3.1.3 概率的基本性质知识点试题及答案

3.1.3 概率的基本性质知识点试题及答案
3.1.3 概率的基本性质知识点试题及答案

一、知识要点及方法

1、基本概念:

(2)若A∩B为不可能事件,即A∩B=ф,即不可能同时发生的两个事件,那么称事件A 与事件B互斥;

(3)若A∩B为不可能事件,A∪B为必然事件,即不能同时发生且必有一个发生的两个事件,那么称事件A与事件B互为对立事件;

概率加法公式:当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B 为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;

2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);

3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A 不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

二、试题

课时训练

1.如果事件A、B互斥,记A、B分别为事件A、B的对立事件,那么()

A.A∪B是必然事件

B.A∪B是必然事件

C.A与B一定互斥

D.A与B一定不互斥

2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是() A.至少有1个白球;都是白球

B .至少有1个白球;至少有1个红球

C .恰有1个白球;恰有2个白球

D .至少有1个白球;都是红球

3.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,由甲、乙两人下成和棋的概率为( )

A .60%

B .30%

C .10%

D .50%

4.掷一枚骰子的试验中,出现各点的概率均为1

6.事件A 表示“小于5的偶数点出现”,事

件B 表示“小于5的点数出现”,则一次试验中,事件A +B (B 表示事件B 的对立事件)发生的概率为( ) A.13 B.12 C.23

D.56

5.从1,2,3,…,9中任取两数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述各对事件中,是对立事件的是( ) A .① B .②④ C .③

D .①③ 6.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1.则事件“抽到的不是一等品”的概率为( ) A .0.7 B .0.65 C .0.35

D .0.3

7.甲、乙两队进行足球比赛,若两队战平的概率是14,乙队胜的概率是1

3,则甲队胜的概率

是________.

8.从4名男生和2名女生中任选3人去参加演讲比赛,所选3人中至少有1名女生的概率为4

5

,那么所选3人中都是男生的概率为________. 9.一盒子中有10个相同的球,分别标有号码1,2,3,…,10,从中任取一球,则此球的号码为偶数的概率是________.

10.在投掷骰子试验中,根据向上的点数可以定义许多事件,如:A ={出现1点},B ={出现3点或5点},C ={出现的点数为奇数},D ={出现的点数为偶数},E ={出现的点数为3的倍数}.试说明以上6个事件的关系,并求两两运算的结果.

11.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也为5

12,试求得到黑球、得到黄球、得到绿球的概率各是多少?

12.由经验得知:在人民商场排队等候付款的人数及其概率如下表:

(1)求至多2人排队的概率; (2)求至少2人排队的概率.

课后练习

1.抽查10件产品,设事件A :至少有2件次品,则A 的对立事件为( ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品

D .至多有1件正品

2.为办好下一届省运会,济宁市加强了对本市空气质量的监测与治理.下表是2010年12月本市空气质量状况表.

其中污染指数T ≤50时,空气质量为优;50

D.59

3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,出现丙级品的概率为0.01,则对产品任意抽查一件抽得正品的概率约为( ) A .0.04 B .0.98 C .0.97

D .0.96

4.某校为庆祝2011元旦,欲举行一次知识猜谜活动,设有一等奖、二等奖与纪念奖三个奖项,其中中一等奖的概率为0.1,中二等奖的概率为0.25,中纪念奖的概率为0.4,则不中奖的概率为________.

答案:

课时训练

1、解析:选B.用集合的V enn 图解决此类问题较为直观,如图所示,A ∪B 是必然事件.

2、解析:选C.结合互斥事件和对立事件的定义知,对于C 中恰有1个白球,即1白1红,与恰有2个白球是互斥事件,但不是对立事件,因为还有2个都是红球的情况.

3、解析:选D.甲不输棋包含甲获胜或甲、乙两人下成和棋,则甲、乙两人下成和棋的概率为90%-40%=50%.

4、解析:选C.由题意可知B 表示“大于等于5的点数出现”,事件A 与事件B 互斥.由概率的计算公式可得P (A +B )=P (A )+P (B )=26+26=46=23

.

5、解析:选C.两数可能“全为偶数”、“一偶数一奇数”或“全是奇数”,共三种情况,利用对立事件的定义可知③正确.

6、解析:选C.抽到等外品的概率为P (D ),

P (D )=1-P (A )-P (B )-P (C )=1-0.65-0.2-0.1=0.05, ∴不是一等品的概率P =0.2+0.1+0.05=0.35. 7、解析:1-14-13=5

12.

答案:5

12

8、解析:设A ={3人中至少有1名女生},B ={3人都为男生},则A 、B 为对立事件,∴P (B )=1-P (A )=1

5.

答案:15

9、解析:取2号、4号、6号、8号、10号球是互斥事件,且概率均为110,故有110+110+

1

10+110+110=1

2. 答案:12

10、解:在投掷骰子的试验中,根据向上出现的点数有6种:1点,2点,3点,4点,5点,6点.它们构成6个事件,A i ={出现点数为i }(其中i =1,2,…,6).则A =A 1,B =A 3∪A 5,C =A 1∪A 3∪A 5,D =A 2∪A 4∪A 6,E =A 3∪A 6.

则(1)事件A 与B 是互斥但不对立事件,事件A 包含于C ,事件A 与D 是互斥但不对立事件,事件A 与E 是互斥但不对立事件,事件B 包含于C ,事件B 与D 是互斥但不对立事件;事件B 与E 既不互斥也不对立,C 与D 是对立事件,C 与E 、D 与E 既不是互斥事件,也不是对立事件.

(2)A ∩B =?,A ∪B =C ={出现点数为1,3或者5};A ∩C =A 1,A ∪C =C ={出现点数为1,3或者5};A ∩D =?,A ∪D ={出现点数为1,2,4或者6};A ∩E =?,A ∪E ={出现点数为1,3或者6};B ∩C =B ,B ∪C =C ={出现点数为1,3或者5};B ∩D =?,B ∪D ={出现点数为2,3,4,5或者6};B ∩E =A 3,B ∪E ={出现点数为3,5或者6};C ∩D =?,C ∪D =S (S 表示必然事件);C ∩E ={出现点数为3},C ∪E =C ={出现点数为1,3,5或者6};D ∩E =A 6,D ∪E ={出现点数为2,3,4或者6}.

11、解:从袋中任取一球,记事件“得到红球”、“得到黑球”、“得到黄球”、“得到绿球”分别为A 、B 、C 、D ,则A 、B 、C 、D 彼此互斥,故有 P (B ∪C )=P (B )+P (C )=5

12,

P (C ∪D )=P (C )+P (D )=5

12,

P (B ∪C ∪D )=1-P (A )=1-13=2

3.

解得P (B )=14;P (C )=16;P (D )=1

4

.

即得到黑球、得到黄球、得到绿球的概率分别是14、16、1

4.

12、解:(1)至多2人排队的概率为 P 1=0.10+0.16+0.30=0.56. (2)至少2人排队的概率为 P 2=1-(0.10+0.16)=0.74..

课后练习

1、解析:选B.至少有2件次品包含

2、

3、

4、

5、

6、

7、

8、9或10件次品,故它的对立事件为含有1或0件次品,即至多有1件次品.

2、解析:选A.P =110+16+13=3

5.

3、解析:选D.1-0.03-0.01=0.96.

4、解析:1-0.1-0.25-0.4=0.25. 答案:0.25

《圆的基本性质》各节知识点

圆的知识点及基础训练 第一节 圆 第二节 圆的轴对称性 第三节 圆心角 第四节 圆周角 第五节 弧长及扇形的面积 第六节 侧面积及全面积 六大知识点: 1、圆的概念及点与圆的位置关系 2、三角形的外接圆 3、垂径定理 4、垂径定理的逆定理及其应用 5、圆心角的概念及其性质 6、圆心角、弧、弦、弦心距之间的关系 【课本相关知识点】 1、圆的定义:在同一平面,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。 2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。 3、弧:圆上任意 叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。 4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆 5、点与圆的三种位置关系: 若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则: 点P 在⊙O 外 ; 点P 在⊙O 上 ; 点P 在⊙O 。 6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上 7、过一点可作 个圆。过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。 8、过 的三点确定一个圆。 9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。三角形的外心是三角形三条边的 【典型例题】 【题型一】证明多点共圆 例1、已知矩形ABCD ,如图所示,试说明:矩形ABCD 的四个顶点A 、B 、C 、D 在同一个圆上 【题型二】相关概念说法的正误判断 例1、(中考数学)有下列四个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧。其中正确的有( )A.4个 B.3个 C.3个 D.2个 例2、下列说法中,错误的是( ) A.直径是弦 B.半圆是弧 C.圆最长的弦是直径 D.弧小于半圆 例3、下列命题中,正确的是( ) A .三角形的三个顶点在同一个圆上 B .过圆心的线段叫做圆的直径 C .大于劣弧的弧叫优弧 D .圆任一点到圆上任一点的距离都小于半径 例4、下列四个命题:① 经过任意三点可以作一个圆;② 三角形的外心在三角形的部;③ 等腰三角形的外心必在底边的中线上;④ 菱形一定有外接圆,圆心是对角线的交点。其中真命题的个数( ) A.4个 B.3个 C.3个 D.2个 7、圆周角定理 8、圆周角定理的推论 9、圆锥的侧面积与全面积

圆的基本性质知识点整理

3.1 圆(1) 在同一平面内,线段OP绕它固定的一个端点O旋转一周,所经过的封闭曲线叫做圆,定点O叫做,线段OP叫做。 如果P是圆所在平面内的一点,d表示P到圆心的距离,r表示圆的半径,那么就有:d<r 点P在圆; dr 点P在圆上; d>r 点P在圆; 如图,在ABC中,∠BAC=Rt∠,AO是BC边上的中线,BC 为O的直径. (1)点A是否在圆上?请说明理由. (2)写出圆中所有的劣弧和优弧. 如图,在A岛附近,半径约250km的范围内是一暗礁区, 往北300km有一灯塔B,往西400km有一灯塔C.现有一渔船 沿CB航行,问:渔船会进入暗礁区吗? ====================================================================== 3.1圆(2) (1)经过一个 ..已知点能作个圆; (2)经过两个已知点A,B能作个圆;过点A,B任意作一个圆, 圆心应该在怎样的一条直线上? (3)不在同一条直线上的三个点一个圆 经过三角形各个顶点的圆叫做,这个外接圆的圆心叫做三角形的,三角形叫做圆的; 三角形的外心是的交点。 锐角三角形的外心在; 直角三角形的外心在; 钝角三角形的外心在。

作图:已知△ABC ,用直尺和圆规作出△ABC 的外接圆 3.2图形的旋转 图形旋转的性质 图形经过旋转所得的图形和原图形; 对应点到的距离相等,任何一对对应点与连线所成的角度等于。 3.3垂 径定理(1) 圆是图形,它的对称轴是。 如图,直径CD 垂直于弦AB , 根据对称性你能发现哪些相等的量?填一填:∵CD 是直径,CD ⊥AB ∴ 1、如图,射线OP 经过怎样的旋转,得到射线OQ ? 3、如图,以点O 为旋转中心,将线段AB 按顺时针方向旋转60°,作出经旋转所得的线段B A '',并求直线B A ''与直线AB 所成的锐角的度数。 2、如图,以点O 为旋转中心,将△ABC 按顺时针方向旋转60°,作出经旋转所得的图形。

(完整版)函数的基本性质详细知识点及题型分类(含课后作业)

《函数的基本性质》专题复习 (一)函数的单调性与最值 ★知识梳理 一、函数的单调性 1、定义: 设函数的定义域为,区间 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。 2、单调性的简单性质: ①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内: 增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。 3、判断函数单调性的方法步骤: 利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤: ○ 1 任取x 1,x 2∈D ,且x 1)(x f y =I I )(x f y =

圆的基本性质知识点

圆的基本性质 复习总标 1.知道圆及有关概念,确定圆的条件。三角形的内心和外心。 2.能灵活运用弧、弦、圆心角和圆心角的关系解决问题;掌握圆的轴对称性、中心对称和旋转不变性;探索并理解锤径定理。 3.会用垂径定理进行有关计算。 知识梳理 1.圆的有关概念 (1)圆心、半圆、同心圆、等圆、弦与弧。 (2)直径是经过圆心的弦。是圆中最长的弦。弧是圆的一部分。 2.圆周角与圆心角 (1)一条弧所对的圆周角等于它所对的圆心角的一半。 90圆周角所对的弦是圆的直径。(2)圆周角与半圆或直径:半圆或直径所对的圆周角是直角; (3)圆周角与半圆或等弧:同弧或等弧所对的圆周角相等;在同源或等圆中,相等的圆周角所对的弧相等。 3.圆的对称性 (1)圆是中心对称图形,圆心是它的对称中心。 (2)圆的旋转不变性:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其他各组量分别相等。 (3)圆的轴对称性:经过圆心都的任意一条直线都是它的对称轴。垂径定理是研究有关圆的知识的基础。垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。还可以概括为:如果有一条直线,1.垂直于弦;2.经过圆心;3.平分弦(非直径);4.平分弦所对的优弧;5.平分弦所对的劣弧,同时具备其中任意两个条件,那么就可以得到其他三个结论。 易错知识点

1.弧是圆的一部分,直径是圆中最长的弦,半径不是弦。 2.垂径定理的推论:平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧。 3.理解圆心角、弧、弦三者之间的关系时,应注意“同圆或等圆中”或“等弧”这个条件。 4.同一条弦所对的圆周角有两个,它们互补。 中考规律盘点及预测 本讲点内容在中考中,圆的基本性质在淡化与降低,证明难度成了考查知识的重点。旗本性质的应用 主要有两个方面,一是应用弧、弦、弦心距、圆心角、圆周角各对量之间的关系进行证明;二是应用半径、半弦和弦心距构成直角三角形进行相关计算。多数以填空题、选择题或中等难度解答题等基本题型出现,难度一般不大。 1、(2009年安徽)如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且 CD=, ,则AB 的长为…【 】 A 、2 B 、3 C 、4 D 、5 【解析】主要考察:垂径定理、勾股定理或相交弦定理.用垂径定理得 ,由勾股定理得HB=1 ,则()2 2 2 1R R =+-由此得2R=3 或由相交弦定理得 ()2 121R =?-,由此得2R=3,所以AB=3.选 B 2、(2008 绍兴)如图,量角器外缘边上有A P Q ,,三点,它们所表 示的读数分别是180,70,30,则PAQ ∠的大小为( ) A .10 B .20 C .30 D .40 【解析】主要考察:弧的度数与它所对的圆周角度数之间的关系。一条弧所对的圆周角 等于它所对圆心角的一半。()?=?-?==∠2030702 1 21Q P PAQ 选B 3、(2008年海南) 如图, AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =30°,点P 在线段 OB 上运动.设∠ACP =x ,则x 的取值范围是 . 第9题图

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结 一、知识归纳 1.函数的奇偶性 2.函数的周期性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 解题提醒: ①判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. ②判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)

=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). ③分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. 题型一 函数奇偶性的判断 典型例题:判断下列函数的奇偶性: (1)f (x )=(x +1) 1-x 1+x ; (2)f (x )=? ???? -x 2+2x +1,x >0, x 2+2x -1,x <0; (3)f (x )=4-x 2 x 2; (4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x 1+x ≥0, 所以-1<x ≤1, 所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法) 当x >0时,f (x )=-x 2+2x +1, -x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1, -x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ).

函数的基本性质 知识点和典型例题

学生姓名: 年级: 班型:1对1 上课时间: (第 次课) 剩余课时: 上课内容:函数的基本性质 一、函数的单调性: 1、定义域为I 的函数f (x )在区间D 上的增减性 (1)共同条件:12 , ,D I x x D ??↓?∈?任意 (2)假设前提:12x x <。 (3)判断依据: ①若__________________,则f (x )在区间D 上是增函数; ②若__________________,则f (x )在区间D 上是增函数。 2、单调区间 如果函数y=f (x )在区间D 上是增函数或减函数,就说f (x )在区间D 上具有(严格的)___________,区间D 叫做f (x )的__________。 思考探究 1、把增(减)函数定义中的“任意两个自变量12,x x ”换成“存在两个自变量12,x x ”还能判断函数是增(减)函数吗? 2、把增(减)函数定义中的“某个区间D ”去掉,其余条件不变,能否判断函数的增减性? 3、所有的函数都具有单调性吗? 自主测评 1、下列说法正确的是( ) A 、定义在(,)a b 上的函数f (x ),若存在12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数 B 、定义在(,)a b 上的函数f (x ),若有无穷多对12,(,)x x a b ∈使得12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数 C 、若f (x )在区间I 1上为增函数,在区间I 2上也为增函数,那以f (x )在I 1U I 2上也一定为增函数

浙教版九年级数学上 第3章圆的基本性质 复习提纲

第三章圆的基本性质复习 一、 点和圆的位置关系: 如果P 是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,则: (1)dr → 1、两个圆的圆心都是O ,半径分别为1r 、2r ,且1r <OA <2r ,那么点A 在( ) A 、⊙1r 内 B 、⊙2r 外 C 、⊙1r 外,⊙2r 内 D 、⊙1r 内,⊙2r 外 2、一个点到圆的最小距离为4cm ,最大距离为9cm ,则该圆的半径是( ) A 、2.5 cm 或6.5 cm B 、2.5 cm C 、6.5 cm D 、5 cm 或13cm 3. ⊙0的半径为13cm ,圆心O 到直线l 的距离d=OD=5cm .在直线l 上有三点P,Q,R ,且PD = 12cm , QD<12cm , RD>12cm ,则点P 在 ,点Q 在 ,点R 在 . 4. AB 为⊙0的直径,C 为⊙O 上一点,过C 作CD ⊥AB 于点D ,延长CD 至E ,使DE=CD ,那么点E 的位置 ( ) A .在⊙0 内 B .在⊙0上 C .在⊙0外 D .不能确定 二、几点确定一个圆 问题:(1)经过一个已知点可以画多少个圆? (2)经过两个已知点可以画多少个圆?这样的圆的圆心在怎样的一条直线上? (3)过同在一条直线上的三个点能画圆吗? 定理:经过 确定一个圆。 1、三角形的外心恰在它的一条边上,那么这个三角形是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、不能确定 2、作下列三角形的外接圆: 3、找出下图残破的圆的圆心 二、 圆的轴对称性: 1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧 2、推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧

6概率的基本性质

3.1.3 概率的基本性质(第三课时) 一、教学目标: 1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念; (2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系. 2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。 3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习 数学的情趣。二、重点与难点:概率的加法公式及其应用,事件的关系与运算。 三、学法与教学用具:1、讨论法,师生共同讨论,从而使加深学生对概率基本性质的理解和认识;2、教学用具:投灯片四、教学设想: 1、 创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等; (2)在掷骰子试验中,可以定义许多事件如:C 1={出现1点},C 2={出现2点},C 3={出现1点或2点},C 4={出现的点数为偶数}……师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗? 2、 基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115; (2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥; (3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件; (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).3、 例题分析: 例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A :命中环数大于7环; 事件B :命中环数为10环; 事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环. 分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。解:A 与C 互斥(不可能同时发生),B 与C 互斥,C 与D 互斥,C 与D 是对立事件(至少一个发生). 例2 抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)=21,P(B)=2 1,求出“出现奇数点或偶数点”.

圆的基本性质知识点总结

《圆的基本性质》知识点总结 1.在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的封闭曲线叫做圆。固定的端点O 叫做圆心,线段OA 叫做半径,以点O 为圆心的圆,记作☉O ,读作“圆O ” 2、与圆有关的概念 (1)弦和直径(连结圆上任意两点的线段BC 叫做弦,经过圆心的弦AB 叫做直径) (2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条 弧,每一条弧都叫做半圆) (3)等圆(半径相等的两个圆叫做等圆) 3、点和圆的位置关系: 如果P是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,则: (1)d<r → 圆内 (2)d=r → 圆上 (3)d >r → 圆外 4、三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。三角形的外心到各顶点距离相等。 一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。 5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)平分弧的直径,垂直平分弧所对的弦。 6、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 7、圆周角定理: 一条弧所对的圆周角等于它所对的 圆心角的一半 。 推论:半圆(或直径)所对的圆周角是 直角,90°圆周角所对的弦是 直径 。 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等。 8、弧长及扇形的面积圆锥的侧面积和全面积 (1)弧长公式: 180 r n l π=

高一数学函数的基本性质知识点梳理

高一数学函数的基本性质知识点梳理 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=fx,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{fx| x∈A }叫做函数的值域. 注意:如果只给出解析式y=fx,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是: 1 分式的分母不等于零; 2 偶次方根的被开方数不小于零; 3 对数式的真数必须大于零; 4 指数、对数式的底必须大于零且不等于 1. 5 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的集合 . 6指数为零底不可以等于零 2.构成函数的三要素:定义域、对应关系和值域 再注意: 1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等或为同一函数 2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致两点必须同时具备 值域补充 1 、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 . 2 . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的

概率的基本性质教案

《概率的基本性质》教案 使用教材:人教版数学必修3 教学内容:1、事件间的关系及运算 2、概率的基本性质 教学目标:1、了解事件间各种关系的概念,会判断事件间的关系; 2、了解两个互斥事件的概率加法公式,知道对立事件的公式,会用公式进行简 单的概率计算; 3、通过学习,进一步体会概率思想方法应用于实际问题的重要性。 教学的重点:事件间的关系,概率的加法公式。 教学的难点:互斥事件与对立事件的区别与联系。 教学的具体过程: 引入:上一次课我们学习了概率的意义,举了生活中与概率知识有关的许多实例。今天我们要来研究概率的基本性质。在研究性质之前,我们先来一起研究一下事件之间有什么关系。 一、事件的关系与运算 老师做掷骰子的实验,学生思考,回答该试验包含了哪些事件(即可能出现的结果) 学生可能回答:﹛出现的点数=1﹜记为C 1, ﹛出现的点数=2﹜记为C 2, ﹛出现的点数=3﹜记为C 3, ﹛出现的点数=4﹜记为C 4, ﹛出现的点数=5﹜记为C 5, ﹛出现的点数=6﹜记为C 6. 老师:是不是只有这6个事件呢?请大家思考,﹛出现的点数不大于1﹜(记为D 1)是不是该试验的事件?(学生回答:是)类似的,﹛出现的点数大于3﹜记为D 2,﹛出现的点数小于5﹜记为D 3,﹛出现的点数小于7﹜记为E ,﹛出现的点数大于6﹜记为F ,﹛出现的点数为偶数﹜记为G ,﹛出现的点数为奇数﹜记为H ,等等都是该试验的事件。 那么大家思考一下这些事件之间有什么样的关系呢? 1、 学生思考若事件C 1发生(即出现点数为1),那么事件H 是否一定也发生? 学生回答:是,因为1是奇数 我们把这种两个事件中如果一事件发生,则另一事件一定发生的关系,称为包含关系。具体说:一般地,对于事件A 和事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作B A ?(或A B ?) 特殊地,不可能事件记为 ?,任何事件都包含 ?。 练习:写出 D 3与E 的包含关系(D 3 ?E ) 2、再来看一下C 1和D 1间的关系:先考虑一下它们之间有没有包含关系?即若C 1发生,D 1 是否发生?(是,即C 1 ?D 1);又若D 1发生,C 1是否发生?(是,即D 1? C 1) 两个事件A ,B 中,若A B B A ??,且,那么称事件A 与事件B 相等,记作A =B 。所以C 1 和D 1相等。 “下面有同学已经发现了,事件的包含关系和相等关系与集合的这两种关系很相似,很好,下面我们就一起来考虑一下能不能把事件与集合做对比。” 试验的可能结果的全体 ←→ 全集 ↓ ↓ 每一个事件 ←→ 子集 这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。 3、集合之间除了有包含和相等的关系以外,还有集合的并,由此可以推出相应的,事件A 和事件B 的并事件,记作A ∪B ,从运算的角度说,并事件也叫做和事件,可以记为A+B 。我们知道并集A ∪B 中的任一个元素或者属于集合A 或者属于集合B ,类似的事件A ∪B 发生等

概率的基本性质教学设计

《概率的基本性质》教学设计 蓟县第四中学于海存 一、说教材: 1、教材的地位及作用: 本节课是高中数学3(必修)第三章概率的第一节第三课时概率的基本性质,本节课主要是结合具体实例以螺旋上升的方式由浅入深地学习概率的一些基本性质,学生在前面已经学习了集合的表示方法(Venn图)和随机事件的概率,已具有一定的归纳、抽象的能力,这些都是学习本节内容的基础。 本节在教材中起着承上启下的作用。一方面把所学的概率知识应用于实际生活,另一方面为今后学习概率其他知识做了理论上的准备。 2、教学目标: 知识与技能:(1)了解事件之间的相互包含关系、相等关系,知到和事件、积事件 的意义, (2)通过实例,理解互斥事件、对立事件的概念及实际意义; (3)掌握概率的几个基本性质并能简单应用。 过程与方法:类比集合,揭示事件的关系与运算,培养学生的类比与归纳的数学思想,情感态度与价值观:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴 趣,在参与探究活动中,培养学生的合作精神.在观察发现中树立探 索精神,在探索成功后体验学习乐趣。 3、教学重点与难点: 根据本节课内容即尚未学习排列组合,以及学生的心理特点和认知水平,制定如下教学重难点。 重点:互斥事件、对立事件的概念及概率的加法公式的应用。 难点:正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系. 4、课时安排:1课时 二、说教法: 根据本节课的内容、教学目标和学生的实际水平等因素,在教法上,本节课我采用“开放性教学”,充分了解学生的最近发展区,精心创设问题情景,以导为主,重视多媒体的作用,充分调动学生,展示学生的思维过程,使学生能准确理解、判断和运用所学知识。 1) 立足基础知识和基本技能,掌握好典型例题,做到重点突出; 2)紧扣数学的实际背景,多采用学生日常生活中熟悉的例子来突破难点。 三、说学法: 引导学生用观察、类比、归纳、推导方式来实现预定教学目标。创设、再现知识发生的情境,让每个学生都能动手、动笔、动口、动脑、动心、动情。从而在知识产生迁移中发现规律,进一步把知识纳入学生已有认知结构中,形成新的认知结构。达到教育学“最近发展区”要求,并培养学生学会观察、分析、归纳、等适应客观世界的思维方法,养成良好学习习惯和思维习惯。 1格式已调整,word版本可编辑.

函数的基本性质知识点

第 1 页 共 1 页 ?单调性 1、定义:如果函数()x f 对区间D 内的任意 21,x x ,当21x x <时都有()()21x f x f <,则()x f 在D 内是增函数;当21x x <时都有()()21x f x f >,则()x f 在D 内时减函数。 2、函数单调性的证明方法: (1)定义法:其一般步骤为: ①任取2121,,x x D x x <且∈; ②论证)()()()(2121x f x f x f x f >(或<; ③根据定义得出结论。 (2)用已知函数的单调性 (3)图象法 3、复合函数的单调性 如果是增函数;如果 单调性相同,那么和))(()()(x g f y x g u u f y ===)(u f y =和是减函数。 单调性相反,那么))(()(x g f y x g u == 也就是说,复合函数的单调性由其内、外函数的单调性共同决定,它遵循“同增异减”的原则,即内外函数的单调性相同时递增,相异时递减。 ?函数的奇偶性 1、 定义:设函数A x x f y ∈=),(,如果对于任意的A x ∈,都有)()(x f x f -=-,则称函数)(x f y =为奇函数;如果对于任意的A x ∈,都有)()(x f x f =-,则称函数)(x f y =为偶函数。 2、 性质 函数的基本性质

第 2 页 共 2 页 (1)前提条件:定义域关于原点对称。 (2)奇函数的图像关于原点对称,偶函数的图像关于y 轴对称。 (3)若)(x f 的定义域为R ,且当[)+∞∈,0x 时为增函数,则当)(x f 为奇函数时,它在()0,∞-上为增函数,当)(x f 为偶函数时,它在()0,∞-上为减函数。 (4)若奇函数)(x f 的定义域中包含0,则0)0(=f 。 3、 判断函数奇偶性的方法 (1) 定义法:①确定定义域,看是否关于原点对称,若不对称,则非奇非偶。 ②若定义域关于原点对称,函数表达式能化简则适当化简,再判断。 ③若函数较复杂,可利用变形式子,用求和(或差)法:即看 )()(x f x f ±-与0的关系;或用求商法(即看 ) ()(x f x f -与1±的关系)。 ④分段函数应分段讨论。 (2)图像法:若函数图象关于原点中心对称,则为奇函数;若函数图象关于y 轴对称,则为偶函数。 4、熟记结论: (1)设)(x f 、)(x g 的定义域分别是D 1、D 2,那么在它们的公共定义域21D D D ?=上:奇±奇=奇,偶±偶=偶,奇?奇=偶,偶?偶=偶,奇?偶=奇 (2)对于奇函数:)0)((1) ()(0)()()()(≠-=-?=+-?-=-x f x f x f x f x f x f x f 对于偶函数:)0)((1)()(0)()()()(≠=-? =--?=-x f x f x f x f x f x f x f

高中数学必修三3.1.3《概率的基本性质》

3.1.3《概率的基本性质》 【学习目标】 1.说出事件的包含,并,交,相等事件,以及互斥事件,对立事件的概念; 2..能叙述互斥事件与对立事件的区别与联系 3. 说出概率的三个基本性质;会使用互斥事件、对立事件的概率性质求概率。 【重点难点】 教学重点:概率的加法公式及其应用,事件的关系与运算。 教学难点:概率的加法公式及其应用,事件的关系与运算,概率的几个基本性质 【知识链接】 1. 两个集合之间存在着包含与相等的关系,集合可以进行交、并、补运算,你还 记得子集、等集、交集、并集和补集的含义及其符号表示吗? 2我们可以把一次试验可能出现的结果看成一个集合(如连续抛掷两枚硬币),那么必然事件对应全集,随机事件对应子集,不可能事件对应空集,从而可以类比集合的关系与运算,分析事件之间的 关系与运算,使我们对概率有进一步的理解和认识.育网 【学习过程】 1. 事件的关系与运算 思考:在掷骰子试验中,我们用集合形式定义如下事件: C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于4},D3={出现的点数小于6},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},等等. 你能写出这个试验中出现其它一些事件吗?类比集合与集合的关系,运算,你能发现 它们之间的关系和运算吗? 上述事件中哪些是必然事件?哪些是随机事件?哪些是不可能事件? (1) 显然,如果事件C1发生,则事件H一定发生,这时我们说事件H包含事件C1,记作H C1。一般地,对于事件A与事件B,如何理解事件B包含事件A(或事件A包含于事件B)?特别地,不可能事件用Ф表示,它与任何事件的关系怎样约定? 如果当事件A发生时,事件B一定发生,则B A ( 或A B );任何事件都包含不可能事件. [来源:https://www.360docs.net/doc/951850478.html,](2)分析事件C1与事件D1之间的包含关系,按集合观点这两个事件之间的关 系应怎样描述? 一般地,当两个事件A、B满足什么条件时,称事件A与事件B相等? 若B A,且A B,则称事件A与事件B相等,记作A=B. (3)如果事件C5发生或C6发生,就意味着哪个事件发生?反之成立吗?[来源:https://www.360docs.net/doc/951850478.html,] 事件D2称为事件C5与事件C6的并事件(或和事件),一般地,事件A与 事件B的并事件(或和事件)是什么含义? 当且仅当事件A发生或事件B发生时,事件C发生,则称事件C为事件A与事件B的并事件(或和事件),记作C=A∪B(或A+B). (4)类似地,当且仅当事件A发生且事件B发生时,事件C发生,则称事件C为事件A与事件B 的交事件(或积事件),记作C=A∩B(或AB),在上述事件中能找出这样的例子吗? 例如,在掷骰子的试验中D2∩D3=C4 (5)两个集合的交可能为空集,两个事件的交事件也可能为不可能事件,即A∩B=Ф,此时,称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生 例如,上述试验中的事件C1与事件C2互斥,事件G与事件H互斥。 (6)若A∩B为不可能事件,A∪B为必然事件,则称事件A与事件B互为对立事件,其含义是: 事件A与事件B有且只有一个发生.

高一数学函数的基本性质知识点练习题

函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个

圆的基本性质知识点整理

3.1 圆(1) 在同一平面内,线段0P 绕它固定的一个端点C 旋转一周,所经过的圭寸闭曲线叫做 圆,定点C 叫做,线段OF 叫做。 如果P 是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,那么就有: d v r 0点P 在圆; dr 点;P 在圆上; d > r :-点P 在圆; 如图,在 ABC 中,/ BAC= Rt Z ,AO 是BC 边上的中线, 为一 C 的直径. (1) 点A 是否在圆上?请说明理由. (2) 写出圆中所有的劣弧和优弧. 如图,在A 岛附近,半径约250knm 勺范围内是一暗礁区, 往北300kn 有一灯塔B,往西400km 有一灯塔C.现有一渔船 沿CB 亢行,问:渔船会进入暗礁区吗? 3.1 圆(2) (1) 经过一个已知点能作个圆; (2) 经过两个已知点A,B 能作个圆;过点A,B 任意作一个圆 圆心应该在怎样的一条直线上? (3) 不在同一条直线上的三个点一个圆 经过三角形各个顶点的圆叫做,这个外接圆的圆心叫做三角形的,三角形叫做圆 的; 三角形的外心是的交点。 锐角三角形的外心在; 直角三角形的外心在; 钝角三角形的外心在。 BC

作图:已知△ ABC,用直尺和圆规作出△ ABC的外接圆 3.2图形的旋转 图形旋转的性质 图形经过旋转所得的图形和原图形; 对应点到的距离相等,任何一对对应点与连线所成的角度等于。 1、如图,射线0P经过怎样的旋转,得到射线0Q ? 3、如图,以点0为旋转中心,将线段AB按顺时针方向旋转60° ,作出经旋 转所得的线段AB,并求直线AB与直线AB所成的锐角的度数 -B 径定理(1) 圆是图形,它的对称轴是。 2、如图,以点O为旋转中心,将A ABC按顺时针方向旋转60° ,作出经旋 转所得的图形 根据对称性你能发现哪些相等的量?填一填:V CD是直径,CD丄AB

函数的基本性质知识点总结(1)

函数的基本性质 基础知识: 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也 一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ①首先确定函数的定义域,并判断其定义域是否关于原点对称; ②确定f (-x )与f (x )的关系; ③作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y 轴成轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

九上《圆的基本性质》的知识点及典型例题

第三章 《圆的基本性质》的知识点及典型例题 知识框图 1、过一点可作 个圆。过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。过三点可作 个圆。过四点可作 个圆。 2、垂径定理:垂直于弦的直径 ,并且平分 垂径定理的逆定理1:平分弦( )的直径垂直于弦,并且平分 垂径定理的逆定理2:平分弧的直径 3、圆心角定理:在同圆或等圆中,相等的圆心角所对的 ,所对的 圆心角定理的逆定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么 都相等。 注解:在由“弦相等,得出弧相等”或由“弦心距相等,得出弧相等”时,这里的“弧相等”是指对应的劣弧与劣弧相等,优弧与优弧相等。在题目中,若让你求⌒A B ,那么所求的是弧长 圆 概 念 圆、圆心、半径、直径 弧、弦、弦心距、等弧 圆心角、圆周角 三角形的外接圆、三角形的外心、圆的内接三角形 圆的基本性质 圆周角定理及2个推论 圆的相关计算 弧可分为劣弧、半圆、优弧 在同圆或等圆中,能够重合的两条弧叫等弧 点和圆的位置关系 不在同一直线上的三点确定一个圆 圆的轴对称性 垂径定理及其2个逆定理 圆的中心对称性和旋转不变性 圆心角定理及逆定理 求半径、弦长、弦心距 求圆心角、圆周角、弧长、扇形的面积、圆锥的侧面积及表面积 圆的相关证明 求不规则阴影部分的面积 证明线段长度之间的数量关系;证明角度之间的数量关系 证明弧度之间的数量关系; 证明多边形的形状;证明两线垂直 圆心角定理及逆定理都是根据圆的旋转不变性推出来的 三角形的外心到三角形三个顶点的距离相等

4、圆周角定理:一条弧所对的圆周角等于它所对的 圆周角定理推论1:半圆(或直径)所对的圆周角是 ;90°的圆周角所对的弦是 圆周角定理推论2:在同圆或等圆中, 所对的圆周角相等;相等的圆周角所对 的也相等 5、拓展一下:圆内接四边形的对角之和为 6、弧长公式:在半径为R 的圆中,n °的圆心角所对的弧长l 的计算公式为l = 7、扇形面积公式1:半径为R ,圆心角为n °的扇形面积为 。这里面涉及3个变量: ,已知其中任意两个,都可以求出第3个变量。我们中需要记住一个公式即可。 扇形面积公式2:半径为R ,弧长为l 的扇形面积为 8、沿圆锥的母线把圆锥剪开并展平,可得圆锥的侧面展开图是一个 ,圆锥的侧面积等于这个扇形的面积,其半径等于圆锥的 ,弧长等于圆锥的 9、圆锥的侧面积: ;圆锥的全面积: 10、圆锥的母线长l ,高h ,底面圆半径r 满足关系式 11、已知圆锥的底面圆半径r 和母线长l ,那么圆锥的侧面展开图的圆心角为 12、圆锥的侧面展开图的圆心角x 的取值范围为 考点一、与圆相关的命题的说法正确的个数,绝大多数是选择题,也有少部分是填空题(填序号) 考点二、求旋转图形中某一点移动的距离,这就要利用弧长公式 考点三、求半径、弦长、弦心距,这就要利用勾股定理和垂径定理及逆定理 考点四、求圆心角、圆周角 考点五、求阴影部分的面积 考点六、证明线段、角度、弧度之间的数量关系;证明多边形的具体形状 考点七、利用不在同一直线上的三点确定一个圆的作图题 考点八、方案设计题,求最大扇形面积 考点九、将圆锥展开,求最近距离 练习 一、选择题 1、下列命题中:① 任意三点确定一个圆;②圆的两条平行弦所夹的弧相等;③ 任意一个三角形有且仅有一个外接圆;④ 平分弦的直径垂直于弦;⑤ 直径是圆中最长的弦,半径不是弦。正确的个数是( ) A.2个 B.3个 C.4个 D.5个 2、如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA AB BO -- 的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( ) 3、如图所示,在△ABC 中,∠BAC=30°,AC=2a ,BC=b ,以AB 所在直线为轴旋转一周得到一个几何体,则这个几何体的全面积是( ) A. 2πa B. πab C. 3πa2+πab D. πa (2a+b ) P A O B s t O s O t O s t O s t A . B . C . D .

相关文档
最新文档