可生物降解功能高分子材料

可生物降解功能高分子材料
可生物降解功能高分子材料

目录................................................................................................................................ 目录 (1)

1 绪论 (2)

1.1 定义 (2)

1.2 分类 (2)

1.2.1 微生物生产型 (2)

1.2.2 合成高分子型 (2)

1.2.3 天然高分子型 (2)

1.2.4 掺合型 (2)

1.3 机理 (3)

1.4 基本理论 (3)

1.5 制备方法 (4)

1.5.1 生物可降解高分子材料开发的传统 (4)

1.5.1.1 天然高分子的改造法 (4)

1.5.1.2 化学合成法 (4)

1.5.1.3 微生物发酵法 (4)

1.5.2 生物可降解高分子材料开发的新方法-酶促合成 (4)

1.5.3 酶促合成法与化学合成法结合使用 (4)

2 国内外研究现状 (5)

2.1 天然高分子材料 (5)

2.2 合成高分子材料 (5)

2.3 掺混型高分子材料 (6)

3 市场与应用 (6)

4 研究发展趋势与展望 (7)

5参考文献 (7)

1绪论

1.1定义

生物降解高分子材料是指在生物或生物化学的作用过程中或生物环境中可以发生降解的高分子[1]。生物降解的高分子材料具有以下特点:易吸附水、还有敏感的化学基团、结晶度低、低分子量、分子链线性化程度高和较大的比表面积等[3]。

1.2分类

按来源,生物可降解高分子材料可分为天然高分子和人工可合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型[4]。

1.2.1微生物生产型

通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国ICI 公司生产的“Biopol”产品。

1.2.2合成高分子型

脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(PET)和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺)制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。

1.2.3天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。

1.2.4掺合型

在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。

1.3机理

一般高分子材料的生物降解可分为完全生物降解机理和光-生物降解机理[5]。完全生物降解机理大致有三种途径:①生物物理作用:由于生物细胞增长而使聚合物组分水解,电离质子化而发生机械性的毁坏,分裂成低聚物碎片;②生物化学作用:微生物对聚合物作用而产生新物质(CH4,CO2和H2O等);③酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩裂。光-生物降解机理是材料中的淀粉等生物降解剂首先被生物降解,增大表面/体积比,同时,日光、热、氧引发光敏剂等使高聚物生成氧化物,并氧化断裂,分子量下降到能被微生物消化的水平。光-生物降解机理是材料中的淀粉等生物降解剂首先被生物降解,增大表面/体积比,同时,日光、热、氧引发光敏剂等使高聚物生成氧化物,并氧化断裂,分子量下降到能被微生物消化的水平。因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与温度、酶、pH、微生物等外部环境有关[2]。

1.4基本理论

聚合物生物降解性与其结构有很大关系,现归纳如下[1]:

①具有侧链的化合物难于降解,直链高分子比支链高分子、交联高分子易于生物降解。

②柔软的链结构容易被生物降解,有晶态结构阻碍生物降解,所以聚合物的无定形区总是比结晶区先降解,脂肪族聚酯较容易生物降解,而像聚对苯二甲酸二醇酯等刚性链的芳香族聚酯则是生物惰性的。主链的柔顺性越大,降解速率也越大。在高分子材料中加入增塑剂将对生物降解性产生影响,如加入增塑剂的软质PVC的生物降解性一般大于不加增塑剂的硬质PVC。

③具有不饱和结构的化合物难于降解,脂肪族高分子比芳香族高分子易于生物降解。

④分子量及其分布对高聚物的生物降解有很大影响,宽分子量分布的聚合物、低分子量的低聚物易于降解。

⑤非晶态聚合物比晶态聚合物易于降解,低熔点高分子比高熔点高分子易于降解。

⑥酯键、肽键易于生物降解,而酰胺键由于分子间的氢键难于生物降解。

⑦含有亲水性基团的亲水性高分子比疏水性高分子易于生物降解。

⑧环状化合物难于生物降解。

⑨表面粗糙的材料易降解。

1.5制备方法

1.5.1生物可降解高分子材料开发的传统

传统开发生物可降解高分子材料的方法包括天然高分子的改造法、化学合成法和微生物发酵法等[4]。

1.5.1.1天然高分子的改造法

通过化学修饰和共混等方法,对自然界中存在大量的多糖类高分子,如淀粉、纤维素、甲壳素等能被生物可降解的天然高分子进行改性,可以合成生物可降解高分子材料。此法虽然原料充足,但一般不易成型加工,而且产量小,限制了它们的应用[4]。

1.5.1.2化学合成法

模拟天然高分子的化学结构,从简单的小分子出发制备分子链上含有酯基、酰胺基、肽基的聚合物,这些高分子化合物结构单元中含有易被生物可降解的化学结构或是在高分子链中嵌入易生物可降解的链段。化学合成法反应条件苛刻,副产品多,工艺复杂,成本较高。

1.5.1.3微生物发酵法

许多生物能以某些有机物为碳源,通过代谢分泌出聚酯或聚糖类高分子。但利用微生物发酵法合成产物的分离有一定困难,且仍有一些副产品。

1.5.2生物可降解高分子材料开发的新方法-酶促合成

用酶促法合成生物可降解高分子材料,得益于非水酶学的发展,酶在有机介质中表现出了与其在水溶液中不同的性质,并拥有了催化一些特殊反应的能力,从而显示出了许多水相中所没有的特点[4]。

1.5.3酶促合成法与化学合成法结合使用

酶促合成法具有高的位置及立体选择性,而化学聚合则能有效的提高聚合物的分子量,因此,为了提高聚合效率,许多研究者已开始用酶促法与化学法联合使用来合成生物可降解高分子材料[4]。

2国内外研究现状

2.1天然高分子材料

天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是利用它们制备的生物高分子材料可完全降解,具有良好的生物相容性,且安全无毒,由此形成的产品兼具天然再生资源的充分利用和环境治理的双重意义,因而受到各国的重视。

在天然高聚物中,淀粉是被研究得最多的一种材料,研究工作主要是通过共混改性来制备薄膜。如意大利Feruzzi公司利用70%的变性淀粉与30%的聚乙烯醇共混制备出降解塑料,我国在淀粉与低密聚乙烯共混制备农膜方面也已开展了卓有成效的工作。尽量提高淀粉含量并保持优良的力学性能是其中的技术关键,即如何让薄膜具备完全的分解性是其中存在着的一个尚待解决的问题,在国外已有利用遗传学方法生产直链淀粉的报道,这项研究将为制备全淀粉型降解薄膜提供技术支持。德国Battelle研究所成功地改良青豌豆品种,研制出直链很高的淀粉,可直接用通用的方法加工成型,得到的膜透明、柔软,作为PVC的替代品广泛使用, 在水中或潮湿土壤里可完全分解。这种高直链淀粉原料还可以改性进一步提高其性能,改性包括:酯化、醚化、氧化、酸水解、交联、酶转变等[6]。

2.2合成高分子材料

天然高分子材料虽然价格低廉、能完全降解,但是合成的高分子材料却具有更多的优点。它可以从分子化学的角度来设计分子主链的结构,从而来控制高分子材料的物理性能,而且可以充分利用来自自然界中提取或合成的各种小分子单体。20世纪90年代末刚刚实现工业化的聚乳酸(Poly-lactic Acid,PLA)是其中最有发展前景的一种,它是一种真正的新型绿色高分子材料,也是目前综合性能最出色的环保材料[8]。Stevels等还研究了合成L-丙交酯的3种预聚物:分子量为1500带2个端羟基的聚己内酯(PCL)、分子量为6000带1个端羟基的PCL以及分子量为2000的聚乙二醇的共聚合[9]。匈牙利学者Keki对微波辐射D,L-乳酸直接缩聚进行了初步探索,经650W微波辐射30 min得到分子量为2000 g/mol的聚乳酸。

尽管微波辐射合成聚乳酸的技术刚起步,但是有望成为环境友好材料聚乳酸规模化生产的清洁工艺[10]。

2.3掺混型高分子材料

掺混型高分子材料主要是指将两种或两种以上的高分子物共混或共聚,其中至少有一种组分是可生物降解的,该组分采用淀粉、纤维素、壳聚糖等天然高分子。如美国Warner-Lambert公司的“Novon”的主要原料为玉米淀粉,添加可生物降解的聚乙烯醇,该产品具有良好的成型性,可完全生物降解,这是一类很有发展前途的产品,是90年代国外淀粉掺混型降解高分子材料的主攻方向[6]。Wang shujun等[18]利用一步反应式挤出机制备了聚乙烯(PE)/淀粉复合薄膜,发现该薄膜经过30d可降解3%,经过40d可降解4%,具有可降解性,可用来做可降解塑料制品。

3市场与应用

目前,可生物降解的天然高分子材料应用领域广泛,可用于医药、农业、园林、包装、卫生、化妆品等领域。其用途主要有两方面:(1)利用其生物可降解性,解决环境污染问题,以保证人类生存环境的可持续发展。Nisha Mathew等[11]人则研究了CMC控制释放苯甲酰脲类几丁质抑制剂、倍硫磷的作用,结果表明这种缓释剂防治致倦库蚊幼虫效果显著。除了对农药缓释体系的研究,人们还进行了对生物分解性油品的工业化生产,以代替普通二冲程发动机普遍采用的矿物油,减少对环境的污染[17]。在产品包装中最具代表性的是聚羟基戊酸酯(PHV)和聚羟基丁酸酯(PHB)及其共聚物,其物理性质与PE和PP相近,且热封性良好。该材料使用后可生物降解或被焚烧,两者的耗氧量仅相当于其光合作用放入大气的氧,处理后产生的CO2即为光合作用摄入的全部CO2量,因此可完全进入生物循环[19]。(2)利用其可降解性,用作生物医用材料。生物可降解材料在医学领域的应用原理则是在机体生理条件下,通过水解、酶解,从大分子物质降解成对机体无损害的小分子物质,或者小分子物质在生物体内自行降解,最后通过机体的新陈代谢完全吸收和排泄,对机体不产生毒副作用。生物降解材料已被广泛用于外科手术缝合线、人造皮肤、骨固定材料和体内药物缓释剂等[20]。基因治疗指将遗传信息(即基因)传递到特定的细胞以指导合成特定的蛋白。基因治疗在组织工程当中一个非常有前景的应用是引导功能化组织的生成和修复。通过在可生物降解

高分子支架上负载编码组织诱导因子的基因并对支架进行设计和优化,创造可控的环境,可以促进和引导支架上内源或植入的干细胞或祖细胞的分化,从而促进组织形成[13]。法国Ipsen公司开发的第一个多肽微球产品曲普瑞林(tripto relin) PLGA微球已在临床上用于治疗一些激素依赖性疾病,如前列腺癌、子宫肌瘤、乳腺癌、子宫内膜异位及青春期性早熟等[14]。另外还可以用聚羟基乙酸、聚乳酸等生物可降解性高分子和药物接枝到高分子链上,通过相结合的基团性质来调节药物释放速率[15]。

4研究发展趋势与展望

生物可降解高分子材料的重要地位是不言而喻的, 世界各国正在竭力开展研究和开发工作, 并推广其应用, 前景十分广阔。现在必须面对的挑战是[16]:(1)降低成本。目前生物可降解高分子材料的价格要高于普通塑料价格的5~ 10倍,不易推广;(2)材料的精细化。即根据具体需要调节其性能,如降解时间、生物相容性等;(3)新颖结构的生物可降解高分子材料有待进一步研究;(4)对现有的生物可降解高分子材料进行改性, 获取更好性能的高分子材料。

虽然还有很多技术问题等待解决,但随着人们环保意识和能源危机意识的不断增强,可生物降解材料作为一种治理环境污染、解决资源紧张等难题的全新技术途径,必将进入人们的日常生活,在各个领域得到广泛的应用。

参考文献

[1]焦剑,姚军燕.功能高分子材料[M].北京:化学工业出版社,2007:168-169.

[2]王学军,许振良.可生物降解高分子材料研究进展[J].上海化工,2005,(1):30-32.

[3]郭立新.可生物降解高分子材料的应用研究[J].浙江化工,2003,(10):22-24.

[4]李新.生物可降解高分子材料现阶段的开发及应用情况综述[J].中国新技术新产品,2011,(11):2.

[5]吴卫霞,涂阿朋,肖俊霞等.生物降解高分子材料的研究现状及应用前景[J].油气田环境保护,2005,(01).

[6]黄强,熊犍,何小维等.淀粉类生物降解材料研究进展[J].粮食与饲料工

业,2000,(9).

[7]杨秀英,封禄田,王小波等.新型绿色生物可降解高分子材料-聚乳酸[J].高师理科学刊,2009,29(2).

[8]Hideto Tsuji,Kinika Sumida. Poly(l-lactide):V.Effects of storage in swelling solvents on physical properties and structure of poly(l-lactide)[J] .Journal of Applied Polymer Science. 2001,79, (79) :1582-1589 .

[9] Stevels W M,et al. Block copolymers of poly(L-lactide)and poly(-caprolactone)or poly(ethylene glycol)prepared byreactive extrusion [J].J Appl Polym Sci, 1996,62, 62 (8) :1295 .

[10]S.Keki,I,Bodnar,J,Borda,et al. Fast Microwave-Mediated BulkPolycondensation of D,L-Lactic Acid.Macromolecular Rapid Communication[J] .Ploymer, 2001, (22) :1063-1065 .

[11]Nisha Mathew,Muthuswami Kalyanasundaram. Developmentof biodegradable aluminium carboxymethyl cellulose matricesfor mosquito larvicides[J] .Pest Management Science, 2004,60, 60 (7) :685-690 .

[12]王磊,徐汉虹.张志祥.可生物降解的天然高分子材料应用于农药的研究现状与展望[J].植物保护,2009,35(5):629.

[13]付慧莉,程巳雪,卓仁禧.用于基因传递系统控制释放的可生物降解高分子材料[J].高分子学报,2009,(2):97-101.

[14]Carel J C,Blumberg J,Seymour C. Eur J Endocrinol, 2006,154, 154 (1) :119-124 .

[15]黄丽.高分子材料[M].北京:化学工业出版社,2010.1:271.

[16]翟美玉,彭茜.生物可降解高分子材料[J].化学与粘合,2008,(5):66-69.

[17]刘伯业,陈复生,何乐等.可生物降解及其应用研究进展[J].塑料科技,2010,38(11).

[18]Wang Shujun,Yu Jiugao,Yu Jinglin. Preparation and Characterization of Compatible and Degradable Thermoplastic Starch/Polyethylene Film[J].Journal of Polymers and the Environment, 2006,14, (1) .

[19]吕方,朱光明,刘代军.可完全生物降解材料的应用进展[J].塑料科技,2007, (07).

[20] 顾伟,刘雷艮,左保齐.天然生物可降解材料在生物医学领域中的应用[J].苏州大学学报(工科版),2006,(01).

可生物降解高分子材料的分类及应用

四川工业学院学报 Journa l of S ich ua n Uni vers ity o f Sc ience and Tec hnolog y 文章编号:1000-5722(2003)增刊-0145-03 收到日期:2003-03-22 基金项目:中国石油天然气集团公司中青年创新基金项目(部(基)349):四川工业学院人才引进项目(0225964) 作者简介:王周玉(1977-),女,四川省彭州市人,西华大学生物工程系助教,硕士,主要从事高聚物的合成、改性性质及其应用的研究。 可生物降解高分子材料的分类及应用 王周玉,岳 松,蒋珍菊,芮光伟,任川宏 (西华大学生物工程系,四川成都 610039) 摘 要: 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 关键词: 生物降解;高分子材料;应用 中图分类号:O631.2 文献标识码:B 0前言 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料[1]是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳 的高分子材料。根据降解机理[1,2] 的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光-生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景,所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全 生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestruc tible ma terials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 [3,4] 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合成量超过1010 吨。利用它们制备的生物高分子材料可完全降解、具有良好的生物相容性、安全无毒,由此形成的产品兼具天然再生资源的充分利用和环境治理的双重意义,因而受到各国的重视,特别是日本。如日本四国工业技术实验所用纤维素和从甲壳素制得的脱乙酰壳聚糖复合,采用流延工艺制成的薄膜,具有与通用薄膜同样的强度,并可在2个月后完全降解;他们还对壳聚糖)淀料复合高分子材料进行了大量的研究工作,发现调节原料的比例、热处理温度,可改变高分子材料的强度和降解时间。 天然高分子材料虽然具有价格低廉、完全降解等诸多优点,但是它的热力学性能较差,不能满足工程高分子材料加工的性能要求,因此对天然高分子进行化学修饰、天然高分子之间的共混及天然高分子与合成高分子共混以制得具有良好降解性、实用性的生物降解高分子材料是目前研究的一个主要方向。1.2 微生物合成高分子材料[3,4,5] 微生物合成高分子材料是由生物通过各种碳源发

(完整版)可降解高分子材料

可降解高分子材料 1 可生物降解高分子材料的定义 可生物降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。 2 生物降解高分子材料降解机理 生物降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物(有机酸、酯等);然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。降解除有以上生物化学作用外,还有生物物理作用,即微生物侵蚀聚合物后,由于细胞的增大,致使高分子材料发生机械性破坏。因此,生物降解并非单一机理,而是一个复杂的生物物理、生物化学协同同作用,相互促进的物理化学过程。到目前为止,有关生物降解的机理尚未完全阐述清楚:除了生物降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。 人们深入研究了不同的生物可降解高分子材料的生物降解性,发现与其结构有很大关系,包括化学结构、物理结构、表面结构等。高分子材料的化学结构直接影响着生物可降解能力的强弱,一般情况下:脂肪族酯键、肽键>氨基甲酸酯>脂肪族醚键> 亚甲基。当同种材料固态结构不同时,不同聚集态的降解速度有如下顺序:橡胶态>玻璃态>结晶态。一般极性大的高分子材料才能与酶相粘附并很好地亲和,微生物粘附表面的方式受塑料表面张力、表面结构、多孑L性、环境的搅动程度以及可侵占表面的影响。生物可降解高分子材料的降解除与材料

中国可降解高分子材料行业上下游产业链分析报告

深圳中企智业投资咨询有限公司

中国可降解高分子材料行业上下游产业链分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.360docs.net/doc/9d671772.html, 1

目录 中国可降解高分子材料行业上下游产业链分析 (3) 第一节可降解高分子材料行业上下游产业链概述 (3) 第二节可降解高分子材料上游行业发展状况分析 (3) 一、上游原材料市场发展现状 (3) 二、上游原材料供应情况分析 (4) 三、上游原材料价格走势分析 (4) 四、上游原材料行业前景分析 (4) 第三节可降解高分子材料下游行业需求市场分析 (4) 一、下游行业发展现状分析 (4) 二、下游行业需求状况分析 (9) 三、下游行业需求前景分析 (10) 2

3 中国可降解高分子材料行业上下游产业链分析 第一节 可降解高分子材料行业上下游产业链概述 图表- 1:可降解高分子材料产业链 以PLA 为例,聚乳酸全名为PolyLacticAcid(PLA),又名玉米淀粉树酯,学名为Polylactide ,是一种丙交酯聚酯。聚乳酸为一多用途可堆肥的高分子聚合物,完全由植物中萃取出淀粉→经过发酵→去水→聚合等过程制造而成,无毒性。 其上游为淀粉、纤维素等原材料行业,下游行业应用范围较为广泛,主要包含医疗、食品包装、日用品等多个行业。 第二节 可降解高分子材料上游行业发展状况分析 一、上游原材料市场发展现状 作为生物塑料家族中的当家品种,聚乳酸(PLA)目前是产业化最成熟、产量最大、应用最广泛、价格最低的生物基塑料,是未来最有希望撼动石油基塑料传统地位的降解材料,也将成为生物塑料的主力军。 由于我国农业基础较为发达,淀粉酶以及纤维素等相关产品的数量较多,供给较为充足。

生物降解高分子材料

生物降解高分子材料 肖群 (东北林业大学材料科学与工程学院,黑龙江哈尔滨 150040) 摘要:高分子材料在日常生活中的使用量越来越大.然而高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量塑料废弃物也与日俱增。给人类赖以生存的环境造成了不可忽视的负面影响。本文简要介绍生物降解高分子材料的定义、降解机理及影响因素的基础上,较为全面的阐述了当前生物降解高分子材料的应用领域。 关键词:生物降解,医用生物材料, 1 前言 聚合物工业蓬勃发展的同时也导致了环境污染的加剧,引起了人们对聚合物废料处理的关注。目前全世界每年生产塑料约1.2亿吨.用后废弃的大约占生产量的50%~60%。废塑料的处理以掩埋和焚烧为主,但这两种处理方法会产生新的有害物质。对此,一些国家实行了3R工程,即减少使用、重复使用和回收循环。但对一些回收困难、不宜回收或需要追加很大能量才能回收的领域(如食品包装、卫生用品),实施3R工程很困难,而如果使用生物降解材料则十分有利[1]。 2生物降解高分子材料定义降解机理 2.1生物降解高分子定义 根据美国ASTM定义生物降解高分子材料是指在一定的条件下.一定的时间内能被细菌、霉菌、藻类等微生物降解的高分子材料[2,3,4]。真正的生物降解高分子在有水存在的环境下,能被酶或微生物水解降解,从而高分子主链断裂,分子量 逐渐变小,以致最终成为单体或代谢成CO 2和H 2 O[5]。 2.2生物降解高分子材料的降解机理 生物降解机理和光一生物降解机理.完全生物降解机理大致有三种途径:①生物物理作用:由于生物细胞增长而使聚合物组分水解,电离质子化而发生机械性的毁坏.分裂成低聚物碎片:②生物化学作用:微生物对聚合物作用而产生新 物质(CH 4、C0 2 和H 2 0):③酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩 裂。而光一生物降解机理则是材料中的淀粉等生物降解剂首先被生物降解,增大表面/体积比,同时,日光、热、氧引发光敏剂等使高聚物生成含氧化物,并氧化断裂.分子量下降到能被微生物消化的水平。进一步研究发现.不同的生物降解高分子材料的生物降解性与其结构有很大关系,包括化学结构、物理结构、表面结构等。 对不同种类的生物降解材料而言.它们降解机理的不同决定了它们具有不同的性质。天然降解高分子材料.其本身来源于生物体,能保证足够的细胞及组织亲和性.降解周期一般较短.最终降解产物为多糖或氨基酸.容易被机体吸收.但是这种材料力学性能差。难于满足组织构建的速度要求,应用时需要进行改性。化学合成的生物降解材料的组成、结构和降解行为更易于控制。比如降解速度和强度可调.易构建高孔隙率三维支架.但材料本身对细胞亲和力弱.往往需要引入适量能促进细胞黏附和增值的活性基团、生长因子或黏附因子等。[6] 3生物降解高分子材料的种类及降解过程

生活中的材料课题5几种高分子材料的应用练习1鲁科版选修10921142

1 解析:真毛皮含有蛋白质,焚烧时有烧焦羽毛的味道,而人造皮毛不含蛋白质,焚烧时 则没有烧焦羽毛的味道,所以 B 选项错误。 答案:B 解析:尿不湿之所以具有强的吸水性,是因为其中添加了高吸水性树脂。 答案:D 4.高吸水性树脂中含有羧基和羟基等基团,这些基团属于 B .强憎水基团 D.不属于任何基团 解析:羧基和羟基等基团属于强亲水基团。 答案:A 5.牛筋底鞋底耐磨性好而且坚固耐用富有弹性。而牛筋底一般用两种材料制成,这两 种材料是( ) 主题4认识生活中的材料 课题5几种高分子材料的应用 课堂演练当堂达标 1.下列物质不属于高分子化合物的是 ( ) A. G0H22 A .纤维素 B.蛋白质 C.聚乙烯 答案:A 2. 人造毛皮越来越以假乱真,下列关于真假毛皮的说法不正确的是 A. 真毛皮的主要成分是蛋白质 B . 焚烧人造毛皮和真毛皮都有烧焦羽毛的味道 C . 人造毛皮和真毛皮的成分不同 D . 聚氨酯树脂可用于生产人造毛皮 3. 尿不湿之所以具有强的吸水性是因为 ( ) A. 其成分是滤纸 B. 其中有烧碱等易潮解物质 C. 其中有氯化钙等吸水剂 D. 其中添加了高吸水性树脂 A 强亲水基团 C.酸根 A. 聚四氟乙烯和玻璃钢 B. 热塑性丁苯橡胶和聚氨酯塑料 C. 乙丙橡胶和聚四氟乙烯 D. 聚甲基丙烯酸甲酯和顺丁橡胶

2 解析:电脑中的光盘盘片原料采用聚甲基丙烯酸甲酯或透明的聚酯; 高分子材料等制成;尿素不属于高分子材料;橡胶属于高分子材料,故选择 答案:C 3.为配合“限塑令”的有效推行,许多地区采取了免费发放无纺布袋的措施,已知生 产无纺布的主要原料为:聚丙烯、聚酯和粘胶等。下列有关说法不正确的是 解析:生产无纺布的原料中聚丙烯、聚酯属于合成材料。A. 大部分塑料在自然环境中很难降解 B . 使用无纺布袋有利于减少“白色污染” C . 生产无纺布与棉布的原料都是天然纤维 D . 聚丙烯、聚酯都属于合成材料 答案:B 6. 丁苯橡胶是以丁二烯和另一种材料为单体发生聚合反应而制得的, 这种材料是( ) A.苯乙烯 B .丙烯 C.乙烯 D.甲醛 解析:丁苯橡胶的结构为: —CH>—C H=CH —C H 少一(H —「H i 可知其单体为1, 3 丁二烯CH 2===C — CH===C 和苯乙烯。 答案:A 课后作业知能强化 1.与聚乙烯的制作工艺类似,可以将四氟乙烯进行加聚反应而得到一种特别好的高分 子材料,这种材料的性质特别稳定,所以被称为 ( ) A.国防金属 B .尿不湿 C.橡胶王 D.塑料王 解析:由于聚四氟乙烯具有特殊的化学稳定性, 能够耐强酸、强碱甚至“王水”的腐蚀, 既耐高温又耐低温,绝缘性好而且在水中也不会浸湿或膨胀,所以被称作是塑料王。 答案:D 2. 下列用途中与高分子材料无关的是 ( ) A. 电脑中的光盘 B. 录音机中的磁带 C. 庄稼施加尿素以补充氮肥 D. 氟橡胶制造火箭衬里 录音机中的磁带用 C 项。

生物可降解高分子材料的发展现状与前景综述

生物可降解高分子材料的发展现状与前景综述Present Development and Prospects of Biodegradable Polymer 张璐,浙江大学工科试验班1128班,jangru@https://www.360docs.net/doc/9d671772.html, 摘要:本文介绍了生物可降解高分子材料的定义和降解原理,并概述了生物可降解材料的种类,例如天然高分子材料,合成高分子材料和掺混型高分子材料,同时介绍了可降解高分子材料在环境保护、医疗保健、食品包装等领域的应用,并对其未来发展作了展望。 关键字:可降解高分子材料,分类,应用,发展前景 Abstract: This paper introduces the definition and degradation mechanism of biodegradable polymer, and summarizes the types of biodegradable materials, such as naturally occurring polymers, synthetic polymers and mixing type. Besides, the application of biodegradable polymer in environment protecting, medical science and other areas and the development prospect of this material are also include. Keywords:degradable polymer, classification, application, development prospect 当前社会,在经济快速发展和科学技术突飞猛进的同时,谋求绿色发展已经越来越成为时代的重要趋势。这种发展理念不仅体现在经济活动上,也体现在生物、化学等基础学科领域。就高分子材料方面而言,我国目前的高分子材料生产和使用已位居世界前列,每年产生数百万吨的废弃物,既造成了环境破坏,又极大地制约了学科本身的发展。为了解决这种矛盾,生物可降解高分子材料应运而生。作为一种新型的环境材料,生物可降解高分子材料很好平衡了经济与环境之间的需求,同时也为医疗保健等领域作出了长足的贡献。它的研究和迅速发展,已经受到人们越来越多的关注。 1 生物可降解高分子材料的定义及降解原理 可降解高分子材料,是一种环保高分子材料,它是在一定条件下,能在微生物分泌酶的作用下由大分子分解为小分子的材料[1]。 高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。高分子水合

高分子材料的应用

高分子材料的应用——防水防尘新型材料等方面的研究进展的介绍 高分子材料是门内容广泛,与其他许多学科交叉渗透,相互关联的综合性新兴学科随着社会的发展,普通的材料已经不能满足需求,高分子材料则越来越多的用于人们的日常生活.目前高分子材料的发展迅猛,应用的方面也越来越多,越来越广!下面就高分子材料用于防水方面的研究进展进行介绍! 一开始想到这个方面是由于一年前班主任开班会时候对高分子进行的介绍,其中有一点就是应用于防水方面。当时他举了个列子——荷叶.众所周知,荷叶表面的水可以聚成水珠,不会粘在荷叶上,从这个出发研究荷叶的结构从而得到防水防尘方面的启发! 荷叶的叶面上布满了一个紧挨一个的“小山包”,“山包”上长满绒毛,好像山上密密的植被,“山包”的顶上又长出一个馒头状的“碉堡”凸顶。因此,在“山包”的凹陷处充满了空气,这样就在紧贴的叶面上形成一层极薄的只有纳米级的空气层。由于雨水和灰尘对于荷叶叶面上的这些微结构来说,无异于庞然大物,于是,当雨水和灰尘降落时,隔着一层纳米空气,它们只能同“小山包”上的“碉堡”凸顶构成几个点的接触,无法进一步“入侵”。水形成水珠,滚动着洗去了叶面的尘埃。荷叶的这种纳米级的超微结构,不仅有利于它自洁,还有利于防止空气中飘浮的大量的各种有害细菌和真菌对它的侵害! 对于这方面我从一些文献中找出了一点将荷叶的功能应用的实际的列子——德国Sto 上市公司下属ISPO 公司,根据荷叶效应机理和硅树脂外墙涂料的实际应用结果,经过3 年研究工作,成功地把荷叶效应移植到外墙乳胶漆中,开发了微结构有机硅乳胶漆,即荷叶效应乳胶漆。这种荷叶效应乳胶漆采用具有持久憎水性的少乳化剂有机硅乳液等一些专门物质,并形成一个纳米级显微结构,从而使其涂膜具有类似荷花叶子的表面结构,达到拒水保洁功能 但是荷叶的防水防尘功能是有限的,我们需要做的就是从荷叶的结构方面进行改进,用高分子技术做出更加全面的防水防尘材料!荷叶只是一个列子,只是给我们一个启发。真正要研究的是高分子的结构和结构所表现出来的功能! 1防水方面 世界各地对高分子的研究都是积极的。以前用于防水的材料主要是沥青和砂浆虽然这2种方法能起到防水作用但是作用远远没有高分子的作用好台湾一流的防水中心{张百兴张凯然}在土木建筑工程中使用了一种新型的施工方法——高分子涂膜防水!

降解高分子材料

III降解高分子材料 1简述 降解性高分子(又称生物可降解塑胶),在日本又称为绿色塑胶,是可以在自然界降解的塑胶材质。在有足够的湿度、氧气与适当微生物存在的自然掩埋或堆肥环境中,可被微生物所代谢分解产生水和二氧化碳或甲烷,对环境危害较小。由降解性高分子构成。基本上,生物塑胶并不是什麼新概念。由木材和棉花制成的赛璐珞,早在1850年代就被发明出来作为象牙撞球的替代品。但就像其他早期发明的可循环塑胶一样,赛璐珞缺乏合成塑胶的可变性和发展性,因此现在多半只能拿来做领口衬料和桌球。 我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广, 可用于地膜、包装袋、医药等领域。 2生物降解高分子材料降解机理 按美国ASTM定义:生物降解高分子材料是指在细菌、真菌、藻类等自然界存在的微生物作用下能发生化学、生物或物理作用而降解或分解的高分子材料。般高分子材料的生物降解可分为完全生物降解和光一生物降解b。完全生物降解 大致有三种途径: (1) 生物化学作用:微生物对聚合物作用而产生新物质(C,C02和H 0)。 (2) 生物物理作用:由于生物细胞增长而使聚合物组分水解、电离质子化而发生机械性的毁坏,分裂成低聚物碎片。 (3) 酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩裂。而光一生物降解则是材料中淀粉等生物降解剂首先被生物降解,增大表面积/体积比,同时, 日光、热、氧引发光敏剂等使聚合物生成含氧化物,并氧化断裂,分子量下降到 能被微生物消化的水平, 因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、

高分子材料按应用分类

高分子材料按应用分类 高分子材料按特性分为橡胶、纤维、塑料、、高分子涂料和高分子基复合材料等。①橡胶是一类线型柔性。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和两种。②高分子纤维分为天然和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。③塑料是以合成树脂或的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为和热塑性塑料;按用途又分为通用塑料和。④高分子胶粘剂是以合成为主体制成的。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。⑤高分子涂料是以聚合物为主要成膜物质,添加和各种添加剂制得。根据成膜物质不同,分为涂料、天然树脂涂料和。⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。⑦。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子和医用、等。高聚物根据其机械性能和使用状态可分为上述几类。但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑料,也可制成纤维,比如尼龙就是如此。而一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑料。 按高分子主链结构分类 ①碳链高分子:分子主链由C原子组成,如:PP、PE、PVC②杂链高聚物:分子主链由C、O、N等原子构成。如:聚、聚酯③元素有机高聚物:分子主链不含C原子,仅由一些杂原子组成的高分子。如:硅橡胶 新型高分子材料 高分子材料包括塑料、橡胶、纤维、薄膜、和涂料等。其中,被称为现代高分子的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。 高分子分离膜 是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或差为动力,使混合物、液体混合物或、无机物的等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。膜分离过程主要有、超滤、微滤、电渗析、压渗析、气体分离、渗透汽化和液膜分离等。用来制备分离、渗透汽化和液膜分离等。用来制备分离膜的高分子材料有许多种类。现在用的较多的是聚枫、聚、纤维素脂类和有机硅等。膜的形式也有多种,一般用的是平膜和空中纤维。推广应用高分子分离膜能获得巨大的经济效益和社会效益。例如,利用交换膜电解可减少污染、节约能源:利用反渗透进行海水淡化和脱盐、要比其它方法消耗的能量都小;利用从中富集氧可大大提高回收率等。

谈谈高分子材料在现代生活中的应用

谈谈高分子材料在现代生活中的应用 高分子材料是以高分子化合物为基础的材料,由相对分子质量较高的化合物构成。高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 一高分子材料在生活中的应用简介 高分子按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础,我们接触的很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成

织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料;高分子材料按用途又分为普通高分子材料和功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等 一般将高分子材料按特性分为五类,即橡胶、纤维、塑料、胶粘剂、涂料。 橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状,有天然橡胶和合成橡胶两种。天然橡胶的主要成分是聚异戊二烯;合成橡胶的主要品种有丁基橡胶、顺丁橡胶、氯丁橡胶、三元乙丙橡胶、丙烯酸酯橡胶、聚氨酯橡胶、硅橡胶、氟橡胶等等。天然橡胶因其具有很强的弹性和良好的绝缘性、可塑性、隔水隔气、抗拉和耐磨等特点,广泛地运用于工业、农业、国防、交通、运输、机械制造、医药卫生领域和日常生活等方面,如交通运输上用的各种轮胎;工业上用的运输带、传动带、各种密封圈;医用的手套、输血管;日常生活中所用的胶鞋、雨衣、

化学与生活《几种高分子材料的应用》教案2(鲁科版选修1)

课题5 几种高分子材料的应用 教学目标 1.了解几种高分子材料的成分及特点。 2.学会根据不同材料的特性区别不同物质的组成。 3.联系实际,根据生活中的应用,认识到高分子材料的发展趋势及前景。 教学重点: 1.了解几种高分子材料的成分及特点 2.学会根据不同材料的特性区别不同物质的组成。 联想.质疑: 有些优质的滑雪板的表面贴一层非常光滑的薄膜,这种薄膜是由一种高分子材料制成的,可以大大提高滑雪速度;另外,如果用这种材料制作水龙头的垫片,密闭性好,经久耐用;电缆电线的绝缘层、电热毯中间的发热层常用它作为绝缘材料;化工生产也会用它来保护设备不受酸碱的侵蚀…你知道这是一种什么材料吗? 一、聚四氟乙烯 阅读思考:聚四氟乙烯的成分?性能?用途? 1、成分:-[CF2-CF2]n- 2、制备:反应类型----加聚反应 3、性能: ①具有特殊的化学稳定性:耐酸碱、耐高低温、绝缘性、防水性 ②摩擦系数小,极其光滑。 4、用途:广泛应用于化学化工、机械、电器、建筑、医疗等领域 二、耐磨鞋底和轮胎 阅读思考:橡胶的分类?各种橡胶的成分、性能及用途? 1、橡胶的分类:天然橡胶和合成橡胶 2、丁苯橡胶 ①成分

②制备 单体:CH2=CH—CH=CH2 ③性能:兼有橡胶和塑料的性能 ④用途:广泛用于制鞋、沥青改性、塑料改性和黏合剂行业等 3、丁顺橡胶 性能:耐磨、弹性、耐低温、耐热等 4、丁基橡胶 单体:异丁烯和少量异戊二烯 性能:气密性好、耐热、耐老化 用途:做汽车内胎、探空气球、无内胎轮胎 5、乙丙橡胶 成分:乙烯和丙稀 制备 单体:乙烯、丙烯 性能:柔韧性好 用途:制造汽车或建筑门窗的密封胶条 三、“尿不湿”与荒漠绿化 活动探究: (1)取一片纸尿片,用天平称量它的质量,使其充分吸水后再称其质量,计算单位质量纸尿片的最大吸水量。 (2)用同样的方法测定其它材料的吸水能力,与纸尿片进行比较。 (3)把充分吸水的几种材料放到窗口通风处,每隔一段时间后称其质量,比较哪种材料更易失水. 1、“尿不湿”原理 尿不湿既能吸水又能保水的原因是:“尿不湿”中添加了一种高吸水树脂。高吸水树脂是含

生物降解高分子材料研究

生物降解高分子材料研究 [摘要] 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 [关键词] 生物降解;高分子材料;应用 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳的高分子材料。根据降解机理的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光一生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestructible materials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合

降解高分子材料

III降解高分子材料 1 简述 降解性高分子(又称生物可降解塑胶),在日本又称为绿色塑胶,是可以在自然界降解的塑胶材质。在有足够的湿度、氧气与适当微生物存在的自然掩埋或堆肥环境中,可被微生物所代谢分解产生水和二氧化碳或甲烷,对环境危害较小。由降解性高分子构成。基本上,生物塑胶并不是什麼新概念。由木材和棉花制成的赛璐珞,早在1850年代就被发明出来作为象牙撞球的替代品。但就像其他早期发明的可循环塑胶一样,赛璐珞缺乏合成塑胶的可变性和发展性,因此现在多半只能拿来做领口衬料和桌球。 我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。 2 生物降解高分子材料降解机理 按美国ASTM定义:生物降解高分子材料是指在细菌、真菌、藻类等自然界存在的微生物作用下能发生化学、生物或物理作用而降解或分解的高分子材料。般高分子材料的生物降解可分为完全生物降解和光一生物降解b 。完全生物降解大致有三种途径: (1)生物化学作用:微生物对聚合物作用而产生新物质(C ,C02和H O)。 (2)生物物理作用:由于生物细胞增长而使聚合物组分水解、电离质子化而发生机械性的毁坏,分裂成低聚物碎片。 (3)酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩裂。而光一生物降解则是材料中淀粉等生物降解剂首先被生物降解,增大表面积/体积比,同时,日光、热、氧引发光敏剂等使聚合物生成含氧化物,并氧化断裂,分子量下降到能被微生物消化的水平, 因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、

医用高分子材料的应用(精)

医用高分子材料的应用 1概述 医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的合成高分子材料,可以利用聚合的方法进行制备,是生物医用材料的重要组成之一。由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质,以满足不同的需求,耐生物老化,作为长期植入材料具有良好的生物稳定性和物理、机械性能,易加工成型,原料易得,便于消毒灭菌,因此受到人们普遍关注,已成为生物材料中用途最广、用量最大的品种,近年来发展需求量增长十分迅速。目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%~20%的速度增长。随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。 2种类和应用 2.1与血液接触的高分子材料 与血液接触的高分子材料是指用来制造人工血管、人工心脏血囊、人工心瓣膜、人工肺等的生物医用材料,要求这种材料要有良好的抗凝血性、抗细菌粘附性,即在材料表面不产生血栓、不引起血小板变形,不发生以生物材料为中心的感染。此外,还要求它具有与人体血管相似的弹性和延展性以及良好的耐疲劳性等。人工血管用材料有尼龙、聚酯、聚四氟乙烯、聚丙烯及聚氨酯等。人工心脏材料多用聚醚氨酯和硅橡胶等。人工肺则多用聚四氟乙烯、硅橡胶、超薄聚(涂在多孔PP膜上)、超薄乙基纤维(涂在PE无纺布或多孔PP膜上)等材料。人工肾用材料除要求具备良好的血液相容性外,还要求材料具有足够的湿态强度、有适宜的超滤渗透性等,可充当这一使命的材料有乙酸纤维素、铜氨再生纤维素、尼龙、聚砜及聚醚砜等。 2.2组织工程用高分子材料 组织工程学是近十年来新兴的一门交叉学科,它是应用工程学和生命科学的原理和方法来了解正常和病理的哺乳类组织的结构-功能关系,以及研制生物代用品以恢复、维持或改善其功能的一门科学。细胞大规模培养技术的日臻成熟和生物相容性材料的开发与研究,使得创造由活细胞和生物相容性材料组成的人造生物组织或器官成为可能。生物相容性材料的开发是组织工程核心技术之一。组

生物降解高分子材料的研究现状及应用前景_吴卫霞

?40? 2005年3月 油气田环境保护 综 述   生物降解高分子材料  的研究现状及应用前景  吴卫霞1 涂阿朋2 肖俊霞1 段明锋1  (1.江汉石油学院化学工程系;2.土哈油田钻井公司)  摘 要 目前,处理高分子材料的一些传统方法,如焚烧法、掩埋法、熔融共混挤出法、回收利用等都存在一定的缺陷和局限性,给环境保护带来严重的困难。因此,开发环境可接受的降解性高分子材料是解决环境污染的重要途径。生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程。论述了生物降解高分子材料的研究现状,并对生物降解高分子材料的降解机理、影响因素及其在医学、农业、包装业和其他领域的潜在应用前景进行了探讨。  关键词 生物降解高分子材料 降解机理 影响因素 研究现状 应用前景    0 引 言  随着大量高分子材料在各个领域的使用,废弃高分子材料对环境的污染有着日益加剧的趋势。塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废塑料所造成的白色污染已成为世界性的公害[1]。目前,处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程,这种方法简洁有效,而且对环境的保护有积极的作用[2]。同时,随着高新技术的发展,生物降解高分子材料也满足了医学和农业及其他方面的需求,成为近年来研究的热点。  1 高分子生物降解机理  理想的生物降解高分子材料是一种具有优良的使用性能,废弃后可被环境微生物完全分解,最终被无机化而成为自然界中碳元素循环的一个组成部分的高分子材料[3]。生物降解高分子材料的生物降解通常是指以化学方式进行的,即在微生物活性(有酶参与)的作用下,酶进入聚合物的活性位置并渗透至聚合物的作用点后,使聚合物发生水解反应从而使聚合物的大分子骨架结构发生断裂成为小的链段,并最终断裂成稳定的小分子产物,完成降解过程[4]。  一般高分子材料的生物降解可分为完全生物降解机理和光-生物降解机理[5]。完全生物降解机理大致有三种途径:① 生物物理作用:由于生物细胞增长而使聚合物组分水解,电离质子化而发生机械性的毁坏,分裂成低聚物碎片;② 生物化学作用:微生物对聚合物作用而产生新物质(CH4,CO2和H2O);③ 酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩裂。光-生物降解机理是材料中的淀粉等生物降解剂首先被生物降解,增大表面/体积比,同时,日光、热、氧引发光敏剂等使高聚物生成氧化物,并氧化断裂,分子量下降到能被微生物消化的水平。  2 影响生物降解的因素  生物降解高分子在制造和使用过程中应保持稳定,并要求在废弃后及时进行生物降解,因此影响生物降解性的因素成为人们关注的焦点之一。  环境因素[4,6]是指水、温度、pH值和氧的浓度。水是微生物生成的基本条件,因此聚合物能保持一定的湿度是其可生物降解的首要条件。每一种微生物都有其适合生长的最佳温度,通常真菌的适宜温度为20℃~28℃,细菌则为28℃~37℃。一般来说,真菌适宜长在酸性环境中,而细菌适宜长在微碱性条件下。真菌为好氧型的,细菌则可在有氧或无氧条件下生长。

新型高分子材料在生活中的应用-推荐下载

新型高分子材料在生活中的应用 摘要:了解生物医用功能高分子材料近年来的应用研究及发展状况,综述国内外生物 医用高分子材料的分类、特性及研究成果,展望对未来的生物医用高分子材料的发展趋势,通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。、 前言:现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数 金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而用聚合物制造人工器官,作为人体器官的替代物。另外,除人工器官用材料之外,医药用高分子材料,临床检查诊断和治疗用高分子材料的开发研究也在积极的展开,它们被统称为医用高分子材料。医用高分子材料是一类令人瞩目的的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学,化学,生物化学,医学,病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料是一类可对有机体组织进行修复,替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展中的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部分并应用于临床的诊断和治疗。 正文 一生物医用高分子材料的现状 生物医用高分子材料是以医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的高分子材料,生物医用高分子材料是在高分子材料科学不断向医学和生命科学渗透,高分子材料广泛应用于医学领域的过程中,逐渐发展起来的一类生物材料,它已形成一门介于现代医学和高分子科学之间的边缘科学。在功能高分子材料领域, 生物医用高分子材料可谓异军突起, 目前已成为发展最快的一个重要分支。 生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937 年,其特点是所用高分子材料都是已有的现成材料, 如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953 年, 其标志是医用级有机硅橡胶的出现, 随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚- 氨) 酯心血管材料, 从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计, 有目的地开发所需要的高分子材料。目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成, 在分子设计上以促进周围组织细胞生长为预想功能, 其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高

可生物降解功能高分子材料

目录................................................................................................................................ 目录 (1) 1 绪论 (2) 1.1 定义 (2) 1.2 分类 (2) 1.2.1 微生物生产型 (2) 1.2.2 合成高分子型 (2) 1.2.3 天然高分子型 (2) 1.2.4 掺合型 (2) 1.3 机理 (3) 1.4 基本理论 (3) 1.5 制备方法 (4) 1.5.1 生物可降解高分子材料开发的传统 (4) 1.5.1.1 天然高分子的改造法 (4) 1.5.1.2 化学合成法 (4) 1.5.1.3 微生物发酵法 (4) 1.5.2 生物可降解高分子材料开发的新方法-酶促合成 (4) 1.5.3 酶促合成法与化学合成法结合使用 (4) 2 国内外研究现状 (5) 2.1 天然高分子材料 (5) 2.2 合成高分子材料 (5) 2.3 掺混型高分子材料 (6) 3 市场与应用 (6) 4 研究发展趋势与展望 (7) 5参考文献 (7)

1绪论 1.1定义 生物降解高分子材料是指在生物或生物化学的作用过程中或生物环境中可以发生降解的高分子[1]。生物降解的高分子材料具有以下特点:易吸附水、还有敏感的化学基团、结晶度低、低分子量、分子链线性化程度高和较大的比表面积等[3]。 1.2分类 按来源,生物可降解高分子材料可分为天然高分子和人工可合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型[4]。 1.2.1微生物生产型 通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国ICI 公司生产的“Biopol”产品。 1.2.2合成高分子型 脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(PET)和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺)制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。 1.2.3天然高分子型 自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。 1.2.4掺合型 在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。

相关文档
最新文档