S波段宽波束圆极化天线设计

第15卷 第4期太赫兹科学与电子信息学报Vo1.15,No.4 2017年8月 Journal of Terahertz Science and Electronic Information Technology Aug.,2017 文章编号:2095-4980(2017)04-0625-05

S波段宽波束圆极化天线设计

李荣,吴景峰,马志慧,王志强,赵鹏

(中国电子科技集团公司第13研究所,河北石家庄 050051)

摘 要:随着现代无线通信系统的发展,对天线也提出了一些特定的更高的要求。设计了一种S频段宽波束圆极化微带天线,以满足系统对天线宽波束辐射的要求;在天线的辐射贴片上附

加寄生贴片以展宽天线带宽,并利用金属化过孔以实现单边短路,达到天线小型化设计的目的;

利用旋转结构结合多点馈电技术以获得微带天线宽波束圆极化辐射。通过理论分析并利用三维电

磁仿真软件HFSS对天线进行了仿真设计和实验,仿真结果与测试结果吻合良好。

关键词:微带天线;宽波束;圆极化;轴比;方向图

中图分类号:TN821+.1文献标志码:A doi:10.11805/TKYDA201704.0625

Design of an S-band wide beam circular polarized antenna

LI Rong,WU Jingfeng,MA Zhihui,WANG Zhiqiang,ZHAO Peng

(The 13th Research Institute,CETC,Shijiazhuang Hebei 050051,China)

Abstract:With the development of modern wireless communication system, some specific higher requirements on the antenna are put forward. In order to meet the system requirements for wide beam

radiation, an S-b and wide beam circular polarized antenna is proposed. Additional parasitic patches are

added on the radiation patch antenna in broadening the bandwidth of the antenna. And the metalized via is

adopted to achieve unilateral short circuit. The purpose of miniaturization of the antenna design is

therefore achieved. The sequential rotation method combined with multi-point feeding technology is

utilized to obtain a broad band microstrip antenna wide beam circular polarized radiation. The structure

parameters of antenna are designed according to theoretical analysis and High Frequency Structure

Simulator(HFSS) software. The simulation results are in good agreement with the test results.

Keywords:microstrip antenna;wide beam;circular polarization;axial ratio;radiation pattern

天线作为通信系统的前端,在不同应用领域,对其极化方式、增益和方向图都有着特定的要求。微带天线在工作频带内具有稳定的阻抗特性,且剖面低,体积小,易共形,尺寸相对其他宽带或口径天线具有显著优势,所以在对空气动力学特性、机械稳定性、体积和质量等均有严格要求的机载、弹载、星载等无线通信系统中得到了广泛应用[1–2]。圆极化天线可接收任意极化的电磁波,且其辐射波也可由任意极化天线收到,故电子侦察和干扰中普遍采用圆极化天线;在通信、雷达的极化分集工作和电子对抗等应用中广泛利用圆极化天线的旋向正交性;圆极化波入射到对称目标(如平面、球面等)时反射波旋向反转[3],圆极化天线能够提高通信链路的抗极化失配能力,而且圆极化天线辐射的电磁波可以抑制雨雾等自然现象引起的去极化效应和多径反射。

本文以保证天线具有优良工作特性为前提,巧妙地结合常规经典的天线设计方法,提出了同时具有小型化和宽波束特性的圆极化微带天线结构,保证天线具有较宽的辐射波束,且在低仰角时仍具有较大增益和较小的轴比,保障无线通信链路的畅通。

1 结构与原理

1.1 微带天线辐射机理

采用微带线或者同轴探针对贴片进行馈电,在贴片和接地板之间激励起高频电磁场,可近似等效为分布在金属贴片与天线底板间缝隙上的磁流,由此向外辐射能量[4],微带天线辐射场示意图如图1所示。因此,其辐收稿日期:2016-01-09;修回日期:2016-03-02

万方数据

射频圆极化微带天线设计

射频圆极化微带天线设计

射频圆极化微带天线设计 摘要 天线作为无线通信最为重要的部分长久以来都受到科研人员的重视以及迅速改造发展。如今,微带天线因其自身的质量小,形状易改变而与设备共形等优势在通信领域应用极为广泛。天线的种类多样,极化方式大致分为线极化与圆极化两种,在天线出现的初期,由于技术层面的限制,线极化天线的应用极为广泛。但由于科技的发展和人们对信号的愈来愈严苛的要求导致线极化天线与应用层面的矛盾越发凸显。由于圆极化天线的方向性,旋向相同接收性和抗干扰性较强,因此现代圆极化天线的应用成为当今天线的主流。本文介绍圆极化天线的性质和缺点以及对未来的展望和改进。 关键词:圆极化天线,抗干扰,性质 Designing of Rf circular polarization microstrip antenna ABSTRACT As the most important part of the wireless communication antennas has long been brought to the attention of the researchers and rapid development. Today, the quality of the microstrip antenna with its small, easy to change shape and advantages, such as equipment conformal is widely applied in the field of communications.

第一讲 天线基本原理

第一讲天线基本原理 1、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如:开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? 开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰 开。 TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励

高次模。 由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 2、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷)

圆极化微带天线设计

GPS圆极化微带天线设计 1.1微带天线简介 微带天线是在一块厚度远小于工作波长的介质基片的一面敷以金属辐射片,一面全部敷以金属薄膜层做接地板而成。GPS天线通常使用平面天线和螺旋形天线。近年来微带天线由于具有重量轻,体积小,易于实现圆极化。而GPS功能在个人行动通讯设备特别是手机中的普及,更使得GPS天线的小型化研究成为十分热门的话题。 1.2GPS微带天线结构与原理 上图是一个简单的微带天线结构,由辐射元,介质层和参考地三部分组成。与天线性能相关的参数为辐射元的长度L,辐射元的宽度W,介质层的厚度h,介质的相对介质电常数εr ,介质的长度和宽度。 1.3辐射机理 理论上可以采用传输线模型来分析其性能,假设辐射贴片的长度近似的为半波长,宽度为w,介质基片厚度为h,工作波长为λ;我们可以将辐射贴片,介质基片和接地板视为一段长度为λ/2的低阻抗微带传输线,在传输线的两端断开形成开路。由于介质基片厚度h<<λ,故电路沿着h方向基本没有变化。最简单的情况可以假设电场沿着宽度w方向也没有变化。那么在只考虑主模激励(TM10模)的情况下辐射基本上可以认为是由辐射贴片开路的边缘引起的。在两开路的电场可以分解为相对于接地板的垂直分量和水平分量,由于辐射贴片长度约为半个波长,所以两垂直分量方向相反,水平分量方向相同。因此,两开路端的水平分量电场可以等效为无限大平面上同相激励的那个缝隙,缝隙的宽度为ΔL(近似等于基片厚度h),长度为w,等效缝隙相距为半波长,缝隙的电场沿着w方向均匀分布,电场方向垂直于w。 1.4微带天线贴片尺寸估算

设计高效率辐射的宽度w,2 1212-??? ??+=r f c w ε 式中C 为光速。 辐射贴片的长度一般为2e λ,这里的e λ是介质内的导波波长,即 e λ=e f c ε 考虑到边缘缩短效应后,实际的辐射单元长度L 应为 L=e f c ε-2ΔL 式中e ε是有效介电常数,ΔL 是等效辐射缝隙长度, 同轴线馈电点的位置,宽度方向上馈电点的位置一般在中心点,在长度方向上边缘处(x=±L/2)的输入阻抗最高。由以下的公式计算出输入阻抗为50欧姆的馈电点位置: ??? ? ??=re 1-12L 1L ξ 2HFSS设计环境概述 2.1模式驱动求解。 2.2建模操作。 模型原型:长方体,圆柱体,矩形面,圆面。 模型操作:相减操作。 2..3边界条件及激励: 边界条件:有限导体边界,辐射边界. 端口激励:集总端口激励。 2.4求解设置。 求解频率:1.6GHz 扫频设置:快速扫描,频率范围:1~2GHz 2..5Optimetrics 参数扫描分析 优化设计 2.6数据后处理:S参数扫描曲线,3D辐射方向图。 3.1仿真模型

机载宽波束圆极化微带天线设计

机载宽波束圆极化微带天线设计 刘亭亭1钱祖平1赵菲2 (中国人民解放军理工大学通信工程学院南京210007)1 (国防科技大学电子科学工程学院长沙410073 )2 摘要:本文研究设计了一种宽波束圆极化微带天线,该天线工作在L波段,采用圆贴片辐射单元和正交H 缝隙耦合馈电技术。仿真结果表明:该天线在8MHz工作频带内VSWR≤1.05,轴比≤0.25dB;轴比小于3.0dB 的空域覆盖范围达129°,在工作频段0dB增益覆盖范围达到120°,实现了超低驻波比和宽波束圆极化天线设计。该天线结构紧凑,可广泛应用于飞机等民用导航系统。 关键词;H缝隙耦合,圆极化,轴比,宽波束 Design of Airborne Board beam Circularly Polarized Microstrip Antenna Liu Tingting1, Qian Zuping1, Zhao Fei2 (Communication Engineering Institute of Science Technology University PLA, Nanjing 21007) 1 (School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073) 2 Abstract: The board beam circularly polarized microstrip antenna is designed in L band. The circular radiation patch and the technique of orthogonal H-shape aperture couple are used. The simulation results show that: in 8MHz operation frequency band, the VSWR of the antenna is less than 1.05, the axial ratio is less than 0.25dB and is less than 3.0dB in 129°for space area, the gain is more than 0 dB in 120°for space area in operation frequency band. The super low VSWR and board beam circularly polarized antenna is achieved. The antenna which is compact can be widely used on plane, civil navigation system and so on. Keywords: H-shape aperture couple, circularly polarized, axial ratio, board beam 1 引言 飞机在高速飞行过程中由于要与卫星时刻保持通信,所以对机载天线的性能要求很高。一般来说要求如下:高性能圆极化工作,高驻波比,宽波束,小体积、低剖面、便于携带和共形。 微带天线由于其本身具有结构简单、剖面低、极化易控制、方向图覆盖范围广、制造容易[1][2],并且可以与微带电路集成在一起,工业制造简单等特点, 从而广泛应用于测量和通讯等各个领域[3][4]。此类天线的特性完全满足机载天线的基本要求,特别适合作为共形天线附着在飞机表面进行工作。 Pozar于1985年提出缝隙耦合馈电技术[5]。缝隙耦合结构的馈电网络和无源辐射单元分别装在两个介质板上,可以分别进行优化设计,且辐射部分与馈线部分由接地板隔开,馈线的寄生辐射弱,交叉极化水平低,更容易形成圆极化天线[2]。文献[6]设计出了基于矩形缝隙馈电的方贴片圆极化微带天线,文献[7]改进用H型缝隙馈电,使天线圆极化效果及后向辐射抑制比都有大幅度提高。 本文结合实际需求,设计了一种基于圆辐射贴片的H形缝隙耦合的宽波束圆极化微带天线。通过Wilkinson功分器向两个正交安置的H缝隙进行馈电,在继承该类结构宽频带性能的基础上,在需要的工作频带内进一步使主方向轴比小于0.2dB,输入驻波比小于1.05,方向图有效覆盖范围达120°。

雷达基础理论习题

雷达基础理论习题 一、填空题 1.一次雷达的峰值功率为,平均功率为1200W,重复频率为1000Hz。 2.二次雷达询问频率为1030MHz 。脉冲P1-P3称模式询问脉冲,脉冲间隔决定了询问功能,目前本场雷达使用的两种询问模式3/A模式和C模式,P1-P3脉冲间隔分别是8μs 和 21μs 。 3. 两项告警指的是低高度告警和冲突告警。 4. ISLS是指询问旁瓣抑制,作用是避免环绕效应。 5. 接收机的动态范围是指接收机出现过载时的输入功率与最小可检测功率之比。 6. 目前ICAO定义了25种数据链格式,其中有 8 种在现行模式S中使用。 7. 雷达信号的检测由发现概率和虚警概率来描述。 8. 脉冲P2称旁瓣抑制脉冲,不论是何种询问模式,P2与P1间恒为2μs 。 9. STC的含义是时间灵敏度控制,作用是扩大动态范围。 10. 雷达距离分辨力主要取决于脉冲宽度。 11. 二次雷达发射通道是∑和Ω通道。 12. 一次雷达天线的转速为15转/分。 13.一次射频脉冲宽度为1μs。 二、单选题 1. 二次雷达中频频率是(B ) A. 30MHz B. 60MHz C. 90MHz 2. 余割平方天线的雷达波束指的是( A )。 A .垂直方向图 B.水平方向图 3. C模式下P1P3脉冲的时间间隔是( D ) A.3μs B.5μs C.8μs D.21μs 4. 二次监视雷达天线系统的极化方式应为( B ) A.水平极化 B.垂直极化 C.圆极化 5. 决定雷达检测能力的是( A )。 A.接收机输出端的信噪比 B.发射机的功率 C.噪声的大小 D.接收机的灵敏度 6. 在下列关于二次雷达场地设置的说明中,哪一项是错误的( A ) A.对于其所保障的主要航线,特别是进场着陆航线,不应构成使动目标显示失效的切线航线(切线飞行的航线); B.通常配置在机场内地势较高的高地或建筑物顶上,或机场外(航路上)较高的地点; C.应根据其特性(进近或航路),能保证其对所辖区域各条航线和主要空中定位点均能进行有效的探测; D.应使雷达顶空盲区避开进离场航线和主要航路,并量保证主要航路航线。 7. 航空器在飞行中遇到严重威胁航空器和所载人员生命安全情况时,机长(飞行通信员)必须尽一切可能发出遇险信

圆极化全向天线技术概要

https://www.360docs.net/doc/8419058721.html, 圆极化全向天线技术 胥亚东,阮成礼 电子科技大学物理电子学院,成都(610054) E-mail: 摘要:圆极化全向天线由于其自身性能特点,在现代的无线应用中,越来越受到广泛的关注。本文主要归纳总结了圆极化全向天线的研究进展,探讨了圆极化全向天线的各种实现方法,及其中的各个关键问题,并讨论了各种方案具体设计方案、影响因素、过程原理,及其优劣性,在此基础上,对圆极化全向天线的研究发展趋势提出了展望。 关键词:圆极化天线,全向天线 中图分类号:TN820.1+1 1.引言 天线的极化作为天线性能的一个重要参数,是指在一个发射天线辐射时,其最大辐射方向上,随着时间变化电场矢量(端点)在空间描出的轨迹。天线的极化形式分为线极化,圆极化和椭圆极化三种。线极化和圆极化是椭圆极化的特例。圆极化又分为正交的左旋和右旋圆极化。椭圆极化波可分解为两个旋向相反的圆极化波[1]。 随着科学技术和社会的不断发展,对天线的性能要求也越来越高,在现代的无线应用系统中,普通的线极化天线已很难满足人们的需求,圆极化天线的应用越来越广泛,其主要特点主要体现在以下几个方面[2-4]:1.圆极化天线可接收任意极化的来波,且其辐射波也可由任意极化天线收到;2.圆极化天线具有旋向正交性;3.极化波入射到对称目标(如平面、球面等)时旋向逆转,不同旋向的电磁波具有较大数值的极化隔离。由于圆极化天线具有以上特点,因此,被广泛使用在通信、雷达、电子侦察与电子干扰等各个方面,研究圆极化天线具有巨大的社会效益、经济效益和军事效益。 任意圆极化波可分解为两个在空间、时间上均正交的等幅线极化波,由此得到实现圆极化天线的基本原理:即产生两个空间正交的线极化电场分量并使二者振幅相等(即简并模),相位差90°[5]。尽管圆极化天线形式各异,但产生机理万变不离其宗。反映在史密斯圆图中,两简并模的恰当分离对应阻抗曲线出现一个尖端(cusp)。圆极化天线的基本电参数是最大增益方向上的轴比,即任意极化波的极化椭圆长轴(2A)与短轴(2B)之比[6]: ?A?AR=20lgr=20lg?? ?B?

用HFSS对宽波束圆极化天线的设计

- 122 - Ansoft2004年用户通讯 用HFSS 对宽波束圆极化天线的设计 房丽丽 应子罡 吕昕 (北京理工大学 信息科学技术学院100081) 摘要:本文用HFSS 设计了一种新型的螺旋天线结构,将角锥螺旋与四臂螺旋的结构巧妙的结合起来,并采用了自相移结构及渐进式的平衡馈电,经HFSS 对其辐射特性进行分析以及实测结果,都说明该种天线在实现宽波束圆极化的同时,展宽了频带,且结构简单。 关键词:圆极化 HFSS 螺旋天线 一 引言 星上测量装置及其他空间通讯设备上,需要天线具有宽波束、圆极化的性能,圆锥螺旋天线、谐振式四臂螺旋天线和微带天线都可以形成半球形的圆极化方向图。但是考虑到天线装载在太空中,要受到高能粒子、宇宙射线的影响,以及大的温度交变,如果用微带天线的话介质层可能变脆剥落。另外,微带天线不容易实现高的增益。相比较下,螺旋天线不仅可以实现宽波束圆极化,还具有体积小、重量轻、结构稳定的优点,引起广泛的重视和应用。 我们这里提出了一种新型的螺旋结构,将圆锥螺旋天线与四臂螺旋天线结合起来,采用自相移实现90°相位差,采用渐变式的平衡馈电。经过HFSS 仿真分析和实际测试,都说明该天线在实现宽波束圆极化的同时,展宽了频带,结构简单紧凑。 二 螺旋天线的结构 1. 辐射部分 角锥螺旋天线有单螺旋、双臂螺旋等形式,这里我们采用单臂螺旋角锥螺旋天线,可以表示为 ?ρρb +=0 (1) 其中,ρ为圆锥顶点到螺旋线任一点的距离,ρ0为圆锥顶点到螺旋线起点的距离,b 为常数,由圆锥的锥角和螺旋线的包角决定。 谐振式四臂螺旋部分由四根螺旋臂组成,每根螺旋臂到馈电点的长度为M λ/4(M 为整数).四根螺旋臂馈电端电流相等,相位两两相差90o;非馈电端开路(M 为奇数时)或短路(M 为偶数时)。 我们将角锥螺旋与四臂螺旋的结构结合起来。其中,四臂螺旋的相位差通过同轴馈线末端开四个槽,分成四部分,每部分的末端与四臂螺旋的臂相连。通过调整四部分的长度,使四根螺旋臂两两相差90o,从而实现圆极化。 2. 馈电结构 为了使四臂螺旋四个螺旋臂激励呈现圆极化馈电,要求二正交臂输入导纳满足下式 2G B B G G G Y X Y X ?=== (2) 此时,两正交臂电导相等,说明馈入功率相等;说明一个臂应长于 λ/2为感性.另一臂应短于λ/2为容性,且导纳相位差为90o。 2G B B Y X ?=同轴馈电电缆内导体同角锥螺旋的螺旋臂相连,在馈电端电缆外导体渐变为均 匀的四瓣,分别连接四臂螺旋的四个螺旋臂。调整这四瓣的长短和位置,就可以实 现四臂螺旋的圆极化。另外,通过调整四瓣与角锥螺旋线的耦合距离,可以实现较 宽频带内的匹配,在所需频带内驻波比<1.5。 这种平衡馈电结构,利用了同轴电缆的内导体外臂与外导体内臂均存在电流, 且电流大小相等,方向相反的特点。 最终设计得到的天线结构如右图 : 图一.HFSS 对天线的结构建模图 三 天线的辐射特性

天线CAD大作业微带天线设计

天线CAD大作业 学院:电子工程学院 专业:电子信息工程

微带天线设计 一、设计要求: (1)工作频带1.1-1.2GHz ,带内增益≥4.0dBi ,VSWR ≤2:1。微波基板介电常数为r ε = 6,厚度H ≤5mm ,线极化。总结设计思路和过程,给出具体的天线结构参数和仿真结果,如VSWR 、方向图等。 (2)拓展要求:检索文献,学习并理解微带天线实现圆极化的方法,尝试将上述天线设计成左旋圆极化天线,并给出轴比计算结果。 二、设计步骤 计算天线几何尺寸 微带天线的基板介电常数为r ε= 6,厚度为 h=5mm,中心频率为 f=1.15GHz,s m /103c 8?=天线使用50Ω同轴线馈电,线极化,则 (1)辐射切片的宽度2 1 )2 1(2-+=r f c w ε=69.72mm (2)有效介电常数2 1)12 1(2 1 2 1 r e - +-+ += w h r εεε=5.33 (3)辐射缝隙的长度) 8.0/)(258.0() 264.0/)(3.0(h 412.0+-++=?h w e h w e L εε=2.20 (4)辐射切片的长度L e f c L ?-=22ε=52.10mm (5)同轴线馈电的位置L1 21 )121(21 2 1)(re -+-+ += L h r r L εεξ=5.20 )1 1(21re L L ξ-= =14.63mm 三、HFSS 设计 (1)微带天线建模概述 为了方便建模和后续的性能分析,在设计中定义一系列变量来表示微带天线的结构尺寸,变量的定义及天线的结构尺寸总结如下:

微带天线的HFSS设计模型如下: 立体图俯视图 模型的中心位于坐标原点,辐射切片的长度方向沿着x轴,宽度方向沿着y 轴。介质基片的大小是辐射切片的2倍,参考地和辐射切片使用理想导体来代替。对于馈电所用的50Ω同轴线,这用圆柱体模型来模拟。使用半径为0.6mm、坐标为(L1,0,0);圆柱体顶部与辐射切片相接,底部与参考地相接,及其高度使用变量H表示;在与圆柱体相接的参考地面上需要挖一个半径为1.5mm的圆孔,作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50Ω。模型建立好后,设置辐射边界条件。辐射边界表面距离辐射源通常需要大于1/4波长,1.15GHz时自由空间中1/4个波长约为65.22mm,用变量length 表示。 (2) HFSS设计环境概述 *求解类型:模式驱动求解。 *建模操作 ①模型原型:长方体、圆柱体、矩形面、圆面。 ②模型操作:相减操作 *边界条件和激励 ①边界条件:理想导体边界、辐射边界。 ②端口激励:集总端口激励。 *求解设置:

宽带圆极化微带天线设计

宽带圆极化微带天线设计 关键词:微带天线,X波段,设计,分析,HFSS,仿真

目录 1 绪论 (1) 1.1 本课题研究背景 (1) 1.2 微带天线的发展 (1) 1.3 微带天线的优缺点 (2) 1.4 本课题研究内容 (3) 2 微带天线基本概念及原理 (5) 2.1 天线的基本概念 (5) 2.2 天线的辐射原理 (6) 2.3 天线的基本参数 (6) 2.3.1 天线的极化 (7) 2.3.2 天线方向图的概念 (7) 2.3.3 天线输入阻抗的计算方式 (8) 2.3.4 天线的谐振频率与工作频带宽带 (8) 2.3.5 天线的驻波比 (9) 2.4 微带天线的简介 (10) 2.4.1 微带天线的结构与分类 (10) 2.4.2 微带天线的辐射机理 (10) 2.4.3 微带天线的形状 (11) 2.5 微带天线的分析方法 (11) 2.5.1 传输线模型法 (11) 2.5.2 空腔模型法 (13) 2.5.3 积分方程法 (13) 2.6 微带天线的馈电方法 (14) 2.7 微带天线圆极化技术 (15) 2.7.1 圆极化天线的原理 (15) 2.7.2 圆极化实现技术 (16) 3 宽带异形贴片微带天线设计 (21) 3.1 微带天线的仿真 (21) 3.2 Ansoft HFSS高频仿真软件的介绍 (21) 3.3 HFSS对具体实例的仿真 (21)

3.3.1 选取微带天线模型 (21) 3.3.2 微带天线的仿真优化 (23) 4 双点馈电圆形圆极化微带天线设计 (35) 4.1 HFSS对圆极化微带天线的仿真 (35) 4.1.1 选取圆极化微带天线模型 (35) 4.1.2 圆形圆极化微带天线的仿真优化 (35) 5 总结结论及展望 (41) 参考文献 (42)

HFSS天线设计实例

HFSS 天线设计实例这是一种采用同轴线馈电的圆极化微带天线 切角实现圆极化

设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤! GPS微带天线:介质板:厚度:2mm,介电常数:2.2,大小:100mm*100mm 工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖! 50欧同轴线馈电, 1、计算参数 首先根据经验公式计算出天线的基本参数,便于下一步建立模型。 贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数: 2、建立模型 首先画出基板50mm*50mm*2mm 的基板 起名为substrate

介电常数设置为如图2.2的,可以调整color颜色和transparent透明度便于观察 按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转 同理,我们画贴片: 1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形 2、起名为patch,颜色选绿色,透明度设为0。5 画切角是比较麻烦的 1、用画线条工具,画三线段,坐标分别是0.5.0, 5.0.0, 0.0.0 2、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将

三角形移动到左上角和贴片边沿齐平。 3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形。 4、从patch上切掉对角上的分离单元polyline1和polyline1_1: 选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract 把polyline1和polyline1_1从patch上切掉最后剩下 先在介质板底面画一个100mm*100mm的正方形作为导电地板。起名为ground 下面就是画馈源了:我们采用同轴线馈电,有两种建模方法: 1、在馈电点画一0.5mm的铜柱代表同轴线内导体,起名为feed 2、在介质板底面馈电点处画一1.5mm的圆,起名为port 3、复制port为port1,复制feed为feed1 4、复选port和feed1,执行菜单里3D Modeler\Boolean\Subtract,使port成为一个内径0.5mm外径1.5mm的圆环

圆极化基本理论

毫米波圆极化微带天线的研究 圆极化波的产生: 微带天线中存在何种模式完全取决于贴片的形状和激励模型,当馈电点位于贴片的对角线上时,天线中可以同时维持乃订。和刀怀。模,两种主模同相且极化正交,结果导致辐射波的极化方向与馈电点所在对角线平行,单点馈电的准方形贴片、方形切角贴片和四周切有缝隙的方形贴片天线等均可以辐射圆极化波。用微带天线产生圆极化波的关键是产生两个方向正交的,幅度相等的,相位相差”的线极化波。当前用微带天线实现圆极化辐射主要有几种方法一点馈电的单片圆极化微带天线正交馈电的单片圆极化微带天线由曲线微带构成的宽频带圆极化微带天线微带天线阵构成的圆极化微带天线等等。 圆极化波的性质: 根据天线辐射的电磁波是线极化或圆极化,相应的天线称为线极化天线或圆极化天线。圆极化波具有以下的性质〕 (1)圆极化波是一个等幅的瞬时旋转场。即沿其传播方向看去,波的瞬时电场矢量的端点轨迹时一个圆。若瞬时电场矢量沿产波方向按左手螺旋的方向旋转,称之为左旋圆极化波,记为LCP(Left-Hand Circular Polarization);若沿传播方向按右手螺旋旋转,称之为右旋圆极化波,记RCP(Right-Hand Circular Polarization), (2)一个圆极化波可以分解为两个在空间上和在时间上均正交的等幅线极化波。由此,实现圆极化天线的基本原理就是产生两个空间上正交的线极化电场分量,并使二者振幅相等,相位相差度。 (3)任意极化波可以分解为两个旋向相反的圆极化波。作为特例,一个线极化波可以分解为两个旋向相反、振幅相等的圆极化波。因此,任意极化的来波都可由圆极化天线收到反之,圆极化天线辐射的圆极化波也可以由任意极化的天线收到。这正是在电子侦察和干扰等应用中普通采用圆极化波的原因。 (4)天线若辐射左旋圆极化波,则只接受左旋圆极化波而不接收右旋圆极化波反之,若天线辐射右旋圆极化波,则只接收右旋圆极化波。这称为圆极化天线的旋向正交性。其实,这一性质就是发射和接收天线之间的互易定理。在通信和电子对抗等应用中的广泛利用这个性质。例如国际通信卫星号上的多波束发射天线辐射右旋圆极化波,形成两个东、西“半球波束”同时也辐射左旋圆极化波,形成两个照射不同地区的“区域波束”,这四个波束都工作于频段而互不干扰,从而实现四重频谱服用,增加了通信容量。 (5)圆极化波入射到对称目标如平面、球面等时,反射波变成反旋向的,即左旋波变成右旋,右旋变成左旋。

电磁场理论基础试题集

电磁场理论基础习题集 (说明:加重的符号和上标有箭头的符号都表示矢量) 一、填空题 1. 矢量场的散度定理为(1),斯托克斯定理为(2)。 【知识点】:1.2 【难易度】:C 【参考分】:3 【答案】:(1)()∫∫?=??S S d A d A v v v τ τ (2)( ) S d A l d A S C v v v v ?×?= ?∫∫ 2. 矢量场A v 满足(1)时,可用一个标量场的梯度表示。 【知识点】:1.4 【难易度】:C 【参考分】:1.5 【答案】:(1) 0=×?A v 3. 真空中静电场的基本方程的积分形式为(1),(2),微分形式为(3),(4)。 【知识点】:3.2 【难易度】:B 【参考分】:6 【答案】:(1) 0=?∫c l d E v v (2) ∑∫=?q S d D S v v 0 (3) 0=×?E v (4)()r D v v ρ=??0

4. 电位移矢量D v 、极化强度P v 和电场强度E v 满足关系(1)。 【知识点】:3.6 【难易度】:B 【参考分】:1.5 【答案】:(1) P E P D D v v v v v +=+=00ε 5. 有面电流s 的不同介质分界面上,恒定磁场的边界条件为(1),(2)。 【知识点】:3.8 【难易度】:B 【参考分】:3 【答案】:(1) ()021=??B B n v v v (2) ()s J H H n v v v v =?×21 6. 焦耳定律的微分形式为(1)。 【知识点】:3.8 【难易度】:B 【参考分】:1.5 【答案】:(1) 2E E J p γ=?=v v 7. 磁场能量密度=m w (1),区域V中的总磁场能量为=m W (2)。 【知识点】:5.9 【难易度】:B 【参考分】:3

圆极化微带天线的设计与实现 (1)

2004年4月重庆大学学报 Apr.2004  第27卷第4期Journal of Chongqing University Vol.27 No.4 文章编号:1000-582X (2004)04-0057-04 圆极化微带天线的设计与实现 Ξ 韩庆文,易念学,李忠诚,雷剑梅 (重庆大学通信学院,重庆 400030) 摘 要:圆极化微带天线是一种低剖面的天线元,研究圆极化微带天线的特性在天线设计中显得十 分重要,而微带贴片天线的馈电位置的确定是设计的关键。针对单端侧馈五边形圆极化微带天线进行了详细分析和论述;简要介绍了微带天线的实现方法,并介绍了一种用于分析多边形微带天线的有效方法———有限元分析法;通过对一个5.6GHz 的五边形圆极化微带天线的研究设计,给出了圆极化微带天线的设计过程,找到了确定馈电点位置的合理方法,采用HFSS 软件进行优化设计,进行仿真,给出了合理的仿真结果。 关键词:微带天线;圆极化;轴比;五边形;方向图;电压驻波比;带宽 中图分类号:TN820.11 文献标识码:A 目前简单的线极化天线已很难满足人们的需求,这就使得圆极化微带天线倍受青睐。 但在微带天线的分析中,近似处理较多,使得天线的设计准确性并不太好,微带贴片天线的馈电位置的确定往往需要实验调整的方法进行研究。另外由于微带天线的频带窄,设计尺寸的微小误差都会造成天线谐振频率的偏离,极化特性也会变差。在实际工作中由于介质基片的离散性,也影响了谐振频率的准确性[1]。针对上述问题,特别对圆极化微带天线的设计过程进行了深入的分析;通过应用HFSS 高频结构软件仿真,使天线的性能得到了优化。 1 微带天线 微带天线是一种基于微带传输线的天线。它有多种形式,按结构特征,可把微带天线分为两大类,即微带贴片天线和微带缝隙天线;常用的一类,是贴片微带天线。贴片可以是矩形、圆形、椭圆形及其它形状,在此选用五边形贴片。 微带天线的辐射,是由微带天线边沿和接地板之间的边缘场产生的。以矩形贴片为例,其辐射场的示意图如图1所示。 图1 矩形微带天线的场图 微带天线分析的基本问题是,求解天线周围空间 建立的电磁场;求得电磁场后,进而得出其方向图、增益和输入阻抗等特性指标,另外,微带天线的馈电,对天线的性能有至关重要的作用。馈线的长度和宽度直接影响着天线的谐振频率;馈电点的位置决定着天线边沿上的电流幅度、相位分布以及谐振频率。因此,对馈电方式的选择是设计成功与否的关键因素[2]。在本设计中采用微带线馈电。 2 圆极化微带天线的实现 微带天线要获得圆极化波的关键是,激励起两个极化方向正交的、幅度相等的、相位相差90°的线极化波[3]。当前用微带天线实现圆极化辐射主要有以下几种方法: Ξ 收稿日期:2003-11-08 基金项目:重庆市应用基础研究资助项目(2003-7960) 作者简介:韩庆文(1969-),女,重庆人,重庆大学工程师,硕士,主要从事微波通信、天线理论及天线设计的科研教学工作。

右旋圆极化矩形微带天线设计

右旋圆极化矩形微带天线设计 一、引言 大多数情况下,矩形微带天线工作于线极化模式,但是通过采用特殊的馈电机制及对微带贴片的处理,它也可以工作于圆极化和椭圆极化模式。圆极化的关键是激励起两个极化方式相互正交的线极化波,当这两个模式的线极化波幅度相等,且相位相差90度时,就能得到圆极化的辐射。矩形微带天线获得圆极化特性的馈电方式有两种:一种是单点馈电,另一种是正交馈电。本文采用单点馈电。 我们知道,当同轴线的馈电点位于辐射贴片的对角线位置时,可以激发TM10和TM01两个模式,这两个模式的电场方向相互垂直。在设计中,我们让辐射贴片的长度L和宽度W相等,这样激发的TM10和TM01两个模式的频率相同,强度相等,而且两个模式的电场相位差为零。若辐射贴片的谐振长度为Lc,我们微调谐振长度略偏离谐振,即一边的长度为L1,另一边的长度为W1,且L1>W1,这样前者对应一个容抗Y1=G-jB,后者对应一个感抗Y2=G+jB,只要调整L1和W1的值,使得每一组的电抗分量等于阻抗的实数部分,及B=G,则两阻抗大小相等,相位分别为-45度和+45度,这样就满足了圆极化的条件,从而构成了圆极化的微带天线。其极化旋向取决于馈电点接入位置,当馈电点在如图1-1的A点时,产生右旋圆极化;当馈电点在图1-1的B 点时,产生左旋圆极化波。 图1-1 单馈点圆极化矩形微带天线结构 二、结构设计 设计微带天线的第一步是选择合适的介质基片,假设介质的介电常数为εr,对于工作频率为f的矩形微带天线,可以用如下的公式估算辐射贴片的宽度: 2 1 2 1 2 - + =) ε ( f c W r(1) 其中,c是光速。 辐射贴片的长度一把取为2 c λ, 其中 c λ是介质内的导波波长,考虑到边缘缩短效应后,实际的辐射贴片长度为: L f c L e ? - =2 2ε (2) 其中, e ε是有效介电常数,L?是等效辐射缝隙长度,它们可以分别用下式计算,即为:

单馈点圆极化微带天线

A Single-Feeding Circularly Polarized Microstrip Antenna With the Effect of Hybrid Feeding Hyungrak Kim,Byoung Moo Lee,and Young Joong Yoon ,Member,IEEE Abstract—In this paper,a single series feeding cross-aperture coupled microstrip antenna with the effect of hybrid feeding is pro-posed and demonstrated.To better understand this antenna,the characteristics according to the variation of parameters are shown.This proposed antenna has the following advantages of the effect of hybrid feeding,improved axial ratio bandwidth (4.6%),high gain (8dBi),and flat 3-dB gain bandwidth (above 16.7%).In measured radiation patterns,we have 3-dB beamwidth of 30and good F/B of 20dB. Index Terms—Effect of hybrid feeding,microstrip antenna. I.I NTRODUCTION W ITH rapid development of wireless communication system,many kinds of circularly polarized (CP)antennas have been studied since CP antennas are often preferred in satellite communication,Global Positioning System (GPS),and radar system.In general,feeding structure of CP antenna may be divided into single and hybrid feeding.A single-feeding CP antenna provides simple structure,easy manufacture,and advantage in array with small size.However,it has narrow axial ratio bandwidth.Hybrid feeding gives complex structure,difficult manufacture,and increased antenna size,but it provides wide axial ratio bandwidth.Thus,in the design of CP antenna,a tradeoff of characteristics between two feeding methods is required. In CP antenna,axial ratio bandwidth is the most important factor in design since it is the most limiting factor for oper-ating factor.Therefore,many kinds of CP antennas have been studied to obtain wide axial ratio bandwidth [1]–[4].Recently,CP antennas to obtain wide axial ratio bandwidth using single feeding have been studied to improve disadvantages of hybrid feeding,e.g.,large antenna size and complex structure.Cross-aperture coupled microstrip antennas [5],[6]were proposed and analyzed,but it still has narrow axial ratio bandwidth (2.5%),narrow gain bandwidth (3.27%for 3-dB),and low antenna gain (5dBi).Another improvement was suggested by Aloni et al.[7],where traveling wave type CP antenna was introduced.How-ever,it has very low gain and low radiation efficiency,and nar-rower gain bandwidth than reasonably wide axial ratio band-width and impedance bandwidth.Therefore,not only wide axial ratio and impedance bandwidth,but also other enhanced charac-teristics,e.g.,high gain,flat-gain bandwidth,and similar radia-tion patterns in operating frequencies are needed in CP antenna for practical wireless communication system. Manuscript received February 20,2003;revised April 9,2003. The authors are with the Department of Electrical and Electronic Engi-neering,Yonsei University,Seoul,Korea (e-mail:okebari@mwnat.yonsei.ac.kr;binny@mwnat.yonsei.ac.kr;yjyoon@mwnat.yonsei.ac.kr).Digital Object Identifier 10.1109/LAWP.2003.813382 (a) (b) Fig.1. (a)Side view and (b)bottom view of the proposed antenna. In this paper,we propose a resonant type single series feeding CP microstrip antenna.Series feeding is suggested to obtain wide axial ratio bandwidth and flat gain bandwidth.Also,cross-aperture with short length is used to provide high gain. II.A NTENNA D ESIGN The configuration of the proposed antenna is shown in Fig.1.It is composed of the two layers and air-gap.The rectangular patch,whose physical dimensions are 45 mm 45mm at center frequency of 2.4GHz,is on the upper layer,and series feeding line under the lower layer is positioned close behind cross-aper-ture.For the upper and lower layer,Duroid 5880substrate with 0.5-oz copper,62-mil substrate height,and dielectric constant of 2.2and FR-4substrate with 1-oz copper,0.8-mm substrate height,and dielectric constant of 4.6are used,respectively.As shown in Fig.1(b),series feeding line is placed behind cross-aperture,and a quarter-wavelength section of feeding line is positioned between each arm of aperture to create the 90phase difference for circular polarization.Series feeding brings into sequential rotation of current on the surface of radiating 1536-1225/03$17.00?2003IEEE

相关文档
最新文档