的认识越来越重视。现在根据电力系统的发展规划,拟在某地区新建一座220KV的变电站。 本次设计是在掌握变电站生产过程的基础上完成的。通过它我不仅复习巩固了专业课程的有关内容,而且拓宽了知识面,增强了工程观念,培养了变电站设计的能力。同时对能源、发电、变电和输电的电气部分有个详细的概念,能熟练的运用有些知识,如短路计算的基本理论和方法、主接线的设计、导体电气设备的选择以及变压器的运行等。 二、文献综述 1 变电站的概述 随着经济的发展,工业水平的进步,人们生活水平不断的提高,电力系统在整个行业中所占比例逐渐趋大。现代电力系统是一个巨大的、严密的整体。各类发电厂、变电站分工完成整个电力系统的发电、变电和配电的任务。电力系统是国民经济的重要能源部门,而变电站的设计是电力工业建设中必不可少的一个项目。由于变电站的设计内容多,范围广,逻辑性强,不同电压等级,不同类型,不同性质负荷的变电站设计时所侧重的方面是不一样的。设计过程中要针对变电站的规模和形式,具体问题具体分析。 变电站是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施,它通过其变压器将各级电压的电网联系起来。我国电力系统的变电站大致分为四大类:升压变电站,主网变电站,二次变电站,配电站。我国电力工业的技术水平和管理水平正在逐步提高,对变电所的设计提出了更高的要求,更需要我们提高知识理解应用水平,认真对待。[1] 结合我国电力现状,为国民经济各部门和人民生活供给充足、可靠、优质、廉价的电能,优化发展变电站,规划以220KV、110KV、10KV电压等级设计变电站。从我国目前部分地区用电发展趋势来看,新建变电站应充分体现出安全性、可靠

直流屏技术协议

直流装置订货技术要求 第一章技术规范 1 总则 1.1本设备技术要求适用于新汶矿业泰山盐化工35KV变配电站工程直流屏装置,它提出了该装置的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本技术协议书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,卖方应提供符合工业标准和本协议书的优质产品。 1.3本技术协议书所使用的标准如遇与卖方执行的标准不一致时,按较高标准执行。 1.4本设备技术要求经买、卖双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.5本设备技术协议书未尽事宜,由买、卖双方协商确定。 2 环境条件与设计条件 2.1最高温度:____________ 最低温度:____________ 2.2海拔高度:____________ 2.3最大风速:____________ 2.4环境相对湿度(在25 o时) 多年平均值:____________ 2.5地震烈度:____________度; 2.6污秽等级:____________级(爬距:____________按最高工作电压计); 2.7 安装地点:户内; 3. 设备规范 3.1合同设备包括供货方向其他厂商购买的所有附件和设备,这些附件和设备应符合相应的标准规范或法规的最新版本或其修正本的要求。 3.2 除非合同另有规定,均须遵守最新的国家标准(GB)和国际电工委员会(IEC)标准以及国际单位制(SI)标准。如采用合资或合作产品,还应遵守合作方国家标准,当上述

标准不一致时按高标准执行。 所有螺栓、双头螺栓、螺纹、管螺纹、螺栓夹及螺母均应遵守国际标准化组织(ISO)和国际单位制(SI)的标准。 3.3 应遵循的主要现行标准 DL/T 459-92 《镉镍蓄电池直流屏(柜)订货技术条件》 ZBK45017-90 《电力系统用直流屏通用技术条件》 LS(W)30-40-JT 《电力系统用微机控制直流电源柜技术条件》 DL478-92 《静态继电保护及安全自动装置通用技术条件》 《电力操作电源安全规范和EMC的要求》 以上标准均执行最新版本。 这些法则和标准提出了最基本要求,如果根据卖方的意见并经用户接受,使用优于或更为经济的设计或材料,并能使卖方设备良好地、连续地在本规范所规定的条件下运行时,则这些标准也可以由卖方超越。 3.4 当标准、规范之间出现矛盾时,卖方应将矛盾情况提交用户,以便在开始生产前制定解决方案。 4 技术条件 4.1电气参数 4.1.1 名称 35KV变配电站220V高频开关直流电源屏(详直流装置及系统接线图) 4.1.2规格:200AH 4.1.3 交流额定输入电压:380V±10%,频率为50Hz±5%。 4.1.4 直流额定输出电压:220V 4.1.5 充电装置额定直流输出电流: Ic=25A,高频开关电源模块为10A及以上,模块数量按(N+1)冗余配置,最大输出电流30A。 4.1.6 浮充电压稳定调节范围:220~240V; 4.1.7均衡充电电压稳定调节范围:230~260V。

110kV变电站设计开题报告

110kv变电站110kv线路保护及主系统设计 1课题来源 本课题为某110kv中心变电站110kv线路保护记主系统设计课题。该变电站是最末一个梯级电站,装机容量600万千瓦,年发电量301亿千瓦时,用地总面积为8070.1374公顷。向家坝水电站110kV中心变电站为向家坝水电站提供施工供电电源和电站建成以后作为厂用电备用电源的一座变电站。设计容量为3 50MVA,电压等级为110/35/10kV, 110kV进出线有5条,中压35kV侧有10 回出线,低压10kV侧有20 回出线. 2 设计的目的和意义 110kV变电所是电力配送的重要环节,也是电网建设的关键环节。变电所设计质量的好坏,直接关系到电力系统的安全、稳定、灵活和经济运行。它是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所主要环节,电气主接线连接直接影响运行的可靠性、灵活性。它的拟定直接关系着全厂电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式的确定。 随着变电所综合自动化技术的不断发展与进步,变电站综合自动化系统取代或更新传统的变电所二次系统,继而实现“无人值班”变电所已成为电力系统新的发展方向和趋势。 3 国内外的现状和发展趋势 目前,我国小城市和西部地区经济的不断发展对电能资源的要求也越来越高,西部主要是高原地带,在高海拔的条件下,农村现有的变电技术远达不到经济的快速发展,这也在一定程度上影响了西部地区和中小城市变电技术的推广和应用技术的深化。因此,一方面需要创造条件有针对性地提高对小城市以及农村的变电站的建设,加强专业知识的培训来提高变电技术;另一方面,可以通过媒介积极开展技术交流,通过实践去体验、探索。 当今世界各方面因素正冲击着全球电力工业,在国外变电所技术有十分剧烈的竞争,而世界范围内的变电所都采用了新技术; 其次,不同的环境要求给所有的电力供应商增加了额外的责任,使电力自动化设备尤其是高压大功率变电站的市场开发空间大大拓展。另外高压变电所的最终用户对变电站的自动控制、节能、

220KV总变电所土建实施细则要点

神华包头煤制烯烃项目热电站(2×50MW )工程 土建工程 监理细则 220KV总变电所 达华集团北京中达联咨询有限公司神华包头煤制烯烃项目热电站工程监理部2008年7月5日 神华包头煤制烯烃项目工程(2×50MW )机组 土建工程 监理细则 220KV总变电所 批准: 审核: 编制: 目录 1、工程概况....................................................................................4 2、编制依据....................................................................................7 3、工程监理目标..............................................................................8 3.1、质量目标.................................................................................8 3.2进度控制目标..............................................................................8 3.3投资控制目标..............................................................................8 3.4安全控制指标..............................................................................8 4、监理流程 (9) 5、监理的控制措施…………………………………………………………………9 5.1监理依据…………………………………………………………………………9 5.2质量控制…………………………………………………………………………9 5.3钢筋

高、低压开关柜、直流屏技术要求

高低压、配电柜、直流屏技术文件 第一部分 10KV高压配电柜 本工程10KV高压配电柜按中置柜设计,配电柜内所有设备的技术 参数应符合相应的国家标准。 2.4标准的适用和执行: 投标人所提供的货物除应满足本技术要求以外,还应符合下列相关标准的规定。进口元器件允许适用原产国标准,但必须等同或优于中华人民共和国国家标准,如这些标准内容有冲突,按高的标准执行。 (1)GB3906-91《3~35KV户内交流高压开关设备》 (2)DL404-91《户内交流高压开关柜订货技术条件》 (3)GB311.1-83和GB311.2~311.6-83《高电压试验技术》 (4)GB863《交流高压电器在长期工作时的发热》 (5)SD201《交流高压隔离开关的技术条件》 (6)SD318-89《高压开关柜闭锁装置技术条件》 (7)GB2706《交流高压电器动热稳定试验方法》 (8)DL403-91《10~35户内高压真空断路器订货技术条件》 (9)SDJ5-85《高压配电装置设计技术规程》 (10)GB763《交流高压电器在长时间工作时的发热》 (11)GB762-81 《电气设备额定电流》 (12)IEC229-1A 《短路保护并列设备》 (13)GB1208-87 《电流互感器》 (14)IEC-185 《电流互感器》 (15)GB50150-91 《电气装置安装工程电缆线路施工及验收标准》 (16)GB50171-92 《电气装置安装工程盘柜及二次回路接线施

工及验收规范》 (17)GB50303-2002 《建筑电气工程施工质量验收规范》 (18)国家现行包装运输标准。 凡本技术要求未特别提及的地方,也应符合中华人民共和国现行的有关国家标准。 一、高压配电柜型号和技术要求详见本工程电气设计说明及电施图 二、技术参数: 1、额定工作电压:10KV 2、额定频率:50Hz±1% 3、防护等级:IP40 4、额定短路开短能力:31.5KA 三、开关柜内主要元器件的技术参数 1、真空断路器品牌:CCK ZN18,常州森源 VS1 1)、真空断路器及其操动机构应具有防跳装置,在操作方式中不允许采用手动直接合闸(手动直接合闸仅限于机械调试中使用)。 2)、真空断路器及其操动机构必须是一体式结构,并且安装在牢固的支架上。 3)、真空断路器应装设分、合闸按钮和分、合闸指示器,外壳适当位置应设置有观察孔可以看到分、合闸位置状态。 4)、真空断路器在无需维修或更换部件的情况下,连续合分额定电流的操作总次数为20000次;在此期间,应无零件更换,无机械或电气调整,无维修。 2、微机保护品牌:西安远征,清华紫光,许继电气 1)、支持软件在线升级。 2)、装置应配备大屏幕图形液晶显示器,采用全中文菜单操作方式。 3)、应采用分层设计方法,软件应具有很好的灵活性、可靠性、

110kV变电站设计

110KV变电所电气设计说明 所址选择: 首先考虑变电所所址的标高,历史上有无被洪水浸淹历史;进出线走廊应便于架空线路的引入和引出,尽量少占地并考虑发展余地;其次列出变电所所在地的气象条件:年均最高、最低气温、最大风速、覆冰厚度、地震强度、年平均雷暴日、污秽等级,把这些作为设计的技术条件。 主变压器的选择: 变压器台数和容量的选择直接影响主接线的形式和配电装置的结构。它的确定除依据传递容量基本原始资料外,还应依据电力系统5-10年的发展规划、输送功率大小、馈线回路数、电压等级以及接入系统的紧密程度等因素,进行综合分析和合理选择。 选择主变压器型式时,应考虑以下问题:相数、绕组数与结构、绕组接线组别(在电厂和变电站中一般都选用YN,d11常规接线)、调压方式、冷却方式。 由于本变电所具有三种电压等级110KV、35KV、10KV,各侧的功率均达到变压器额定容量的15%以上,低压侧需装设无功补偿,所以主变压器采用三绕组变压器。为保证供电质量、降低线路的损耗此变压器采用的是有载调压方式,在运行中可改变分接头开关的位置,而且调节范围大。由于本地区的自然地理环境的特点,故冷却方式采用自然风冷却。 为保证供电的可靠性,该变电所装设两台主变压器。当系统处于最大运行方式时两台变压器同时投入使用,最小运行方式或检修时只投入一台变压器且能满足供电要求。 所以选择的变压器为2×SFSZL7-31500/110型变压器。 变电站电气主接线: 变电站主接线的设计要求,根据变电站在电力系统中的地位、负荷性质、出线回路数等条件和具体情况确定。 通常变电站主接线的高压侧,应尽可能采用短路器数目教少的接线,以节省投资,随出线数目的不同,可采用桥形、单母线、双母线及角形接线等。如果变电站电压为超高压等级,又是重要的枢纽变电站,宜采用双母线带旁母接线或采用一台半断路器接线。变电站的低压侧常采用单母分段接线或双母线接线,以便于扩建。6~10KV馈线应选轻型断路器,如SN10型少油断路器或ZN13型真空断路器;若不能满足开断电流及动稳定和热稳定要求时,应采用限流措施。在变电站中最简单的限制短路电流的方法,是使变压器低压侧分列运行;若分列运行仍不能满足要求,则可装设分列电抗器,一般尽可能不装限流效果较小的母线电抗器。 故综合从以下几个方面考虑: 1 断路器检修时,是否影响连续供电; 2 线路能否满足Ⅰ,Ⅱ类负荷对供电的要求; 3大型机组突然停电对电力系统稳定运行的影响与产生的后果等因素。 主接线方案的拟定: 对本变电所原始材料进行分析,结合对电气主接线的可靠性、灵活性及经济性等基本要求,综合考虑。在满足技术、经济政策的前提下,力争使其技术先进,供电可靠,经济合理的主接线方案。此主接线还应具有足够的灵活性,能适应各

变电站土建设计要点及优化策略 周骏飞

变电站土建设计要点及优化策略周骏飞 发表时间:2018-10-17T15:51:06.413Z 来源:《电力设备》2018年第19期作者:周骏飞 [导读] 摘要:随着我国经济和社会不断发展,电力系统的效率问题和安全问题成为社会重点解决的问题之一,与此同时,变电站作为整个电力系统的稳定后盾,自然成为了重中之重,通过对变电站土建设计要点的分析及系统论述,探讨变电站土建设计的优化策略,希望对今后的发展产生积极影响。 (昆明耀龙电力工程设计有限公司云南省昆明市 650200) 摘要:随着我国经济和社会不断发展,电力系统的效率问题和安全问题成为社会重点解决的问题之一,与此同时,变电站作为整个电力系统的稳定后盾,自然成为了重中之重,通过对变电站土建设计要点的分析及系统论述,探讨变电站土建设计的优化策略,希望对今后的发展产生积极影响。 关键词:变电站;土建设计;优化策略 我国的电力系统发展的越来越快,维修技术也越来越先进,但在电力系统中,变电站在土建设计中的一些要点如果处理不好会带来一系列问题,这些问题会进一步限制电力系统的保护措施,妨碍电力系统的进一步发展。本文从了解变电站土建设计的要点入手进行分析,为变电站土建设计提供优化策略并确保变电站的安全运作。 1 变电站土建设计要点分析 1.1设计前期选址阶段 变电站设计的核心在于电站负荷中心,这是对整个变电站运作起重要作用的一个部分。因此,在对变电站设计选址过程中,首先要明确负荷中心的位置,需要相关技术人员根据具体情况进行分析规划,来科学合理地确定负荷中心的位置。 同时,在设计选址过程中,要充分考虑线路的问题。变电站的线路直接影响整个变电站的运作,因此在设计选址过程中,对线路的选择应与当地地址的选择相协调。在进行变电站选址过程中,要与线路相关技术人员紧密沟通,确保输电线路方案合理科学。因为变电站线路修建过程所花费金额大于对变电站的建设费用,科学合理的选择线路可以避免后期重改线路等造成的更大经济损失,这在一定程度上有利于变电站建设的经济性,合理性。 1.2可行性研究阶段 对变电站土建设计过程中要充分调查研究其可行性,可以根据以往变电站选址的经验。如果变电站选址不合理,会直接影响后期运作,严重的会要求重新修建变电站,造成巨大麻烦和损失。 在初步选定的变电站土建设计中,可以根据存在的细节问题,用科学合理的方法来改善。通过技术人员对整个变电站土建设计的可行性进行分析,在不影响变电站功能运作的前提下,要求变电站尽量占用较少土地面积。这就要求在对变电站土建设计过程中,利用先进的建筑原理,充分运用变电站结构空间,减少对土地的占用。不仅如此,可行性分析中还要求变电站的建筑设计不影响交通,水文等,确保将对周边生态环境及居民的生活产生的负面影响降到最低。 1.3初步设计阶段 在对变电站形成初步设计时,要考虑变电站的总体平面设计,竖向布置,道路标高设计以及管线布置等各要点。 具体要求主要包括,在对变电站土建设计过程中,要求变电站的总体平面设计要符合相关法律法规以及设计规范,综合考虑消防安全以及交通运输。竖向布置设计是指对变电站土建建筑物的高度加以控制,对场地道路等进行标高。对道路标高设计是为了防止在雨天时无法将雨水排出的问题,确保变电站保持干燥。管线布置过程中,确保管线管道平行,同时需要修建一定的坡度,让管道管线可以自流。 1.4施工图设计阶段 在对变电站土建初步设计可行性评估结束之后,对符合标准的建筑进行施工图设计。在这一过程中将原设计图依据对初步设计结果的审核建议进行修改,确保变电站土建设计符合国家相关规定标准。 在对施工图进行设计时,要求按相关规定流程从局部设计开始,然后扩展到整体设计。原则是不能超过初步设计审查中所确定的范围,同时要求对在初步设计中出现的问题加以优化修改。对施工图的审查合格之后,开始正式修建,所以施工图在整个变电站土建设计过程中具有重要作用。 2 变电站土建设计优化策略 2.1变电站站址方案的对比与选用 方案的选择是施工的前提,正确科学的方案能够帮助变电站有效规避一些不必要的问题。在进行方案对比后选择出最合理的设计方案,同时针对方案中的一些问题给出相应的解决措施,以便在遇到突发状况时能够及时解决问题。已经决定的方案还要经过进一步审查,然后给出最终意见,最后整合出完整的方案。方案要合理,要能够满足当地的建设需求。利用科学合理的方案来保证工程的顺利施工。 2.2变电站主要建构方案的设计与优化 对于变电站初步设计方案的可行性要进行优化,地基、暖通风、结构等都属于变电站土建设计方案中的内容。在对变电站各主要部分进行设计优化时要严格依照国家相关标准及设计规程,在保障变电站正常运作的基础上,尽可能减少对土地的使用。同时,在对变电站暖通风以及水工部分设计时,要充分考虑到安全设施及消防设施等的需求,确保在出现紧急情况时能将危险性降到最低。如果在对部分建筑中使用的是钢筋混凝土结构,一定要注意防震抗震性能,保障变电站结构的安全性,稳定性。 2.3变电站站区排水及消防系统方案设计与优化 变电站由于其工作的特殊性,在防水方面要多加重视。由于变电站日常运作需要生活用水消防用水,要注意修建防水墙以及相关防水技术。在对变电站土建设计过程的排水体系上可以采用分流排水,利用两个系统设置将变电站的水分开进行使用。既能做到保障日常用水和消防用水,又能确保及时排水,避免出现安全问题。 2.4屋外构支架的设计与优化 在对变电站土建设计的外观结构支架选择时,提高结构的稳定性和安全性是首要。同时要尽可能的减少对土地的占用,选择联合类支架可以充分利用空间结构,另一方面也有利于降低对变电站土建施工中的成本费用。不论选择哪种结构材质,都要确保变电站的稳定性,

10kV及以下变电所设计规范GB50053-94

10kV及以下变电所设计规范GB50053-94 主编部门:中华人民共和国机械工业部 批准部门:中华人民共和国建设部 施行日期:1994年11月1日 关于发布国家标准《10kV及以下变电所设计规范》的通知 建标[1994]201号 根据国家计委计综[1986]250号文的要求,由机械工业部中电设计研究院负责主编,会同有关单位共同修订的国家标准《10kV及以下变电所设计规范》,已经有关部门会审。现批准《10kV及以下变电所设计规范》GB50053-94为强制性国家标准,自1991年11月1日起施行。 原国家标准《工业与民用10kV及以下变电所设计规范》GBJ53-83同时废止。 本规范由机械工业部负责管理,其具体解释等工作由机械工业部中电设计研究院负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 1994年3月23日 第一章总则 第1.0.1条为使变电所设计做到保障人身安全、供电可靠、技术先进、经济合理和维护方便,确保设计质量,制订本规范。 第1.0.2条本规范适用于交流电压10kV及以下新建、扩建或改建工程的变电所设计。

第1.0.3条变电所设计应根据工程特点、规模和发展规划,正确处理近期建设和远期发展的关系,远近结合,以近期为主,适当考虑发展的可能。 第1.0.4条变电所设计应根据负荷性质、用电容量、工程特点、所址环境、地区供电条件和节约电能等因素,合理确定设计方案。 第1.0.5条变电所设计采用的设备和器材,应符合国家或行业的产品技术标准,并应优先选用技术先进、经济适用和节能的成套设备和定型产品,不得采用淘汰产品。 第1.0.6条10kV及以下变电所的设计,除应执行本规范的规定外,尚应符合国家现行的有关设计标准和规范的规定。 第二章所址选择 第2.0.1条变电所位置的选择,应根据下列要求经技术、经济比较确定: 一、接近负荷中心; 二、进出线方便; 三、接近电源侧; 四、设备运输方便; 五、不应设在有剧烈振动或高温的场所; 六、不宜设在多尘或有腐蚀性气体的场所,当无法远离时,不应设在污染源盛行风向的下风侧;

直流屏技术要求

直流屏技术要求 The Standardization Office was revised on the afternoon of December 13, 2020

1. 直流屏技术要求 2.110KV高压柜操作电源配一套施GZDW系列直流电源屏,直流屏配监控模 块;采用三相AC400V双回路输入,能自动检测输入电源参数及故障进行相互切换;应选用: 2.2技术要求:直流屏选用高频开关直流电源和阀控密封式铅酸蓄电池,高 频开关直流电源数量按(N+1)选择。容量为80AH,交流电源按两路设 计,直流屏至少要配置微机监控单元、绝缘监测仪、电池巡检仪、带防 雷保护的交流互投装置。技术参数:充电机浮充稳压精度≤± 0.5% ;调压装置稳压精度≤±5%充电机主充稳流精度≤±0.5% ; 交流输入电压允许范围≤+15%-20% ;纹波系数≤0.2% ;交流输入过压保护 418V(可设定);充电模块间电流不均衡度≤±5% ;直流输出 过压保护 242V(可设定);功率因数>0.95 ;效率≥90%;噪声≤ 55dB ;模块输出电压可调范围 196~286V。 2.3系统配置220V阀控式密封铅酸蓄电池,具体型号参数根据各配电室图纸配置。 阀控密封式铅酸蓄电池选用:德国阳光,进口电池需提供代理商身份证明及进口产品原产地证明文件。随箱附质量保证书,进口报关单,商检 报告。 2.4蓄电池 蓄电池组屏布置在中压室内。 蓄电池应满足以下技术要求: 蓄电池使用寿命:12年及以上(20~25℃) 蓄电池组对地坪荷重不大于1200KG/每平方米,否则投标方应提出减负 方案。 2.5正常使用的环境条件 海拔高度 <1000m 设备运行环境温度 -10℃~+40℃ 日平均相对湿度<95%,月平均相对湿度<90%。 2.6干扰能力: 1)设备通讯接口必须采取隔离措施,不同接地点的设备连接必须采用 电气隔离措施,不破坏“一点接地”的原则; 2)设备安装于10kV变电站内无电磁屏蔽的房间中,设备自身必须满足 抗电磁干扰及静电影响的要求。

110kv变电站安全距离110kv变电站设计规范.

110kv变电站安全距离110kv变电站设计规范 110kv变电站安全距离 国家《电磁辐射管理办法》规定100千伏以上为电磁强辐射工程,第二十条规定:在集中使用大型电磁辐射设备或高频设备的周围,按环境保护和城市规划要求,在规划限制区内不得修建居民住房、幼儿园等敏感建筑。 不过,据环保部门介绍,我国目前对设备与建筑物之间的距离有一定要求。比如一般10KV —35KV变电站,要求正面距居民住宅12米以上,侧面8米以上;35KV以上变电站的建设,要求正面距居民住宅15米以上,侧面12米以上;箱式变电站距居民住宅5米以上。 北京市规划委(2004规意字0638号)110千伏的地下高压变电站工程项目,明确要求距离不得少于300米。 35~110KV变电站设计规范 第一章总则 第1.0.1条为使变电所的设计认真执行国家的有关技术经济政策,符合安全可靠、技术先进和经济合理的要求,制订本规范。 第1.0.2条本规范适用于电压为35~110kV,单台变压器容量为5000kV A及以上新建变电所的设计。 第1.0.3条变电所的设计应根据工程的5~10年发展规划进行,做到远、近期结合,以近期为主,正确处理近期建设与远期发展的关系,适当考虑扩建的可能。 第1.0.4条变电所的设计,必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,结合国情合理地确定设计方案。 第1.0.5条变电所的设计,必须坚持节约用地的原则。 第1.0.6条变电所设计除应执行本规范外,尚应符合现行的国家有关标准和规范的规定。第二章所址选择和所区布置 第2.0.1条变电所所址的选择,应根据下列要求,综合考虑确定: 一、靠近负荷中心; 二、节约用地,不占或少占耕地及经济效益高的土地; 三、与城乡或工矿企业规划相协调,便于架空和电缆线路的引入和引出; 四、交通运输方便; 五、周围环境宜无明显污秽,如空气污秽时,所址宜设在受污源影响最小处; 六、具有适宜的地质、地形和地貌条件(例如避开断层、滑坡、塌陷区、溶洞地带、山区风口和有危岩或易发生滚石的场所),所址宜避免选在有重要文物或开采后对变电所有影响的矿藏地点,否则应征得有关部门的同意; 七、所址标高宜在50年一遇高水位之上,否则,所区应有可靠的防洪措施或与地区(工业企业)的防洪标准相一致,但仍应高于内涝水位; 八、应考虑职工生活上的方便及水源条件; 九、应考虑变电所与周围环境、邻近设施的相互影响。 第2.0.2条变电所的总平面布置应紧凑合理。 第2.0.3条变电所宜设置不低于2.2m高的实体围墙。城网变电所、工业企业变电所围墙的高度及形式,应与周围环境相协调。 第2.0.4条变电所内为满足消防要求的主要道路宽度,应为3.5m。主要设备运输道路的宽度可根据运输要求确定,并应具备回车条件。 第2.0.5条变电所的场地设计坡度,应根据设备布置、土质条件、排水方式和道路纵坡确定,

建筑现场临电一级变电站配电柜的设置要点

建筑现场临电一级变电站配电柜的设置要点 一般说来,建筑工地上的用电系统属于临时用电,由于工地工期有数月至数年,故临时用电不临时,它实属建筑施工过程中的用电工程或用电系统的简称,在我国越来强调安全的今天,其重要性非比一般。部颁标准(JGJ46—2005)“施工现场临时用电安全技术规范”及为配合该标准的贯彻,由中建协及建设部安监司所编写的相关指导性工具书等,也对此提出了许多要求,下面我们统简称其为“标准与书籍”。 工地现场的临电体系在实际工作中的体现,主要是一级变电站、二级、三级配电箱及它们之间的连接电线。其中的一级变电站是起着接受工地外来电源,再分配给工地上的各个需用电设施,它应是工地上的总用电设备的调度枢纽,对于工地现场,它是源头也是现场用电设计的最重要部分。根据施工现场规模的大小不同,设置时要充分考虑到以下因素:建筑工程及设备安装的工程量与施工进度,各个阶段的电气需要量,工地各种用电设备的分布情况及其与所供电源的远近,各设备的容量情况,及采用TN-S供电体制所需安全保护装置的装设等,因此对一个现代中等规模以上的工地现场,这个一级供电枢纽,就不可以是一个箱子的概念,它的装配体积大小就是配电柜形式,在加盖防护的房间后,它就成为工地上的配电间,也称为工地变电站,其规模与技术均是工地供电系统设置工作中的首位。下面就其相应的技术控制要点,谈一谈我们对它的认识。 一、配电室的设置 1、配电室的位置设置应靠近电源,进、出线方便,周围环境应灰尘少、无腐蚀介质,潮气少、无积水、振动少、无易燃易焊物品,避开污染源的下风侧。 2、室内配电柜下宜有300×300mm沟槽放置进出电缆,柜的下边应高于室地面约250mm,柜顶距房顶应大于500mm,柜周边应有1m以上空间。应有良好的入地装置,其入地电阻不大于4Ω。 3、配电室内无杂物,门窗应通风和透光,应能防止鼠类等小动物进入,门向外开,并配锁。 4、应有两个彼此独立的照明系统,一为正常照明,一为事故照明。 5、应配备两个以上的四氯化碳灭火器和灭火用砂桶。并配备有工作、停电、检修、警示等标志牌。 二、配电柜的设置 1、由标准与书籍所而产生的模糊问题 虽标准与书籍已成为现实工作中贯标的准则,但是它们对一级配电柜的设置并没有具体的规定,也没有实物图,只介绍有图1示的总配电箱电器配置接线图。这里的模糊产生是由叙述不清晰引起,难有准确的理解。接线图没有规定用什么型式的电器,在电器产品型号有多种的今天,壁如市面上供应的开关,就有板闸开关、空气开关、(带熔断器的)隔离开关等,故也造成实用中多在一级配电柜中装有石板开关情况。 还有配电箱的说法,使人们总是理解成“箱子”,殊不知箱子空间小,能容下的电器有限,也造成现实中选用结构简单的电器,造成千人千样不同电器的配电流程的接通形式。就是作成柜子形式,其规格尺寸也多有杂乱,有1.6m或2m者,实际上这些矮尺寸柜子均不符合选用现行优质电器(因结构复杂些,其规格体积也稍大些)的安装,在矮尺寸柜中所装的电器及其相互空间位置均难达到合

变电站的设计

目录 设计任务书 (4) 第一部分主要设计技术原则 (5) 第一章主变容量、形式及台数的选择 (6) 第一节主变压器台数的选择 (6) 第二节主变压器容量的选择 (7) 第三节主变压器形式的选择 (8) 第二章电气主接线形式的选择 (10) 第一节主接线方式选择 (12) 第三章短路电流计算 (13) 第一节短路电流计算的目的和条件 (14) 第四章电气设备的选择 (15) 第一节导体和电气设备选择的一般条件 (15) 第二节断路器的选择 (18) 第三节隔离开关的选择 (19) 第四节高压熔断器的选择 (20) 第五节互感器的选择 (20) 第六节母线的选择 (24) 第七节限流电抗器的选择 (24) 第八节站用变压器的台数及容量的选择 (25) 第九节10kV无功补偿的选择 (26) 第五章10kV高压开关柜的选择 (26) 第二部分计算说明书 附录一主变压器容量的选择 (27) 附录二短路电流计算 (28) 附录三断路器的选择计算 (30) 附录四隔离开关选择计算 (32) 附录五电流互感器的选择 (34) 附录六电压互感器的选择 (35) 附录七母线的选择计算 (36) 附录八10kV高压开关柜的选择 (37) (含10kV电气设备的选择) 第三部分相关图纸 一、变电站一次主结线图 (42) 二、10kV高压开关柜配置图 (43) 三、10kV线路控制、保护回路接线图 (44) 四、110kV接入系统路径比较图 (45) 第四部分 一、参考文献 (46) 二、心得体会 (47) ?

设计任务书 一、设计任务: ***钢厂搬迁昌北新区,一、二期工程总负荷为兆瓦,三期工程总负荷为31兆瓦,四期工程总负荷为20兆瓦。一、二、三、四期工程总负荷为兆瓦,实际用电负荷兆瓦,拟新建江西洪都钢厂变电所。本厂用电负荷设施均为Ⅰ类负荷。 ? 第一部分主要设计技术原则 本次110kV变电站的设计,经过三年的专业课程学习,在已有专业知识的基础上,了解了当前我国变电站技术的发展现状及技术发展趋向,按照现代电力系统设计要求,确定设计一个110kV综合自动化变电站,采用微机监控技术及微机保护,一次设备选择增强自动化程度,减少设备运行维护工作量,突出无油化,免维护型设备,选用目前较为先进的一、二次设备。 将此变电站做为一个终端用户变电站考虑,二个电压等级,即110kV/10kV。 设计中依据《变电所总布置设计技术规程》、《交流高压断路器参数选用导则》、《交流高压断路器订货技术条件》、《交流电气装置的过电压保护和绝缘配合》、《火力发电厂、变电所二次接线设计技术规程》、《高压配电装置设计技术规程》、《110kV-330kV变电所计算机监控系统设计技术规程》及本专业各教材。

直流屏的作用及说明

编辑词条 直流屏 目录[隐藏] 2.直流屏技术指标: 3.直流屏工作条件: 1.直流屏含义及作用: 直流屏是直流电源操作系统的简称。通用名为智能免维护直流电源屏,简称直流屏,通用型号为GZDW,而直流屏就是用来供应这种直流电源的。发电厂和变电站中的电力操作电源现今采用的都是直流电源,它为控制负荷和动力负荷以及直流事故照明负荷等提供电源,是当代电力系统控制、保护的基础。直流屏由交配电单元、充电模块单元、降压硅链单元、直流馈电单元、配电监控单元、监控模块单元及绝缘监测单元组成。主要应用于电力系统中小型发电厂、水电站、各类变电站,和其他使用直流设备的用户(如石化、矿山、铁路等),适用于开关分合闸及二次回路中的仪器、仪表、继电保护和故障照明等场合。 直流屏是一种全新的数字化控制、保护、管理、测量的新型直流系统。监控主机部分高度集成化,采用单板结构(All in one),内含绝缘监察、电池巡检、接地选线、电池活化、硅链稳压、微机中央信号等功能。主机配置大液晶触摸屏,各种运行状态和参数均以汉字显示,整体设计方便简洁,人机界面友好,符合用户使用习惯。直流屏系统为远程检测和控制提供了强大的功能,并具有遥控、遥调、遥测、遥信功能和远程通讯接口。通过远程通讯接口可在远方获得直流电源系统的运行参数,还可通过该接口设定和修改运行状态及定值,满足电力自动化和电力系统无人值守变电站的要求;配有标准RS232/485串行接口和以太网接口,可方便纳入电站自动化系统。 直流屏的组成: 充电柜-充电模块-监控模块-电池组 直流屏主要特点: 系统特点 高可靠性: 采用开关电源的模块化设计,N+1热备份。 充电模块可以带电热插拔,平均维护时间大幅度减少。 动力母线和控制母线可以由充电模块单独直接供电,可以通过降压装置热备份。 硬件低差自主均流技术,模块间输出电流最大不平衡度优于5%。 可靠的防雷和电气绝缘措施,选配的绝缘监测装置能够实时监测系统绝缘情况,确保系统和人身安全。 系统设计采用IEC(国际电工委员会),UL等国际标准,可靠性与安全性有充分保证。 高智能化: 监控模块采用大屏幕液晶汉字显示,声光告警。

BY市110kv降压变电所设计--牛

BY市110kv降压变电所设计--牛

课程设计 电气工程及其自动化_专业班级 题目BY市110kV降压变电所设计 姓名 学号 指导教师 二О年月日

一.变电站概括 1.1变电站总体分析 BY市变电站位于市边缘,供给城市和近郊工业、农业及生活用电,是新建地区变电所。变电站做为电力系统中起着重要的连接作用,是联系发电厂与负荷的重要环节。本课程设计主要是关于本变电站的一次设计,为了是变电站的一次设计能够很好的接入电力系统,使电力系统安全可靠的运行,下面对本变电站做初步分析的原始数据进行分析。 1.变电站类型:110KV地方降压变电站 2.电压等级:110/10KV 3.线路回数:110KV:2回,备用2回;10KV:13回,备用2回; 4.地理条件:平均海拔100m,地势平坦,交通方便,有充足水源,属轻地震区。年最高气温+42℃,年最低气温-18℃,年平均温度+16℃,最热月平均最高温度+32℃。最大风速35m/s,主导风向西北,覆冰厚度。5.负荷情况:主要是一、二级负荷,市内负荷主要为市区生活用电、棉纺厂、印染厂等工业用电;郊区负荷主要为郊区变电站及其他工业用电。 6.系统情况:根据任务书中电力系统简图可以看到,本变电站位于两个电源中间,有两个发电厂提供电

能,进而经过该变电站降压后用于工业、农业等负荷用电,需要一定的可靠性。 1.2 负荷分析及主变压器的选择 负荷计算的目的: 计算负荷是供电设计计算的基本依据,计算负荷确定得是否正确合理,直接影响到电器和导线电缆的选择是否经济合理。如计算负荷确定过大,将使电器和导线选得过大,造成投资和有色金属的消耗浪费,如计算负荷确定过小又将使电器和导线电缆处子过早老化甚至烧毁,造成重大损失,由此可见正确确定计算负荷重要性。 负荷分析 10KV 侧: 近期负荷:P 近=(2+2+1+1+2+3+2+1.5+1.5+1.5)MW=17.5MW 远期负荷: P 远=(3+3+1.5+1.5+3+4.5+3.5+2+2+2+2+2)=30MW ∑=n i Pi 1=17.5MW+30MW=47.5MW 综合最大计算负荷计算公式: S js =Kt*1 cos n i i i P φ =∑*(1+α%) (注:Kt:同时系数,取85%; %:线损,取5%) S js 近=Kt*max 1cos n i i i P ? =∑近 *(1+α%)

10kV供电方案的制定要点

10kV供电方案的制定 一、训练目标 本次训练项目包含制定10kV供电方案应遵循的原则、供电方案的主要内容和注意事项等内容。通过实际操作,使用电检查人员掌握10kV供电方案制定的方法。 二、训练对象 本项目训练对象为用电检查工种级员工。 三、训练学时 8学时。 四、训练场地、主要设备和工器具、材料 训练场地:典型客户配电训练室。 主要设备:高、低压开关柜,高、低压计量柜,电容器柜等。 五、训练内容 (一)制定供电方案的基本原则和基本要求 1.制定供电方案的基本原则 (1)在满足客户供电质量的前提下,方案要经济合理; (2)符合电网发展规划,避免重复建设;方案的实施应注意与改善电网运行的可靠性和灵活性结合起来; (3)施工建设和运行维护方便; (4)考虑客户发展的前景; (5)特殊客户,要考虑用电后对电网和其他客户的影响; 2.制定供电方案的基本要求

(1)根据客户的用电容量、用电性质、用电时间,以及用电负荷的重要程度,确定高压供电、低压供电、临时供电等供电方式; (2)根据用电负荷的重要程度确定多电源供电方式,提出保安电源、自备应急电源、非电性质的应急措施的配置要求; (3)客户的自备应急电源、非电性质的应急措施、谐波治理措施应与供用电工程同步设计、同步建设、同步投运、同步管理。 (二)lOkV电压等级供电方式的范围 (1)客户用电设备总容量在100kVA~8000kVA时(含8000kV A),宜采用lOkV供电。无35kV电压等级的地区,lOkV电压等级的供电容量可扩大到15000kVA。 (2)下列情况下,用电容量不足100kW,也可采用10kV供电: 1)客户提出对供电可靠性有特殊要求,如通信、医疗、广播、计算中心、机要部门等用电; 2)对供电质量产生不良影响的负荷,如整流器、电焊机等; 3)边远地区的客户,为了利于变压器的运行维护和故障的及时处理,经供用双方协商同意的。 (三)制定10kV供电方案的步骤 1.用电负荷性质及级别 根据负荷用途,明确负荷性质。根据用电负荷分级原则及分级标准,分析客户用电负荷属于哪一级负荷,分清是一般客户还是重要客户,以便确定供电方式。 2.供电容量

直流电源屏体技术要求

直流电源屏技术要求 一、使用环境条件 环境项目 安装地点户外 海拔高度(m)2910 最高温度(℃)40 最低温度(℃)-25 最大风速(m/s)30 最大覆冰厚度(mm) 10 雷暴日数(天)70 地震烈度Ⅶ度,第二组,加速度为0.15g 污秽等级 C 级 二、技术要求 1 货物需求表 1.1 型号规格: GZDW33-100Ah/220V 1.2 供货范围 (1)系统组成 组柜名称系统设备分项名称规格型号单位数量备注 直流充馈屏(1面)高频开关充电模块20A 个 3 监控模块CAV-T5 套 1 直流断路器 GM32M 个20 微机直流 系统绝缘检测仪 CAVJJ 个 1 100Ah电池屏面 1 屏间连接电缆全部专用工具套 1 备品备件套 1

(2)蓄电池 名称规格型号单位数量备注 蓄电池(2V/100Ah)只104 合资品牌美国GNB 2 货物的技术要求 2.1 电气技术要求 2.1.1 本装置采用智能型高频开关电源直流系统; 2.1.2 本装置采用微机绝缘检测装置,能完成对直流母线电压的监测功能,同时具有支路绝缘检测功能(20回路); 2.1.3 本装置采用一组蓄电池、一组整流器、带降压装置、单母线接线,一回交流380V进线; 2.1.4 本装置高频开关电源采用3块20A模块,模块可带电热插拔,单模块可显示模块的输出电流/电压; 2.1.5 本装置中央监控器由16位以上微处理器构成,采用液晶显示器,显示直流系统的运行状态和故障以及异常信号报警,该监控单元对交流配电进线、整流模块、降压硅链故障及各直流馈电回路都应监控,并对单个蓄电池进行全自动监测及管理。监控单元对报警的检测应在20ms内完成,并做出相应的控制。监控单元应留有开关量、模拟量输入、输出接口,以便将直流系统其它需监测的开关量、模拟量输入或输出,监控装置具有“四遥”功能、显示功能、设置功能、控制功能、报警功能、历史纪录、智能电池管理功能(带电池巡检)、异常处理和保护功能,并预留通讯口; 2.1.6 本装置控制回路10回、合闸回路10回; 2.1.7 各回路断路器采用直流断路器; 2.1.8 直流屏上的直流绝缘检测仪与高频开关柜上微机监控单元的通信由贵方完成。微机监控系统仅与直流微机监控单元通信。上送信号应包括直流屏上绝缘检测仪的报警。贵方应保证所提供的直流系统与微机监控系统通信联调成功; 2.1.9 直流屏的制造和各类试验应满足相关的现行国家标准; 2.1.10 直流装置必须通过国家有关部门鉴定,是可靠的、先进的产品; 2.1.11 直流屏设备按《电气装置安装工程、电气设备交接试验标准》(GB501-91)的规定组织现场验收; 2.1.12 生产时,制造厂、设计单位如发现图纸有误或元件选型与要求不符等原因,

相关文档
最新文档