外加电流型阴极保护

外加电流型阴极保护
外加电流型阴极保护

外加电流阴极保护系统由以下几部分组成:辅助阳极、测试桩、直流电源、辅助材料、参比电极和导线。此外,为使阳极输出的保护电流更均匀,避免阳极附近结构物产生过保护,有时在阳极周围还须涂刷阳极屏蔽层。

在外加电流阴极保护系统中,需要有一个稳定的直流电源,以提供保护电流。广泛使用的有整流器和恒电位仪两种。一般,当被保护的结构物所处的工况条件(如浸水面积、水质等)基本不变或变化很小时,可以采用手动控制的整流器;但当结构物所处的工况条件经常变化时,则应采用自动控制的恒电位仪,以使结构物电位总处在最佳保护范围内。

所有能发出直流电的电源,都是可以作为外加电流阴极保护系统的电源。在外加电流阴极保护系统中使用的电源的类型有:整流器、恒电位仪;太阳能电池;发电机;风力发电机;热点电池。整流器和其他外加电流系统的电源类型相比较,经济节省操作简单。

外加电流阴极保护系统的电源,其基本要求有:输出恒电位、恒电压、恒电流;同步通断功能;数据远传、远控功能。

恒电位仪的输出电压限定在50V以内,当工程需要更高的输出电压时,必须做好对阳极地床的防护措施。

在工程中广泛使用的恒电位仪主要有三类:可控硅恒电位仪、磁饱和恒电位仪和晶体管恒电位仪。可控硅恒电位仪功率较大、体积较小,但过载能力不强。磁饱和恒电位仪紧固耐用,过载能力强,但体积比较大,加工工艺也比较复杂。晶体管恒电位仪输出平稳、无噪声、控制精度较高,但线路较复杂。

辅助阳极

辅助阳极的作用是将直流电源输出的直流电流由介质传递到被保护的金属结构上。可作辅助阳极的材料有很多,如废钢铁、石墨、铅银合金、高硅铸铁、镀铂钛、包铂铌以及混合金属氧化物电极等。这些材料各有其特点,适用于不同的场合。

参比电极

参比电极的作用有两个:一方面用于测量被保护结构物的电位,监测保护效果;另一方面,为自动控制的恒电位仪提供控制信号,以调节输出电流,使结构物总处于良好的保护状态。在工程中,常用的参比电极有铜/饱和硫酸铜、银/卤化银及锌参比电极等,这些参比电极各具特点,适用于不同的场合。

测试桩

测试桩是一种专门用于管道阴极保护配以电位测试探头对保护管道进行测试的附属设备。主要用于阴极保护参数的检测,是管道管理维护中必不可少的装置,按测试功能沿线布设。

辅助材料

辅助材料包括绝缘接头、接地电池、铝热焊、补伤片、热熔胶等。

优缺点

优点

1、需要较大的电流场合,特别是裸露的或涂层较差的结构物的防护;

2、所有到点的电解质溶液内;

3、用于水箱里的大型热交换器、油加热处理器和其他容器的保护;

4、储水罐的内壁;

5、地面上储存罐的外底;

6、地下储存罐;

7、地下或水中的基桩和打板桩;

缺点

1、与牺牲阳极相比,需要更高的检测和维护费用;

2、需要外部电源,持续的电源供给费用;

3、具有引发杂散电流干扰的高风险,可导致过保护,引发防腐层的破坏及管材氢脆。施工安装规定

1.阴极保护整流器或其他电源的安装方式应使其损坏或认为破坏的可能性最小。

2.与整流器相连的导线应遵循地方和国家电器规程,与所用的供电电源要求一致。应在

交流回路中提供外部断路开关。整流器外壳应可靠接地。

3.所有电缆均应仔细检查,检测其绝缘缺陷,应小心进行以防损伤电缆的绝缘,电缆绝

缘的缺陷必须进行修补。

4.阳极填充料应与技术规格书一致。

设备位置选择

阳极地床场址的选择

在选择阳极地床场址时,不仅要考虑方便的电源盒较低的土壤电阻率,而且要考虑与外部管道的距离。要得到较低的阳极电压的方法很多,可以采用若干个阴极保护站,每个阴极保护站由较低的电流输出;可以加长阳极地床来降低接地电阻;可以强行降低所需的阳极电压或采用深井阳极。有20m厚的覆土层的深井阳极特别适用于都市中管道的阴极保护,因为都市中的管道与外部装置的距离较小。

外加电流阴极保护设备位置选择应考虑的因素

1.有无现存的低压电源;

2.保护电流需要量;

3.适合阳极地床的低电阻率环境;

4.对个人利益损害尽量少;

5.有良好的专门运输线;

6.其他外部装置与贵金属阳极应有足够的间距,使干扰影响最小。

用途

主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管道,大型罐群等。

外加电流阴极保护设计原则及考虑

外加电流阴极保护设计原则及考虑外加电流阴极保护设计,根据工艺计算对保护范围宜增加10%的余量,对于埋地管道的工艺设计,一般对管道保护长度留有10%的余量。 外加电流阴极保护设计时,一般均已新建结构物或已建结构物的实际条件为基础。在参数选择、设计计算中只要与管道本身参数相符合,其设计往往是成功的。随着时间年限的延长,结构物上的防腐层逐渐老化,破损增多,使所需阴极保护电流增大有效保护范围缩小。因此设计中应对阴极保护所需电流密度的变化做充分的考虑,通常办法是对结构物保护范围留有一定的余量。 ②外加电流法阴极保护设计中,辅助阳极的设计寿命应与被保护结构物相匹配。对各种不同结构物均应考虑辅助阳极的可更换性。对于埋地管道的外加电流法阴极保护,其辅助阳极的寿命一般不小于20年。 辅助阳极的寿命是保障外加电流法阴极保护系统有效工作的关键。辅助阳极失效,将使阴极保护系统中断工作。对于可更换的辅助阳极系统,如船舶或其他工业设备装置中辅助阳极系统,从经济上考虑不必选择昂贵的、寿命很长的阳极。而对于不可更换或很难更换的辅助阳极系统,如埋地管道辅助阳极系统,则应保证其设计寿命。 ③外加电流法阴极保护设计时,应充分注意保护系统与外部金属结构物之间的干扰问题,以及外部信号可能对保护系统产生干扰的问题。 在被保护金属结构物周围往往还存在着一些其他的金属结构物,如埋地管道周围的情况。这就要求在外加电流法阴极保护设计时应充分考虑这一点。 另一方面,埋地管道周围密集其他金属结构物存在于阴极保护电场中,将不可避免的改变电场电力线的分布,产生对埋地管道阴极保护的屏蔽作用。在严重情况下,可在被保护结构物上形成阴极保护的死角。由此产生保护不足甚至导致阴极保护失效。同时也导致阴极保护运行成本增加。 处于直流电力输配系统、直流电气化铁路、邻近外部结构物阴极保护系统或其他直流源影响范围内的埋地金属结构物,易遭受杂散电流干扰影响而产生腐蚀破坏,从而导致被保护物迅速的电解腐蚀,使其阴极保护系统遭受严重的干扰破坏。当埋地金属结构物位于交流电气化铁路、高压交流电力系统接地体附近时,通过阻抗耦合、感抗偶合或容抗偶合,将会遭受交流干扰而产生腐蚀破坏。

(整理)外加电流阴极保护装置中英文版

EQUIPMENT OF ICCP SYSTEM 外加电流阴极保护装置 1.0 MAIN PERFORMANCES/ 主要参数 1.1 Acreage defend/ 保护面积10034.4 m2 1.2 Use-life of the Anode/阳极使用寿命10~15 years 1.3 Power system/ 电源电制AC 440V, 60Hz, 3φ 2.0 AUTOMATIC POWER SUPPLY/ 恒电位仪 2.1 Type/ 型号SF-300-400 2.2 Quantity/ 数量 1 set/台2.3 Input/ 输入AC 440V, 60Hz, 3φ 2.4 Output/ 输出DC 16V, 0~400A 2.5 Dimensions/ 尺寸L815×W615×H1420 mm 2.6 Weight/ 重量200 kg 3.0 ANODE/ 阳极 3.1 Quantity/ 数量 2 sets 3.2 Output Current/ 输出电流 0~200 A 3.3 Dimensions/ 尺寸Φ474×200 mm 3.4 Weight/ 重量60 kg 4.0 REFERENCE ELECTRODE/ 参比电极 4.1 Quantity/ 数量 2 sets 4.2 Material/ 类型Ag-AgCl (银-氯化银) 4.3 Weight/ 重量20 kg 5.0 Potential defend/保护电位-0.82 V 6.0 Rudder Earthing /舵接地70mm2×2m 7.0 Anode Shield/阳极屏蔽层1组(2桶)20 Kg 8.0 Propeller Earthing /轴接地装置Φ420×Φ460×20mm 1sets

管道对阴极保护电流的屏蔽

管道对阴极保护电流的屏蔽检查任何一个罐区、清管站、计量站,就会很容易发现一边是要求所有电器仪表接地一边是要求绝缘,比如储罐的油管安装绝缘接头,在罐体上引出的压力、温度变送器和储罐之间也安装绝缘接头,这样做的目的都是为了避免储罐通这些设施接地。另一方面也会注意到储罐底板周边还有很多人为的接地点。出现这种混乱状态的原因是因为各个专业之间缺少沟通,美誉协调和配合,这样的结果是安装很多不必要的设施。建议站场内所有接地极均采用锌或者镀锌扁钢、圆钢,设计阴极保护系统时,增大容量,将所有接地极纳入阴极保护的范围,不再安装绝缘接头等绝缘设施。绝缘设施和接地设施储罐阴极保护是最近十年来才在我们国家实行的防腐技术,对其保护效果还没有做过认真的调研,因此,有必要进行一次全面的调查。对目前阴极保护的效果作出评估。阴极保护和防雷接地牵扯到了阴保和电气两个专业,两套规范。设计人员必须要进行必要的沟通交流,兼顾对方专业的利益。目前采用的电气防雷接地规范以及阴极保护规范也要进行相应的修改,是设计人员在现场施工的时候有据可依。管道在穿越公路或者铁路的时候,基于对地基的影响,普通情况下都需要安装金属套管。金属套管对管道的阴极保护将产生不利的影响,而目前普遍采用的套管内安装牺牲阳极的做法也存在一定局限性。 管道对阴极保护电流的屏蔽对于长输管道大多数采用外加电 流阴极保护的方式。在套管穿越处一般情况下都会采用钢套管,这里的防腐蚀质量一般都会很差,或者在穿越的时候损坏很严重。由于套

管与主套管之间的空隙,阻碍了外加电流的流动,不能到达套管内主管道表面,也就是说,阴极保护电流受到屏蔽。目前,普遍的做法是在套管中安装牺牲阳极,并将套管两端密封,防止土壤、水分金属套管,而这种方式也有一定的弊端。 套管与主套管之间没有短路套管内没有进水或者没有土壤 外加阴极保护电流不能到达主套管表面。管道表面如果有凝析水安装在主套管上的牺牲阳极会对管道起到一定的保护作用,由于凝析水的电阻率很高,其保护效果还需要进一步的研究。

阴极保护外加电流阴极保护基本概念

外加电流阴极保护基本概念 我们都知道常用的阴极保护方法有两种,一种是牺牲阳极阴极保护,另外一种是外加电流阴极保护,前面我们关于牺牲阳极阴极保护的案例已经讲过很多了,今天我们重点讲一下外加电流阴极保护。 外加电流阴极保护,简单点说就是在回路中串入一个直流电源,借助辅助阳极,将直流电通向被保护的金属,进而使被保护金属变成阴极,实施保护。在工程中主要是用于保护金属管道和储罐不被电化学腐蚀。外加电流阴极保护的目的就是防止金属电化学腐蚀。 在对金属管道阴极保护施工过程容易出现两种情况:第一种情况是地下管网在出地面后没有与地上部分进行金属绝缘隔离。第二种情况是地下接地网与地下管道接触,造成短路导通,造成阴极保护系统不能正常工作。 管道与管道连接的设备是与接地网连接的,也就是说,地上管道是与接地导通的。所以要使阴极保护系统正常工作,必须将地上管道与地下管道之间做隔离,第一方法是在地上管道与地下管道之间加装绝缘隔离接头;第二种方法是在地下管道与地上管道之间加装法兰隔离措施,在法兰处加装绝缘垫片,同时在法兰螺栓处加装绝缘套管和绝缘垫片。采用这种的法兰连接方法后,

法兰两侧的管道就被电气隔离了。法兰连接后,要求做连续性测试,如果测试结果是导通的,说明垫片有破损或者某个套管有损伤导致法兰导通。如果测试结果是断开的,说明采用这种措施达到了电气隔离的目的。阴极保护系统实际应用过程中,大部分采用第一种方法,也就是在地下管道与地上管道之间加装绝缘隔离连接头。 外加电流阴极保护在大面积和大电流环境中,经济效益比较高,而且电流可以调节,使用寿命较长,而且保护范围比较大,因此在大的管道工程中有着无法取代的地位,但是外加电流阴极保护施工,大部分工作内容在地面以下,属于隐蔽工程。而一些问题通常是在后期检查、测试的时候才发现。这时候项目临近中交,地面基本硬化完成,设备也安装完成。一旦发现问题,处理起来,费时费力,既增加成本,又影响工期。所以,要在施工过程中,分析潜在的风险和容易出现的问题,及时采取相应措施来规避这些风险、处理好这些问题,从而确保进度、质量和成本控制,使项目顺利竣工,投入运营。

阴极保护的基本知识

阴极保护的基本知识 阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。 阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。美国腐蚀工程师协会(NACE)对阴极保护的定义是:通过施加外加的电动势把电极的腐蚀电位移向氧化性较低的电位而使腐蚀速率降低。牺牲阳极阴极保护就是在金属构筑物上连接或焊接电位较负的金属,如铝、锌或镁。阳极材料不断消耗,释放出的电流供给被保护金属构筑物而阴极极化,从而实现保护。外加电流阴极保护是通过外加直流电源向被保护金属通以阴极电流,使之阴极极化。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构。 保护电位是指阴极保护时使金属腐蚀停止(或可忽略)时所需的电位。实践中,钢铁的保护电位常取-0.85V(CSE),也就是说,当金属处于比-0.85V(CSE)更负的电位时,该金属就受到了保护,腐蚀可以忽略。 阴极保护是一种控制钢质储罐和管道腐蚀的有效方法,它有效弥补了涂层缺陷而引起的腐蚀,能大大延长储罐和管道的使用寿命。根据美国一家阴极保护工程公司提供的资料,从经济上考虑,阴极保护是钢质储罐防腐蚀的最经济的手段之一。 网状阳极阴极保护方法 网状阳极阴极保护方法是目前国际上流行且成熟的针对新建储罐罐底外壁的一种有效的阴极保护新方法,在国际和国内都得到了广泛应用。网状阳极是混合金属氧化物带状阳极与钛金属连接片交叉焊接组成的外加电流阴极保护辅助阳极。阳极网预铺设在储罐基础中,为储罐底板提供保护电流。 网状阳极保护系统较其它阴极保护方法具有如下优点: 1)电流分布均匀,输出可调,保证储罐充分保护。 2)基本不产生杂散电流,不会对其它结构造成腐蚀干扰。 3)不需回填料,安装简单,质量容易保证。 4)储罐与管道之间不需要绝缘,不需对电气以及防雷接地系统作任何改造。 5)不易受今后工程施工的损坏,使用寿命长。 6)埋设深度浅,尤其适宜回填层比较薄的建在岩石上的储罐。 7)性价比高,造价仅为目前镁带牺牲阳极的1倍;虽然长期由恒电位仪提供

阴极保护与案例分析

标题:阴极保护基本原理[精华] 内容: 一、腐蚀电位或自然电位 每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。 相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V) 金属电位(CSE) 高纯镁 -1.75 镁合金(6%Al,3%Zn,0.15%Mn) -1.60 锌 -1.10 铝合金(5%Zn) -1.05 纯铝 -0.80 低碳钢(表面光亮) -0.50to-0.80 低碳钢(表面锈蚀) -0.20to-0.50 铸铁 -0.50 混凝土中的低碳钢 -0.20 铜 -0.20 在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。 二、参比电极 为了对各种金属的电极电位进行比较,必须有一个公共的参比电极。饱和硫酸铜参比电极电极,其电极电位具有良好的重复性和稳定性,构造简单,在阴极保护领域中得到广泛采用。不同参比电极之间的电位比较: 土壤中或浸水钢铁结构最小阴极保护电位(V) 被保护结构相对于不同参比电极的电位 饱和硫酸铜氯化银锌饱和甘汞 钢铁(土壤或水中) -0.85-0.75 0.25 -0.778 钢铁(硫酸盐还原菌)-0.95-0.85 0.15 -0.878 三、阴极保护 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即,牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较负的相同的电位下。该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3年,最多5年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。本人认为,

外加电流阴极保护辅助阳极的选择及计算

河南汇龙合金材料有限公司刘珍外加电流阴极保护辅助阳极的选择及计算 河南汇龙刘珍为大家讲解辅助阳极又称阳极接地装置,阳极地床。它是外加电流阴极保护中不可缺少的重要组成部分,辅助阳极的好坏决定了阴极保护系统的使用寿命和保护距离,也决定了外加电流阴极保护系统的保护效果,如果处置不当,则阴极保护系统无法正常运行,甚至还坏对其他进出产生杂散电流干饶。恒电位仪通过辅助阳极把保护电流送入土壤,经土壤流入被保护的管道,使管道表面进行阴极极化(防止电化学腐蚀)电流再由管道流入恒电位仪负极形成一个回路,这一回路形成了一个电解池,管道为负极处于还原环境中,防止腐蚀;而辅助阳极进行氧化反应,遭受腐蚀,也可能是周围电解质被氧化。 阴保站的电能60%消耗在阳极接地电阻上,故阳极材料的选择和埋设方式、场所的选择,对减小电阻节约电能是至关重要的。阳极材料必须有良好的导电性能,在与土壤或地下水接触时有稳定的接地电阻,即使在高电流密度下,其表面的极化较小;化学稳定性好,在恶劣环境中腐蚀率小;有一定的机械强度并便于加工和安装;价格低来源方便。

河南汇龙合金材料有限公司刘珍一般来说,阳极埋设地区的土壤越潮湿,土壤电阻率越低,阳极埋设越深,阳极床的接地电阻越小。有时,当土壤和阳极床的地质结构不能满足阳极接地电阻的要求时,会采用在阳极地床的回填区域添加一些极化剂,以增加土壤导电性能,减少地床接地电阻。 1、辅助阳极埋设位置的选择 辅助阳极与管道距离愈远电流分布愈均匀,但过远会增加引线上的电压降和投资。从实测数据来看辅助阳极距汇流点200米以内时,对电流分布影响较大,远于300米后影响就不大了。故在长输管道的干线上阳极一般设在距管道300~500米之间为宜。管道较短或油气管道较密集的地区,采用50~300米之间是合适的。花格线设计是450m,对于土壤电阻率很大的地区是否过远,是值得研究的问题。因此对处于特殊地形、环境的管道,辅助阳极的距离和埋设方式应根据现场情况慎重选定。 在阴保站址选定的同时,应在予选站址与管道的一侧选择阳极安装的位置,其原则是: (1)地下水位较高或潮湿低洼处;

管道工程强制电流阴极保护设计方案

管道工程 强制电流阴极保护 设计方案 新疆奥睿博节能科技发展有限公司

目录 1、概述 (1) 2、设计方案 (1) 3、设计依据标准 (1) 4、设计指标 (2) 5、系统设计及安装 (2) 6、阴极保护系统仪器和材料 (7) 7、施工设计 (10) 8、施工技术要求 (12) 9、工程验收 (12) 10、效果监测 (12) 附录一:阴极保护材料表 (13)

强制电流阴极保护设计方案 1、概述 本工程总长度为58.7km,管道管径多数为D89mm,防腐层为黄夹克防腐层。由于管道所经地多为盐碱地,土壤电阻率较大,易选用外加电流阴极保护方式,对管道进行保护,达到延长使用寿命的目的。 2、设计方案 管道设计采用独立的外加电流阴极保护系统。设计1座阴极保护站。阴极保护站设计1处浅埋阳极地床、在靠近排气管处埋设1支长效硫酸铜参比电极、在阴极保护站设计安装1台直流电源。 3、设计依据标准 《埋地钢质管道阴极保护技术规范》GB/T21448-2008 《阴极保护管道的电绝缘标准》SY/T0086-2003 《钢质管道外腐蚀控制规范》GB/T21447-2008 《埋地钢质管道阴极保护参数测量方法》GB/T21246-2007 《镁合金牺牲阳极》GB/T17731-2015 《锌-铝-镉合金牺牲阳极》GB/T4950-2002 《埋地钢质管道直流排流保护技术标准》SY/T0017-2006 《埋地钢质管道交流排流保护技术标准》GB/T50698-2011 1

4、设计指标 1、阴极保护设计使用寿命15年。有效保护期间管道极化电位应满足以下第2或3条要求。 2、施加阴极保护后,管道阴极极化电位为-0.85~1.25V(相对于CSE电极),应考虑排除IR降。 3、在阴极保护极化形成或衰减时,测取被保护管道表面与土壤接触、稳定的参比电极之间的阴极极化电位差不应小于100mV。 4、当土壤或水中存在硫酸盐还原菌,且硫酸离子含量超过0.5%时,通电保护电位应达到-0.95V或更负(相对于CSE电极)。 5、系统设计及安装 5.1阴极保护设计参数 (1)管道总长度: 约58.7km (2)绝缘层: 黄夹克防腐层 (3)管道总表面积: 约16404m2 (4)阴极保护系统设计寿命: 30年 (5)土壤平均电阻率: 200Ω·m(0~2米深土壤层) (6)管道保护电位: ≤-0.85V(CSE) 5.2阴极保护系统的设计计算 5.2.1保护电流密度的选取 根据管道外防腐层绝缘电阻和阴极保护电流密度的对应关系(见表1),选择本项目中的最小阴极保护电流密度为0.5mA/m2。 表1 电流密度和防腐层绝缘电阻的对应关系

外加阴极保护原理

某轮,第二个特检周期修船时,发现舵叶烂穿,船体钢板水下部分表面凹坑状腐蚀,;舵叶底部烂损和舵球腐蚀 究其原因,是船体外加电流阴极保护装置使用不当和维护不良,左右两侧的辅助阳极损坏就是明证。调查发现,该装置的工作原理、操作方法、参数调节、日常维护等,船员知之甚少,因而也不重视,甚至船到了淡水水域也未及时停止该装置的工作。为此,本文介绍其工作原理和维护要点。 1船体外加电流阴极保护装置的原理 1.1电化学腐蚀 船体是钢结构。钢是铁与碳和其他元素组成的合金。其中,铁比其它元素更易失去电子,电位较高。 船体常年浸泡在海水中,而海水是强电解质。铁元素失去电子成为正极;铁元素失去的电子,经过海水这个电解质到达其他元素;其他元素获得电子成为负极。这样就形成了一个个微电池,但并不腐蚀钢铁。 关键在于海水中存在溶解氧。这些溶解氧在海水中呈负离子状态,必然与失去电子成为正极的铁结合生成氧化铁,这就是电化学腐蚀。 在船体与海水接触部位表面的化学腐蚀、海生物腐蚀、运动磨损腐蚀、杂散电流腐蚀等各种腐蚀中,电化学腐蚀最严重。 电化学腐最大特点是,仅腐蚀阳极区域,不腐蚀阴极区域。 1.2船体外加电流阴极保护装置工作原理 船体外加电流阴极保护装置,就是根据这一特点,在船体上安装辅助阳极,用船上装备的直流电源,对辅助阳极和船体施加外加保护电流并自动调节电流大小,使船体(浸水部分)、舵和推进器保持负电位(阴极化),大幅降低船体的电化学腐蚀。 外加电流阴极保护装置,主要由直流电源(恒电位仪)、辅助阳极、参比电极、阳极屏蔽层、舵和推进器轴的接地装置等组成。 (1)直流电源 直流电源,实际是一个高稳定性和高可靠性的整流器: ·由船上交流电网供电,输出16~24V直流电; ·使用恒电位仪,自动调整输出电流。 船体外加电流阴极保护装置需要的电流,受外界多种因素影响,变化很大。为了提高电源的可靠性和稳定性,直流电源使用全系列集成模块电路的“恒电位仪”。鉴于其在电源装置中的核心地位,船体外加电流阴极保护装置的直流电源也常称作“恒电位仪”。 (2)辅助阳极 安装在船壳水下舷外,左右各一组,与船体绝缘,与外加直流电源正极相连。 辅助阳极,要有足够大的输出电流密度,同时应具备溶解小、电阻小、极化(电极电位因电流流过而发生的变化)小等特性。 (3)参比电极 作用: ·测量被保护对象的实际电位; ·比较实测电位与设定保护电位,并提供给“恒电位仪”。 因此,要求参比电极是不极化的可逆电极,能长期保持性能稳定、准确、灵活和坚固。(4)阳极屏蔽层 船体外加电流阴极保护装置工作时辅助阳极电流很大,被保护对象的电位,靠近辅助阳极的相对较低,而远离辅助阳极的相对较高,致使全船阴极保护效果不均匀。 为使辅助阳极输出的电流均匀地分布于整个船体,在辅助阳极周围一定范围内涂刷绝缘性能

电厂阴极保护外加电流系统措施

电厂阴极保护外加电流系统的 措 施 及 注 意 事 项 河南汇龙合金材料有限公司 技术部:刘珍 编制:2018年8月 内部资料请勿外传

一、电厂阴极保护系统措施的重要性 变电站接地装置是用于工作接地、防雷接地、保护接地的重要设施,是确保人身、设备、系统安全的重要环节。接地装置的优劣,直接关系到变电站的安全运行。各发电供电、用电企业,对接地装置的设计、安装十分重视。 接地装置属于隐蔽工程,在施工和运行过程中容易被忽视,当事故发生时,如接地装置有缺陷,短路电流无法在土壤中充分扩散,导致接地装置电位升高,使接地的设备金属外壳带高压而危及人身安全和击穿二次保护装置绝缘,甚至损坏设备,扩大事故,破坏电装置系统稳定。铁质接地装置腐蚀严重,导致截面和表面积减小,热稳定性不够,接触电阻增大。随着电装置技术的不断发展,电装置安全稳定的重要性不断提高,接地装置防腐已成为急需解决的重要问题。 对于独立(电气上不加专门的连接线)的钢管桩、地下管道、埋地钢结构等生般不需要采用防腐涂料、牺牲阳极或者外加电流等专门的防腐措施,只要采取适当增加钢管桩的壁厚来延长它的使用寿命即可。 电厂的主厂房、烟囱、灰库等大型建筑物的钢管桩、地下管道等埋地钢结构,组成一个"非独立"系统即它们在电气上与全厂的避雷及接地网相连接。在 此,这部分钢结构受交流杂散电流的影响大,腐蚀速度就比独立的钢结构系统要严重。

二、电厂阴极保护外加电流保护系统参考标准 阴极保护将符合以下提及的标准要求: NACE RP 0169 地下或水中金属管道系统的外部腐蚀 NACE RP 0285 阴极保护的地下储罐系统腐蚀控制 NACE RP 0193 金属储罐底的外部阴极保护 NACE RP 0286 阴极保护管线的电隔离

管道外加电流阴极保护方案

管道外加电流阴极保护 设计案 上海xxx设计研究总院 二〇一二年十二月三日一、概述

管道由1条DN1428低碳钢焊接管组成,总长约1.5Km,采用顶管和开挖排管相结合的施工法进行敷设。 根据类似工程数据,管道埋设深度土层的平均土壤电阻率5~10Ω·m。 全部钢管外防腐均采用熔融环氧粉末防腐涂层。顶管连接焊缝处采用专用液态环氧树脂补口涂料涂封。 二、设计案 本工程敷设的管道口径较大、埋设深度深、采用顶管法敷设在中继间切割及密封焊接会造成该处管道外涂层损伤。因此管道阴极保护选用外加电流法。 管道设计采用独立的外加电流阴极保护系统。清水管道在两端各设计1个阴极保护站。每个阴极保护站在距管道30~50m处设计1座深井阳极、在靠近排气管处埋设1支长效硫酸铜参比电极、在阴极保护站设计安装1台直流电源。 中间流量井1处需采用电缆跨接确保管道良好电连续连接。 本工程顶管施工完成后大部分工作井不拆除,由于其混凝土井壁、井底会对外加电流产生屏蔽使井浸在水中或土中的管道无法获得有效保护,为此在每个井设计安装埋设2支镁合金牺牲阳极对井管道实施阴极保护。 三、设计依据的标准及规 1、GB/T21448-2008埋地钢质管道阴极保护技术规。 2、GB/T21246-2007埋地钢质管道阴极保护参数测量法。 3、SY/T0086-95阴极保护管道的电绝缘标准。 4、SYJ4006-90长输管道阴极保护施工及验收规 四、设计指标

1、阴极保护设计使用寿命20年。有效保护期间管道极化电位应满足以下第2或3条要求。 2、施加阴极保护后,管道阴极极化电位为-0.85~1.25V (相对于CSE 电极),应考虑排除IR 降。 3、在阴极保护极化形成或衰减时,测取被保护管道表面与土壤接触、稳定的参比电极之间的阴极极化电位差不应小于100mV 。 4、当土壤或水中存在硫酸盐还原菌,且硫酸离子含量超过0.5%时,通电保护电位应达到-0.95V 或更负(相对于CSE 电极)。 五、技术设计 5.1、设计参数 管道自然电位:-0.55V 最小保护电位:-0.85V 最大保护电位:-1.25V 管道金属电阻率(普碳钢):0.135Ω·mm 2/m 平均保护电流密度:0.002A/m 2 平均土壤电阻率:10Ω·m 钢管外径×壁厚:1428×14mm 5.2、设计计算 5.2.1单位长度管道纵向电阻计算: δδπρ?-?=)(,0D R T 式中:R 0——单位长度管道纵向电阻(Ω/m )

外加电流阴极保护电流密度一般常识_2019

河南汇龙合金材料有限公司编制刘珍技术部外加电流阴极保护电流密度一般常识 在外加电流阴极保护设计中,我们必须要科学合理地来选择保护参数。一般主要选择的参数就是保护电流密度和保护电位,这对于保护电位是否能达到预期效果是至关重要的。设计参数的选择偏低,将会使得结构物不能获得完全保护。而参数选择过高则往往会发生过保护现象,通过氢致剥离损坏防腐层的完整性,产生严重的腐蚀破坏并进一步影响阴极保护系统的正常运行。不管是哪一种类型的参数选择不合理,都会影响到阴极保护系统的效能和经济性,过保护问题对于外加电流阴极保护设计来说是尤其要注意避免的。 阴极保护电流密度的大小与金属材料的种类、表面状态以及环境条件有关。有的也与工况条件有关。有些因素还应该考虑季节变化和时效作用的影响。 在同一个腐蚀体系中,保护电位和保护电流密度是相互依存的。保护电位的选择和确定,一是为恒电位仪设定一个给定电位,通过恒电位仪内部比较电路来控制结构物在指定参比电极位置点的电极电位;二是可供检验判断判别阴极保护的效果,通过测量电位来了解结构物表面电位是否达到了所需的或判据规定的保护电位值。结构物最小保护电位值的选择应该按照相关的标准或规范来确定,在特殊条件下可以

河南汇龙合金材料有限公司编制刘珍技术部参考以往的实例和经验规定。 阴极保护设计时,为保证阴极保护的有效性,必须根据被保护结构物及其环境条件首先确定保护电位范围,然后才能进行各项工艺计算。 山东石创防腐科技有限公司研发的镁阳极产品性能与实际效果都发挥的特别突出。并且,该公司在专业研发生产各种不同类型的牺牲阳极尤其是锌块或者是阴极保护产品方面不仅拥有非常丰富的经验,而且产品的质量上乘,性能与实际效用同样也非常突出,在实际的工业防腐领域中发挥着不可替代的作用,因而深受行业的好评,也正因为如此,公司也才能够成为地区最值得信赖的牺牲阳极产品供应机构。

管道阴极保护基本知识

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 ◆阴极保护系统测试方法 ◆恒电位仪的基本操作 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。 在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。 阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。两种方法的差别只在于产生保护电流的方式和“源”不同。一种是利用电位更负的金属或合金,另一种则利用直流电源。

管道阴极保护基本知识

管道阴极保护基本知识TTA standardization office

管道阴极保护基本知识公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。

在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。 牺牲阳极材料有高钝镁,其电位为;高钝锌,其电位为;工业纯铝,其电位为(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。

辅助阳极在外加电流阴极保护系统中的作用

辅助阳极在外加电流阴极保护系统中的作用 安装的时候要将参比电极放置在两支阳极之间,位置要竟可能的靠近储罐底板。因为参比电极需要靠近储罐,所以也好做好防与储罐壁短路的情况,因此锌参比电极需要采用必要的防短路措施。参比电极的引线要引出储罐外的时候,可以从储罐的上面引出,或者使用参比电极专用的引线导管输到储罐外面。阴极保护检测的规定,在储罐内壁的阴极保护中,如果要测量阴极保护的电位,是可以通过在阴极保护系统中安装参比电极来完成的。储罐内壁阴极保护中需要安装参比电极的时候,大部分都会采用纯锌参比电极。 在强制外加电流阴极保护系统中辅助阳极是必不可少的一部分,它也被称为阳极地床或者被称为阳极接地装置。阴极保护系统发出的电流通过辅助阳极进入土壤中,电流在土壤中流入被保护管道,最终促使管道表面发生阴极极化,电流会在管道中进入电源的负极,由此形成一个回路。在整个阴极保护系统中,管道出于阴极环境中,因为得到来自阳极的电子,而停止腐蚀现象,得到保护。其中的辅助阳极就会因失去电子发生氧化反应,遭到腐蚀。 在阴极保护站中使用的电力能源有一半以上都被消耗在了阳极地床的接地电阻中了。所以目前很多工程都崇尚节约能源,所以在阴极保护工程中需要减小电阻,尽可能的节约能源,所以在阴极保护施工工程当中选择阳极材料和采用的阳极埋设方式,还有工程施工场所的选择地点都是非常重要的。在阳极基础知识中对阳极材料的选择上都会秉持导电性能优良的性能和在电解质中有稳定的接地电阻为关

键条件,这样的阳极材料就算处在高电流密度的环境中,它的表面极化现象也会相当小。而且稳定的化学性能使得这样的阳极材料在恶劣的环境中腐蚀率也会很小。被选择作为阳极的材料要有一定的机械强度,这样有利于安装于运输,当然在符合了上述所有条件以后,最重要的还是经济实惠,来源也要广泛。 在阴极保护工程施工的时候,辅助阳极的安装都会距离被保护管道比较远的地方,这样做的主要原因是距离远电流就会分布的越均匀,但是距离过于远的时候也会有其他问题的出现比如它会增加电缆线的电压降和资金的投入。从实际测量的数据中观察到当阳极安装的位置与被保护管道的距离在200米以内的时候,距离的改变对电流的分布影响就会比较大,如果距离超过300米的时候影响就不会特别大了。一般的距离参考有:长输管道距离一般会在三百到五百米之间,短途管道或者油气管道比较密集的地方活动范围就会比较大,一般在5五十米到三百米之间时最合适的。不同的地形条件与施工环境,铺设阳极床和被保护管道的距离也会有很大的不同,所以任何阴极保护工程的施工都要重视现场情况的勘察。

外加电流型阴极保护

外加电流阴极保护系统由以下几部分组成:辅助阳极、测试桩、直流电源、辅助材料、参比电极和导线。此外,为使阳极输出的保护电流更均匀,避免阳极附近结构物产生过保护,有时在阳极周围还须涂刷阳极屏蔽层。 在外加电流阴极保护系统中,需要有一个稳定的直流电源,以提供保护电流。广泛使用的有整流器和恒电位仪两种。一般,当被保护的结构物所处的工况条件(如浸水面积、水质等)基本不变或变化很小时,可以采用手动控制的整流器;但当结构物所处的工况条件经常变化时,则应采用自动控制的恒电位仪,以使结构物电位总处在最佳保护范围内。 所有能发出直流电的电源,都是可以作为外加电流阴极保护系统的电源。在外加电流阴极保护系统中使用的电源的类型有:整流器、恒电位仪;太阳能电池;发电机;风力发电机;热点电池。整流器和其他外加电流系统的电源类型相比较,经济节省操作简单。 外加电流阴极保护系统的电源,其基本要求有:输出恒电位、恒电压、恒电流;同步通断功能;数据远传、远控功能。 恒电位仪的输出电压限定在50V以内,当工程需要更高的输出电压时,必须做好对阳极地床的防护措施。 在工程中广泛使用的恒电位仪主要有三类:可控硅恒电位仪、磁饱和恒电位仪和晶体管恒电位仪。可控硅恒电位仪功率较大、体积较小,但过载能力不强。磁饱和恒电位仪紧固耐用,过载能力强,但体积比较大,加工工艺也比较复杂。晶体管恒电位仪输出平稳、无噪声、控制精度较高,但线路较复杂。 辅助阳极 辅助阳极的作用是将直流电源输出的直流电流由介质传递到被保护的金属结构上。可作辅助阳极的材料有很多,如废钢铁、石墨、铅银合金、高硅铸铁、镀铂钛、包铂铌以及混合金属氧化物电极等。这些材料各有其特点,适用于不同的场合。 参比电极 参比电极的作用有两个:一方面用于测量被保护结构物的电位,监测保护效果;另一方面,为自动控制的恒电位仪提供控制信号,以调节输出电流,使结构物总处于良好的保护状态。在工程中,常用的参比电极有铜/饱和硫酸铜、银/卤化银及锌参比电极等,这些参比电极各具特点,适用于不同的场合。 测试桩

外加电流阴极保护法

外加电流阴极保护法 外加电流阴极保护法,是通过外加电源来提供所需的保护电流。将被保护的金属作阴极,选用特定材料作为辅助阳极,从而使被保护金属受到保护的方法。 外加电流阴极保护系统由如下几部分组成:① 直流电源,② 辅助阳极,③ 参比电极。此外,为使阳极输出的保护电流更均匀,避免阳极附近结构物产生过保护,有时在阳极周围还须涂刷阳极屏蔽层。为使船舶的轴及推进器等转动结构获得良好的保护,应加装轴接地装置。 直流电源 在外加电流阴极保护系统中,需要有一个稳定的直流电源,以提供保护电流。目前,广泛使用的有整流器和恒电位仪两种。一般,当被保护的结构物所处的工况条件(如浸水面积、水质等)基本不变或变化很小时,可以采用手动控制的整流器;但当结构物所处的工况条件经常变化时,则应采用自动控制的恒电位仪,以使结构物电位总处在最佳保护范围内。 在工程中广泛使用的恒电位仪主要有三类:可控硅恒电位仪、磁饱和恒电位仪和晶体管恒电位仪。可控硅恒电位仪功率较大、体积较小,但过载能力不强。磁饱和恒电位仪紧固耐用,过载能力强,但体积比较大,加工工艺也比较复杂。晶体管恒电位仪输出平稳、无噪声、控制精度较高,但线路较复杂。 辅助阳极 辅助阳极的作用是将直流电源输出的直流电流由介质传递到被保护的金属结构上。可作辅助阳极的材料有很多,如废钢铁、石墨、铅银合金、高硅铸铁、镀铂钛、包铂铌以及混合金属氧化物电极等。这些材料各有其特点,适用于不同的场合。 我所在辅助阳极材料研究与开发方面做了很多工作,开发的铂铌阳极等具有体积小、排流量大、使用寿命长、工作稳定可靠等优点。已广泛应用于船舶、钢桩码头、循环水泵、冷凝器

及海水管道的保护中。 参比电极 参比电极的作用有两个:一方面用于测量被保护结构物的电位,监测保护效果;另一方面,为自动控制的恒电位仪提供控制信号,以调节输出电流,使结构物总处于良好的保护状态。

阴极保护电流分布及电位测量

管道阴极保护电流分布 及 电 位 测 量 施 工 技 术 厂 家 河南汇龙合金材料有限公司

1概述在阴极保护中,阳极与保护结构之间的土壤电阻决定了到达保护结构的电流密度,而该电阻又决定于土壤电阻率、埋设位置土壤的截面积,以及阳极到保护结构上某一点的距离。计算公式为:Ry=r(r/A)(1)式中Ry——阳极与保护结构之间土壤电阻,Wr——土壤电阻率,W·mr——阳极到保护结构上某一点的距离,mA——埋设位置土壤的截面积,m2以位于均匀土壤中的竖直阳极为例,电流以放射状分布,总电流为各方向电流之和。对于长输管道,由于管道各点距阳极地床的距离不相等,阴极保护电流到达管道各点所经路径的电阻也不相等,因此管道各点的电流密度也不相等。2阳极与保护结构的距离分析假定其他因素恒定,储罐、管道等保护结构某一点得到的电流与其距阳极的距离成反比。以储罐底部的阴极保护为例,如果阳极距罐底太近,则电流的分布很不均匀,造成距阳极近的一侧过保护而另一侧保护不够。如果阳极与罐底的距离增大,则罐底各点与阳极之间的电流回路的电阻差减小,电流分布趋于均匀。但另一方面,由于阳极与罐底的距离增大,回路的总电阻增大,阴极保护电流减小。 因此需要提高外加电压,从电流分布的角度出发,阳极将有一个最佳位置。条件允许的情况下,阳极距罐底周边的距离不小于罐直径。如果做不到这一点,应采用分布式阳极或深井阳极,深井阳极的上端距地面距离不小于10m,以使电流分布均匀。英国标准BS 7361推荐罐底的阴极保护采用分布式阳极。对于受阴极保护的长输管道,均匀的电流分布可以通过增大阳极与管道的间距或通过均匀布置阳极来获得。阳极距管道太近,会使距阳极近的管道部位产生过保护,而距管道远的部位保护不够;阳极距管道太远,会使整条管道欠保护,此时若仍使管道得到充分保护,只有提高外加电压。阳极的最佳位置应使管道最远端得到有效保护而汇流点处不发生过保护。由于电流分布还受到土壤电阻率、防腐层状况、管道电阻等多个因素影响,因此阳极与管道的间距应不小于100m,一般为300~500m。3土壤电阻率对电流分布的影响当土壤电阻率均匀、管道电阻忽略不计时,与阳极距离最近的点电流密度最大。 距阳极越远,电流密度越小。然而大多数土壤电阻率是不均匀的,当沿管道的土壤电阻率有较大变化时,将对管道的电流分布产生较大影响。比如穿越河流的管道,由于河水的电阻率远小于周围土壤的电阻率,导致临近河床的管道电流密度增大,电位下降。当对井套管进行阴极保护时,由于套管会穿过不同电阻率的岩石层和土壤层,使阴极保护电流沿套管的分布不均匀。与阳极之间的电阻最小的套管表面处电流密度最大,电位最负。管地电位与土壤电阻率的变化有很大关系。秦京输油管道曾经在距泵站1km处发生了腐蚀穿孔,而距泵站较远的一段裸管却腐蚀轻微,原因是该段裸管处于电阻率较低的河床处,阴极保护充分。因此,当土壤电阻率变化大或者保护结构形状复杂时,要想使电流分布均匀,有效的措施是正确地布置阳极。另外,在土壤电阻率低的地方测得的电位满足要求,并不意味着处于土壤电阻率高的地段的管道也得到了充分的阴极保护。4阳极布置对电流分布的影响阳极有多种布置方式:近间距阳极、远距离阳极、分布式阳极、集中阳极、深井阳极。①分布式阳极分布式阳极可有效地改善电流分布,使保护结构上的电位均匀分布。当阴极电缆或管道太长时,应考虑其电阻对电流的影响。必要时,可以另加阴极电缆和阳极电

长输管道外加电流阴极保护及阴极保护站维护基础知识

长输管道外加电流 阴 极 保 护 及 阴 极 保 护 站 维 护 基 础 知 识 河南汇龙合金材料有限公司

1.目的:随着国内长输管道的大规模建设,我国的天然气管网已初具规模,长输管道外加电流阴极保护技术也被大量广泛应用,为了使阴极保护站场内维护人员以及现场巡线人员有效地实施阴极保护,做到科学操作、安全维护、确保质量、特编此文,提供对站场内及管线上阴极保护系统正常运行并科学维护指导。 一.防腐蚀的重要意义 自然界中,大多数金属是以化合状态存在的。通过炼制,被赋予能量,才从离子状态转变成原子状态。然而,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的金属材料, 约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1 亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%; 英国为国民经济总产值的3.5%;日本为国民经济总值1.8 %。 二.防腐蚀工程发展概况 六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。我国埋地油气管道的阴极保护始于1958 年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。 2.阴极保护原理 2.1 所谓阴极保护是通过降低管道的腐蚀电位而使管道得到保护的电化学保护(其实质:给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点低于一负电位,使金属原子不容易失去电子而变成离子溶入电解质的过程。)。通常施加阴极保护电流有两种方法:强制电流和牺牲阳极保护。 2.2 牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,通过电解质向被保护体提供一个阴极电流,使被保护体进行阴极极化,从而实现阴极保护。 阴极保护牺牲阳极原理是由托马晓夫三电极原理来解释,内容是: (a)两电极电位不同的两电极; (b)两电极必须在同一电解质溶液里; (c)两电极间必须有导线连接。 该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1 安培)或处于低土壤电阻率环境下(土壤电阻率小于100 欧姆.米)的金属结构。如,城市管网、小型储罐等。根

相关文档
最新文档