水解酸化工艺及其应用研究

水解酸化工艺及其应用研究
水解酸化工艺及其应用研究

第32卷第6期哈尔滨建筑大学学报Vol.32No.6 1999年12月Journal of Harbin U niversit y of C. E.&Architect ure Dec.1999文章编号:1006-6780(1999)06-0035-04

水解酸化工艺及其应用研究

沈耀良,王宝贞

(哈尔滨建筑大学市政环境工程学院,黑龙江哈尔滨150090)

摘要:对水解酸化工艺的特性、与混合厌氧和两相厌氧工艺的区别及其在改善废水可生化性的功效等进行了分析比较。利用厌氧折流板反应器(AB R)对垃圾填埋场渗滤液与城市混合废水的研究表明,该工艺可有效地提高废水的BOD5/COD,明显地提高可生化性的作用,促进废水的进一步好氧生物处理。

关键词:水解酸化;特性分析;厌氧析流板反应器;生物处理

中图分类号:TU911.2文献标识码:A

H y drol y sis-acido g enosis p rocess and it s a pp lication and st ud y

S HEN Yao-l ian g,WANG B ao-zhen

(School of Munici p al&Environmental En g ineerin g,Harbin U niversit y of Civil En g ineerin g&Architect ure,Harbin150090,China)

Abstract:An anal y sis of t he characteristics of h y drol y sis-acido g enosis p rocess,it s f unction in im p rovin g t he biolo g ical t reatabilit y of wastewater com p arin g to anaerobic and two-p hase anaer2 obic p rocesses were made in t his p a p er.The st ud y on t he t reat ment of mixed wastewater of landfill leachate and munici p al sewa g e b y h y drol y sis-acido g enosis p rocess usin g Anaerobic Baffled Reactor (AB R)was carried out.The result s showed t hat t his p rocess effectivel y increased t he BOD5/COD ratio,which facilitates t he f urt her aerobic t reat ment of t he wastewater.

K e y words:h y drol y sis-acido g enosis;characteristics anal y sis;anaerobic battled reactor(AB R); biolo g ical t reat ment

在废水处理中,厌氧水解酸化的主要作用是改进废水的可生化性(即提高BOD5/COD),为废水的有效处理创造良好的条件。国内外已不乏此方面的研究报道[1~3]。对含有较多的难生物降解物质的废水(如垃圾填埋场渗滤液)而言,为保证合并处理的效果及正常运行,应用水解酸化-好氧生物处理工艺是有益和必要的。

1水解酸化工艺的特点

水解酸化工艺与单独的厌氧或好氧工艺相比,具有以下特点:

1.由于在厌氧阶段可大幅度地去除废水中悬浮物或有机物,其后续好氧处理工艺的污泥量可得到有效地减少,从而设备容积也可缩小。有报道,在实践中,厌氧-好氧工艺的总容积不到单独好氧工艺的一半[4];

2.厌氧工艺的产泥量远低于好氧工艺(仅为好氧工艺的1/10~1/6),并已高度矿化,易于处理。同时其后续的好氧处理所产生的剩余污泥必要时可回流至厌氧段,以增加厌氧段的污泥浓度同时减少污泥的处理量;

3.厌氧工艺可对进水负荷的变化起缓冲作用,从而为好氧处理创造较为稳定的进水条件;

4.厌氧处理运行费用低,且其对废水中有机物的去除亦可节省好氧段的需氧量,从而节省整体

收稿日期:1998-12-07

作者简介:沈耀良(1961-),男,哈尔滨建筑大学博士后.

36哈尔滨建筑大学学报第32卷工艺的运行费用;

5.重要的是当将厌氧控制在水解酸化阶段时,可为好氧工艺提供优良的进水水质(即提高废水的可生化性)条件,提高好氧处理的效能,同时可利用产酸菌种类多、生长快及对环境条件适应性强的特点,以利于运行条件的控制和缩小处理设施的容积。

2与厌氧-好氧工艺及两相厌氧处理的比较

根据有机物在厌氧处理中所要求达到的分解程度,可将其分为两种类型,即酸发酵(水解酸化)和甲烷发酵。前者以有机酸为主要发酵产物,而后者则以甲烷为主要发酵产物。酸发酵是一种不彻底的有机物厌氧转化过程,其作用在于使复杂的不溶性高分子有机物经过水解和产酸,转化为溶解性的简单低分子有机物,为后续厌氧处理中产乙酸产氢和产甲烷微生物或好氧处理准备易于氧化分解的有机底物(即提高废水的BOD5/COD,改善废水的可生化性)。因而,它常作为生物预处理工序或厌氧-好氧联合生化处理工艺中的前处理工序。

厌氧-好氧工艺是中、高浓度有机废水处理的适宜工艺。这是因为:

1.厌氧法多适用于高浓度有机废水的处理,能有效地降解好氧法不能去除的有机物,具有抗冲击负荷能力强的优点,但其出水综合的指标往往不能达到处理要求;

2.厌氧法能耗低和运行费便宜,尤其在高浓度有机废水时,厌氧法要比好氧法经济得多;

3.好氧法则多适用于中低浓度有机废水的处理,对于高浓度且水质、水量不稳定的废水的耐冲击负荷能力不如厌氧法,尤其当进水中含有高分子复杂有机物时,其处理效果往往受到严重的影响。厌氧-好氧联合处理工艺可大大改善水质及运行的稳定性,但由于厌氧段实现了甲烷过程,因而对运行条件和操作要求较为严格,同时因原水中大量易于降解的有机物质在厌氧处理中被甲烷化后,剩余的有机物主要为难生物降解和厌氧消化的剩余产物,因而尽管其后续的好氧处理进水负荷得到大大降低,但处理效率仍较低。此外,该工艺须考虑复杂的气体回收利用设施,从而增加基建费用。而水解酸化工艺则将厌氧处理控制在产酸阶段,不仅降低了对环境条件(如温度、p H、DO等)的要求,使厌氧段所需容积缩小,同时也可不考虑气体的利用系统,从而节省基建费用。由于厌氧段控制在水解酸化阶段,经水解后原水中易降解物质的减少较少,而原来难以降解的大分子物质则被转化为易生物降解的物质,从而使废水的可生化性及降解速率得到较大幅度的提高。因此,其后续好氧处理可在较短的HR T下达到较高的处理率。两相厌氧消化工艺即是将厌氧消化中的产酸相和产甲烷相分开,以便获得各自最优的运行工况。与水解酸化过程相比,其产酸段对产物的要求是不同的(以乙酸为其产物)。

水解酸化、混合厌氧和两相厌氧由于各自的作用不同、对产物要求及处理程度的不同,对各自的运行和操作要求也不同:

1.Eh不同。在混合厌氧消化系统中,由于承担水解和酸化功能的微生物与产甲烷菌共处于一个反应器中,整个反应器的氧化还原电位Eh须严格控制在-300mV以下以满足甲烷菌的要求,因而其水解酸化菌也是在此Eh值下工作的。两相厌氧消化系统则将产酸相的Eh控制在-100~-300mV之间。对水解酸化-好氧工艺而言,只要将Eh控制在+50mV下即可发生有效的水解酸化作用;

2.p H要求不同。混合厌氧处理系统中,由于控制处理效能的步骤是产甲烷,因而其p H通常控制在甲烷菌生长的最佳范围(6.8~7.2)以内。两相工艺中则为控制其产物的形态而将p H严格控制在6.0~6.5之间,p H的变化将引起产物的变化而造成对产甲烷相的抑制。对水解酸化工艺而言,由于其后续处理为好氧工艺,因而对p H的要求并不十分严格,且由于水解酸化菌对p H的适应性较强,因而其适宜p H范围较宽(适宜值为

3.5~10,最优值为5.5~6.5);

3.温度(T)的不同。对于混合厌氧系统和两个系统而言,对温度的要求均严格,要么控制在中温(30~35℃),要么控制在高温(50~55℃)。而水解酸化工艺则对温度无特殊要求,在常温下仍可获得满意的效果。研究表明,当温度在10~20℃之间变化时,水解酸化反应速率变化不大,说明水解酸化微生物对低温变化的适应能力较强[5];

37

第6期沈耀良等:

水解酸化工艺及其应用研究4.参与微生物种群及产物的不同。混合厌氧工艺中,由于严格控制在厌氧条件下运行,其优势微生物种群为专性厌氧菌,因而完成水解作用的微生物以厌氧菌为主。两相工艺中则因所控制的Eh 值的不同而以不同菌群存在。如Eh 较低时,以专性厌氧菌为主,而Eh 值较高时则以兼性菌为主。水解酸化工艺通常可在兼性条件下运行,因而其微生物菌群多以厌氧和兼氧菌的混合菌群,有时也以兼性菌为主。微生物种群的差异导致不同工艺的产物也不同。表1列出了不同工艺的运行工况要求。

表1不同厌氧工艺运行工况的比较

3水解酸化对提高废水可生化性的功效

水解酸化过程中,进出水中的COD 和BOD 5浓度的变化可能有以下三种情况:

1.降低,但最大不超过20%~30%;

2.与原水持平(如以葡萄糖为水解酸化底物时即出现此情形);

3.略有升高(高分子复杂有机物的水解酸化时)。

但基于实际废水中基质的复杂性、参与水解酸化过程的微生物的多样性及环境条件的多变性,上述三种情形亦可能同时兼而有之。

对含有较多难降解的高分子复杂有机物的废水而言,借助于水解酸化工艺可提高废水的可生化性,即提高废水BOD 5/COD 比。水解酸化对高分子复杂有机物的分解是通过微生物的开环酶的作用破坏多环化合物的环而实现的。环的开裂是

多环物质水解过程中的速率控制步骤[6,7]。

厌氧微生物对环的开裂有两个途径:

1.还原性代谢途径,即通过苯环加氢还

原使环裂解(见图1);2.非还原性代谢,即通过苯环加水而羟

基化。另有研究表明,对于纤维和脂类物质而言,其厌氧水解还可通过β-氧化途径完成[8,9]。Klu g e 等人报道[10],还原性芳香环的裂解需脱羧酶、还原酶和裂解酶的参与。而Vo g er 等人则报道了多种参与厌氧芳烃裂解的酶体系,表明厌氧微生物体内具有易于诱导较为多样化的开环酶体系,这便为杂环烃及芳香烃等复杂有机物的厌氧水解和酸化提供了物质条件和客观保证,使它们易于被裂解而利于有效的生物处理[6]。

有关这方面的研究,国内外已时有报道。有研究报道,通过厌氧水解酸化后,萘的可生化性由

0.312提高至0.512,喹啉、吲哚、联苯和三联苯、吡啶等的可生化性均得到明显的改善[11]。佘宗莲等

人采用厌氧-好氧序列间歇式反应器对生物制药废水处理的研究表明,该废水经厌氧处理后,不溶性有机物被厌氧菌吸附、水解和酸化,转化为可溶性易生物降解有机物,其中有部分转化为甲烷等沼气,一部分保留在水中,从而提高出水的BOD 5/COD 比。其进水的BOD 5/COD 比为0.338~0.386之间,出水BOD 5/COD 比则提高到0.601~0.622,效果明显[2]。Ku p ferle 等人对渗滤液与城市污水的混合废水(V SH :V CH =0.5∶9.5)的厌氧预处理研究亦表明,厌氧处理对不溶性COD 的去除率较高(56%)而BOD 5的去除率较低,不仅提高了出水的可生化性,而且可减少后续好氧处理系统中污泥量、需氧量,从而利于整个系统的稳定、有效和低耗运行[12]。

4水解酸化工艺处理渗滤液的研究及分析

垃圾填埋场渗滤液是一种高浓度的复杂有毒有害废水,必须加以及时的处理,以防治对水环境的图1苯甲酸的还原开环途径

38哈尔滨建筑大学学报第32

卷污染、促进垃圾卫生真埋技术的推广应用。考虑到“中老年”的填埋场渗滤液中含有较多的难生物降解有机物及多种有害物质(如蒽、1-甲基萘、二苯并噻吩、苯乙酸乙脂、环已烷羧酸、苯丙酸、芴、对甲酚、莰烯等杂环和多环化合物等),笔者采用新型高效的AB R 反应器对渗滤液与城市污水的混合废水的合并处理进行了水解酸化研究。研究表明,通过水解及酸化作用提高混合废水的可生化性。图2所示为运行期间AB R 反应器进、出水BOD 5/COD 的变化。由图可见,经AB R 处理后,混合废水的BOD 5/COD 比得到了明显的提高,当进水BOD 5/COD 比较低时效果更为显著。如进水的BOD 5/COD 比为0.665时,出水为0.68,而进水BOD 5/COD 比为0.2~0.3时,出水可提高至0.4~0.6。这无疑可促进废水在好氧处理中的氧化降解效果。研究还表明,反应器的HR T 在13~26h 内,水解酸化作用随停留时间的延长而加强(图3),不同条件下的实际水解酸化作用始终保持在较高的水平。

5结语

水解酸化工艺在处理含有高分子复杂有机物的废水中对提高其可生化性作用明显,并具有一系列的优点。通过水解酸化工艺的处理,废水中的多种复杂有机物可得到有效的降解,其BOD 5/COD 明显提高,可为废水的进一步好氧处理创造良好的条件。笔者采用AB R 反应器作为水解酸化工艺对垃圾填埋场渗滤液与城市污水的混合废水的研究充分表明了这一点。由此可见,该工艺有着良好的应用前景,有必要作深入的研究。

参考文献:

[1]Ince O..Performance of a two -p hase anaerobic dis g estion s y stem when treatin g dair y wastewater [J ],Water Res.,

1998,(9):2707-2713.

[2]佘宗莲.厌氧-好氧序列间歇式反应器处理生物制药废水的研究[J ].环境科学研究,1998,(1):49-52.

[3]陶有胜.水解酸化-生物接触氧化工艺处理啤酒废水工程实例[J ].环境工程,1998,(4):20-22.

[4]贺延龄.废水的厌氧生物处理[M ].北京:中国轻工业出版社,1998.

[5]张希衡.废水厌氧生物处理工程[M ].北京:中国环境科学出版社,1996.

[6]Vo g el T.M.et al..Incor p oration of ox yg en f rom water into toluene and beniene durin g anaerobic fermentative

transformation[J ].A pp l.Eniron.Microbiol.,1986,(2):200-202.

[7]Kuhn E.P..Microbial transforamtion of sudstituted benenes durin g infiltration of river water to g round water [J ].

Environ.Sci.Technol.,1985,(6):961-968.

[8]Rinzema A.et al..Bactericidal effect of lon g chain fatt y acids in anaerobic di g estion[J ].Water Environ.Res.,

1994,(1):40-49.

[9]沈耀良.污水中潜纤维素厌氧水解的机理及动力学模型[J ].苏州城建环保学院学报,1992,(2):8-14.

[10]Klu g e C.et al..Anaerobic metablism of resorc y clic acid and resorcinol in a fermentation and in a denitrif y in g

bacterium[J ].Arch.Microbiol.,1990,(1):68-74.

[11]姚君.焦化废水中有机污染物经厌氧酸化后对好氧生物降解性能的影响[J ].中国环境科学,1998,(3):276-279.

[12]Ku p ferle M.J.et al..Anaerobic p retreatment of hazardous waste leachates in p ublic owned treatment works [J ].

Water Environ.Res.,1995,(6):910-920.

图2AB R 进出水BOD 5/COD 的变化图3HR T 与水解酸化程度的关系

医疗废水处理技术规范

医疗废水处理技术规范 医院在处理污水时必须严格按照相关国家规定,关于相关工艺的设计需要结合实际情况。本文对医院污水处理工艺与消毒剂的选择进行深入研究,希望能够采用先进科学与相关科研理论,科学、合理地处理医院污水。 1、医院污水的性质特点 由于医院具有特殊的性质,关于污水的排放主要有医疗污水与生活污水两种。医疗 污水排出科室有很多,如实验室检验中心与同位素放疗诊室等,因含有各种放射性 物质必须经过处理才能排入下水道,如消毒剂、有机溶剂、病原体等。然而,生活 污水则是患者及其家属洗漱、生活、食堂后厨排出,可以直接进入下水道。 医院污水具有复杂的成分和多样化的来源渠道,具有广泛的污染范围、急慢性与潜 伏传染性,如果排入下水道之前不能得到有效处理,则会导致有害物质随污水四处 传播,进而在严重污染环境的同时还会危害到人们的身体健康。 2、医院污水处理工艺设计 2.1 医院污水处理工艺 当下,《医院污水处理设计规范》为设计医院污水处理的参照标准,同时医院污水 具有较为复杂的性质,放射性废水在排入医院排水系统之前必须经衰变池处理。 因医院具有较为密集的人口,在选择污水处理工艺时需要对其先进性、经济适用性 与稳定性进行综合考虑,其中稳定性高、投入少、占用空间少、运行费用少为首要 原则,保证污水能够实现自动化处理,各项操作能够得到简化。 2.1.1 排入市政管道 采用一级或一级强化处理排到终端有二级污水处理厂的市政管道医院污水,以此可 以将其中的有害气体、有毒有害、易燃易爆物质、致病微生物等有效消除,因医院 污水最终会混合生活污水,因此一般理化指标所制定的要求不需要过于严苛,如COD、BOD 和 SS 等。 医院污水和居民污水会排入市政管道中,相比较于医院污水,居民污水水质要差很多,以 COD 为例,医院污水污染浓度在 90 ~ 250mg/L 之间,居民污水为 400 ~500mg/L。 相比较于居民生活污水,医院污水数量少,但是需要单独进行严格处理,二者最终 混合在市政管道内,若不能开展污水处理,则极易造成社会资源的浪费。 2.1.2 在严格处理中并不能节约大量的消毒剂 为更好地节省消毒剂,医院污水十分有必要开展高级别的前处理,以降低污水污染 浓度、提高消毒效果。经研究发现,原污水通常经过一、二级处理后,消毒剂投入 量相差不足 5mg/L。

沉淀池及水解酸化池设计参数

沉淀池及水解酸化池设计参数 沉淀池设计参数: 平流沉淀池:按表面负荷进行设计,按水平流速进行核算。水平流速为5~7 mm/s。表面负荷:给水自然沉淀0.4~0.6m3/m2.h;混凝后沉淀1.0~2.2m3/m2.h;城市污水1.5~3. 0m3/m2.h。有效水深一般为2~4m,长宽比为3~5,长深比8~12。进出水口均设置挡板,挡板高出池内水面0.1~0.2m,挡板据进水口0.5~1.0m;距出水口0.25~0.5m。挡板淹没深度:进口0.5~1.0m(约为池深5/6左右);出口处为0.3~0.4m。 竖流式沉淀池:池直径=4~7m,不宜大于8m,池直径与有效水深之比≤3。上流速度为0. 3~0.5 mm/s;中心管下流速度<30 mm/s。喇叭口直径及高度为中心管直径的1.35倍;反射板直径为喇叭口直径的1.3倍,中心管底与反射板间缝隙高度为0.25~0.50m;反射板表面与水平面的夹角为17°,板底距泥面至少0.3m;排泥管下端距池底≤0.2m,管上端超出水面0.4m。浮渣挡板距集水槽0.25~0.5m,板上端超出水面0.1~0.15m,淹没深度为0.3~0.4m。 斜管沉淀池超高0.3~0.5m,清水区保护高度为1.0 m,缓冲层高度为0.7~1.0m,斜管沉淀池表面负荷2~4m3/m2.h为宜。沉淀时间1.5~4h。 水解酸化池设计参数: 水解酸化池放弃了厌氧反应中甲烷发酵阶段,利用水解和产酸菌的反应,将不溶性有机物水解成溶解性有机物,减轻后续处理构筑物的负荷,使污泥与污水同时得到处理,可以取消污泥消化。在整个水解酸化过程中,80%以上的进水悬浮物水解成可溶性物质,将大分子降解为小分子,不仅是难降解的大分子物质得到降解,而且出水BOD5/COD比值提高,降低了后续生物处理的需氧量和曝气时间。 水解反应器对水质和水温变化适应能力较强,水解-好氧生物处理工艺效率高,能耗低,投资少,运行费低,简单易行。 水解反应器设计是以水力负荷为控制参数,有机负荷只作为参考指标。水解反应池内溶解氧应为零,反应器形式可采用悬浮型生物反应器(如UASB)或附着型生物反应器。 名称参数 水力负荷0.5~2.5m3/m2 有机负荷 1.95~8.8kgCOD/m3.d 停留时间2~8h

水解酸化与厌氧- 好氧工艺及两相厌氧处理的比较

水解酸化与厌氧- 好氧工艺及两相厌氧处理的比较根据有机物在厌氧处理中所要求达到的分解程度,可将其分为两种类型,即酸发酵(水解酸化)和甲烷发酵。前者以有机酸为主要发酵产物,而后者则以甲烷为主要发酵产物。酸发酵是一种不彻底的有机物厌氧转化过程,其作用在于使复杂的不溶性高分子有机物经过水解和产酸,转化为溶解性的简单低分子有机物,为后续厌氧处理中产乙酸产氢和产甲烷微生物或好氧处理准备易于氧化分解的有机底物(即提高废水的BOD5 / COD ,改善废水的可生化性)。因而,它常作为生物预处理工序或厌氧-好氧联合生化处理工艺中的前处理工序。 厌氧-好氧工艺是中、高浓度有机废水处理的适宜工艺。这是因为: 1.厌氧法多适用于高浓度有机废水的处理,能有效地降解好氧法不能去除的有机物,具有抗冲击负荷能力强的优点,但其出水综合的指标往往不能达到处理要求; 2.厌氧法能耗低和运行费便宜,尤其在高浓度有机废水时,厌氧法要比好氧法经济得多; 3.好氧法则多适用于中低浓度有机废水的处理,对于高浓度且水质、水量不稳定的废水的耐冲击负荷能力不如厌氧法,尤其当进水中含有高分子复杂有机物时,其处理效果往往受到严重的影响。厌氧-好氧联合处理工艺可大大改善水质及运行的稳定性,但由于厌氧段实现了甲烷过程,因而对运行条件和操作要求较为严格,同时因原水中大量易于降解的有机物质在厌氧处理中被甲烷化后,剩余的有机物主要为难生物降解和厌氧消化的剩余产物,因而尽管其后续的好氧处理进水负荷得到大大降低,但处理效率仍较低。此外,该工艺须考虑复杂的气体回收利用设施,从而增加基建费用。而水解酸化工艺则将厌氧处理控制在产酸阶段,不仅降低了对环境条件(如温度、p H、DO等)的要求,使厌氧段所需容积缩小,同时也可不考虑气体的利用系统,从而节省基建费用。由于厌氧段控制在水解酸化阶段,经水解后原水中易降解物质的减少较少,而原来难以降解的大分子物质则被转化为易生物降解的物质,从而使废水的可生化性及降解速率得到较大幅度的提高。因此,其后续好氧处理可在较短的HRT下达到较高的处理率。两相厌氧消化工艺即是将厌氧消化中的产酸相和产甲烷相分开,以便获得各自最优的运行工况。与水解酸化过程相比,其产酸段对产物的要求是不同的(以乙酸为其产物)。 水解酸化、混合厌氧和两相厌氧由于各自的作用不同、对产物要求及处理程度的不同,对各自的运行和操作要求也不同: 1. Eh不同。在混合厌氧消化系统中,由于承担水解和酸化功能的微生物与产甲烷菌共处于一个反应器中,整个反应器的氧化还原电位Eh须严格控制在- 300mV以下以满足甲烷菌的要求,因而其水解酸化菌也是在此Eh值下工作的。两

水解酸化_复合生物反应器处理玻璃厂废水工程设计

科技情报开发与经济 SCI -TECH INFORMATION DEVELOPMENT &ECONOMY 2009年第19卷第14期 Discussion on the Full Framing Construction Technique for 2×64m T-type Rigid Frame Cast-in-place Box-girder on Baoding-Fuping Superhighway Crossing Beijing-Guangzhou Railway LU Jian-sheng ABSTRACT :This paper introduces the general situation of the engineering of 2×80m T-type rigid frame swivel bridges on Baoding -Fuping Superhighway crossing Beijing -Guangzhou Railway ,and expounds in detail the full framing construction technique for 2×64m t-type rigid frame cast-in-place box-girder on Baoding-Fuping Superhighway crossing Beijing-Guangzhou Railway . KEY WORDS :full framing ;construction technique ;rigid frame cast-in-place box-girder ;Baoding-Fuping Superhighway 水解酸化(Hydrolytic Acidification )工艺是将厌氧发酵阶段 过程控制在水解与产酸阶段,即在大量水解细菌、产酸菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质的过程,可以让更多的无机物转化为有机物,这样后期的好氧曝气才能有发挥作用的空间,才能达到最大化地去除污染物的效果。水解酸化工艺作为各种生化处理的预处理,可改进废水的可生化性,为废水的有效处理创造了良好的条件。复合生物反应器(Hybrid Biological Reactor )是将传统的活性污泥法与生物膜法进行有机结合的一种新型高效的污水处理工艺。该工艺近年来颇受关注,其特点是在活性污泥池中投加填料作为微生物附着生长的载体,进而形 成悬浮生长的活性污泥和附着生长的生物膜,二者共同承担去除污水中有机污染物的任务,该工艺增加了反应器中单位体积的生物量,减小了曝气池的体积,改善了系统的稳定性和运行性能,提高了系统的有机负荷和效率。 某玻璃厂废水用水解酸化和复合生物反应器结合起来的工艺进行处理,取得了较好的处理效果。 1工程概况 某玻璃厂位于山西省中部、晋中盆地西缘的交城县,该厂 文章编号:1005-6033(2009)14-0147-03 收稿日期:2009-03-10 水解酸化—复合生物反应器 处理玻璃厂废水工程设计 许 震 (安徽省建设工程勘察设计院,安徽合肥,230001) 摘要:介绍了玻璃厂废水处理工程的概况, 阐述了废水处理工艺流程、主要处理构筑物及设计参数,进行了技术经济分析,总结了调试与运行情况,指出本工程设计采用水解酸化工艺提高废水的可生化性,提高了后续生物处理的去除效果,水解后的生物处理采用先进的复合生物反应器工艺,出水水质稳定达标,处理效率较高。关键词:玻璃厂废水处理;水解酸化;复合生物反应器中图分类号:X703文献标识码:A (5)接地装置安设完毕后应及时用电阻表测定是否符合要求。 (6)雷雨天气,钢管支架上的操作人员应立即离开。 7施工现场安全管理措施 (1)在主要施工部位、作业点、危险区、主要通道口挂安全宣 传标语或安全警告牌; (2)施工现场全体人员严格执行《建筑安装工程安全技术规程》和《建筑安装工人安全技术操作规程》; (3)施工现场杜绝任意拉线接电;(4)配电系统设总配电箱、分配电箱、开关箱、实行分级配电,开关箱装设漏电保护器; (5 )施工机械进场安装后经安全检查合格后投入使用。8 结语 保阜高速公路跨京广铁T 型刚构转体桥现浇箱梁梁体高、跨 度大、施工质量重,做好支架方案及验算对整个施工至关重要。本 工程的满堂支架地基利用现有的107国道路面, 结合实际,工序上更为简单,造价上更为经济,实践表明结构上也能很好地满足施工及规范要求。该桥施工周期长,满堂支架周转材料费用高,做好支架受力验算,能确保施工安全,节约周转材料。实践证明,该桥在满堂支架搭设方面较其他同类型桥梁施工要节约周转材料约300t ,大大节约了工程成本。(责任编辑:王永胜)──────────────── 第一作者简介:鲁建生,男,1972年5月生,1995年毕业于太原理工大学,工程师,中铁十七局五公司,山西省太原市,030032. 147

水解酸化池设计

水解酸化池 1. 某污水厂总设计规模为20万m 3/d ,污水处理厂的进水水质如下表: 污水处理厂的进水水质1-1 污水能否进行生化处理,尤其是否适用于生物脱氮除磷工艺,取决于污水中各种营养成分的含量及其比例能否满足生物生长需要,因此必须分析相关的进水指标。 表1-2 污水厂污水营养物比值 BOD /COD BOD i. BOD 5 /COD cr 比值 污水BOD 5 /COD cr 值是判定污水可生化性的最简便易行和最常用的方法。根据工程经验,一般认为BOD 5 /COD cr >0.45可生化性较好,BOD 5 /COD cr <0.3较难生化,BOD 5 /COD cr <0.25不易生化。 本项目BOD 5 /COD cr =0.28,可见其生化性较难。

ii.BOD5 /TN比值 BOD5 /TN比值是判别能否有效脱氮的重要指标。理论方面,BOD5 /TN ≥2.86就能进行脱氮;工程经验方面,BOD5 /TN≥4.0才能有效脱氮。 本项目BOD5 /TN =3.11,可见其能进行脱氮。 iii.BOD5 /TP比值 进水中的BOD5是作为营养物供聚磷菌活动的基质,故BOD5/TP是衡量能否达到除磷的重要指标,在污水中BOD5 /TP之比为17及以上时,取得良好的除磷效果。 本项目BOD5 /TP =28,可见其能达到良好的除磷效果。 1.水解酸化池工艺的确定 针对本工程项目的特点需对预处理工艺有如下要求: 1)进水的COD高,BOD5/CODcr较低,污水的可生化性较难,选择工艺时 应进一步提高污水的可生化性,确保出水水质; 2)本工程将接入大量工业废水(占城市污水量的70%),同时大部分工业废 水为纺织印染废水,选择预处理工艺时,应综合考虑色度的去除; 3)预处理工艺应尽可能节省:基建投资、能耗和运行费用; 因此,通过本工程可研,在好氧生物反应池前增加水解酸化池预处理工艺,目的:a)改善进水水质,提高BOD5 /CODcr;b)印染废水中污染物绝大多数属于芳香烃化合物,利用厌氧菌可对该类化合物开环,达到较好的脱色目的;c) 采用水解-活性污泥法与传统的活性污泥相比,其基建投资、能耗和运行费用可分别节省30%左右。

水解酸化池的工艺操作规程

编号:SM-ZD-71033 水解酸化池的工艺操作规 程 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

水解酸化池的工艺操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一般厌氧发酵过程可分为四个阶段,即水解阶段、酸化阶段、酸衰退阶段和甲烷化阶段。而在水解酸化池中把反应过程控制在水解与酸化两个阶段。在水解阶段,可使固体有机物质降解为溶解性物质,大分子有机物质降解为小分子物质。在产酸阶段,碳水化合物等有机物降解为有机酸,主要是乙酸、丁酸和丙酸等。水解和酸化反应进行得相对较快,一般难于将它们分开,此阶段的主要微生物是水解—酸化细菌。 废水经过水解酸化池后可以提高其可生化性,降低污水的pH值,减少污泥产量,为后续好氧生物处理创造了有利条件。因此,设置水解酸化池可以提高整个系统对有机物和悬浮物的去除效果,减轻好氧系统的有机负荷,使整个系统的能耗相比于单独使用好氧系统大为降低。 本项目水解酸化池的处理效果增强措施:

印染废水(水解酸化接触氧化)讲解

水解酸化-接触氧化-混凝-脱色 XX有限公司 印染废水处理工程设计方案 广州益方田园环保科技开发有限公司 广东工业大学校办产业总公司 二零零三年四月

工程名称:4000吨/天印染废水处理 设计阶段:方案设计 工程编号:021001 方案设计目录 一、工程概况 二、设计水质、水量及排放标准 三、设计依据 四、设计范围 五、设计原则 六、方案设计和工艺流程简介 七、主要处理设施及设计参数 八、污水处理站总体设计 九、工艺流程图及平面布置图

一、工程概况 印染混合废水具有如下特点:①含活性染料废水,色度高,难脱色;②水质复杂,有机物含量高,耗氧量大,悬浮物多;③受原料、季节、市场需求等变化的影响,使水质水量变化很大。目前设计日排废水量约为4000m3/d。 为了保护我们的生存环境,保护我们的有限水资源,同时也为了使企业能更好地生存和持续地发展,为创造更好的环境效益和社会效益,严格执行国家环保‘三同时’制度,继续保持良好的企业形象,公司拟建废水处理站一座。日处理废水量4000m3,利用技术先进,运行、维护简单,效果稳定的处理系统消减污染,以使废水达到国家及珠海市环保要求排放。 受厂家委托,我公司对该废水治理进行设计,本着实事求是、真诚合作的原则,我公司根据同类废水的治理经验,在经过大量的文献参阅、专业技术人员的认真探讨后拟成了本设计方案,恭请各级领导和专家审查并提出宝贵意见,希望能够贡献我们的技术和力量。 二、设计水质水量及排放标准 (一)、水质: 按同类型企业生产废水情况估计,本方案设计综合废水水质主要指标为: CODcr:600mg/l~1000mg/l BOD5:200mg/l~250mg/l

水解酸化基础知识

水解酸化基本知识 水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应。 酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。 从机理上讲,水解和酸化是厌氧消化过程的两个阶段,但不同的工艺水解酸化的处理目的不同。水解酸化-好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,特别是工业废水,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。考虑到后续好氧处理的能耗问题,水解主要用于低浓度难降解废水的预处理。混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两项厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开,以创造各自的最佳环境。 影响水解酸化过程的重要因素: PH值:水解酸化微生物对PH值变化的适应性较强,水解酸化过程可在PH值3.5-10的范围内进行,但最佳的PH是5.5-6.5 水温:研究表明,水温在10-20摄氏度之间变化时,对水解反应速度影响不大,说明参与水解的微生物对低温变化的适应性强。 底物的种类和形态:底物的种类和形态对水解酸化过程的速度有很大影响。对同类有机物来说,分子量越大,水解越困难,相应的水解速度就越小。颗粒状有机物,粒径越大,单位重量有机物的比表面积就越小,水解速度也越小。 污泥生物固体停留时间:在常规的厌氧条件下,混合厌氧消化系统中,水解酸化微生物的比增值速度高于甲烷菌,因此,当系统的生物固体停留时间较小时,甲烷菌的数量将逐渐减少,直至完全淘汰。为了保持水解微生物的活性,水解池内水解微生物浓度应该保持一个合适的浓度。这都是靠控制水解池的生物固体停留时间来完成的。 水利停留时间:对水解酸化反应器来说,水利停留时间越长,底物与水解微生物的接触时间也越长,相应的水解效率就高。 水解酸化过程的判断指标: 一个水解反应池是否发生了水解,以及水解过程进行的程度,单从出水的水质COD、BOD等的去除率来判断是不全面的。判断指标为: BOD/COD比值的变化:废水可生化性的一个重要指标。 溶解性有机物的比例变化:水解处理后,溶解性有机物比例显著增加。 有机酸(VAF)的变化:进出水VAF的相差越大,说明水解酸化的程度越好。

水解酸化池设计计算书

水构筑物课程设计 课程设计计算说明书 专业: _____ 环境工程 _________ 班级:环工1211 ________ 题目: _____ 水解酸化池 _______ 指导教师:黄勇/刘忻 姓名: _______ 姚亚婷_________ 学号:1220103136 _________ 2015年1月3日

环境科学与工程学院 目录 1.1水解池的容积 (1) 1.2水解池上升流速校核 (1) 1.3配水方式 (2) 1.4堰的设计 (2) 1.4.1 堰长设计 (2) 1.4.2 出水堰的形式及尺寸 (2) 1.4.3 堰上水头h1 (3) 1.4.4 集水水槽宽B (3) 1.4.5 集水槽深度 (3) 1.5进水管设计 (4) 1.6出水管设计 (4) 1.7污泥回流泵设计计算 (5)

水解酸化池设计计算 1.1水解池的容积 水解池的容积V V K z QHRT 式中:V ——水解池容积,m3; K z——总变化系数,1.5; Q ---- 设计流量,Q=130m3/h; HRT ——水力停留时间,设为6h; 则水解酸化池容积为V K Z QHRT =1.5*130*6=1170m3, 水解池,分为2格,设每格水解酸化池长18米,每格的宽为6.5m, 设备中有效水深高度为5m,则每格水解池容积为18*6.5*5=585m3 设超高为0.5m,则总高为5.5m 1.2水解池上升流速校核 已知反应器高度为:H=5.5m;反应器的高度与上升流速之间的关系如下: Q V H

式中: A HRTA HRT 上升流速(m/h); Q 设计流量,m3/h ; V 水解池容积,m3; A 反应器表面积,m2; HRT——水力停留时间,h,取6h; 则v=5.5/6=0.92(m/h) 水解反应器的上升流速0.5 ~1.8m/ h ,符合设计要求 1.3配水方式 采用总管进水,管径为DN100,池底分支式配水,支管为DN50,支管上均匀排布小孔为出水口,支管距离池底200mm,均匀布置在池底,位于所服务面积的中心。 1.4堰的设计1.4.1堰长设计 取出水堰负荷q' =1.5L/(sm)(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于1.7L/(s m))。 式中:L——堰长m; q 出水堰负荷,L/(s m),取1.5L/(s m); Q'--- 设计流量,每格流量为0.018m3/s; 则L Q -M0 12m,取堰长L 12m。

污水处理工程设计要点

污水处理工程设计要点

工程方案编写1概述 1.1项目背景 ?项目建设单位概况 ?所在地区地理气候等情况 ?废水的产生及水质概述 ?现有处理情况及预期处理工程概况 1.2编制依据、标准、原则和范围 1.2.1编制依据和主要资料 ?现有工程情况与资料 ?类似工程的相关资料 ?现场调研情况 ?试验研究情况 1.2.2采用的规范和标准 ?排放标准 《污水综合排放标准》,GB8978-1996; 《城镇污水处理厂污染物排放标准》,GB18918-2002 《污水排入城市下水道水质标准》,CJ3082-99 《大气污染物综合排放标准》,GB16297-1996 ?回用标准 《城市污水回用设计规范》,CECS 61:94 ?其他环境标准 《地表水环境质量标准》,GB3838-2002

《环境空气质量标准》,GB3095-1996 ?设计规范 《室外排水设计规范》,GB50014-2006 《给水排水工程结构设计规范》GB50069-2002 《工业企业设计卫生标准》,GB21-2002 《采暖通风与空气调节设计规范》,GBJ19-87(2001年版) 《泵站设计规范》,GB/T50265-97 ?建筑标准 《建筑结构荷载规范》,GB50009-2001 《混凝土结构设计规范》,GB50010-2002 《建筑地基基础设计规范》,GB50007-2002 《建筑抗震设计规范》,GB50011-2001 《建筑结构可靠度设计统一标准》,GB50068-2001 《建筑给水排水及采暖工程施工质量验收规范》,GB50242-2002 《给水排水工程钢筋混凝土水池结构设计规程》,CECS 138:2002 《建筑给水排水设计规范》,GB 50015-2003 《建筑设计防火规范》,GB50016-2006 ?电气标准 《电测量仪表装置设计技术规程》,SDJ9-87 《10kV及以下变电所设计规范》,GB50053-94 《低压配电设计规范》,GB50054-95 《工业与民用电力装置的接地设计规范》,GBJ65-83 《3-110kV高压配电装置设计规范》,GB50060-92 《继电保护和安全自动装置技术规范》,GB14285-93 《仪表系统接地设计规定》,HG 20513-2000 《供配电系统设计规范》,GB50052-95 《电子设备雷击保护导则》,GB 7450-87

水解酸化池工艺详解

水解酸化池工艺详解 在回用水处理工艺中水解酸化池的作用是重要的一个环节。水解——是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必须先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。酸化——是有机物降解的提速过程,因为它将水解后的小分子有机物进一步转化为简单的化合物并分泌到细胞外。这是回用水废水处理工艺中水解酸化作为预处理单元的原因。 水解酸化池的两个最基本作用是:一是提高废水可生化性,将大分子有机物转化为小分子;二是去除废水中的COD,部分有机物降解合成自身细胞。 本岗位的水解酸化池采用下进上出的翻流运作型态,上升流速取0.765 m/h,有效水深为6.5m。设计进水流量为900m3/h,水力停留时间按8.5h,总有效容积为7600m3。水解酸化池共4座,每座9格,共36格。每格水解酸化池设置有4个梯形泥斗,在泥斗下部采用水平喷射布水方式能使布水均匀。每格池顶部沿四周池壁设置集水槽,用于产水导流,以及排泥。每格水解酸化池内除了一根布水管外,还设有一根排泥管和供气管,其采用负压气提排泥方式,可使泥排至水解酸化池出水槽,与水解酸化池出水一起流至接触氧化池。 水解酸化池内采用了立体弹性组合填料,填料高度3m,上部1m保护区,底部2.4m布水区,每座池子组合填料为972m3。池内采用的立体弹性填料的丝条呈立体均匀排列辐射状态,使气、水、生物膜得到充分混渗接触交换,生物膜不仅能均匀地着床在每一根丝条上,保持良好的活性和空隙可变性,而且能在运行过程中获得愈来愈大的比表面积。 填料的作用事实上就是给微生物提供一个生长平台,微生物附着再填料上可增加污水与微生物的接触面积提高水解酸化池的处理效率。简单的说填料就是细菌的附着床,就是增加生物量和提高微生物与废水接触面。 水解和酸化是厌氧消化过程的两个阶段,水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应;酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。在不同的工艺中水解酸化的处理目的也不同。水解酸化在好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理;而在混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两相厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开。 水解酸化处理方法是一种介于好氧和厌氧处理法之间的方法,可以将其视作厌氧处理第一和第二个阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质,或者说是使较大的难降解的物质开环断链的反应过程。因此从严格意义上来说水解酸化池实属兼氧池。 水解酸化池在当前调试阶段的重要工作就是污泥的培养,活性污泥培养采用间歇式培养方式,设定了临时进水管,根据需要以及营养物质投加设施或人工投加培养,进水采用前段污水处理厂预培养的污泥液,进水量按照池容积负荷递增投加。因为水解酸化池的污泥培养比较慢,所以要保证营养物质的均衡。由于该岗位水解酸化池的污泥来自污水处理站SBR的,而污水站SBR的污泥是外接其他厂家的。虽说这种方法可以缩短污泥的驯化周期,但如果不及时检测,使得池内营养物质匮乏,很可能造成微生物不能适应环境或饿死。因此要及时分析COD、氨氮、总磷的含量,低于要求值时要及时投加营养剂。而且每天进行两次提气污泥循环也是一项必要的工作。总的来说水解酸化加生物接触氧化处理工艺中的水解酸化目的,主要是将原有废水中非溶解性有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。在考虑到后续好氧处理的能耗问题,水解酸化就主要用于低浓度难降解废水的预处理了。

水解酸化池设计计算书(免费)

免费的 目录 1水解酸化池设计计算 (1) 1.1水解池的容积 (1) 1.4.1堰长设计 (2) 1.4.2出水堰的形式及尺寸 (2) 1.4.3堰上水头 h (3) 1 1.4.4集水水槽宽B (3) 1.4.5集水槽深度 (3) 1.4.6进水堰简略图 (4)

1水解酸化池设计计算 1.1水解池的容积 水解池的容积V QHRT K V Z = 式中:V ——水解池容积,m 3; z K ——总变化系数,1.5; Q ——设计流量,m 3/h ; HRT ——水力停留时间,h ,取6h ; 则345655.1m V =??= 印染废水中水解池,分为4格,每格的长为2m ,宽为2米,设备中有效水深高度为3m ,则每格水解池容积为16m 3,4格的水解池体积为48m 3。 1.2水解池上升流速校核 已知反应器高度为:m H 4=;反应器的高度与上升流速之间的关系如下: HRT H HRTA V A Q === ν 式中: ν——上升流速(m/h ); Q ——设计流量,m 3 /h ; V ——水解池容积,m 3; A ——反应器表面积,m 2 ;

HRT ——水力停留时间,h ,取6h ; 则)/(67.06 4 h m == ν 水解反应器的上升流速h m /8.1~5.0=ν,ν符合设计要求。 1.3配水方式 采用总管进水,管径为DN100,池底分支式配水,支管为DN50,支管上均匀排布小孔为出水口,支管距离池底100mm ,均匀布置在池底。 1.4进水堰设计 已知每格沉淀池进水流量s m h m Q /00035.03600 4/533' =?= ; 1.4.1堰长设计 取出水堰负荷)/(2.0'm s L q ?=(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于)/(7.1m s L ?)。 '' q Q L = 式中:L ——堰长m ; 'q ——出水堰负荷,)/(m s L ?,取0.2)/(m s L ?; 'Q ——设计流量,m 3 /s ; 则75.12.01000 00035.0''=?==q Q L m ,取堰长m L 2=。 1.4.2出水堰的形式及尺寸 出水收集器采用UPVC 自制90o三角堰出水。直接查第二版《给

水解酸化池调试方案

水解酸化池调试方案 一、各类指标参数 1、理论运行控制点:水力负荷(上升流速)、水力停留时间、污泥浓度、污泥回流、B/C。 2、日常主要检测指标:进出水流量、进出水COD和BOD、DO、污泥浓度、PH、SS、SV30、氨氮和总磷总磷(如有要求可检测)、水温(如有要求可检测)、微生物镜检。 3、主要涉及的设备材料:进出水泵(自流方式此项没有)、污泥回流泵、潜水搅拌机或其它同功能推流器、填料。 4、主要涉及的水质监测设备(如无在线检测设施时可参照): 1) 实验室物化检测设备见附件检测方法中设备要求 2) 涉及到的电子检测设备:流量计、便携式DO检测仪、COD测定仪、氨氮和总磷总磷测定仪、温度计、微生物镜检设备。二、调试前准备 以下各项在无特殊情况下均为同时进行,无主次之分。 1、项目水检测: 1)主要摸查现场排水情况,主要包括现阶段排水量、满负荷排水量、排水周期、各车间或者工业单元排水点、降雨等天气对于排水的影响。

2)与甲方协调,将日常水质监测设备就位。在带泥调试之前,将进水水质检测完毕,其中包括COD、BOD、PH、SS、水温、氨氮和总磷总磷,以及本项目其它主要去除指标。 2、与甲方协调确定污水处理站调试结束后的运行人员,并进行一些前期相关培训。 3、对本项目设备设施进行调试,以确保设备设施正常运行,建议用清水进行试车。 4、联系接种污泥,以确保污泥接种前进场。再联系时,要充分考虑余量,以防突发事件时无污泥可用。 5、与甲方单位协调,确定所需公用工程的情况,包括水、电、蒸汽(如有要求)等。 三、种污泥的选择及驯化培养 总的原则为源污泥的活性再生,水质的适应,定向提升负荷驯化。 1、种泥选择原则: 1) 本项目如有污水处理,原有污泥接种为最优选择。 2) 可选择附近相近生产的企业浓缩消化污泥或脱水污泥。 3) 可选择附近市政污水处理厂的浓缩消化污泥或脱水污泥。 4) 以上都没有,则要选择没有重金属、毒性,且生化活性相对高、进水COD、BOD低于本项目的活性污泥作为种泥培养。

水解酸化池工艺详解精选文档

水解酸化池工艺详解精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

水解酸化池工艺详解 在回用水处理工艺中水解酸化池的作用是重要的一个环节。水解——是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必须先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。酸化——是有机物降解的提速过程,因为它将水解后的小分子有机物进一步转化为简单的化合物并分泌到细胞外。这是回用水废水处理工艺中水解酸化作为预处理单元的原因。 水解酸化池的两个最基本作用是:一是提高废水可生化性,将大分子有机物转化为小分子;二是去除废水中的COD,部分有机物降解合成自身细胞。 本岗位的水解酸化池采用下进上出的翻流运作型态,上升流速取 m/h,有效水深为。设计进水流量为900m3/h,水力停留时间按,总有效容积为7600m3。水解酸化池共4座,每座9格,共36格。每格水解酸化池设置有4个梯形泥斗,在泥斗下部采用水平喷射布水方式能使布水均匀。每格池顶部沿四周池壁设置集水槽,用于产水导流,以及排泥。每格水解酸化池内除了一根布水管外,还设有一根排泥管和供气管,其采用负压气提排泥方式,可使泥排至水解酸化池出水槽,与水解酸化池出水一起流至接触氧化池。 水解酸化池内采用了立体弹性组合填料,填料高度3m,上部1m保护区,底部布水区,每座池子组合填料为972m3。池内采用的立体弹性填料的丝条呈立体均匀排列辐射状态,使气、水、生物膜得到充分混渗接触交换,生物膜不仅能均匀地着床在每一根丝条上,保持良好的活性和空隙可变性,而且能在运行过程中获得愈来愈大的比表面积。 填料的作用事实上就是给微生物提供一个生长平台,微生物附着再填料上可增加污水与微生物的接触面积提高水解酸化池的处理效率。简单的说填料就是细菌的附着床,就是增加生物量和提高微生物与废水接触面。 水解和酸化是厌氧消化过程的两个阶段,水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应;酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。在不同的工艺中水解酸化的处理目的也不同。水解酸化在好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理;而在混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两相厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开。 水解酸化处理方法是一种介于好氧和厌氧处理法之间的方法,可以将其视作厌氧处理第一和第二个阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质,或者说是使较大的难降解的物质开环断链的反应过程。因此从严格意义上来说水解酸化池实属兼氧池。 水解酸化池在当前调试阶段的重要工作就是污泥的培养,活性污泥培养采用间歇式培养方式,设定了临时进水管,根据需要以及营养物质投加设施或人工投加培养,进水采用前段污水处理厂预培养的污泥液,进水量按照池容积负荷递增投加。因为水解酸化池的污泥培养比较慢,所以要保证营养物质的均衡。由于该岗位水解酸化池的污泥来自污水处理站SBR 的,而污水站SBR的污泥是外接其他厂家的。虽说这种方法可以缩短污泥的驯化周期,但如果不及时检测,使得池内营养物质匮乏,很可能造成微生物不能适应环境或饿死。因此要及时分析COD、氨氮、总磷的含量,低于要求值时要及时投加营养剂。而且每天进行两次提气污泥循环也是一项必要的工作。总的来说水解酸化加生物接触氧化处理工艺中的水解酸化目的,主要是将原有废水中非溶解性有机物转变为易生物降解的有机物,提高废水的可生化

水解池的运行控制总结

水解酸化池的运行控制与影响因素 摘要:水解酸化池用于工业废水比重大的城市污水处理厂,COD去除率为57.62%,BOD5去除率为51.64%,SS去除率为85.9%,氨氮去除率为32.13%,总磷去除率为62.01%。起到了良好的强化预处理作用,本文针对某水务某污水处理厂水解酸化池的实际运行情况,分别对其运行控制与影响因素进行了总结,指出了设计中存在的问题,并提出了进一步研究的方向。 关键词:水解酸化池运行控制影响因素 1、前言 水解(酸化)处理方法是一种介于好氧和厌氧处理法之间的方法,和其它工艺组合可以降低处理成本提高处理效率。水解酸化工艺根据产甲烷菌与水解产酸菌生长速度不同,将厌氧处理控制在反应时间较短的厌氧处理第一和第二阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质的过程,从而改善废水的可生化性,为后续处理奠定良好基础[1]。目前,该工艺已在某水务某污水处理厂得到成功应用,并取得了良好的效果。 2、设计简述 本工程水解酸化池分为两组,单组设计水量为2万m3/d,设计平均停留时间为5h,最大流量下停留时间为3.54h,平面尺寸为48.85m×12.73m,由于施工设计等原因,有效容积为7327m3,实际平均停留时间为4.4h,最大流量下停留时间为3.12h,每池采用31套布水器,每池设计14套排泥管。 3、目前运行情况 目前运行效果良好,COD去除率为57.62%,BOD5去除率为51.64%,SS去除率为85.9%,氨氮去除率为32.13%,总磷去除率为62.01%。 表1 水解酸化池进出水水质 结合某水务某污水处理厂的实际运行情况与相关的理论研究,水解酸化池的

水解酸化池设计计算书

水构筑物课程设计课程设计计算说明书 专业:环境工程 班级:环工1211 题目:水解酸化池 指导教师:黄勇/刘忻 姓名:姚亚婷 学号: 1220103136 环境科学与工程学院 2015年1月3日

目录 1.1水解池的容积 (1) 1.2水解池上升流速校核 (1) 1.3配水方式 (2) 1.4堰的设计 (2) 1.4.1堰长设计 (2) 1.4.2出水堰的形式及尺寸 (2) h (3) 1.4.3堰上水头 1 1.4.4集水水槽宽B (3) 1.4.5集水槽深度 (3) 1.5进水管设计 (4) 1.6出水管设计 (4) 1.7污泥回流泵设计计算 (5)

水解酸化池设计计算 1.1水解池的容积 水解池的容积V QHRT K V Z = 式中:V ——水解池容积, m 3; z K ——总变化系数,1.5; Q ——设计流量,Q=130m 3/h ; HRT ——水力停留时间,设为6h ; 则水解酸化池容积为QHRT K V Z ==1.5*130*6=1170m 3, 水解池,分为2格,设每格水解酸化池长18米,每格的宽为6.5m ,设备中有效水深高度为5m ,则每格水解池容积为18*6.5*5=585m 3 设超高为0.5m ,则总高为5.5m 1.2水解池上升流速校核 已知反应器高度为:H=5.5m ;反应器的高度与上升流速之间的关系如下: HRT H HRTA V A Q = == ν 式中: ν——上升流速(m/h ); Q ——设计流量,m 3 /h ; V ——水解池容积,m 3 ;

A ——反应器表面积,m 2 ; HRT ——水力停留时间,h ,取6h ; 则v=5.5/6=0.92(m/h) 水解反应器的上升流速h m /8.1~5.0=ν,ν符合设计要求。 1.3配水方式 采用总管进水,管径为DN100,池底分支式配水,支管为DN50,支管上均匀排布小孔为出水口,支管距离池底200mm ,均匀布置在池底,位于所服务面积的中心。 1.4堰的设计 1.4.1堰长设计 取出水堰负荷q ’ =1.5)/(m s L ?(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于)/(7.1m s L ?)。 '' q Q L = 式中:L ——堰长m ; 'q ——出水堰负荷,)/(m s L ?,取1.5)/(m s L ?; 'Q ——设计流量,每格流量为0.018m 3 /s ; 则125 .11000 018.0''=?= =q Q L m ,取堰长m L 12=。

300m3-d生活污水处理站设计方案2019.8.28

某小区300m3/d生活污水处理工程 工艺方案

第二章项目概述 一:项目概况 1.项目名称:某小区300m3/d生活污水处理工程。 2.项目建设地址:建设地点位于某市某小区 3.验收标准:根据项目实际情况,按照GB18918-2002《城镇污水处理厂污染物排放标准》一级A标准。 二:企业概况 小区为政府拆迁安置小区,地处水源稀缺地区,根据当地政府相关环境污染治理法规的要求,污水必须实现达标排放。项目污水主要来自小区生活污水,日处理量为300m3/d,含冲厕、洗浴、洗手盆厨房等污水,污水经过化粪池,进入污水处理站,出水最终全部用于绿化或者林地灌溉。 我公司受政府委托,结合多年来从事污水处理工程设计、运行管理经验,而编制此方案,供贵单位选择。

第三章设计依据、设计原则及设计范围 一、设计依据 (1)《城镇污水处理厂污染物排放标准》(GB18918—2002) (2)《环境工程师手册(水污染防治卷)》,高等教育出版社; (3)《给水排水快速设计手册》,中国建筑工业出版社; (4)《三废处理工程技术手册(废水卷)》,化学工业出版社; (5)《室外排水设计规范》(GB50014-2006),2006年版; (6)《地表水环境质量标准》(GHZB1-1999); (7)《建筑给水排水设计规范》(GB50015-2003); (8)《建筑设计防火规范》(GB50016-2006); (9)《城市区域环境噪声标准》(GB3096-93); (10)《水处理设备制造技术条件》(JB293-95); (11)《建筑结构荷载规范》(GB50009-2001); (12)《混凝土结构设计规范》(GB50010-2002); (13)《建筑地基基础设计规范》(GB50007-2002); (14)《建筑抗震设计规范》(GB50011-2001); (15)《建筑物防雷设计规范》(GB50057-2000); (16)《水处理设备制造技术条件》(JB2932-99); (17)《建筑电气工程施工质量验收规范》(GB50303-2002); (18)《建筑工程施工质量验收统一标准》(GB50300—2001); (19)《电气安装工程整理检验、评定标准》(GBI303—1988); (20)《建筑安装分项施工技术操作规范》(DB21—900—1996); (21)《建筑工程施工现场供用电安全规范》(GB50198—1994); (22)《建筑安装分项工程施工工艺规程》(DBJ01—26-1996); (23)《建筑安装工程资料管理规程》(DBJ01—51—2000) (24)《安全防范工程程序与要求》(GA/T75—1994) (25)建设方提供的设计基础资料。

相关文档
最新文档