10_1光的偏振

第19章光的偏振

偏振光与自然光

线偏振光的获得和检验

椭圆(圆)偏振光的获得和检验

序言

§序-1 简短的历史回顾

十七世纪下半叶

牛顿:光的微粒说惠更斯:光的波动说

十九世纪初

托马斯?杨:双缝干涉实验、单缝衍射现象

菲涅尔:光的波动理论

十九世纪中叶

麦克斯韦:光的电磁波理论

十九世纪末二十世纪初

爱因斯坦:光子假设光的量子说

二、单色辐射和多色辐射

热辐射光源

白炽灯、弧光灯、太阳。

非热辐射光源气体放电管、钠光灯、水银灯、日光灯。光谱光的强度按频率(或波长)的分布。线光谱连续光谱

400nm 500nm 600nm 700nm H 2Hg Na

太阳吸收光谱

白炽灯淘汰路线图2011年11月4日公布, LED概念股批量涨停

24W的节能灯25元、45W的节能灯80元。白炽灯40W的1.5元。

白炽灯,电流流过灯丝的热效应(工作的温度2200K~2700K),使白

炽灯发出连续的可见光和红外线。大部分的能量以红外辐射的形式浪

费掉。同时由于灯丝温度很高,蒸发也很快,灯丝寿命短。发光效率

只有6%。

节能灯主要是通过镇流器给灯管灯丝加热,大约在1160K温度时,灯丝就开始发射电子(固在灯丝上涂了一些电子粉)电子碰撞氩原子,氩

原子获得能量,撞击汞原子,汞吸收能量后,再跃迁发出紫外线,紫

外线激发荧光粉发光。与白炽灯比:工作温度低,灯丝寿命长;不存

在强的电流热效应;荧光粉的能量转换效率也很高。发光效率20%左右。

紫外线+荧光粉--〉白光红绿蓝三色光混合成白光

节能灯管壁上涂的是三基色荧光粉,发光效率大大高于普通日光灯

的荧光粉

LED(Light Emitting Diode 发光二极管)节能灯:半导体PN结发光的原理。电子与空穴复合得到的能量以光能的形式释放出去。

从颜色混合原理上讲,一般分为

光学三原色(遵循颜色加法原理)

印刷三原色(遵循颜色减法原理)

光学三原色:红、绿、蓝

红+绿=黄;绿+蓝=青;红+蓝=品红;红+绿+蓝=白印刷三原色:青、品红、黄

青+品红=蓝;品红+黄=红;黄+青=绿;青+黄+品红=黑。这里所写的颜色都是100%颜色的叠加。

随着它们叠加比例的不同,则产生不同的色彩。

电视机,显示器就是光学原理的三原色

书、宣传画等印刷品则是利用颜色的减法原理产生的。

普通的电影或照片:

一个镜头从单一视角拍摄的,

影像都在同一平面上,

人根据生活经验(如近大远小、光线明暗)产生空间感立体电影:

用两个镜头如人眼那样的拍摄装置,

拍摄下景物的双视点图像,

再通过两台放映机,

把两个视点的图像同步放映

体效果消失

分色法:色差式3D技术

历史悠久

原理简单

价格低廉

很容易产生偏色

两眼色觉不平衡,容易疲劳

分光法:偏光式3D技术

从1922年开始一直

为各国所重视

立体放映厅造价较高,需要金属幕布

时分法: 主动快门式3D技术

通过提高画面的刷新率来实现3D效果。把图像按帧一分为二,形成对应左眼和右眼的两组画面,连续交错显示出来,同时红外信号发射器将同步控制快门式3D眼镜的左右镜片开关,使左、右双眼能够在正确的时刻看到相应画面。能够保持画面的原始分辨率,而且不会造成画面亮度降低。

硬件成本(显示器、眼镜等设备)昂贵。

当周围有光源时,画面不可避免的出现闪烁。

需要发射和接收器,直接增加了安装、设置和使用的复杂程度。

接收器通常置于眼镜上,重量不可避免的增加,增加了使用者的身体负担。

全息立体电影

苏联在70年代研试了全息立体电影,

z观看时不必戴眼镜,

z有很大的影像亮度范围。

z由于观众眼睛的视觉调节和收敛是自然的,不会引起过分紧张和疲劳,

z观众只要转动头部,即可看到如同实物那样的位置变化,就象真实物体那样。

这种电影仍在研究试验阶段。

三维立体图

看画时把视点落在立体画后面合适的位置,使左眼看到的画面与右眼错开一个单位块。左、右眼也就看到不同的图案。

三维立体图观看要诀

三维立体图不像二维图一样一看就能看清楚,它需要你利用自己的眼力,找出上下和远近的立体感,一般的图是远近立体感强,层次分明,最简单的训练过程就是:

1.在纸上画一个圈,最好是白纸画实心黑圈,铅笔直径大小即可,然后看着这个圈,看的时候眼睛跟屏幕的距离与平时看屏幕的距离一样即可,令自己眼睛失去焦点,于是一个圈变成两个圈。

2.旁边再画一个圈,大小一样,初学的话距三四厘米即可,然后又一个圈变两圈,注意,现在一共画了两个圈,变成四个圈。

3.这一步最重要,将四个圈中间的两个圈重合,令其一共变成三个圈,注意力集中。

4.回到现实,平面上只有两个圈。

5.眼睛失去焦点,一阵眩、变幻,变成三个圈。

6.重复第四步和第五步,一般来说,这两步之间时间间隔越小,越容易看出三维立体图。

7.熟练了以后,将平面两个圈的距离慢慢增加,增强看三维图片的能力。

光的偏振计算题及答案讲课讲稿

《光的偏振》计算题 1. 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45?和90?角. (1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态. (2) 如果将第二个偏振片抽走,情况又如何? 解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分 通过第2偏振片后,I 2=I 1cos 245?=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245?=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平 行. 2分 (2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时 I 3 =0. 1分 I 1仍不变. 1分 2. 两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比. 解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2 和I 2 / 2马吕斯定律,透过检偏器的光强分别为 1分 1211 cos 21αI I =', 2222cos 2 1αI I =' 2分 按题意,21I I '=',于是 222121cos 2 1cos 21ααI I = 1分 得 3/2cos /cos /221221==ααI I 1分 3. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角. 解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏 振片后的光强 I 1=I 0 / 2. 1分 透过第二个偏振片后的光强为I 2,由马吕斯定律, I 2=(I 0 /2)cos 2θ 2分 透过第三个偏振片的光强为I 3, I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ 3分 由题意知 I 3=I 2 / 16 所以 sin 22θ = 1 / 2, () 2/2sin 211-=θ=22.5° 2分 4. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0 的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角. (1) 求透过每个偏振片后的光束强度; (2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.

光的偏振(有答案)

光的偏振 一、光的偏振的相关知识 (1)自然光:太阳、电灯等普通光源发出的光,包含着在垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫做自然光. (2)偏振:光波只沿某一特定的方向振动,称为光的偏振 (3)偏振光:在垂直于传播方向的平面上,只沿某个特定方向振动的光,叫做偏振光.光的偏振证明光是横波.自然光通过偏振片后,就得到了偏振光. 二、光的偏振的理解 1、偏振光的产生方式 (1)自然光通过起偏器:通过两个共轴的偏振片观察自然光,第一个偏振片的作用是把 自然光变成偏振光,叫起偏器.第二个偏振片的作用是检验光是否为偏振光,叫检偏器. (2)自然光射到两种介质的交界面上,如果光入射的方向合适,使反射光和折射光之间 的夹角恰好是90°时,反射光和折射光都是偏振光,且偏振方向相互垂直. 特别提醒不能认为偏振片就是刻有狭缝的薄片,偏振片并非刻有狭缝,而是具有一种特征,即存在一个偏振方向,只让平行于该方向振动的光通过,其他振动方向的光被吸收了. 2、偏振光的理论意义及应用 (1)理论意义:光的干涉和衍射现象充分说明了光是波,但不能确定光波是横波还是纵 波.光的偏振现象说明了光波是横波. (2)应用:照相机镜头、立体电影、消除车灯眩光等. 三、相关练习 1、如图所示,偏振片P的透振方向(用带有箭头的实线表示)为竖直方向.下列四种入射光束中,能在P的另一侧观察到透射光的是() A.太阳光 B.沿竖直方向振动的光 C.沿水平方向振动的光 D.沿与竖直方向成45°角振动的光 答案ABD 解析偏振片只让沿某一方向振动的光通过,当偏振片的透振方向与光的振动方向不同时,透射光的强度不同,它们平行时最强,而垂直时最弱.太阳光是自然光,光波可沿任何方向振动,所以在P的另一侧能观察到透射光;沿竖直方向振动的光,振动方向与偏振片的透振方向相同,当然可以看到透射光;沿水平方向振动的光,其振动方向与透振方向垂直,所以看不到透射光;沿与竖直方向成45°角振动的光,其振动方向与透

第二十章光的偏振自测题标准答案

第二十章 光的偏振自测题答案 一、 选择题: ACABB BCCDB DBCBD DDABC 二、填空题: 2I ,I/8,线偏振光,横,光轴,2212cos cos αα,圆,大于,624844.4800'=, 600,3I 0/16,3, 91.7 , 8.6,5um 三、计算题 1、自然光通过两个偏振化方向间成 60°的偏振片,透射光强为 I 1。今在 这两个偏振片之间再插入另一偏振片,它的偏振化方向与前两个偏振片均成 30°角,则透射光强为多少? 解:设入射的自然光光强为0I ,则透过第1个偏振片后光强变为2I 0, 3分 透过第2个偏振片后光强变为1020I 60cos 2 I =, 3分 由此得 10 210I 860cos I 2I == 3分 上述两偏振片间插入另一偏振片,透过的光强变为 11020202I 25.2I 4 930cos 30cos 2I I === 3分 2、 自然光入射到两个互相重叠的偏振片上。如果透射光强为(1)透射光最大强度的三分之一,(2)入射光强度的三分之一,则这两个偏振片的偏振化方向间的夹角是多少? 解:(1)设入射的自然光光强为0I ,两偏振片同向时,透过光强最大,为2 I 0。

当透射光强为2 I 31I 01?=时,有 2分 6 I cos 2I I 0201==θ 2分 两个偏振片的偏振化方向间的夹角为 44543 1arccos 01'==θ 2分 (2)由于透射光强 3 I cos 2I I 02202==θ 4分 所以有 61363 2arccos 02'==θ 2分 3、投射到起偏器的自然光强度为0I ,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过30°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是0I 的几倍? 解:由马吕斯定律有 0o 2018 330cos 2I I I == 4分 0ο2024 145cos 2I I I == 4分 0ο2038160cos 2I I I == 4分 所以透过检偏器后光的强度分别是0I 的83,41,8 1倍. 4、使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为1I ,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与1I 之比为多少? 解:由马吕斯定律 ο20160cos 2I I =8 0I = 4分

光的偏振实验

光的偏振实验 光的干涉和衍射现象表明光是一种波动,但这些现象还不能告诉我们光是纵波还是横波,光的偏振现象清楚的显示了光的横波性。历史上,早在光的电磁理论建立以前,在杨氏双缝实验成功以后不多年,马吕斯(E.L.Malus )于1809年就在实验上发现了光的偏振现象。 【实验目的】 1.验证马吕斯定律; 2.产生和观察光的偏振状态; 3.了解产生与检验偏振光的元件和仪器; 4.掌握产生与检验偏振光的条件和方法。 【实验仪器】 光源(白炽灯或可见光激光器)、起偏器、检偏器、光屏或光功率指示器、 /4波片。 【实验原理】 光波是一种电磁波,电磁波是横波,光波中的电矢量与波的传播方向垂直。光的偏振现象清楚的显示了光的横波性。光波的电矢量E 和磁矢量H 相互垂直,且都垂直于光的传播方向c (图1)。通常用电矢量E 代表光的振动方向,并将电矢量E 和光的传播方向c 所构成的平面称为光振动面。 我们知道光有五种偏振状态,即线偏振光、椭圆偏振光、圆偏振光、自然光和部分偏振光。在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光(图2a )。光源发射的光是由大量分子或原子辐射构成的。单个原子或分子辐射的光是偏振 的,由于大量原子或分子的热运动和辐射的随机性,它们所发射的光的振动面出现在各个方向的几率是相同的。一般说,在10-6秒内各个方向电矢量的时间平均值相等,故这种光源发射的光对外不显现偏振的性质,称为自然光(图2b )。在发光过程中,有些光的振动面在某个特定方向上出现的几率大于其他方向,即在较长时间内电矢量在某一方向上较强,这样的光称为部分偏振光(图2c )。还有一些光,其振动面的取向和电矢量的大小随时间作有规律的变化,电矢量末端在垂直于传播方向的平面上的轨迹是椭圆或圆,这种光称为椭圆偏振 E c H 图1 E , H , c 三者之间的关系 图2 线偏振光、自然光及部分偏振光 a b c x 图3a 椭圆偏振光的合成

光的偏振计算题及答案

《光得偏振》计算题 1、将三个偏振片叠放在一起,第二个与第三个得偏振化方向分别与第一个得偏振化方向成45?与90?角. (1)强度为I0得自然光垂直入射到这一堆偏振片上,试求经每一偏振片后得光强与偏振状态。 (2) 如果将第二个偏振片抽走,情况又如何? 解:(1)自然光通过第一偏振片后,其强度I1= I0/ 2 1分 通过第2偏振片后,I2=I1cos245?=I1/ 4 2分 通过第3偏振片后,I3=I2cos245?=I0/8 1分通过每一偏振片后得光皆为线偏振光,其光振动方向与刚通过得偏振片得偏振化方向平行. 2分(2)若抽去第2片,因为第3片与第1片得偏振化方向相互垂直,所以此时 I3 =0、 1分I1仍不变。1 分2、两个偏振片叠在一起,在它们得偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光。若两次所测得得透射光强度相等,求两次入射自然光得强度之比. 解:令I1与I2分别为两入射光束得光强。透过起偏器后,光得强度分别为I1/ 2 与I2 / 2马吕斯定律,透过检偏器得光强分别为1分 ,2分 按题意,,于就是1分 得1分3、有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片得偏振化方向相互垂直.一束光强为I0得自然光垂直入射在偏振片上,已知通过三个偏振片后得光强为I0/ 16。求第二个偏振片与第一个偏振片得偏振化方向之间得夹角。 解:设第二个偏振片与第一个偏振片得偏振化方向间得夹角为θ。透过第一个偏 振片后得光强I1=I0/ 2. 1 分透过第二个偏振片后得光强为I2,由马吕斯定律, I2=(I0 /2)cos2θ 2分透过第三个偏振片得光强为I3, I3=I2 cos2(90°-θ )=(I0/2)cos2θsin2θ = (I0/ 8) sin22θ 3分由题意知I3=I2/16 所以sin22θ=1 / 2, =22、5°2分4、将两个偏振片叠放在一起,此两偏振片得偏振化方向之间得夹角为,一束光强为I0得线偏振光垂直入射到偏振片上,该光束得光矢量振动方向与二偏振片得偏振化方向皆成

《大学物理教程》郭振平主编第二章光的偏振知识点及课后习题解答

第二章 光的偏振 一、基本知识点 光波:可引起视觉反映的那部分电磁波。 光振动:电场强度E 随时间t 的变化而周期性往复变化。 振动面:光矢量E 与传播方向r 构成的平面。 光波函数: 0cos 2t r E A T π?λ????=-+ ??????? 式中A 是振幅;T 是周期;λ是光波波长;02t r T π?λ? ???-+ ??????? 是位相;0?为初位相。 光波频率:周期的倒数称为频率,用ν表示,单位是Hz 。 圆频率:22T πωπν== 光强: 与光矢量的振幅的平方成正比,即 2I A η= 式中η为比例常量。 线偏振光(完全偏振光或平面偏振光): 光矢量始终在一个确定的平面上振动。 自然光: 光矢量的振动在各个方向上的振幅完全相等。 部分偏振光:光矢量的振动在某个方向上的振幅大于另一个方向的振幅。 圆偏振光:在传播过程中光矢量的端点轨迹是一个圆。 椭圆偏振光:光矢量的端点轨迹是一个椭圆。 右旋椭圆(或圆)偏振光:从迎着光的传播方向看时,光矢量顺时针旋转。 左旋椭圆(或圆)偏振光:从迎着光的传播方向看时,光矢量逆时针旋转。

起偏:从自然光获得偏振光的过程。 起偏器:产生起偏作用的光学元件。一束自然光经起偏器后光强变成原来一半,生成的偏振光的振动方向与起偏器的偏振化方向一致。 检偏:检验入射光是否为偏振光的过程。 检偏器:具有检偏作用的光学元件。当检偏器以光传播方向为轴旋转时,自然光经旋转的检偏器后光强是恒定的,而偏振光经旋转的检偏器后光强将随检偏器的偏振化方向改变而改变。由此,就可以分辨出射入检偏器的光是否为偏振光。 马吕斯定律: 透过一偏振片的光强等于入射线偏振光光强乘以入射偏振光的光振动方向与偏振片偏振化方向夹角余弦的平方,即 20cos I I α= 布儒斯特定律:当入射角为某一特定角0i 时,反射光成为振动方向垂直于入射面的线偏振光。0i 称为布儒斯特角或起偏角,它由下式决定: 201 tan n i n = 式中1n ,2n 是两个介质的折射率。当入射角为0i 时,,反射光和折射光相互垂直。 二、典型习题解题指导 2-1将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成045和0 90角。 1)强度为0I 的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态。 2)如果将第二个偏振片抽走,情况又如何?

大学物理实验- 光的偏振

实验27 光的偏振 一、实验目的 1、观察光的偏振现象,加深对光的偏振的理解。 2、了解偏振光的产生及其检验方法。 3、观测布儒斯特角,测定玻璃折射率。 4、观测椭圆偏振光与圆偏振光。 5、了解1/2波片和1/4波片的用途。 二、实验原理 1、光的偏振状态 光是电磁波,它是横波。通常用电矢量E表示光波的振动矢量。 (1)自然光其电矢量在垂直于传播方向的平面内任意取向,各个方向的取向概率相等,所以在相当长的时间里(10-5秒已足够了),各取向上电矢量的时间平均值是相等的,这样的光称为自然光,如图27-l所示。 (2)平面偏振光电矢量只限于某一确定方向的光,因其电矢量和光线构成一个平面而称其为平面偏振光。如果迎着光线看,电矢量末端的轨迹为一直线,所以平面偏振光也称为线偏振光,如图27-2所示。 (3)部分偏振光电矢量在某一确定方向上较强,而在和它正交的方向上较弱,这种光称为部分偏振光,如图27-3所示。部分偏振光可以看成是线偏振光和自然光的混合。 (4)椭圆偏振光迎着光线看,如果电矢量末端的轨迹为一椭圆,这样的光称为椭圆偏振光。椭圆偏振光可以由两个电矢量互相垂直的、有恒定相位差的线偏振光合成得到。 (5)圆偏振光迎着光线看,如果电矢量末端的轨迹为一个圆,则这样的光称为圆偏振光。圆偏振光可视为长、短轴相等的椭圆偏振光。 图27-4 椭圆偏振光

2、布儒斯特定律 反射光的偏振与布儒斯特定律 如图27-5所示,光在两介质(如空气和玻璃片等)界面上,反射光和折射光(透射光)都是部分偏振光。当反射光线与折射光线的夹角恰为90°时,反射光为线偏振光,其电矢量振动方向垂直于入射光线与界面法线所决定的平面(入射面)。此时的透射光中包含平行于入射面的偏振光的全部以及垂直于入射面的偏振光的其余部分,所以透射光仍为部分偏振光。由折射定律很容易导出此时的入射角 α 满足关系 1 2 tan n n = α (27-1) (27-1)式称为布儒斯特定律,入射角 α 称为布儒斯特角,或称为起偏角。若光从空气入射到玻璃(n 2约为1.5),起偏角约56°。 3、偏振片、起偏和检偏、马吕斯定律 (1)由二向色性晶体的选择吸收所产生的偏振 自然光 偏振光 偏振片 P 1P 2 I 0 起偏器 检偏器 自然光 I ' 图a 偏振片起偏 图b 起偏和检偏 图27-6 偏振片 有些晶体(如电气石)、长链分子晶体(如高碘硫酸奎宁),对两个相互垂直振动的电矢量具有不同的吸收本领,这种选择吸收性称为二向色性。在两平板玻璃间,夹一层二向色性很强的物质就制成了偏振片。自然光通过偏振片时,一个方向的电矢量几乎完全通过(该方向称为偏振片的偏振化方向),而与偏振化方向垂直的电矢量则几乎被完全吸收,因此透射光就成为线偏振光。根据这一特性,偏振片既可用来产生偏振光(起偏),也可用于检验光的偏振状态(检偏)。 (2)马吕斯定律 用强度为I 0的线偏振光入射,透过偏振片的光强为I ,则有如下关系 θ 20cos I I = (27-2) (27-2)式称为马吕斯定律。 θ是入射光的E 矢量振动方向和检偏器偏振化方向之间的夹角。以入射光线为轴转动偏振片,如果透射光强I 有变化,且转动到某位置时 I =0,则表明入射 光为线偏振光,此时θ =90°。 4、波片 (1)两个互相垂直的、同频率的简谐振动的合成 设有两各互相垂直且同频率的简谐振动,它们的运动方程分别为 )cos() cos(2211?ω?ω+=+=t A y t A x (27-3) 合运动是这两个分运动之和,消去参数t ,得到合运动矢量末端运动轨迹方程为 )(sin )cos(2122 12212 22212????-=--+A A xy A y A x (27-4) 上式表明,一般情况下,合振动矢量末端运动轨迹是椭圆,该椭圆在2122A A ?的矩形范围内。如果(27-3)式表示的是两线偏振光,则叠加后一般成为椭圆偏振光。下面讨论相位 差 12???-=?为几种特殊值的情况。 ①当π?k 2=?( k =0, ±1, ±2, …)时,(27-4)式变为

光的偏振习题及答案

第五章 光的偏振 1. 试确定下面两列光波 E 1=A 0[e x cos (wt-kz )+e y cos (wt-kz-π/2)] E 2=A 0[e x sin (wt-kz )+e y sin (wt-kz-π/2)]的偏振态。 解 :E 1 =A 0[e x cos(wt-kz)+e y cos(wt-kz-π/2)] =A 0[e x cos(wt-kz)+e y sin(wt-kz)] 为左旋圆偏振光 E 2 =A 0[e x sin(wt-kz)+e y sin(wt-kz-π/2)] =A 0[e x sin(wt-kz)+e y cos(wt-kz)] 为右旋圆偏振光 2. 为了比较两个被自然光照射的表面的亮度,对其中一个表面直接进行观察,另一个表面 通过两块偏振片来观察。两偏振片透振方向的夹角为60°。若观察到两表面的亮度相同,则两表面的亮度比是多少?已知光通过每一块偏振片后损失入射光能量的10%。 解∶∵亮度比 = 光强比 设直接观察的光的光强为I 0, 入射到偏振片上的光强为I ,则通过偏振片系统的光强为I': I'=(1/2)I (1-10%)cos 2600?(1-10%) 因此: ∴ I 0/ I = 0.5×(1-10%)cos 2600?(1-10%) = 10.125%. 3. 两个尼科耳N 1和N 2的夹角为60°,在他们之间放置另一个尼科耳N 3,让平行的自然光通过这个系统。假设各尼科耳对非常光均无吸收,试问N 3和N 1 的偏振方向的夹角为何值时,通过系统的光强最大?设入射光强为I 0,求此时所能通过的最大光强。 解:设:P 3与P 1夹角为α,P 2与P 1的夹角为 θ = 600 I 1 = 21 I 0 I 3 = I 1cos 2α = 02I cos 2α I 2 = I 3cos 2(θ-α) = 0 2I cos 2αcos 2(θ-α) 要求通过系统光强最大,即求I 2的极大值 I 2 = I 2cos 2αcos 2(θ-α) = 0 2I cos 2α[1-sin 2(θ-α)] = 08 I [cosθ+ cos (2α-θ)] 2 由 cos (2α-θ)= 1推出2α-θ = 0即α = θ/2 = 30° ∴I 2max = 21 I 0 cos 2αcos 2(θ-α) = 21 I 0 cos 230° cos 230° = 9 32 I 0 4. 在两个理想的偏振片之间有一个偏振片以匀角速度ω绕光的传播方向旋转(见题 5.4图),若入射的自然光强为I 0,试证明透射光强为 N 1 题5.3图

光的偏振实验

偏振光的观测与研究 光的干涉和衍射实验证明了光的波动性质。本实验将进一步说明光是横波而不是纵波,即其E和H 的振动方向是垂直于光的传播方向的。光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。目前偏振光的应用已遍及于工农业、医学、国防等部门。利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。 【实验目的】 1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的产生和检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光和圆偏振光。 【实验仪器】 光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置 图1 实验仪器实物图 【实验原理】 1.偏振光的基本概念 按照光的电磁理论,光波就是电磁波,它的电矢量E和磁矢量H相互垂直。两者均垂直

于光的传播方向。从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E 代表光的振动方向,并将电矢量E 和光的传播方向所构成的平面称为光振动面。 在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a )。光源发射的光是由大量原子或分子辐射构成的。由于热运动和辐射的随机性,大量原子或分子发射的光的振动面出现在各个方向的几率是相同的。一般说,在10-6 s 内各个方向电矢量的时间平均值相等,故出现如图2(b )所示的所谓自然光。有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2(c )所示的所谓部分偏振光。还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c )所示。 图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。 通常自然光在两种媒质的界面上反射和折射时,反射光和折射光都将成为部分偏振光。并且当入射角增大到某一特定值时,镜面反射光成为完全偏振光,其振动面垂直于入射 面,如图3所示,这时入射角 称为布儒斯特角,也称为起偏角。 ? ?

第12章光的偏振--习题答案

第十四章 光的偏振和晶体光学 1. 一束自然光以30度角入射到玻璃-空气界面,玻璃的折射率 1.54n =,试计算(1)反射 光的偏振度;(2)玻璃-空气界面的布儒斯特角;(3)以布儒斯特角入射时透射光的偏振度。 解:光由玻璃到空气,354.50sin 1sin ,30,1,54.11212121=??? ? ??-====θθθn n n n o ①()()()() 06305.0tan 1tan ,3528.0sin 1sin 212212-=+-==+-- =θθθθθθθθp s r r 002 22 2 min max min max 8.93=+-=+-=p s p s r r r r I I I I P ②o B n n 3354.11tan tan 1121 =?? ? ??==--θ ③()() 4067.0sin 1sin ,0,57902120 21=+-- ===-==θθθθθθθθs p B B r r 时, 02 98364 .018364.011 ,8364.01=+-===-=P T r T p s s 注:若2 21 122,,cos cos p p s s t T t T n n ηηθθη=== )(cos ,212 2 22 2 0min 0max θθ-=+-= ==p s s p s p s p T T t t t t P I T I I T I 或故 2. 自然光以布儒斯特角入射到由10片玻璃片叠成的玻片堆上,试计算透射光的偏振度。 解:每片玻璃两次反射,故10片玻璃透射率( ) 20 22010.83640.028s s T r =-== 而1p T =,令m m I I in ax τ=,则m m m m I I 110.02689 0.94761I I 10.02689ax in ax in p ττ---= ===+++

光的偏振实验报告-精选.doc

光的偏振 实验仪器: 光具座、半导体激光器、偏振片、1/4 波片、激光功率计。 实验原理: 自然光经过偏振器后会变成线偏振光。偏振片既可作为起偏器使用,亦可作为检偏器使用。 马吕斯定律:马吕斯指出:强度为I0 的线偏振光,透过检偏片后,透射光的强度(不考 2 。( 是入射线偏振光的光振动方向和偏振片偏振化方向之间的夹角。) 虑吸收)为I=I0cos 当光法向入射透过1/4 波片时,寻常光(o 光)和非常光( e 光)之间的位相差等于π /2 或其奇数倍。当线偏振光垂直入射1/4 波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光。 实验1、2 光路图: 实验 5 光路图: 实验步骤: 1.半导体激光器的偏振特性: 转动起偏器,观察其后的接受白屏,记录器功率最大值和最小值,以及对应的角度,求出半导体激光的偏振度。 2。光的偏振特性——验证马吕斯定律: 利用现有仪器,记录角度变化与对应功率值,做出角度与功率关系曲线,并与理论值进行比较。 5.波片的性质及利用: 将1/4 波片至于已消光的起偏器与检偏器间,转动1/4 波片观察已消光位置,确定1/4 波片光轴方向,改变1/4 波片的光轴方向与起偏器的偏振方向的夹角,对应每个夹角检偏器 转动一周,观察输出光的光强变化并加以解释。

实验数据: 实验一: 实验二: 实验五: 数据处理: 实验一: 计算得半导体激光的偏振度约为 故半导体激光器产生的激光接近于全偏振光。实验二: 绘得实际与理论功率值如下:

实际功率值 20mW 3 2.5 2 1.5 1 0.5 ° 0 100 200 300 400 理论值 20mW 3 2.5 2 1.5 1 0.5 ° 0 100 200 300 400 20mW 3 2.5 2 功率值(20mW ) 1.5 理论值(20mW )1 0.5 ° 0 100 200 300 400 进行重叠发现二者的图线几乎完全重合,马吕斯定律得到验证。 实验五:见“实验数据”中的表格

高中物理光的偏振知识点归纳

高中物理光的偏振知识点归纳 1、高中物理光的偏振发现说明 1808年,马吕斯在试验中发现了光的偏振现象。在进一步研究光的简单折射中的偏振时,他发现光在折射时是部分偏振的。因为惠更斯曾提出过光是一种纵波,而纵波不可能发生这样的偏振,这一发现成为了反对波动说的有利证据。1811年,布吕斯特在研究光的偏振现象时发现了光的偏振现象的经验定律。 2、高中物理光的偏振产生方法 从自然光获得线偏振光的方法有以下四种: 1、利用反射和折射。 2、利用二向色性。 3、利用晶体的双折射。 4、利用散射。 另外,线偏振光可以经过波晶片产生圆偏振光和椭圆偏振光。 3、高中物理光的偏振度 在部分偏振光的总强度中,完全偏振光所占的成分叫做偏振度。 特征:偏振度的数值愈接近1,光线的偏振化程度就愈纯

粹,一般偏振度都小于1。 4、高中物理光的偏振应用 页 1 第 电子表的液晶显示用到了偏振光 两块透振方向相互垂直的偏振片当中插进一个液晶盒,盒内液晶层的上下是透明的电极板,它们刻成了数字笔画的形状。外界的自然光通过第一块偏振片后,成了偏振光。这束光在通过液晶时,如果上下两极板间没有电压,光的偏振方向会被液晶旋转90度(这种性质叫做液晶的旋光性),于是它能通过第二块偏振片。第二块偏振片的下面是反射镜,光线被反射回来,这时液晶盒看起来是透明的。但在上下两个电极间有一定大小的电压时,液晶的性质改变了,旋光性消失,于是光线通不过第二块偏振片,这个电极下的区域变暗,如果电极刻成了数字的笔画的形状,用这种方法就可以显示数字。 在摄影镜头前加上偏振镜消除反光 在拍摄表面光滑的物体,如玻璃器皿、水面、陈列橱柜、油漆表面、塑料表面等,常常会出现耀斑或反光,这是由于光线的偏振而引起的。在拍摄时加用偏振镜,并适当地旋转偏振镜面,能够阻挡这些偏振光,借以消除或减弱这些光滑物体表面的反光或亮斑。要通过取景器一边观察一边转动镜面,以便观察消除偏振光的效果。当观察到被摄物体的反光

19光的偏振习题解答

第十九章 光的偏振 一 选择题 1. 把两块偏振片一起紧密地放置在一盏灯前,使得后面没有光通过。当把一块偏振 片旋转180?时会发生何种现象:( ) A. 光强先增加,然后减小到零 B. 光强始终为零 C. 光强先增加后减小,然后又再增加 D. 光强增加,然后减小到不为零的极小值 解:)2 π(cos 20+=αI I ,α从0增大到2π的过程中I 变大;从2π增大到π的过程中I 减小到零。 故本题答案为A 。 2. 强度为I 0的自然光通过两个偏振化方向互相垂直的偏振片后,出射光强度为零。 若在这两个偏振片之间再放入另一个偏振片,且其偏振化方向与第一偏振片的偏振化方向夹角为30?,则出射光强度为:( ) A. 0 B. 3I 0 / 8 C. 3I 0 / 16 D. 3I 0 / 32 解:0000202032 341432)3090(cos 30cos 2I I I I =??=-= 。 故本题答案为D 。 3. 振幅为A 的线偏振光,垂直入射到一理想偏振片上。若偏振片的偏振化方向与入 射偏振光的振动方向夹角为60?,则透过偏振片的振幅为:( ) A. A / 2 B. 2 / 3A C. A / 4 D. 3A / 4 解:0222'60cos A A =,2/'A A =。 故本题答案为A 。 4. 自然光以60?的入射角照射到某透明介质表面时,反射光为线偏振光。则( ) A 折射光为线偏振光,折射角为30? B 折射光为部分偏振光,折射角为30? C 折射光为线偏振光,折射角不能确定 D 折射光为部分偏振光,折射角不能确定 解:本题答案为B 。 5. 如题图所示,一束光垂直投射于一双折射晶体上,晶体的光轴如图所示。下列哪种叙述是正确的? ( ) A o 光和e 光将不分开 e o 选择题5图

第五章光的偏振

第五章光的偏振 ●学习目标 理解自然光和线偏振光,理解马吕斯定律及布儒斯特定律。了解线偏振光的获得方法和检验方法。 ●教学内容 5.1 光的偏振状态 5.2 线偏振光的获得与检验 5.3 反射和折射时光的偏振 5.4 双折射现象 ●本章重点 线偏振光的获得、反射折射光的偏振 ●本章难点 反射与折射光的偏振 5.1 光的偏振状态 光是横波,对横波的讨论包含对振动方向的讨论。在一个垂直于光传播方向的平面内考察,光振动的方向不一定是各向同性的,可能在某一个方向振动强,在另一个方向弱(甚至为零),这称为光的偏振现象。偏振是横波区别于纵波的一个最明显的特点,光的偏振现象是表明光是横波的直接证明。 一、自然光与线偏振光的定义 如果一束光的光矢量E只沿一个固定的方向振动,我们把这样的光称为线偏振光(或面偏振光),光矢量与光传播方向所组成的平面称为振动面。由原子(或分子)跃迁发出的每一个光波列,都有其自身的振动方向,故都是线偏振光。不过我们通常所说的线偏振光(简称偏振光),不是指某个波列,而是指一束光是偏振光,意即光束中所有的波列都有相同的振动方向。实际光源都由大量的分子、原子组成,由于自发辐射的随机性,普通光源发出的光,是大量的不同振动方向的光波列的集合。在一个与光传播方向垂直的平面内考察,光矢量沿各方向

的平均值相等,没有哪一个方向的光振动较其它方向占优势,这种光叫做自然光,自然光是非偏振的。较为定量的描述是:自然光中的每一波列的光矢量,都可以在任意给定的两个互相垂直的方向上进行分解,其结果是将自然光分成两束光强相等、振动方向互相垂直的,没有确定相位差的偏振光,如下图所示。 自然光可以分解成两个独立的振动方向互相垂直的偏振光部分偏振光是介于偏振光与自然光之间的一种光,例如把一束偏振光与一束自然光混合,得到的光就属于部分偏振光。在垂直于光传播方向的平面内,光矢量的振动方向沿各个方向分布,但沿某一方向的振动最强,沿它的垂向振动最弱。相对于部分偏振光,线偏振光又叫完全偏振光。 二、自然光和偏振光的表示方法 常用一些简单的图形来表示自然光、偏振光和部分偏振光,见右图所示。用短线(或)|表示平行于纸面的光振动,圆点·表示垂直于纸面的光振动。在右图中,(a)为自然光,它的两个互相垂直的光振动的强度相等;(b)、(c)为偏振光,它们 的光矢量都只沿一个方向振动;(d)、(e)为部分偏振光;(d)中较多,表示平行纸面的光振动较强;(e)中·较多,表示垂直纸面的光振动较强。 自然光、偏振光和部分偏振光的图示 5.2 线偏振光的获得与检验

光的偏振习题(附答案) (1)讲课讲稿

光的偏振习题(附答案) (1)

光的偏振(附答案) 一. 填空题 1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 2. 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入 射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗. 3. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光. 4. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这 束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍. 5. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振 片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0. 6. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此 媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光. 7. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300 时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732. 8. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面, 晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad. 9. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉 条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹. 10. 二. 计算题 11. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取 向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例. 解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:

大学物理实验光的偏振思考题答案

1、首先,光强的计算并不是利用合成矢量来计算的,光强与振幅的平方成正比,振幅即矢量的模;其次,不论是人眼还是探测器,都不可能接收瞬时光强,即光矢量的振幅大小;最重要的一点,矢量的合成是有条件的,这一点物理光学中有很详细的解释,即必须是相干光才能合成,而自然光一般为非相干光。非相干光的光强叠加只是不同光线光强的简单叠加。因而,只要有光线,光强恒大于0。但相干光与此不同,会有等于0的情况。 2、因为其不是偏振光,所以光强I不发生变化。 3、光的偏振实验中,如果在一组相互正交的偏振片之间插入一块半波片,使其光轴和起偏器的偏振轴平行,则透过检偏器的光斑还是暗的。因为经过起偏器后的线偏振光的偏振方向与波片光轴平行,与波片光轴垂直方向没有分量,此时不发生双折射效应,经过波片后仍然是原方向振动的线偏振光,所以消光。 将检偏器旋转90度后,光斑的亮暗有变化,变亮,因为经过波片后仍然是原方向振动的线偏振光,检偏器旋转90度后正好与线偏振光振动方向一致。 这个问题的关键在于波片的光轴和起偏器偏振轴平行,线偏振光经过后不改变偏振方向。我们知道线偏振光经过1/2波片偏振方向是要关于光轴(或者快轴,或者慢轴)对称的。当线偏振光偏振方向平行或者垂直与快轴或者慢轴时,波片不起改变偏振态的作用,不仅1/2波片如此,其它波片也这样。 4、用一个偏振片就能分辨。当自然光通过偏振片时,无论偏振片怎么旋转或者是静止(以光的传播方向为轴)光的强度都不会发生变化。 当圆偏振光通过偏振片时,保持偏振片不动,你会发现光的强度呈周期性变化,而且会出现消光。当圆偏振光与自然光的混合光通过偏振片时,保持偏振片不动,你也会发现光的强度呈周期性变化,但不会出现消光。

光的偏振计算题及标准答案

光的偏振计算题及答案

————————————————————————————————作者:————————————————————————————————日期:

《光的偏振》计算题 1. 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45?和90?角. (1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态. (2) 如果将第二个偏振片抽走,情况又如何? 解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分 通过第2偏振片后,I 2=I 1cos 245?=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245?=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平 行. 2分 (2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时 I 3 =0. 1分 I 1仍不变. 1分 2. 两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比. 解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2 和I 2 / 2马吕斯定律,透过检偏器的光强分别为 1分 1211 cos 21αI I =', 2222cos 2 1αI I =' 2分 按题意,21I I '=',于是 222121cos 2 1cos 21ααI I = 1分 得 3/2cos /cos /221221==ααI I 1分 3. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角. 解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏 振片后的光强 I 1=I 0 / 2. 1分 透过第二个偏振片后的光强为I 2,由马吕斯定律, I 2=(I 0 /2)cos 2θ 2分 透过第三个偏振片的光强为I 3, I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ 3分 由题意知 I 3=I 2 / 16 所以 sin 22θ = 1 / 2, () 2/2sin 211-=θ=22.5° 2分 4. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0 的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角. (1) 求透过每个偏振片后的光束强度; (2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.

光的偏振

光的偏振 教学目标: 一.知识目标: 1.知道振动中的偏振现象,知道只有横波才有偏振现象 2.知道偏振光和自然光的区别,知道光的偏振说明光是横波 二.能力目标: 1.学习科学研究的思维方法,体会科学发展的严密性。 2.培养学生为问题设计实验、通过实验现象总结结论的能力。 三.情感目标: 1.培养良好的物理实验习惯,学会用理论指导实践,用实验来验证理论. 2.知道在学习物理的过程中,做好实验的重要性. 教学重难点 重点: 1.使学生了解偏振现象及运用光的偏振知识来解释一些常见的光学现象 2.知道只有横波才有偏振现象,知道光有偏振现象所以光是一种横波 难点: 通过两个演示实验让学生接受光有偏振现象,因为偏振是学生接触的一个新概念,所以做好两个演示实验并通过设疑如何引导学生思考,讨论,类比,推理,判断得到结论是本节教学的关键和突破口 教学方法: 教学是教师教学生学的双边活动,教师在课前必须对学生有一定了解。高二学生已经具有一定的抽象思维能力,但光的偏振现象对他们来说是完全陌生而又抽象的,而机械波的偏振现象相对形象些。故要本着由浅入深,新旧联系,全面系统的原则去讲课,先做好机械波模拟实验,使学生认识机械波的偏振,进而认识偏振是横波特有的现象作为知识铺垫后然后再做光的偏振实验,在分析光的偏振实验时,要引导学生理解实验的设计思路且与机械波实验相类比。由于光的偏振现象的抽象性及学生的抽象思维能力有限,所以在教学中主要采用教师设疑,学生探讨的教学模式,让学生观察、思考、讨论,充分发表意见,这样既有利于突出重点,化解难点,又充分发挥了学生的主体性。 教具:激光源、偏振片、powerpoint课件、flash课件 教学过程: 一.新课引入: 师:通过前面几节课的学习,我们对于光的本性的认识逐步加深,我们知道了光能够产生干涉和衍射现象,而这正好说明了光应该是一种波。而波有横波和纵波之分,由此,我们必然会想到光究竟是横波还是纵波?我们又该如何去判断和验证? 一条竹竿横着进教室进不了,给学生设下悬念(学生演示) 二、新课教学: 首先我们来回忆一下横波和纵波。 问题一:请同学回答一下横波和纵波有什么区别? 生:质点的振动方向和传播方向如果平行则为纵波;振动方向和传播方向垂直的则是横波。

量子力学里对光的偏振的解释

光子偏振的量子力学解释 量子力学所提供的进一步描述如下:假定可以把对光轴斜偏振的一个光子看成部分地处于平行光轴偏振态,部分地处于垂直光轴偏振态。斜偏振态可以被为是某种迭加过程应用于平行偏振态与垂直偏振态而得的结果。这就意味着,在各种偏振态之间存在有某种特别的关系,这种关系类似于经典光学中偏振光束间的关系,但是它現在不是应用于光束,而是应用于一个特定光子的各个偏振态。这种关系容许任一偏振态被分解为任意两个互相垂直的偏振态,或者说,可以被表达为任意两个互相垂直的偏振态的迭加。 当我們詿光子遇到方解石晶体时我們就是让它接受一次观测。我們要观察它究竟是平行于光轴偏振的,还是垂直于光轴偏振的。做这种观察的效果也就是强迫光子完全进入平行偏振态,或者完全进入垂直偏振态。它必須来一个突然的跃变,从原来部分地处在每一种态中的情况改变为完全处在其中的某一种态中。 它究竟跳到这两态中的哪一个,是不能预料的,只是由几率規律支配的·如果它跳入平行态,它就会被吸收了;如果它跳八垂直态,它就通过了晶体,而在另一边出現,保留着这种偏振态· 通常假定,只要仔細些,我們就可以把伴随观察的干扰少到 任意所希望的程度.大与小的概念因而純悴是柞对的,是关联到 我們的观察工具的細致程度,也关联到被描述的对象.为了要給

大小以絶对的含义(这是有关物质終极結构的任何理論所要求的),我們必須要假定:对观才細程度和对着于 扰的微小程度有丁个限度.这个阳度是事物本質中所固有的,观察者方面改进技术或提高技巧,都不可能超越这个限度.如果被观察的对象大到足以使这种不可避免的极限干扰可以忽略,那么,这个对象就是在絶对的含义上是大的,井且我們可以把經典力学应用到庀身上,反之,如果这种极限干扰不能忽視,則对象在絶对3 意义上就是小的,我們就要用新的理論来处理宅. 上述討的一个結果是我們必須修改我們对因果的观念, 因果性仅对那些耒受干扰的系統适用.如果系統是小的,我們不能在观察时而不产生严重的干扰,因此,我們不能期望在我們的观察結果之間找到任何因果性的联系,我們假定因果性对于汶有受干扰的系統仍是适用的,为茄述未受干扰的系統血建立起的方程是一些微分方程,宅們表达出某一时刻的条件与后一时刻的条件間的因果性联,这些方程与經典力学中的方程紧密对应,但 是宅們只能間接地与观察的結果相呋系,在計算观察出的結果时就有不可避免的不确定性出現,一般脱来,理論使找們能够算出的只是,当进行观察时能获得某个特定結果的几率.

相关文档
最新文档