The R2R3-MYB, bHLH, WD40, and related transcription factors in

The R2R3-MYB, bHLH, WD40, and related transcription factors in
The R2R3-MYB, bHLH, WD40, and related transcription factors in

ORIGINAL PAPER

The R2R3-MYB,bHLH,WD40,and related transcription factors in flavonoid biosynthesis

Lei Zhao &Liping Gao &Hongxue Wang &

Xiaotian Chen &Yunsheng Wang &Hua Yang &Chaoling Wei &Xiaochun Wan &Tao Xia

Received:29July 2012/Revised:24October 2012/Accepted:29October 2012/Published online:27November 2012#Springer-Verlag Berlin Heidelberg 2012

Abstract R2R3-MYB,bHLH,and WD40proteins have been shown to control multiple enzymatic steps in the bio-synthetic pathway responsible for the production of flavo-noids,important secondary metabolites in Camellia sinensis .Few related transcription factor genes have been documented.The presence of R2R3-MYB ,bHLH ,and WD40were statistically and bioinformatically analyzed on 127,094C .sinensis transcriptome unigenes,resulting in identification of 73,49,and 134genes,respectively.C .sinensis phylogenetic trees were constructed for R2R3-MYB and bHLH proteins using previous Arabidopsis data and further divided into 27subgroups (Sg)and 32subfami-lies.Motifs in some R2R3-MYB subgroups were redefined.Furthermore,Sg26and Sg27were expanded compared to Arabidopsis data,and bHLH proteins in C .sinensis were grouped into nine subfamilies.According to the functional annotation of Arabidopsis ,flavonoid biosynthesis in C .sinensis was predicted to include R2R3-MYB genes in Sg4(6),Sg5(2),and Sg7(1),as well as bHLH genes in subfamily 2(2)and subfamily 24(5).The wide evolutionary gap prevented phylogenetic analysis of WD40s;however,a single gene,CsWD40-1,was observed to share 80.4%se-quence homogeny with AtTTG1.Analysis of CsMYB4-1,

CsMYB4-2,CsMYB4-3,CsMYB4-4,CsMYB5-1,and CsMYB5-2revealed the interaction motif [DE]Lx2[RK]x3Lx6Lx3R,potentially contributing to the specificity of the bHLH partner in the stable MYB –bHLH complex.Full-length end-to-end polymerase chain reaction (PCR)and quantitative reverse transcriptase (qRT)-PCR were used to validate select-ed genes and generate relative expression ratio profiles in C .sinensis leaves by developmental stage and treatment condi-tions,including hormone and wound treatments.Potential target binding sites were predicted.

Keywords Camellia sinensis .MYB .bHLH .

Bioinformatic analysis .Flavonoid biosynthetic pathway

Introduction

Flavonoids are important secondary metabolites that accu-mulate in most vascular plants (Hichri et al.2011).The involvement of these compounds in a wide range of vital functions in plants,including seed germination (Debeaujon et al.2003),UV-B protection (Albert et al.2009),and pathogen and biotic stress defenses (Punyasiri et al.2004),is well documented.In addition to their numerous physio-logical roles,flavonoids also exhibit beneficial bioactive properties in humans,contributing to prevention of disease and oxidative stress (Khan et al.2010;Ross and Kasum 2002).

Chalcones,flavones,flavonols,flavandiols,anthocya-nins,condensed tannins,and/or proanthocyanidins (PAs)are the primary subgroups of flavonoids,though other spe-cialized flavonoids have also been identified (Winkel-Shirley 2001).Overall,catechins account for approximately 70–80%of all identified flavonoids.Catechins,the most abundant flavonoid in Camellia sinensis ,are flavan-3-ol monomers that form the initiation and elongation unit of

Electronic supplementary material The online version of this article (doi:10.1007/s10142-012-0301-4)contains supplementary material,which is available to authorized users.

L.Zhao :H.Wang :H.Yang :C.Wei :X.Wan :T.Xia (*)Key Laboratory of Tea Biochemistry &Biotechnology,Ministry of Agriculture &Ministry of Education,Anhui Agricultural University,Hefei,Anhui 230036,China

e-mail:xiatao62@https://www.360docs.net/doc/993954669.html,

L.Gao (*):X.Chen :Y .Wang

College of Life Science,Anhui Agricultural University,Hefei,Anhui 230036,China e-mail:gaolp62@https://www.360docs.net/doc/993954669.html,

Funct Integr Genomics (2013)13:75–98DOI 10.1007/s10142-012-0301-4

PAs.These compounds possess a basic2-phenylchromone structure composed of three phenolic rings(A,B,and C rings)characterized by di-or tri-hydroxyl group substitu-tions of the B ring,2,3-position isomerisms of the C ring, and a3-postion galloyl group of the C ring.Catechins share the same PA biosynthetic pathways found in the model plant Arabidopsis thaliana(Arabidopsis)and certain grapevine species.Functional genes involved in the biosynthetic path-ways of PAs,anthocyanins,and flavonols have been exten-sively studied and documented(Gutha et al.2010;Petroni and Tonelli2011).

The flavonoid biosynthesis pathway is highly organized. Key structural genes and numerous transcription factors act as regulatory protein modulators of gene expression through sequence-specific DNA binding at the transcriptional level or by protein–protein interactions during chromatin remod-eling(Hichri et al.2011).To date,at least six distinct transcription factors(MYB,bHLH,WD40,WRKY,Zinc finger,and MADS box proteins)have been identified in flavonoid biosynthesis(Terrier et al.2009).Transcription factors like R2R3-MYB,bHLH,and WD40can work indi-vidually or orchestrate with others in controlling the multi-ple enzymatic steps involved in the flavonoid biosynthetic pathways of various species(Mano et al.2007).Early biosynthesis genes(EBGs),for example,are mainly activat-ed by independent R2R3-MYBs,leading to the production of flavonols.Conversely,the activation of late biosynthesis genes(LBGs)leading to the production of PAs generally requires a ternary complex of transcription factors(MYB–bHLH–WD40,MBW),as demonstrated in Arabidopsis. Notably,MYB commonly plays a central role in distinguish-ing the target gene in these pathways(Nesi et al.2001; Baudry et al.2004).

MYB proteins,a large and functionally diverse super-family of regulatory transcription factors,are involved in plant developmental and defense processes(Xie et al.2006). MYBs are classified into three major groups according to the conserved N-terminal MYB domain,consisting of one to three imperfect repeat sequences(R1,R2,and R3;Martin and Paz-Ares1997).R2R3-MYBs,a type of MYB protein, participate in the regulation of secondary metabolism in plants(V om Endt et al.2002),contributing to positive and negative regulation of biosynthetic enzymes required for the production of phenylpropanoids(Bomal et al.2008),flavo-noids(Taylor and Grotewold2005),and benzenoids (Verdonk et al.2005).In Arabidopsis,126R2R3-MYBs have been identified and further classified into22subgroups according to the presence of conserved C-terminal amino acid motifs in the region outside the MYB domain(except for Sg2;Kranz et al.1998).In a recently extended dataset, Stracke et al.(2001)re-evaluated these motifs,confirming most of the previously identified subgroups and extending the analysis to include three new subgroups.This data further revealed that most MYB genes sharing similar func-tions cluster in the same phylogenetic clades in this species, a trend likely to be observed in other species(Matus et al. 2008).

Another widespread transcription factor is the basic helix-loop-helix(bHLH)proteins.These bHLH proteins occur in a range of organisms,from simple yeasts to com-plex multicellular organisms like humans,and are recog-nized for their role in regulation of cell proliferation and differentiation pathways in numerous species(Massari and Murre2000).In plants,bHLH transcription factors have broad functions such as regulation of floral organ develop-ment(Heisler et al.2001;Sorensen et al.2003),photomor-phogenesis(Leivar et al.2008),epidermal cell differentiation (Morohashi et al.2007;Zhang et al.2003;Bou-Torrent et al. 2008),hormonal responses(Bou-Torrent et al.2008;Li et al. 2007),and flavonoids biosynthesis(Ohno et al.2011).In Arabidopsis,162bHLH proteins have been identified,and 133bHLHs of them were initially classified into12subgroups (I–XII)(Heim et al.2003).Additional studies have since isolated638distinct bHLH gene families in Arabidopsis, poplar,rice,moss,and algae,resulting in the extension of the original phylogenetic analysis to include32subfamilies (Carretero-Paulet et al.2010).

WD40proteins have been increasingly recognized as key regulators in many eukaryotic cellular processes,including cell division,vesicle formation and trafficking,signal trans-duction,and RNA processing(Van Nocker and Ludwig 2003).These proteins are generally characterized by a peptide motif of44–60amino acids,typically delimited by the GH dipeptide(Gly-His)at the N-terminus and the WD dipeptide (Trp-Asp)at the C-terminus(Van Nocker and Ludwig2003). Notably,WD40s participate in chromatin remodeling through histone protein modification,thus exerting influence on tran-scription processes(Suganuma et al.2008).

The interaction between MYB and bHLH proteins has been extensively investigated in recent years,and flavonoid biosynthesis is probably the best-studied ex-ample.WD40proteins are not thought to have any catalytic activity,but rather seem to be a docking plat-form in regulating the anthocyanin and PA biosynthetic pathways.For instance,in Arabidopsis,TTG1acts mainly through a bHLH partner in the TT2-TT8-TTG1 regulation of ban expression.Investigation of the inter-action between MYB and bHLH proteins has been prominent in recent decades,especially prolific in the flavonoid biosynthetic pathway(Feller et al.2011). Though WD40proteins are not thought to exhibit cata-lytic activity,it has been hypothesized that these pro-teins act as docking platforms involved in the regulation of both anthocyanin and PA biosynthetic pathways.In Arabidopsis,TTG1acts primarily through a bHLH part-ner in the TT2-TT8-TTG1regulation of ban expression

(Nesi et al.2001;Baudry et al.2004).In other species, the interactions between MYB and bHLH proteins are less well known.

Some cDNA libraries for C.sinensis have been char-acterized using conventional Sanger sequencing methods, including the EST sequences from the young root cDNA library(Shi and Wan2009),the subtractive cDNA li-brary special for young leaves(Park et al.2004),the young leaf cDNA library(Chen et al.2005),the light-induced suppression subtractive hybridization(SSH) cDNA libraries of Calli tea(Wang et al.2012),and the drought-stressed root SSH cDNA https://www.360docs.net/doc/993954669.html,pared with the model plant,few C.sinensis transcription factor genes have been documented in the National Center for Biotechnology Information(NCBI).The C.sinensis tran-scriptome dataset obtained by high-throughput Illumina for large-scale RNA sequencing helps us to fill this deficiency in C.sinensis transcription factor gene docu-mentation.The C.sinensis transcriptome represents ap-proximately tenfold more genes than all C.sinensis genes deposited in GenBank,and approximately20-fold times more genes than those recorded in the existing C. sinensis cDNA libraries(Shi et al.2011).

The current study investigated all R2R3-MYB,bHLH,and WD40genes from a total of127,094unigenes of C.sinensis transcriptome by confirming their conserved domains.The transcription factor genes of C.sinensis were divided into subgroups by phylogenetic analysis and amino acids align-ment,allowing classification and further study of candidate genes in the flavonoid biosynthetic pathway.Additional end-to-end polymerase chain reaction(PCR)and real-time quan-titative reverse transcriptase(qRT)-PCR were used to validate selected genes and to analyze developmental and organ-specific expression.Relative expression ratios of candidate genes were profiled by treatment condition,including hor-mone and wound treatments,resulting in data directly pertain-ing to the involvement of transcription factors in the flavonoid synthesis pathway of C.sinensis.

Materials and methods

Homologues search and phylogenetic tree construction

R2R3-MYB,bHLH,and WD40genes were isolated from a total of127,094C.sinensis unigenes and translated using the NCBI ORF finder(Center for Biotechnology Information, USA).The conserved domain of each predicted protein was identified by the search tool ScanProsite(Expasy;SIB Swiss Institute of Bioinformatics,Switzerland).Sequences of all126 A.thaliana R2R3-MYB proteins were retrieved from The Arabidopsis Information Resource(TAIR)Arabidopsis Genome Annotation version7.0released in April2007(Carnegie Institution for Science Department of Plant Biology,USA).Additionally,151AtbHLH sequences were retrieved from the UniProt Database(UniProt,Switzerland).

Sequence alignments were performed using the ClustalW algorithm-based AlignX mode in Molecular Evolutionary Genetics Analysis version5(MEGA5; MegaSoftware,USA)(Tamura et al.2011).A phyloge-netic tree was subsequently constructed according to the neighbor-joining(NJ)statistical method(Saitou and Nei 1987).Tree nodes were evaluated by the Bootstrap method for1,000replicates(Felsenstein1985),and branches corresponding to partitions reproduced in less than50%of bootstrap replicates were condensed into single branches.Evolutionary distances were computed using the p-distance method and expressed in units of amino acid differences per site.All positions containing gaps and missing data were eliminated prior to con-struction of the phylogenetic trees for R2R3-MYB and WD40genes.Similarly,all ambiguous positions for each sequence pair were removed prior to construction of phylogenetic trees for bHLH genes.Amino acids of R2R3-MYBs,bHLHs,and WD40s in C.sinensis and other species were aligned by ClustalX.The conserved motifs of each R2R3-MYB subgroup were predicted by MEME(Bailey et al.2009).

Plant materials and RNA isolation

C.sinensis(L.)O.Kuntze cv.“Shuchazao”was obtained from the experimental tea garden of Anhui Agricultural University in Anhui,China(latitude31.86N,longitude 117.27E,altitude20m above mean sea level).Specimens were selected based on the visible maturity of leaves;buds; first,second,third,and fourth leaves;young stems;and tender roots.Selected leaves and organs were subjected to real-time qRT-PCR analysis and full rapid amplification of cDNA ends PCR(RACE-PCR).The qRT-PCR specimens were subjected to variant treatments.The third leaves were evenly covered with hormone-treated100μmol/L abscisic acid(ABA)solution,100μmol/L gibberellic acid(GA) solution,or distilled water(control)applied with a fine-bristled brush.Six damage regions were created on the same leaf using a hemostat(wound treatment groups),and leaves were smudged with the hormone treatment every12h. Untreated leaves were used as a control for wound treat-ment.Treated leaves and control leaves were sampled at1 and48h,respectively.All samples were immediately frozen in liquid nitrogen and stored at?80°C prior to experimental analysis.Total RNA was isolated from C.sinensis organs with RNAiso-mate for Plant Tissue(Takara,DaLian,China; Code:D325A)and RNAiso Plus(Takara,DaLian,China; Code:D9108B),according to the instructions provided by the manufacturer.

RACE-PCR analysis

The cDNA strands at the3′and5′ends were subjected to RACE-PCR and synthesized with SMARTer?RACE cDNA Amplification Kit(Clontech,USA;Cat.Nos.634923and 634924),according to the instructions provided by the manu-facturer.The five candidate genes identified from the C.sinen-sis transcriptome and CsMYB4-5from an EST sequence (CsSSHR54)in the NCBI database were subjected to standard RACE-PCR reactions.The3′-and5′-RACE primers for CsMYB4-5,CsMYB4-6(tie_GLEAN_10017628),CsMYB5-2 (tie_GLEAN_10028252),CsbHLH2-1(cam_GLEAN_ 10012690),CsbHLH2-2(tie_GLEAN_10005499),and CsWD40-1(tie_GLEAN_10026686)were designed using Primer Premier5.0software(Premier,Vancouver,BC, Canada)and synthesized(Invitrogen,Shanghai,China; Table1).PCR products were gel purified using the MiniBEST Agarose Gel Extraction Kit(Takara,DaLian, China),ligated into a pMD18-T vector,and transformed into strain DH5αcompetent cells for sequencing analysis.

The results were assembled using Dnaman7software (Lynnon,Canada).End-to-end PCR was additionally per-formed to validate the assembled full-length and ORF of candidate genes using the primers listed in Table1.The cDNA strands for end-to-end PCR were synthesized with Phusion?High-Fidelity DNA Polymerase(NEB,USA). Briefly,end-to-end PCR was performed under the following conditions:98°C for30s,30cycles at98°C for30s,57°C for10s,72°C for40s,and a final extension at72°C for 10min.

Expression difference by qRT-PCR

RNA and cDNA were prepared as previously described.All primers were blasted against the NCBI database to guaran-tee specificity(Table1).The cDNA strands for qRT-PCR were synthesized with PrimeScript?RT reagent Kit(Takara, DaLian,China;Code:DRR037A).The PCR mixture contained cDNA template(approximately0.01μg/μL), 10μL SYBR Green PCR Master Mix(Takara),and 200nmolL?1of each gene-specific primer in a final volume of20μL.Real-time PCRs were performed using a CFX96?optical reaction module(Bio-Rad,USA).The PCRs were performed with the following program:95°C for30s,followed by40cycles at95°C for5s,and60°C for30s(58°C for30s for root)in96-well optical reaction plates.The specificity of amplicons was verified by melting curve analysis(55–95°C).Gene expression was examined in various experimental groups,including those of different organs,growth stages(fourth leaf),and wound treatments, as well as the control groups.The control check(CK)was used to calibrate experiments.The resultant data was expressed as the mean value of four replicates,and these values were normalized against expression levels of the housekeeping gene glyceraldehyde-3-phosphate dehydroge-nase(GAPDH).The relative expression values were calcu-lated by the2àΔΔC t method,as follows:

ΔC

T?C T;targetàC T;GAPDHàΔΔC T

?àΔC T;targetàΔC T;4th leaf

àá

where C T,target and C T,GAPDH represent the threshold cycles of target and housekeeping(GAPDH)genes, respectively.

Results

R2R3-MYB,bHLH,and WD40in the C.sinensis transcriptome

Annotation of the C.sinensis unigenes revealed77MYB genes in Anhui No.1and63MYB genes in Tieguanyin. Further analysis revealed24bHLH genes in Anhui No.1 and28bHLH genes in Tieguanyin.A total of93WD40 genes were revealed in Anhui No.1,and102WD40genes were revealed in Tieguanyin.Translation and conserved domain scanning revealed45R2R3-MYBs in Anhui No.1 and28MYB genes in Tieguanyin,23bHLH genes in Anhui No.1and26bHLH genes in Tieguanyin,and70WD40 genes in Anhui No.1and64WD40genes in Tieguanyin. Each of these genes was verified in the C.sinensis tran-scriptome dataset.

Motif and subgroup classification of R2R3-MYBs

in the flavonoid biosynthetic pathway

A total of73C.sinensis R2R3-MYBs and126 Arabidopsis R2R3-MYBs were used in phylogenetic tree construction(Fig.1).C.sinensis MYBs were integrated with AtMYBs in clustered phylogenetic clades or sub-clades,divided into27MY

B subgroups overall.The resulting tree exhibited the same basic subgroups observed by Matus et al.(2008),further confirming the validity of the proposed tree.According to Matus,most same-subgroup MYBs share motifs outside of the MYB do-main.The conserved motifs predicted by MEME are listed in Table2,where the genes in each subgroup were renamed accordingly.

Consistent motifs were generally observed between Arabidopsis and C.sinensis,including Sg7(GR[T/V] SRSx[M/A]K),Sg9(AQWESARxxAExRLxRES), Sg19(PxLxFSEW),and Sg24(IQMExDPxTH).Some motifs were redefined,including the motif in Sg3 (WFKHLESELGLEExDNQQQ)that was redefined as

Table1Primers for RACE and

qRT-PCR Gene names Primer sequences(5′-3′)

Housekeeping gene

GADPH qRT-PCR-F:TTGGCATCGTTGAGGGTCT

qRT-PCR-R:CAGTGGGAACACGGAAAGC

Sg4

CsMYB4-1(cam_GLEAN_10020745)End-to-end F:ATGAGAAAACCTTGTTGTGA

End-to-end R:TCAGTTCATAGCTAAGGAC

qRT-PCR-F:ATCCACAACGATAAACCG

qRT-PCR-R:CGACATAGTCAGCCCAGA

CsMYB4-2(cam_GLEAN_10022034)End-to-end F:ATGAGGAAGCCA TGCTGTGAA

End-to-end R:TCA TCTAAAGAGAACAAGGGTG

qRT-PCR-F:TTCTTAGCAGGGACCAGA

qRT-PCR-R:AGGCGTACTCAACATTC

CsMYB4-3(cam_GLEAN_10033998)End-to-end F:ATGGGACGGTCTCCGTGCTGT

End-to-end R:TCA TTTCA TCTCCAAGCTTCTGTAA

qRT-PCR-F:AGATGAGGAAGAGGGCAGAG

qRT-PCR-R:CCATTCGAGAAACACCAC

CsMYB4-4(tie_GLEAN_10016351)End-to-end F:ATGAGGAAGCCTTGCTGTGACA

End-to-end R:TCACTTCTCTCCCTCGAGCAC

qRT-PCR-F:ATTGAACCAAACACTTCCTCG

qRT-PCR-R:GACGGAATGGCAATGGAG

CsMYB4-5(CsMYB3)3′-GSP1:TGCCAGGAAGAACAGACAATGA

3′-GSP2:CCACGAAATCTCCACACCAACC

5′-GSP1:GGTTGTAGGTGTGTGGTTGAGCGGG

5′-GSP2:GGACCATTTATTTCCAATCAAGCC

End-to-end F:CAAGTTCCATGGGCAGATC

End-to-end R:TGTTAGTAGTTGGA TTCA TTTCAGTA

qRT-PCR-F:ATAAGTCTCCCAAATCCACCTC

qRT-PCR-R:ATGATGCCCCGAAGAGC

CsMYB4-6(tie_GLEAN_10017628)3′-GSP1:CGGTCCGAGAATGCTGTCC

3′-GSP2:AGCAGCAACACTGGTTATGATTTC

5′-GSP1:AGAGACCGCCAGCAGCCTTCGCCGTG

5′-GSP2:TTCTTTGGTTCATCCTCCTTTG

End-to-end F:ATGGGAAGGTCACCTTGCTGTG

End-to-end R:GCTTCTGTAA TCCAAAACACCACTT

qRT-PCR-F:GAATACAAAACAGCGAAGAGTGC

qRT-PCR-R:CAACCCTAAGAAA TCA TAACCAGTG

Sg5

CsMYB5-1(cam_GLEAN_10020350)End-to-end F:ATGGGGAGGAGTCCATGCTGCTC

End-to-end R:TCA TGGCCAGTCCTCAGAA TCAAG

qRT-PCR-F:GCTGTCATAACTTTGAACTCCAC

qRT-PCR-R:GAATCAAGAAAGGATGCCAA

CsMYB5-2(tie_GLEAN_10028252)3′-GSP1:TGGGCAACCGATGGTCTCTTAT

3′-GSP2:ATTCCGACCCAACCTACA

5′-GSP1:GTGGGCA TTGGGTTCTGTTCCTTGTCTT

5′-GSP2:TAGCCTTCCAGCGATAAGAGAC

End-to-end F:A TGGGAAGGGCTCCTTGTTGTTCTAA

End-to-end R:TCAGA TCAACAAAGA TTCAGCAAAGG

qRT-PCR-F:GAATACAAAACAGCGAAGAGTGC

qRT-PCR-R:CAACCCTAAGAAA TCA TAACCAGTG

Sg7

CsMYB7-1(cam_GLEAN_10034384)End-to-end F:ATGGAGAAGTCTCATGGAGGGC

End-to-end R:CTACTTGGCAGATGCTATCATGC

qRT-PCR-F:CCACCATTGTGAACTTGC

qRT-PCR-R:CACCATCATTGGGGATT

LE[N/S]ELGL—D[I/P]D[F/I]W[D/S][F/M][L/I]D,the motif in Sg5(DExWRLxxT)that was redefined as IRTKA[I/L]RC,and the motif in Sg11(PRLDLLD)that was redefined as LxNPExLRLAxxL[L/F].Several other exceptions were observed,including the notable absence of C.sinensis genes in the Arabidopsis subclades Sg6, Sg12,and Sg15.Sg12(“glucosinolate”clade)is comprised of AtMYB28,AtMYB29,and AtMYB76,and it functions in regulation of aliphatic glucosinolate biosynthesis(Rosso et al.2008;Matus et al.2008).Interestingly,no rice and/

Table1(continued)

Gene names Primer sequences(5′-3′)

bHLH genes

Subfamily2

CsbHLH2-1(cam_GLEAN_10012690) (tie_GLEAN_10001220)3′-GSP1:TCCCCCGAACCCTAATC

3′-GSP2:CATTGTCTGAATCGGGGGC

5′-GSP1:CACAATCGTAAAACTGC

5′-GSP2:GTCCATTGTTGGTGGAA

End-to-end F:ATGGCTGAGATTATCTCTTCC End-to-end R:TTAAGAAATCTCCAACAATACCT qRT-PCR-F:CCTATTCAACAACGCCTCC

qRT-PCR-R:AGCGGTCATTGCTGTCTTC

CsbHLH2-2(cam_GLEAN_10006335) (tie_GLEAN_10005499)3′-GSP1:GAATCCCAATCCCACAAGGC

3′-GSP2:GCGGATGCGGAAGTGGAG

5′-GSP1:ATCAATTTTGAATTTGAG

5′-GSP2:GGAGGGAAAGATTCCGGTTC End-to-end F:ATGGCTGAGATTATCTCTTCC End-to-end R:TTAAATCTGAAACCTGCTAA qRT-PCR-F:CTCCTAGACTTTGGTGTTCC qRT-PCR-R:GCCCCTGATTCAGATGAT

Subfamily24

CsbHLH24-1(tie_GLEAN_10024436)End-to-end F:ATGCCTTTCTCAGAGTTTT

End-to-end R:TCAGCTACTGGCATCAGCTT

qRT-PCR-F:CTGTTGGAATGGGAATGAGGA

qRT-PCR-R:CGTGGGGTAGGGAAAAGTGT

CsbHLH24-2(tie_GLEAN_10022821) (cam_GLEAN_10020333)End-to-end F:ATGCTCCTCCGCTCATCAT End-to-end R:TCAGCACAGCTGTAAACTTAC qRT-PCR-F:TATGTGCCTACCTGGAGTCTTGC qRT-PCR-R:GGGTATTTGTCGGAGTTTCTTG

CsbHLH24-3(cam_GLEAN_10025059)End-to-end F:ATGGCGGATCTGTACGGA

End-to-end R:TTAAAGTAA TGTGA TTACCTTTGAA

qRT-PCR-F:AGTGCTGAATACAAACGGAGGA

qRT-PCR-R:TGGTGTTAGGAGATTTGGCTGA CsbHLH24-4(tie_GLEAN_10042126)End-to-end F:ATGAAAGGGGAAACAGACCG

End-to-end R:TTAACCCCCTTGAACATGGC

qRT-PCR-F:CAGGCACAGGCAACTTCAGA

qRT-PCR-R:GAACATGGCTTGATGGCAAA

CsbHLH24-5(cam_GLEAN_10023958) (tie_GLEAN_10006711)End-to-end F:ATGATAGTAATGGCGGATATGT End-to-end R:TCACATTGTCGAAGCGTAAGCA qRT-PCR-F:TCTCCCAGAAAACCCAAACC qRT-PCR-R:CCAGAGCTTCAAAACCCTCC

WD40

CsWD40-1(tie_GLEAN_10026686)3′-GSP1:GAGATAAGGAACACTCTAC

3′-GSP2:GGCTCCCCAGAGTCATCGCC

5′-GSP1:ATTTGCGGAGGGAGGCAGAG

5′-GSP2:GTATTCCTCTATGAAGC

End-to-end F:ATGGAGAATTCGAGCCAAG

End-to-end R:TCAAACTTTCAGAAGCTGCATT

qRT-PCR-F:CGGCAGCTTCATAGAGG

qRT-PCR-R:TGGGAGGGTAAGGGTGT

or grape genes were grouped within this clade,which may be a result of β-type duplication that evolved inde-pendently in Brassicales as an adaptive response to her-bivory (Matus et al.2008).Several genes clustered in the functional subclades still lacked the motif,including CsMYB5-2that lacks the IRTKA [I/L]RC motif but exhibits high homology to DkMYB4in Sg5.Also,the two functional clades Sg26and Sg27were expanded due to shared motifs SSS[S/T]ST and KRxxxSP [T/I]SSxSNC[S/C]S[S/A]S,respectively.

MYBs in Sg4,Sg5,Sg6,Sg7,and Sg15are reported regulators of anthocyanin and PA biosynthesis (Hichri et al.2011).There were six C .sinensis genes in Sg4,two in Sg5,and one in Sg7,though no MYB genes were found in either Sg6or Sg15.Amino acid sequence alignment,evolu-tionary analysis,and conserved motifs of C .sinensis R2R3-MYB genes and their homologous genes in Arabidopsis are shown in Fig.2.Sg4in Arabidopsis ,also called the C2repressor motif clade,has C-terminal C1and C2motifs that participate in bHLH interactions and promoter repression (Stracke et al.2001),respectively.Among the Sg4members (Fig.2b ),CsMYB4-1,CsMYB4-2,and CsMYB4-3were shown to be closely related,clustering in an independent sub-clade.CsMYB4-4and CsMYB4-6shared 60.44%and 71.88%identity with AtMYB4(AEE86955),and 79.8%and 80.54%identity with AmMYB308(P81393).CsMYB4-5showed clos-est homology to AtMYB7(AEC06531),PtMYB14(ABD60279),and PgMYB16(ACN12958).Furthermore,the amino acids of CsMYB4-1,CsMYB4-2,CsMYB4-3,and CsMYB4-4possessed the [DE]Lx2[RK]x3Lx6Lx3R motif be-ginning at positions 75or 76,indicating potential interaction with a bHLH partner to form a MYB –bHLH complex (Lin-Wang et al.2010;Zimmermann et al.2004).

CsMYB5-1and CsMYB5-2were shown to belong to Sg5(Fig.2b ),the subgroup alternatively known as the epidermal cell fate clade and including AtMYB123(TT2,Q9FJA2),VvMYB5a (AAS68190),GhMYB38(AAK19618),and DkMYB4(BAI49721)(Deluc et al.2006;Akagi et al.2009b ).CsMYB5-1showed closest homology to GhMYB38.CsMYB5-2shared 75.09%identity with DkMYB4.Although GhMYB38and DkMYB4are well documented in Sg5,neither exhibited the motif IRTKA [I/L]RC.Notably,CsMYB5-1and CsMYB5-2also have an interaction motif that contributes to the MYB –bHLH complex.CsMYB7-1,together

with

Fig.1Evolutionary

relationships of R2R3-MYBs.Full-length amino acid sequen-ces of R2R3-MYBs in Camellia sinensis transcriptome dataset and Arabidopsis genome were firstly aligned by ClustalW of MEGA5.The phylogenetic tree was constructed according to the neighbor-joining method.Branches corresponding to par-titions reproduced in less than 50%bootstrap replicates were collapsed.The evolutionary distances were computed using the p -distance method.All am-biguous positions were re-moved for each sequence pair.Evolutionary analyses were conducted in MEGA5

Table2Subgroups of R2R3-MYB in Camellia sinensis and motifs

Subgroups MYB gene name in C.sinensis a Putative function clade and gene function b

No.c Motif d

1TYASSTENI[A/S][R/K]LL—EKWL[F/L]CsMYB1-1(cam_GLEAN_10007705)Stomatal aperture(AtMYB60)

Hypersensitive response,cooperates with BES1to

regulate brassinosteroid-induced gene expression

AtMYB30(Froidure et al.2010;Yin et al.2009)

2DESFW—DDxMDFW CsMYB2-1(tie_GLEAN_10020149)Freezing tolerance

CsMYB2-2(cam_GLEAN_10018304)AtMYB15(Dong et al.2010)

CsMYB2-3(cam_GLEAN_10018153)Shoot apex morphogenesis(AtMYB13)

CsMYB2-4(tie_GLEAN_10018260)

DESFW—CsMYB2-5(cam_GLEAN_10025700)

3LE[N/S]ELGL—D[I/P]D[F/I]W[D/S][F/M][L/I]D CsMYB3-1(cam_GLEAN_10020032)AtMYB58,AtMYB63

CsMYB3-2(CsMYB6)

4DLNLEL—[E/N]CS CsMYB4-1(cam_GLEAN_10020745)C2repressor motif clade(Soreq et al.2008;Wixon

and Ashurst2003)

CsMYB4-2(cam_GLEAN_10022034)Anther development

CsMYB4-3(cam_GLEAN_10033998)Cinnamic acid and sinapate ester synthesis

CsMYB4-4(tie_GLEAN_10016351)AtMYB3,AtMYB7,AtMYB32

CsMYB4-5(CsMYB3)Regulate the C4H gene

CsMYB4-6(tie_GLEAN_10017628)AtMYB4(Jin et al.2000)

5IRTKA[I/L]RC CsMYB5-1(cam_GLEAN_10020350)Epidermal cell fate clade

Seed pigmentation(PAs)

TT2(Nesi et al.2001)

CsMYB5-2tie_GLEAN_10028252

6KPRPR[S/T]F–Epidermal cell fate clade

Anthocyanin-related subclade

PAP gene(Borevitz et al.2000)

AtMYB75/PAP1

AtMYB90/PAP2

7GR[T/V]SRSx[M/A]K CsMYB7-1(cam_GLEAN_10034384)Flavonol glycosides clade(Kumar and Maiti2008) 9AQWESARxxAExRLxRES CsMYB9-1(tie_GLEAN_10029256)Cell and petal morphogenesis(MIXTA)

AtMYB16,AtMYB106(Jakoby et al.2008)

10QxxAAAxxN//KxQLxHxMxQ//DDxxSDSxWK–

11LxNPExLRLAxxL[L/F]CsMYB11-1(tie_GLEAN_10041273)Wounding response

CsMYB11-2(cam_GLEAN_10024047)AtMYB102(De V os et al.2006)

CsMYB11-3(tie_GLEAN_10017628)Cell expansion,response to osmotic stress

AtMYB41(Lippold et al.2009),AtMYB74

12[L/F]LN[K/R]VA–Glucosinolate clade(Sethi et al.2008;Glinsky2008) 13D[L/V]F[N/S]KDLQR[I/M]AxxxGQ CsMYB13-1(tie_GLEAN_10015754)Seed mucilage deposition,stomatal closure

CsMYB13-2(cam_GLEAN_10026284)AtMYB61(Liang et al.2005)

14NxxPYWP[E/K]L CsMYB14-1(cam_GLEAN_10036976)Rax1,2,3axillary meristems clade

CsMYB14-2(tie_GLEAN_10046752)

CsMYB14-3(cam_GLEAN_10033620)

CsMYB14-4(cam_GLEAN_10029524)

CsMYB14-5(tie_GLEAN_10038768)

CsMYB14-6(cam_GLEAN_10013375)

CsMYB14-7(cam_GLEAN_10021482)

15WVxxDxFELSxL–Epidermal cell fate specification

Trichome subclade

AtMYB23(Kang et al.2009)

16PxLxFSEW CsMYB16-1(cam_GLEAN_10035542)Photomorphogenesis

AtMYB18,AtMYB19

18GLP[L/V]YP CsMYB18-1(cam_GLEAN_10036108)GAMYB-like genes

ABA/miR regulate

CsMYB18-2(tie_GLEAN_10047941)Anther development

Table2(continued)

Subgroups MYB gene name in C.sinensis a Putative function clade and gene function b

No.c Motif d

AtMYB65,AtMYB33,AtMYB101(Gocal et al.2001;

Flowers et al.2009)

19PxLxFSEW CsMYB19-1(cam_GLEAN_10018317)Anther development

CsMYB19-2(cam_GLEAN_10037103)AtMYB21(Lesne and Benecke2008;Yang et al.

2007),AtMYB24

20WxPRL CsMYB20-1(tie_GLEAN_10044994)ABA-dep gene expression,response to drought

CsMYB20-2(cam_GLEAN_10035632)AtMYB2(Guo and Gan2011)

CsMYB20-3(cam_GLEAN_10032957)Biotic/abiotic stress-related AtMYB108

CsMYB20-4(cam_GLEAN_10031476)

CsMYB20-5(cam_GLEAN_10008153)

CsMYB20-6(CsMYB1)

CsMYB20-7(cam_GLEAN_10034617)

21FxDFL CsMYB21-1(tie_GLEAN_10014553)Root quiescent center expression

CsMYB21-2(cam_GLEAN_10028723)AtMYB56

CsMYB21-3(cam_GLEAN_10012398)Fruit development AtMYB117(Gomez et al.2011)

CsMYB21-4(tie_GLEAN_10018271)ABA hypersensitivity and drought tolerance

CsMYB21-5(cam_GLEAN_10006316)AtMYB52(Park et al.2011)

22TGLYMSPxSP,GxFMxV VQEMLxxEVRSYM CsMYB22-1(cam_GLEAN_10015419)Auxin signaling pathway(AtMYB77)

CsMYB22-2(tie_GLEAN_10008899)Stomatal closure

Induce EIN2expression

CsMYB22-3(tie_GLEAN_10014947)AtMYB44(Liu et al.2011)

23AS[S/P]EE[T/H]L CsMYB23-1(cam_GLEAN_10028165)AtMYB1,AtMYB25,AtMYB109

CsMYB23-2(tie_GLEAN_10036963)

24IQMExDPxTH CsMYB24-1(cam_GLEAN_10024535)AtMYB53,AtMYB92,AtMYB93

CsMYB24-2(tie_GLEAN_10004571)

25LxxYIxx[I/V]N[N/D]CsMYB25-1(tie_GLEAN_10020427)Embryogenesis

CsMYB25-2(tie_GLEAN_10028528)AtMYB118(Zhang et al.2009)

26SSS[S/T]ST CsMYB26-1(cam_GLEAN_10023039)AtMYB99,AtMYB42,AtMYB43,AtMYB85,

AtMYB20

27KRxxxSP[T/I]SSxSNC[S/C]S[S/A]S CsMYB27-1(cam_GLEAN_10013986)Alternative splicing/non-canonical intron subgroup

AtMYB48

Root growth and cell cycle progression

AtMYB59(Mu et al.2009)

Other–cam_GLEAN_10012902AtMYB40

tie_GLEAN_10026681

Other–cam_GLEAN_10028088Anther development

tie_GLEAN_10030857AtMYB103(Parekh et al.2008)

Other–cam_GLEAN_10033790Anther development

tie_GLEAN_10041353AtMYB26(Samollow2008)

Other–cam_GLEAN_10022275AtMYB83

Other–tie_GLEAN_10040319AtMYB121

Other–cam_GLEAN_10019657Tepet layer,trichome development

AtMYB35,AtMYB80

Other–cam_GLEAN_10039398Sperm cell formation

tie_GLEAN_10046608AtMYB125

Other–cam_GLEAN_10011661AS1leaf morphogenesis(polarity specificity)and

plant immune response AtMYB91

cam_GLEAN_10018270

Other–cam_GLEAN_10032232Guard cell division restriction clade AtMYB124,

AtMYB88

a Number of R2R3-MYB genes in C.sinensis transcriptome

b Functional annotations of Arabidopsis

c Subgroup numbers from1to27were those describe

d by Strack

e et al.(2001),26and27were newly named to the subgroups who hold significant moti

f by MEME

d Motifs in tea transcriptom

e have been confirmed in most o

f these subgroups usin

g MEME(Bailey et al.2009)

0.02

Sg7

Sg4

Sg5

a

c

Fig.2Sg4,Sg5,and Sg7R2R3-MYBs'alignment of Camellia sinensis and Arabidopsis and phylogenetic tree.a R2R3-MYB amino acid sequences of C.sinensis and Arabidopsis in subgroups 4,5,and7were aligned by ClustalX,respectively.Particle align-ment was shown,and the conserved motifs were detected by MEME and were framed with black box.b Phylogenetic tree of R2R3-MYBs of C.sinensis and other plants in subgroups4,5,and 7was constructed by MEGA5(option selected:neighbor-joining method,p-distance,complete deletion,1,000bootstrap replicates).c Conserved motifs were detected by MEME and were listed behind each subgroup.Conserved motifs of subgroups4,5,and7:LNL [E/D]L,IRTKA[I/L]RC,and GR[T/V]SRSx[M/A]K.Gen-Bank accession numbers were Sg4:AtMYB3(AEE30263),AtMYB4(AEE86955),AtMYB7(AEC06531),PtMYB14 (ABD60279),DvMYB2(BAJ33514),HlMYB1(CAI46244), PhMYB4(ADX33331),EgMYB1(CAE09058),GmMYBZ2 (ABI73970),GhMYB9(AAS92347),AmMYB308(P81393), AmMYB330(P81395),GmMYB48(ABH02823),PtMYB057 (EEF00115),ZmMYB42(CAJ42204),PgMYB16(ACN12958), and PgMYB16(ACN12958);Sg5:GhMYB38(AAK19618), AtMYB123(Q9FJA2),OsMYB3(BAA23339),ZmC1 (AAA33482),VvMYB5a(AAS68190),DkMYB4(BAI49721); and Sg7:AtMYB11(XP_002876680),AtMYB12(O22264), AtMYB111(XP_002865729),VvMYBF1(ACV81697),GhMYB1 (CAD87007),LjMYB12(BAF74782),MdMYB22(AAZ20438), and ZmP(P27898)

AtMYB11(XP_002876680),AtMYB12(O22264),and AtMYB111(XP_002865729),shares the motif GR[T/V] SRSx[M/A]K(Fig.2b).Sg7may participate in the regulation of flavonol biosynthesis(Stracke et al.2010).CsMYB7-1 shared41.9%and35.42%identity with VvMYBF1 (ACV81697)and ZmP1(P27898).

Subfamilies of bHLHs and members involved

in the flavonoid biosynthetic pathway

Based on conserved short motifs identified outside of the DNA binding domain,Heim et al.(2003)classified the113 observed bHLH proteins into12groups from I to XII.In this system,members of IIId,IIIe,and IIIf function as TF regulating genes in flavonoid metabolism(Heim et al. 2003).Carretero-Paulet et al.presented a comprehensive classification as well as structural and evolutionary analy-sis of the bHLH gene family in plants,classifying638 observed bHLH genes from Arabidopsis,poplar,rice, mosses,and algae species into32subfamilies.Notably, subfamilies2,5,and24were identified as regulators in flavonoid or anthocyanin metabolism(Carretero-Paulet et al.2010).Using the same methods,49C.sinensis bHLHs and151AtbHLHs were constructed into a phylogenetic tree and divided into12groups from I to XII(inside number)and1–32subfamilies(outside number;Fig.3).

C.sinensis bHLHs were gathered and dispersed in nine subfamilies,including the subfamilies1,2,3,15,24,25, 26,28,and31.

The number of C.sinensis bHLHs association with flavo-noid biosynthesis was less than expected,with two C.sinensis bHLHs in subfamily2(cam_GLEAN_10012690and cam_GLEAN_10006335;renamed CsbHLH2-1and CsbHLH2-2)and five C.sinensis bHLHs in subfamily24 (tie_GLEAN_10024436,tie_GLEAN_10022821, cam_GLEAN_10025059,tie_GLEAN_10042126,and cam_GLEAN_10023958;renamed CsbHLH24-1to CsbHLH24-5).The two classification systems were consistent (e.g.,subgroup IIId members are included in subfamily2, subgroup IIIf members are equivalent to subfamily5,and subgroup VII members are equivalent to subfamily24). Surprisingly,no C.sinensis bHLHs clustered in subfamily5 were homologous to TT8.

CsbHLH2-1and CsbHLH2-2clustered in a single sub-clade,closely related to VvMYC4(XP_002279973)and HbMYC4(AEG74014)as shown in Fig.4b.CsbHLH24-2 and CsbHLH24-5were closely related to Pp_SPATUAlike (ADG56590),AtbHLH24(Q9FUA4),and CrMYC5 (ACM41588).CsbHLH24-1,CsbHLH24-3,and CsbHLH24-4shared71.95%,72.48%,and71.3%identity with AtbHLH8(O80536),respectively.

The HLH domain commonly provides information on specific DNA-binding ability due to the amphipathic affinity of its N-terminal.This is especially apparent in the critical His-Glu-Arg(H-E-R)located at positions5,9,and13.These HER sites have been shown to bind to a variation of the E-box hexanucleotide sequence(E-box:5′-CANNTG-3′,variation G-box:5′-CACGTG-3′)(Buck and Atchley2003).The HLH region is composed of two hydrophobicα-helices linked by a divergent loop,marked by the alignment of amino acids of subfamilies2and24in Fig.4a.The activation or repression domains,which are outside of the DNA binding domain,are important in gene expression regulation.These sequences usually contain short motifs that are conserved between relat-ed proteins in different species.In most cases,the protein architecture is remarkably conserved within specific subfami-lies,providing further support for phylogenetic analysis based on bHLH domains.

According to50motifs of variable length(8–80amino acids)summarized from the638bHLHs examined by Carretero-Paulet et al.(2010),conserved motif architecture structures in subfamilies2and24were11-14-8-20-12-2-1-7-4 and22-48-2-1-39-15,respectively(Fig.4c).The relative amino acid sequence motifs of C.sinensis observed in the current study were consistent with these previous findings.Motifs1 and2were commonly found in almost every bHLH protein and were identified as the helix2and helix1regions of the bHLH domain,respectively.No single motif was detected in either the basic or loop regions.All bHLH subgroups and subfamilies are listed in Table3along with the architecture of conserved motifs identified by MEME and gene function predicted by Arabidopsis data.

Involvement of a WD40gene in the flavonoid biosynthetic pathway

A total of195WD genes were isolated from the C.sinensis transcriptome dataset.Of these,134showed clear homology with WDR proteins in other eukaryotes.In contrast to Arabidopsis WDR proteins containing four or more recog-nizable copies of the motif in237of269WD40s,64of134 C.sinensis WD40s contained four or more WD repeats. Copy numbers of each WD40protein were shown in Online Resource1.A variety of parameters were selected in the MEGA5software in order to explore the relationship between the70WD40s in Anhui No.1,the64WD40s in Tieguanyin,and the237WDRs in Arabidopsis,attempting to form one cohesive phylogenetic tree.In this analysis, some paralogs significantly diverged outside of the WDR region,and were too diverged to allow them to be compiled unambiguously.Thus,the phylogenetic trees of Anhui No.1 and Tieguanyin WD40s were constructed separately from those of Arabidopsis WDRs.The phylogenetic trees were supplied as additional data shown in Online Resource2.

The tie_GLEAN_10026686(renamed CsWD40-1)was the only gene involved in the flavonoid biosynthesis pathway.

Sequence alignment of WDRs of known function was performed with ClustalX,and results are shown in Fig.5.CsWD40-1showed 80.4%identity with AtTTG1(CAB45372),81.1%identity with Medicago truncatula WD40-1(ABW08112),and 85.42%with Malus domes-tica TTG1(ADI58760).

Full-length validation and expression features

The 3′and 5′ends of CsMYB4-5,CsMYB4-6,CsMYB5-2,CsbHLH2-1,CsbHLH2-2,and CsWD40-1were amplified and assembled by 3′-and 5′-RACE-PCR.End-to-end PCR was performed,and the PCR products were purified,cloned,and sequenced.All products,with the exception of several bases on the 3′terminal of CsMYB7-1and CsbHLH24-3,were confirmed to be consistent with expected results.There were eight and five nucleotides inconsistent with the original CsMYB7-1and CsbHLH24-3of transcriptome dataset which coded for three and two different amino acids,respectively.Relative expression was profiled using qRT-PCR in C .sinensis leaves at different developmental stages and treat-ment conditions,including the two experimental hormone smudges (ABA and GA)and the six experimental wound treatment groups.Notably,the transcription factor genes exhibited different expression patterns (Fig.6).In tender roots,CsMYB4-2and CsMYB4-3exhibited a characteristic low expression,but CsMYB4-5and CsMYB4-6expression levels remained high.High levels of CsMYB5-1were expressed in mature second leaves,while CsMYB5-2in stems.Moderate CsMYB7-1expression was observed in all different organs examined.Hormone stimulation revealed that CsMYB4-1expression was reduced by more than twofold upon GA stimulation,but CsMYB4-4expression was increased more than twofold upon ABA stimulation.Expression of CsMYB5-2was inhibited by more than twofold upon GA stimulation and similarly enhanced by ABA stimu-lation.Furthermore,wound treatment was shown to enhance CsMYB7-1expression significantly.

High expression levels of CsbHLH2-1and CsbHLH2-2were found in roots.CsbHLH24-3and CsbHLH24-5were highly expressed in leaves,and CsbHLH24-1expression was highly expressed in stems.The expression levels of CsbHLH2-1,CsbHLH2-2,CsbHLH24-1,and CsbHLH24-5were increased by more than twofold upon ABA stimulation.The expression levels of CsbHLH24-2and CsbHLH24-3were inhibited by twofold upon GA stimulation and

similarly

Fig.3Evolutionary

relationships of bHLHs.Full-length amino acid sequences of bHLHs in Camellia sinensis transcriptome dataset and Ara-bidopsis genome were aligned by ClustalW of MEGA5.The phylogenetic tree was con-structed according to the neighbor-joining method.

Branches corresponding to par-titions reproduced in less than 50%bootstrap replicates were collapsed.The evolutionary distances were computed using the p -distance method.All positions containing gaps and missing data were eliminated.Evolutionary analyses were conducted in MEGA5.The in-ner subgroups from I to XII were according to Heim,and the outside subfamilies from 1to 32were marked based on Carretero-Paulet et al.

Table 3Subfamilies of bHLHs in Camellia sinensis and motifs

Subgroup No.a Subfamily No.b bHLH gene name in Arabidopsis c bHLH gene name in C .sinensis d

Conserved motifs in subfamilies e

Relative gene functions f

Ia

10

AtbHLH6748-28-2-26-1-39-7-4-19

Stomata differentiation:FAMA (AtbHLH97)

AtbHLH97AtbHLH70AtbHLH71AtbHLH57AtbHLH99AtbHLH96AtbHLH94AtbHLH98AtbHLH45

Ib

12

AtbHLH952-1-37

Stomata differentiation:MUTE (AtbHLH45),SPEECHLESS (AtbHLH98)

AtbHLH55Iron homeostasis:ORG2(AtbHLH38),ORG3(AtbHLH39)

AtbHLH125AtbHLH126AtbHLH118AtbHLH120AtbHLH36AtbHLH100AtbHLH101AtbHLH38AtbHLH39

II

9

AtbHLH9148-45-22-2-1-7-29AtbHLH10AtbHLH89

IIIa

1

AtbHLH2211-2-1-47-4

Regulation of iron uptake:FIT (AtbHLH29)

AtbHLH29AtbHLH21

Anther development:AMS (AtbHLH21),DYT1(AtbHLH22)IIIb

AtbHLH93Stomata development and cold acclimatization

response and freezing tolerance:ICE1(AtbHLH116),SCRM2(AtbHLH33)

AtbHLH61AtbHLH33AtbHLH116

IIIc

AtbHLH90AtbHLH35AtbHLH27

IIId

2

AtbHLH3cam_GLEAN_10006335(tie_GLEAN_10005499)11-14-8-20-12-2-1-7-4AtbHLH13tie_GLEAN_10001220

(cam_GLEAN_10012690)

AtbHLH17AtbHLH14

IIIe

AtbHLH6Tryptophan biosynthesis:dominant mutation of ATR2(AtbHLH5);ABA,JA,and light signaling pathway:MYC2(AtbHLH6)

AtbHLH4AtbHLH5AtbHLH28

IIIf

5

AtbHLH42/TT811-2-1-12-47-29

Anthocyanin biosynthesis (GL3,EGL3,TT8)AtbHLH12/MYC1Seed coat differentiation (GL3,EGL3,TT8,MYC1)AtbHLH1/GL3Proanthocyanidin biosynthesis (TT8)AtbHLH2/EGL3

Trichome formation (MYC1,GL3,EGL3)

Iva

3

AtbHLH20tie_GLEAN_1004209127-2-1-7-4Endoplasmic reticulum body formation:NAI1(AtbHLH20)

AtbHLH19tie_GLEAN_10006869AtbHLH18tie_GLEAN_10029282AtbHLH25

cam_GLEAN_10018241cam_GLEAN_10018117

IVb

4

AtbHLH4731-2-1-9-15

Metal homeostasis regulation,response to auxin stimulus,stress response,seed development

AtbHLH11

Subgroup No.a

Subfamily No.b

bHLH gene name in Arabidopsis c bHLH gene name in C .sinensis d

Conserved motifs in subfamilies e

Relative gene functions f

AtbHLH121

IVc

AtbHLH105Metal homeostasis,auxin-conjugate metabolism:ILR3(AtbHLH105)

AtbHLH115AtbHLH34AtbHLH104

IVd 7AtbHLH412-1-44-29AtbHLH92Va 14AtbHLH1022-1-50-4Brassinosteroid signaling

AtbHLH46Vb

13

AtbHLH13135-2-1-25-35-22

AtbHLH30AtbHLH32AtbHLH107AtbHLH106AtbHLH51

17

AtbHLH15126-2-1Unidimensional cell growth

AtbHLH144AtbHLH143AtbHLH142AtbHLH145

VI Orphans (32)AtbHLH10948-48-2-48-1-21-4Embryonic development ending in seed dormancy AtbHLH108Early embryo development:MEE8(AtbHLH108)VIIa

24

AtbHLH65tie_GLEAN_10024436

10-16-3-2-21-1-23Light and gibberellin signaling:PIF1(AtbHLH105),

PIL5(AtbHLH65),PIF3(AtbHLH8),PIF4(AtbHLH9)

AtbHLH9AtbHLH8AtbHLH56AtbHLH127AtbHLH119AtbHLH23AtbHLH15AtbHLH124AtbHLH132

VIIb

AtbHLH26tie_GLEAN_10042126Regulation of anthocyanin,regulation of seed

germination,gibberellic acid signaling,regulation of chlorophyll metabolism,negative gravitropism AtbHLH72AtbHLH16cam_GLEAN_10025059AtbHLH73cam_GLEAN_10023958AtbHLH24

tie_GLEAN_10006711Fertilization process:UNE10(AtbHLH16)tie_GLEAN_10022821Fruit dehiscence:ALC (AtbHLH73)

cam_GLEAN_10020333Phytochrome and cytochrome signaling:HFR1(AtbHLH26),carpel margin development

Mediator of germination responses to light and

temperature:SPT (AtbHLH24),female gametophyte development

VIIIa 30

AtbHLH1172-1-15

AtbHLH52AtbHLH53VIIIb 31AtbHLH87cam_GLEAN_1002730518-10-21-45

Flower and fruit development,initiation/maintenance of axillary meristems

AtbHLH88tie_GLEAN_10015094AtbHLH37tie_GLEAN_10033927Transmitting tract and stigma development:HEC1

(AtbHLH88),HEC2(AtbHLH37),HEC3(AtbHLH43)

AtbHLH43tie_GLEAN_10038431AtbHLH40cam_GLEAN_10028044AtbHLH140

cam_GLEAN_10018105VIIIc 28AtbHLH54tie_GLEAN_100212143-2-1Root hair,rhizoid,and caulonemata development

AtbHLH84cam_GLEAN_10006896Root hair formation:RHD6(AtbHLH83),RSL1(AtbHLH86)AtbHLH85tie_GLEAN_10031011Root hair development:RSL4(AtbHLH54),RSL3

(AtbHLH84),RSL2(AtbHLH85),SL5(AtbHLH135)

AtbHLH83

tie_GLEAN_10011950

Subgroup No.a Subfamily

No.b

bHLH gene name

in Arabidopsis c

bHLH gene name

in C.sinensis d

Conserved motifs

in subfamilies e

Relative gene functions f

AtbHLH86cam_GLEAN_10032416

AtbHLH139

IX27AtbHLH1303-2-1-24

AtbHLH128

AtbHLH129

AtbHLH122

AtbHLH81

AtbHLH80

X15AtbHLH113tie_GLEAN_1002732348-45-2-1-13Response to ethylene stimulus

AtbHLH123

AtbHLH68

AtbHLH133

AtbHLH110

AtbHLH103

AtbHLH114

AtbHLH112

AtbHLH111

XI26AtbHLH69cam_GLEAN_1003229222-22-22-3-2-43-1Female gametophyte development,response to phosphate

deficiency stress

AtbHLH66tie_GLEAN_10019021

AtbHLH82tie_GLEAN_10032589Root hair development:AbHLH66,AbHLH69,AbHLH82

AtbHLH7cam_GLEAN_10033481Fertilization forming zygote and endosperm:

UNE12(AbHLH59)

AtbHLH59cam_GLEAN_10010677

XII25AtbHLH75tie_GLEAN_1003188022-3-2-1-30-5Brassinosteroid and abscisic acid signaling,floral

transition,petal morphogenesis

AtbHLH50tie_GLEAN_10040329

AtbHLH44cam_GLEAN_10015063

AtbHLH63cam_GLEAN_10023216

AtbHLH49tie_GLEAN_10016811

AtbHLH76cam_GLEAN_10025896

AtbHLH78tie_GLEAN_10035514

AtbHLH62cam_GLEAN_10036734

AtbHLH74tie_GLEAN_10046947

AtbHLH48cam_GLEAN_10026427

AtbHLH60(tie_GLEAN_10028643)

AtbHLH31tie_GLEAN_10023068

AtbHLH79cam_GLEAN_10018573

AtbHLH58tie_GLEAN_10022404

AtbHLH64cam_GLEAN_10012772

AtbHLH137tie_GLEAN_10026434

16AtbHLH1342-1Gibberellic acid-light and gibberellic acid signaling AtbHLH135

AtbHLH136

19AtbHLH14727-2-1

AtbHLH148

AtbHLH149

AtbHLH150

21AtbHLH1462-1Light and auxin signaling,shade avoidance

a Subgroup numbers from I a to XII were those described by Heim et al.(2003)

b Subfamily numbers from1to32were those described by Carretero-Paulet et al.(2010)

c Number of bHLH genes in C.sinensis transcriptome

d Architectur

e conserved motifs described by Carretero-Paulet et al.(2010)

e Functional annotations mainly with reference to Arabidopsis(Feller et al.2011;Carretero-Paulet et al.2010)

f Short conserved motifs summarized from the638bHLHs with50motifs of variable length(Carretero-Paulet et al.2010)

enhanced by ABA stimulation.Notably,CsbHLH2-2and CsbHLH24-4expressions were enhanced by GA stimulation. Wound treatment was shown to downregulated the expression of CsbHLH2-1.The expression of CsWD40-1was highest in the first and fourth leaves,demonstrating suppression upon wound stimulation.

Subfamily2

Subfamily24

a

c b

Fig.4Subfamilies2and24bHLHs'alignment of Camellia sinensis and phylogenetic tree.a Amino acid sequences of bHLHs in subfami-lies2and24of C.sinensis and Arabidopsis were aligned by ClustalX. The basic helix-loop-helix(bHLH)domain,which always provides the specific DNA-binding ability,was shown.The His5-Glu9-Arg13(H-E-R)motif could be easily found.b Phylogenetic tree of bHLHs of C. sinensis and other plants in subfamilies2and24was constructed by MEGA5(option selected:neighbor-joining method,p-distance,pair-wise deletion,1,000bootstrap replicates).c Architectures of conserved motifs of bHLHs in subfamilies2and24in bHLH genes:11-14-8-20-12-2-1-7-4and22-48-2-1-39-15,respectively.GenBank accession numbers were subfamily2:HbMYC4(AEG74014),Rc_02518914(XP_002518914),Pt_002299425(XP_002299425),VvMYC4 (XP_002279973),GmMYC2-like(XP_003528771),AtbHLH3 (O23487),AtbHLH14(O23090),AtbHLH17(Q9ZPY8),and AtbHLH26(Q9FE22);subfamily24:VvPIF3-like(XP_002276198), Md_AEX32796(AEX32796),VITISV_042277(CAN83346), Pp_SPATULA-like(ADG56590),Rc_002514702(XP_002514702), CrMYC5(ACM41588),AtbHLH24(Q9FUA4),AtbHLH8 (O80536),AtbHLH16(Q8GZ38),AtbHLH72(Q570R7),AtbHLH119 (Q8GT73),AtbHLH127(Q7XHI7),AtbHLH23(Q9SVU6), AtbHLH15(Q8GZM7),AtbHLH9(Q8W2F3),AtbHLH65 (Q8GZM7),AtbHLH124(Q84LH8),and AtbHLH132(Q8L5W7)

Discussion

Characteristics and function prediction of candidate R2R3-MYB genes in Sg4,Sg5,and Sg7

Arabidopsis is a model plant useful for the study of flavonoid biosynthesis due to its rich variety of mutant types,the availability of comprehensive genome data,and its relatively short growth https://www.360docs.net/doc/993954669.html,pared with Arabidopsis ,the study of regulation networks involved in polyphenol biosynthesis in more complex plants,such as C .sinensis ,is considerably more difficult.The C .sinensis transcriptome dataset applied in the current study contains a wealth of genetic information,consist-ing of over 127,094unigenes.Transcription factor gene identification is necessary to improve the general under-standing of polyphenol metabolism regulation in the commercially important plant C .sinensis .

Target sites in the flavonoid biosynthetic pathway in C .sinensis are likely regulated by specific transcription factors,as shown in Fig.7.Genes in the same phylogenetic clades generally exhibit similar functions,while genes in different clades usually are involved with variant biological processes with distinct regulatory characteristics.For example,Sg3R2R3-MYBs (MYB58,MYB63,and MYB85)are involved in stimulating the synthesis of lignin.Sg5R2R3-MYBs can activate LBGs in PA biosynthesis pathways,usually requir-ing a ternary complex (TT2/TT8/TTG1)of transcription factors (Hichri et al.2011).R2R3-MYBs of Sg6(PAP1,PAP2,MYB113,and MYB114)are known to combine with bHLHs (TT8,GL3,and EGL3)and WD40(TTG1)to form a ternary complex that activates LBGs and transfers protein genes,such as ANS ,DFR ,F3′H ,LDOX ,UGT78D2,and UGT75C1,in Arabidopsis (Gonzalez et al.2008).As a result,these compounds regulate the synthesis of anthocya-nins in these plants.R2R3-MYBs of Sg7generally activate EBG promoters,such as CHS ,CHI ,F3H ,and FLS1,in-volved in control of the flavonol branch.Notably,this occurs without combining with bHLH proteins,while R2R3-MYBs of Sg4(MYB4,MYB3,MYB7,and MYB32)downregulate polyphenol biosynthesis by interact-ing with bHLH proteins.

Phylogenetic and motif analysis can be an effective meth-od for predicting the function of transcription factors in tea plants,such as C .sinensis .In most tea plants,high levels of polyphenol compounds are generally present,ranging from 18%to 30%of the dry weight of C .sinensis ,but only nine R2R3-MYB genes have been predicted to participate in flavonoid biosynthesis.Notably,no distribution of C .sinen-sis genes was observed in Sg15.This observation may be explained by the relationship between the Sg15subgroup and epidermal cell fate specification or trichome morpho-genesis and initiation (e.g.,AtMYB23).Similarly,no C .sinensis genes were observed in the Sg6subgroup,widely known as the anthocyanin-related subclade.This lack of Sg6genes may be a result of low anthocyanin contents in tea plants,normally accounting for only 2–3%of the dry weight.

Members of the Sg4subgroup have been shown to be representative factors for phenolic acid metabolism and lignin biosynthesis.For example,AtMYB4has been shown to be a transcriptional repressor involved in the inhibition of upstream gene expression,such as the cinnamate 4-hydroxylase gene (C4H )(Jin et al.2000).Furthermore,enhanced levels of sinapate esters have been identified in the AtMYB4mutant,a characteristic presumed to be associ-ated with enhanced expression of C4H (Jin et al.2000).AmMYB308significantly downregulates the expression of C4H ,4-coumaroyl-CoA ligase gene (4CL ),and the cin-namyl alcohol dehydrogenase gene (CAD )in the phenyl-propanoid metabolism of transgenic tobacco (Tamagnone et al.1998).CsMYB4-4and CsMYB4-6showed

close

Fig.5Alignment of WD40s from Camellia sinensis and other species.Full-length amino acid sequences of WD40s in C .sinensis and other species aligned by ClustalX.GenBank accession numbers were MdTTG1(ADI58760),PhAN11(AAC18914),InWDR (BAE94407),PFWD (BAB58883),AtTTG1(CAB45372),and ZmPAC1(AAM76742)

homology with AtMYB4and AmMYB308,and were thus predicted to possess the similar functions.Similarly, CsMYB4-5was closely related to PtMYB14,a tissue-preferential promoter for CAD that is involved in the accu-mulation of sesquiterpene in conifers(Bedon et al.2010). Although C.sinensis genes were often clustered in the same subgroups,their expression patterns varied widely(Fig.6). For example,CsMYB4-5and CsMYB4-6were highly expressed in roots,but low expression of CsMYB4-2and CsMYB4-3were observed in roots.The expression of CsMYB4-1was significantly reduced by GA stimulation, while the expression of CsMYB4-4was increased more than twofold by ABA stimulation.In fact,different flavonoids were shown to accumulate differently in various organs of C.sinensis.For instance,lower levels of catechins(flavan-3-ols monomers)and flavonols,and higher levels of PAs (polymerized flavan-3-ols)were observed in roots compared with those observed in leaves.Further evaluations by trans-genic studies are being performed to validate the function of these genes.

CsMYB4-1

Fig.6Relative expression levels of17R2R3-MYB,bHLH,and WD40genes in different Camellia sinensis organs and different treat-ments by real qRT-PCR.The gene expression was determined by qRT-PCR experiment,and the relative expression values are calculated by the2àΔΔC t method.Values were normalized against the expression level of housekeeping gene GAPDH,and relative to fourth leaf and CK as a calibrator.The left part is the relative expression levels in C.sinensis organs,and the right part is the relative expression levels in third leaves treated by hormones(ABA,GA)and wound.ΔC T?C T;targetàC T;GAPDH;àΔΔC T?àΔC T;targetàΔC T;fourth leaf

àá

;and àΔΔC T?àΔC T;targetàΔC T;CK leaf1h

àá

,where C T,target and C T, GAPDH

are the threshold cycles of targets and housekeeping gene GAPDH,respectively.Ordinate is the value of2àΔΔCt

R2R3-MYBs of subgroup 5have been reported to regu-late PA biosynthesis.Due to the high content of flavan-3-ols in C .sinensis ,Sg5may be the most worthy research sub-group.R2R3-MYBs in Sg5are known to combine with bHLHs (TT8,GL3,and EGL3)and WD40s (TTG1)to form a ternary complex (MBW)that activates LBGs for PA in Arabidopsis (Nesi et al.2001).The functions of many known R2R3-MYBs in Sg5have already been investigated,including TT2,VvMYB5a,and DkMYB4.It has been sug-gested that the stringent expression of BAN promoting PA accumulation is partially determined by TT2(Nesi et al.2001;Baudry et al.2004).Nesi et al.(2001)predicted that TT2is required for normal expression of the DFR gene in the immature siliques of Arabidopsis ,demonstrating that it has a relatively high expression in the early globular to globular stages.It has also been demonstrated that overexpression of VvMYB5a in tobacco leads to high accu-mulation of anthocyanins and PAs,especially in flowering plants (Deluc et al.2006).CsMYB5-2was shown to be closely related with DkMYB4,proven to regulate PA bio-synthesis in persimmon fruit.The suppression of DkMyb4in persimmon calluses also caused a substantial downregula-tion of the PA pathway genes and PA biosynthesis (Akagi et al.2009a ).The expression levels of CsMYB5-1and CsMYB5-2in different organs varied (Fig.6).Surprisingly,both of them were minimally expressed in roots,suggesting that they may be involved in other metabolic pathways as well,offering a potential explanation for the inconsistency of their expression patterns with PA accumulation.

R2R3-MYBs of subgroup 7are known for their roles in flavonol biosynthesis regulation.Flavonol and flavonol gly-coside account for 3–4%of the dry weight of C .sinensis .In

ANR Sg5+bHLH2+WD

40

Sg5+bHLH24+WD40

Sg7, bHLH24

Sg7

Sg7Sg4,Sg7,bHLH24Sg4Sg4Sg4

CHI 1-phenylalanine PAL

Cinnamic acid C4H

4-coumarate

4CL

4-coumaroyl-coA

CHS Naringenin Chalcones

Delphinidin 3-O-glucoside LAR

ANS

2,3-trans-flavan-3-ol ((+)catechin,C)

Anthocyanidin

ANR

Cyanidin 3-O-glucoside

LAR

2,3-trans-flavan-3-ol ((+)gallocatechin,GC)

ANS

Anthodelphinidin UFGT

UFGT

2,3-cis-flavan-3-ol ((-) Epicatechin, EC)

(-)Epicatechin-3-gallate

(ECG)

2,3-cis-flavan-3-ol ((-) Epigallocatechin,EGC)

(-) Epigallocatechin-3-gallate

(EGCG)Galloyl

acid

UGGT

β-glucogallin

(βG)

ECGT

ECGT

GCH

GCH

Naringenin

F3’H

F3’5’H

F3H

2,3-dihydroquercetin

DFR leucocyanidin

2,3-dihydromyricetin

DFR

leucodelphinidin

Pentahydroxyflavanone

Eriodictyol F3H

F3’H

F3’5’H

Dihydrokaempferol F3H

Flavonoids

FLS FLS FLS

Fig.7The flavonoid biosynthesis pathway in Camellia sinensis and the predicted transcription factors.Transcription factors that may be combining with the target genes in the flavonoid biosynthesis pathway in C .sinensis were in italics and bold type .Genes and products were shown in accordance with the order of the arrow .P AL

phenylalanine ammonia lyase,C4H cinnamate 4-hydroxylase,4CL 4-coumaroyl-CoA ligase,CHS chalcone synthase,CHI chalcone isomerase,F3H flava-none 3-hydroxylase,F3′H fla-vonoid 3′-hydroxylase,F3′5′H flavonoid 3′,5′-hydroxylase,FLS flavonol synthase,DFR dihydroflavonol 4-reductase,LAR leucoanthocyanidin reduc-tase,ANS anthocyanidin syn-thase,ANR anthocyanidin reductase,UGGT UDP-glucose:galloyl-1-O -β-D -glu-cosyltransferase,ECGT epica-techins:1-O -galloyl-β-D -glucose O -galloyltransferase,GCH galloylated catechins hydrolase

Arabidopsis,MYB11,MYB12(PFG2),and MYB111 (PFG3)control the flavonol branch of flavonoid biosynthe-sis,differentially influencing the spatial accumulation of specific flavonol derivatives(Stracke et al.2010). Promoters of the early flavonoid biosynthetic genes CHS, CHI,F3H,and FLS1are activated by independent MYB12, without a bHLH partner.Mechanistically,it has been sug-gested that this compound binds similar cis-element(s)in the promoters of different target genes(Stracke et al.2007). CsMYB7-1is closely related to VvMYBF1and ZmP1 clades.The expression of VvMYBF1facilitates the accumu-lation of flavonols,significantly enhancing the expression of VvFLS1(Czemmel et al.2009).ZmP1is also a Sg7member that activates a subset of the flavonoid pathway genes re-quired for biosynthesis of phlobaphene pigments and3-deoxy-flavonoids.Notably,this is accomplished without binding a bHLH protein(Grotewold et al.1994).Sg7R2R3-MYBs were also shown to control additional target genes, including the UDP-glycosyltransferases genes UGT91A1and UGT84A1(Czemmel et al.2009).Moderate CsMYB7-1ex-pression was observed in different organs(Fig.6). Characteristics and function prediction of candidate bHLH genes in subfamilies2and24

Evolutionary analysis of bHLH reveals both evolutionary relationships as well as predictions of gene https://www.360docs.net/doc/993954669.html,ing this technique,it can be simply confirmed that members of a single clade are generally involved in similar biological processes.For example,members in subgroup IIIf have been extensively documented for their involvement in an-thocyanin biosynthesis(Spelt et al.2000),seed coat differ-entiation(Nesi et al.2000),trichome formation,and root hair formation(Dixon et al.2005).BHLHs in this subgroup were reported to combine with MYBs harbored[DE] Lx2[RK]x3Lx6Lx3R motif.The C.sinensis bHLHs did not cluster in subgroup IIIf.The fact that fewer bHLH genes were identified in our transcriptome analysis than expected may be a result of the high genetic heterozygosity of C. sinensis,making sequence assembly difficult.As sequenc-ing techniques improve,future studies will be likely to detect more bHLH genes in C.sinensis.

Previous classifications relied on bHLH signature domains, which are composed of approximately60amino acids ar-ranged according to their bifunctional structure.Because bHLH proteins usually contain short conserved motifs outside of the bHLH domain,additional functional properties may be better characterized by subfamily-specific motifs(Carretero-Paulet et al.2010).For instance,motif14is commonly found in subfamilies2,5,and23,where it plays a functionally important role in the expression of several downstream genes acting in the Trp biosynthesis pathway(Smolen and Bender 2002).Motif6is shared by the members of subfamily23and has been characterized in AtLHW as necessary for homodi-merization(Ohashi-Ito and Bergmann2007).

Based on these methods,two bHLH genes of subfamily 2and five bHLH genes of subfamily24have been pre-dicted to be involved in flavonoid metabolism.In subfam-ily24,AtbHLH8(PIF3)positively regulates anthocyanin biosynthesis by binding anthocyanin biosynthetic gene promoters containing G-box elements such as CHS, F3H,DFR,and LDOX(Shin et al.2007).From Fig.6, the expressions of both CsbHLH2-1and CsbHLH2-2were significantly increased by ABA stimulation,predicting that they may at least participate in ABA signaling. Meanwhile,CsbHLH2-1might be involved in wound responses as well.GA treatment was shown to upregulate the expression of CsbHLH24-4,and downregulate the expression of CsbHLH24-2and CsbHLH24-3,indicating their regulation in GA signaling.These are consistent with functions of subfamilies2and24reported in other species (Carretero-Paulet et al.2010).

In most cases,proteins within a single subgroup share conserved motifs and have similar,though not necessarily identical,functions.Most bHLH proteins interact with R3 repeat domains of MYB proteins at the N-terminal acidic region to form the MYB–bHLH complex involved in flavo-noid biosynthetic pathway regulation.Another important interaction domain in bHLH proteins is the ACT-like dimer-ization domain located on the C-terminal of the bHLH motif,where it plays a role in homodimeric bHLH–bHLH formation(Feller et al.2011).

Characteristics and function prediction of CsWD40-1 Analysis of the transcription factors R2R3-MYB,bHLH, and WD40revealed that only the WD40s of C.sinensis could not be combined with those of Arabidopsis to construct a phylogenetic tree.This can be explained by the relatively large evolutionary gap of WD40be-tween Anhui No.1and Tieguanyin.An experimental study showed that MdTTG1was capable of fully replacing AtTTG1for AtBAN promoter activation in cooperation with TT2and TT8in a co-transfection system(Brueggemann et al.2010).AtTTG1plays an important role in the regulation of DFR,LDOX,and ANR expression by interacting with a bHLH transcrip-tion factor(GL3,EGL3,or TT8)and a MYB transcrip-tion factor(PAP1,PAP2,MYB113,or MYB114)in MBW form.This ternary complex always affects PA accumulation in seeds and anthocyanin accumulation in plant tissues(Walker et al.1999;Hichri et al.2011; Petroni and Tonelli2011;Appelhagen et al.2011).Pang et al.(2009)found that the deficiency of MtWD40-1 expression strongly suppressed flavonoid structural genes thus blocked accumulation of a range of phenolic

WD40万能防锈润滑剂技术说明书资料TDS

WD-40超浸透性万能防锈润滑剂技术资料 一、超浸透性防锈润滑剂 WD-40从字面上看是“Water Displacement, 40th attempt”,WD-40的W代表水,D 代表消除,40th代表第40次尝试。 WD-40的名称是直接取自1953年研发WD-40的化学工作人员研究笔记中所用的名词。 当时,化学家Norm Larsen试图调制一种可以通过去除水分、湿气的作用,防止腐蚀的配方。 Norm在完成第40次尝试之后,凭着毅力努力不懈,终于得到饱尝,完成发明。 WD-40中包含什么?在WD-40的官方网站上宣称,WD-40所含成份是一项工业机密,仅该公司极少数人员知道,但是他们可以告诉大家WD-40不含哪些成份。WD-40不含矽、煤油、水、腊、石墨、氟氯碳化物(CFC),或任何已知致癌媒介。 二、成分/组成信息 脂肪烃类:60-70%,石油基油:15-25%,二氧化碳:2-3%,其它无危险性混合物:<10% 危险成分:无特殊危害成分 三、主要特性 Stops Squeaks 消除噪声 Drives Out Moisture 排除湿气 Cleans and Protects 清洁及防锈 Loosens Rusted Parts 松解生锈机件 Frees Sticky Mechanisms 解化粘固杂质 四、WD-40的功能 1.清洁:WD-40可澈底清除沾染的灰尘、污垢与油渍。更能解粘着物、轻易去除贴纸、胶带、卷标与粘性超强的素材。 2.除湿:由于WD-40 能去除湿气、水份,因此可让电子系统快速干燥,防止因湿气造 成短路。 3.渗透:WD-40可去除让金属粘合的铁锈,解开粘连、冻塞或生锈的金属零件。 4.润滑:WD-40的润滑成份均匀广布,并牢牢附着在可转动的零件上。 5.保护: WD-40 含抗腐蚀成份,可保护金属表面,以防湿气与其它腐蚀因素侵袭 五、WD-40基本特征 物理性能 WD-40品质完全符合美军检验合格MIL SPEC C-23411 外表:透明或略带白色絮状物 颜色:淡琥珀色 气味:清淡怡人 比重:0.800±0.020(在25℃) 黏度:27.5±1.0秒(Zahn黏度杯#1,在25℃) 闪燃点:43℃(最低点) 不挥发百分比:占重量22%(最低点) 挥发百分比:占重量78%(最高点) 凝固点:-73℃

《危险化学品重大危险源辨识GB18218-2014最新版》

危险化学品重大危险源辨识GB18218-2014 20141407 前言 本标准的全部技术内容为强制性的。 本标准代替GB18218—2009《重大危险源辨识》。 本标准与GB18218—2009相比主要变化如下: ———将标准名称改为《危险化学品重大危险源辨识》; ———将采矿业中涉及危险化学品的加工工艺和储存活动纳入了适用范围;———不适用范围增加了海上石油天然气开采活动; ———对部分术语和定义进行了修订; ———对危险化学品的范围进行了修订; ———对危险化学品的临界量进行了修订; ———取消了生产场所与储存区之间临界量的区别。 本标准由国家安全生产监督管理总局提出。 本标准由全国安全生产标准化技术委员会化学品安全标准化分技术委员会(TC288/SC3)归口。 本标准负责起草单位:中国安全生产科学研究院。 本单位参加起草单位:中石化青岛安全工程研究院。 本标准主要起草人:吴宗之、魏利军、刘骥、多英全、师立晨、高进东、孙猛、于立见、张海峰、杨春笋、彭湘潍。 本标准于2009年首次发布,本次修订为第二次修订。 危险化学品重大危险源辨识 1范围 本标准规定了辨识危险化学品重大危险源的依据和方法。 本标准适用于危险化学品的生产、使用、储存和经营等各企业或组织。 本标准不适用于: a)核设施和加工放射性物质的工厂,但这些设施和工厂中处理非放射性物质的部门除外; b)军事设施; c)采矿业,但涉及危险化学品的加工工艺及储存活动除外; d)危险化学品的运输; e)海上石油天然气开采活动。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB12268危险货物品名表

WD-40万能防锈润滑剂

WD-40万能防锈润滑剂 包装规格:350ml/瓶、500ml/瓶(20%增量包装) 1加仑/桶、5加仑/桶 详细说明: WD-40 简要说明: 一、WD-40简介WD-40万能防锈润滑剂是具有防锈、除湿、除锈、润滑、清洁、电导六大功能的无脂非矽类的多用途金属保养剂,是各类机械设备、精密仪器、零部件的高效保养剂,可以让金属制品长期保持上佳工作状态,延长使用寿命。 WD-40原是为导弹的保养而研发的,推出后即受到美国太空总署的重视,被指定为太阳神火箭保养剂,因其优异的性能而许多发达国家用作导弹、喷射推进器、引擎及其配件的专用保养剂。近年来,WD-40被广泛应用于世界各地的军工、冶金、飞机、汽车、通讯设备等许多制造型企业以及家庭,被誉为“金属制品的万能保养剂”,可谓是“从太空到家庭,妙用无穷”。50多年历史,170多个国家,2000种常规用途,见证了WD-40的优秀品质。WD-40在生产、存储、保养、修理等环节都能一显身手,为世界知名企业及各国军队所推崇,WD-40六大功能同时发生作用且安全无害,对金属提供完善的保养,比单一功能产品更有效、更方便、更经济、更省时,具有极大的应用价值。 二、WD-40六大功能说明WD-40是金属制品的万能保养剂,集合防锈、除湿、除锈、润滑、清洁、电导这6大功能,同时发挥作用,保护各种设备,使您的工作得心应手。防锈特性WD-40与金属表面有极强的亲和力,而且渗透性极强(比水更强),能够渗透到金属毛细孔内部,将湿气和水份排除,形成一层仅0.0025-0.0076毫米的致密保护膜,以隔绝湿气和空气,达到长期防锈效果。 适用范围: WD-40适用于任何电子精密仪器(如导弹推进器、回转罗盘)、雷达及齿轮、自动武器、炮台滚子、控制面板、精密配件、五金工具、机械配件、工作母机、电器接触点、炸弹投射系统、合金喷射涡轮机浆钢铁零件,并可以防止高灵敏组件腐蚀及氧化。除湿特性WD-40的渗透性极强(比水更强),而且与金属表面有极佳的亲和力,从而能够渗透到金属毛细孔内部,形成一层仅0.0025-0.0076毫米的致密保护膜,有效地排除金属表面及毛细孔内部的水分和湿气。 WD-40能够有效解决许多器件因受潮而产生的短路问题,如:引擎点火系统(分电盘)、火星塞、电瓶接头部位、开关、发电机、变压器、电线线圈、马达绕线圈、配电盘、电磁开关、继电器、按钮等。并且是各种全天候器械、枪械、输变电线路及设备、轮船设备、农用机械、园林设备的最有效的除湿保养剂。除锈特性WD-40的渗透性极强,能够渗透到金属表面及毛细孔内部,而且对于铁锈粒子等腐蚀沉淀物具有极好的溶解性,能够打破其粒子之间的粘结,使铁锈等沉淀物轻易脱落。 WD-40除锈特性优秀,能够将各种因生锈而黏死的螺钉、螺帽的锈垢轻松除去,并起

主要危险化学品危害特性全解

主要危险化学品危害特性 甲醛 一、标识 中文名甲醛、蚁醛、福尔马林 英文名Formaldehyde 分子式CH2O;HCHO 相对分子质量30.03 CAS号50-00-0 危险性类别第8.2类其他腐蚀品 化学类别醛类。 二、主要组成与性状 主要成分纯品 外观与性状无色,具有刺激性和窒息性的气体,商品为其水溶液 主要用途是一种重要的有机原料,也是炸药、染料、医药、农药的原料,也作杀菌剂、消毒剂等。 三、健康危害 侵入途径:吸入、食入、经皮吸收 健康危害:本品对粘膜、上呼吸道、眼睛和皮肤有强烈刺激性。接触其蒸气,引起结膜炎、角膜炎、鼻炎、支气管炎;重者发生喉痉挛、声门水肿和肺炎等。对皮肤有原发性刺激和致敏作用;浓溶液可引起皮肤凝固性坏死。口服灼伤口腔和消化道,可致死。 慢性影响:长期低浓度接触甲醛蒸气,可出现头痛、头晕、乏力、两侧不对称感觉障碍和排汗过盛以及视力障碍。本品能抑制汗腺分泌,长期接触可致皮肤干燥皲裂。

甲醛是一种具强还原性的原生质毒素,进入人体器官后,能与蛋白质中的氨基结合生成所谓甲酰化蛋白而残留在体内,其反应速度受pH值温度的显著影响。进入人体的甲醛亦可能转化成甲酸强烈地刺激粘膜,并逐渐排出体外。 四、急救措施 皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗。或用2%碳酸氢溶液冲洗。 眼睛接触:立即提起眼睑,用流动清水或生理盐水冲洗至少15分钟。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。必要时进行人工呼吸。就医。 食入:患者清醒时立即漱口,洗胃。就医。 五、燃爆特性与消防 燃烧性不燃 闪点(℃)50℃/37% 爆炸下限(%)7 引燃温度(℃)300℃ 爆炸上限(%)73 最小点火能(Mj)无资料 最大爆炸压力(Mpa)无资料 危险特性其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。若遇高热,容器内压增大,有开裂和爆炸的危险。 灭火方法灭火方法:雾状水、泡沫、二氧化碳、砂土。 六、泄漏应急处理

水性防锈剂润滑剂在切削液配方中的应用

水基防锈剂、切削液的发展与应用 金属在潮湿空气中或浸于水中是很容易受到腐蚀的。但在水中加入一定量的缓蚀剂,这种水就是具有一定防锈功能的防锈水。防锈水被广泛应用于金属加工过程中工序间防锈,也可把材料浸泡在防锈水中暂时贮存。本文最后将介绍两款水基防锈剂在切削液、防冻液、水-乙二醇抗燃液压液、防锈水中的应用。 最常用的水溶性防锈剂主要有 亚硝酸钠:亚硝酸钠(NaNO2)是目前应用最广泛最廉价的水溶性防锈剂,多与碳酸钠共用。对黑色金属(钢、铁、锡)有效,对铜等有色金属无效。易溶于水、甘油,难溶于乙醇和乙醚。但在使用时最后不低于0.3%,在保护钢铁时其临界浓度为0.25%,低于0.25%时则形成腐蚀,所以最好保持在0.5%以上。在含高浓氯离子的海水中则没有防锈作用,在含氧化剂或还原剂的水中,缓蚀效果也大为降低。适用于闭封式循环系统,敞开式系统则需要更高的浓度。在常温下易产生硝化细菌营养物质而导致微生物腐蚀(在防冻液中不会,水温较高),对人和生物有害,特别是和胺类合用时形成的亚硝胺有致癌作用;缓蚀过程中会还原成氨,腐蚀某些金属材料。 无水碳酸钠:一般不单独使用,而是和亚硝酸钠复配使用。 应用举例: 亚硝酸钠3~8%,无水碳酸钠0.5~0.6%,水余量,用于全浸小零件; 亚硝酸钠3~8%,三乙醇胺0.5~0.6%,水余量,用于全浸、喷淋精密零件防锈; 亚硝酸钠15%,无水碳酸钠0.5~0.6%,甘油30%,水余量,用于中间库存防锈、成品防锈。 三乙醇胺:易溶于水,呈碱性,常和亚硝酸钠、苯甲酸钠一起复配防锈水使用,其用量一般为0.5~10%,实际用量更偏高,只对钢铁有效,对铜、铬、镍会加速腐蚀。 苯甲酸钠:溶于水和醇,配成1~1.5%防锈水即可阻止钢的腐蚀,也可减缓铜、铅的锈蚀,浓度大于40g/L 时,对铝、硅钢、铸铁、钢都有明显缓蚀作用。 苯并三氮唑:是铜、银等有色金属的缓蚀剂,对抑制铜变色、腐蚀最有效,易溶于醇,微溶于水。 其它如钼酸钠、N-烷基亚氨双丙烯酸钠、六亚甲基四胺(乌洛托品)、尿素、磷酸盐、铬酸盐、硅酸钠等不再一一介绍。 近年来,国内新型水溶性缓蚀剂研究取得一些新的进展。如1-羟基苯并三唑及其碱土金属的氢氧化物、羊毛脂肪酸二乙酰胺和氨基酸、甲基肉桂酸的碱金属盐或胺盐、饱和脂肪二羧酸和聚酰胺羟膦酸盐等。一些不含亚硝酸盐的防锈水陆续投入市场。 以下内容请不要含民族主义色彩来阅读(否则请不用看下去了),日本的绿色环保意识及科技水平早于中国几十年。 日本切削液制造商组织“全国工作油剂工业组合”要求会员厂停止出售含亚硝酸钠的切削液。他们不断用以有机防锈剂为主体的切削液。渡边昭次等人研制了高性能、安全性好的切(磨)削液,对多种羧酸的胺盐进行了研究,发现苯甲酸的烷基、烷氧基、硝基和氯代衍生物的胺盐具有较好的防锈性,而溴、碘衍生物的胺盐除具有防锈性外,还具有良好的抗磨性。间宫富士雄提出了植酸(肌醇六磷酸酯)作为水溶性缓蚀剂---是植物中大量存在的有机膦酸化合物,特别存在于种子、谷物当中。因其分子结构中具有同金属配合的24个氧原子、12个羟基和6个磷酸基,与金属接触时极易在金属表面形成一层致密的有机单分子保护膜,使金属的电极电位变得和铂、金一样,从而有效阻止了金属的腐蚀。 植酸可用作管道的防蚀剂(添加钠盐、胺盐0.05%~0.2%);防冻液的缓蚀剂(添加钠盐、胺盐 0.1~0.5%)。 日本第一工业制药株式会社生产的水溶性防锈剂-1,日本油脂公司的MET-ALEX.CA-2057,美国HUGHTON公司的Rust Veto65等,其效果优于亚硝酸盐+三乙醇胺组合。 国内某公司引进日本人才及技术研发的Wb-r-8011及Wb-r-8012水性防锈剂近年来被多家公司广泛应用于切削液、防锈水、防冻液、水基液压液等产品中,取得良好效果。其水溶液PH8~9. 产品wb-r-8011主用于钢铁件,DIN51360PART2铁屑/滤纸试验,2%浓度溶于DIN20度GH硬水中0级;IP287铁屑/滤纸腐蚀试验,临界点2%;0.5%溶液中钢板浸泡两个月无锈;2.0%溶液中铸铁粉室温24无锈。产品Wb-r-8012主用有色金属特别是铜的缓蚀剂,也可用于气相缓蚀剂中。

Unit 5 基础化学品

Unit 5 Basic Chemicals 基础化学品 我们将化学工业部门分成两类,生产量较高的部门和产量较低的部门。在产量高的部门中,单个化学品的年产量达数万吨至数十万吨。结果生产这些产品的工厂专门生产某一个单个产品。并且采用连续化方式进行生产,自动化程度高(计算机控制)。归类于产量高的部门的化学品有硫酸,含磷化合物,含氮化合物,氯碱及其相关化合物,加上石油化学品和日用聚合物,如聚乙烯。除日用聚合物外,其它的均为重要的中间体,或基础化学品。这些基础化学品是其他许多化学品的生产原料,(市场)对这些其他化学品的需求量很大。 相反,产量低的部门主要从事精细化学品的生产。单个化学品的年产量只有几十吨到几千吨。然而,与高产量的产品相比,这些产品单位重量具有很高的价值。通常,精细化学品都是以间歇方式进行生产的,而且这些工厂常进行多种产品的生产。低产量生产部门生产农用化学品,染料,药品和特种聚合物,如聚醚醚酮。 基础化学品在化学工业中得不到支持,它们不那么引人注意(如药品),有时候利润不很高。其利润会随着经济盛衰发生难以预测的周期性的变化。 这些基础化学品不被公众注意到和直接使用,因此其重要性常得不到理解。即使在化学工业中,其重要性也得不到足够的重视。然而,如果没有这些基本化学品,其他工业将不复存在。 基础化学品处于原料(及那些从地下通过采矿、开采或用泵抽出来的物质)和最终产品的中间位置。基础化学品的一个显著的特征就是它们的生产规模,每一种(基础化学品)的生产规模都相当大。为了使我们了解化学品的分类与产量,图2-1表示在1993 年美国市场上按产量排名前25位的化学品。通常,基础化学品生产是在那些年产量上万吨的工厂中进行的。年产量10 万吨的工厂每小时要生产1.25 吨。基础化学品的另一显著重要的特征是其价格:大多数价格都相当便宜。 基础化学品工业所作的任务是找到经济的途径将原料转变为有用的中间体。生产厂家几乎没有余地对它们的产品收取较高的价格,因此,那些生产成本最低的厂家可能获得的利润最高。这就意味着,厂家就必须不断准备寻求新的,更经济的生产和转变原料的方法。 许多基础化学品为石油精炼的产物,而部分基础化学品工业----硫、氮、磷和氯碱工业是把除C、H外的元素加入到化学品中去。总之,这些产品和石化工业的基本产物两者结合起来可生产无数重要的化学品,而这些重要的化学品又构成了其余化学工业的原料。

化学品对健康的危害

危险化学品 由于化学品的毒性,刺激性,致癌性,致畸性,致突变性,腐蚀性,麻醉性,窒息性等特性,所以化学品的安全管理是一项重要内容: 1、毒物的分类:毒物的分类方法有多种,而常用的分类方法是将毒物分为以下几类。 1.1金属和类金属 常见的金属和类金属毒物有铅、汞、锰、镍、铍、砷、磷及其化合物等。 1.2刺激性气体 是指对眼和呼吸道粘膜有刺激作用的气体。它是化学工业常遇到的有毒气体。刺激性气体的种类甚多,最常见的有氯、氨、氮氧化物、光气、氟化氢、二氧化硫、三氧化硫和硫酸二甲酸等。 1.3窒息性气体 是指能造成机体缺氧的有毒气体。窒息性气体可分为单纯窒息性气体、血液窒息性气体和细胞窒息性气体。如氮气、甲烷、乙烷、乙烯、一氧化碳、硝基苯的蒸气、氰化氢、硫化氢等。 1.4农药 包括杀虫剂、杀菌剂、杀螨剂、除草剂等。农药的使用对保证农作物的增产起着重要作用,但如生产、运输、使用和贮存过程中末采取有效的预防措施,可引起中毒。 1.5有机化合物 大多数属有毒有害物质,例如应用广泛的有机溶剂,如苯、甲苯、二甲苯、二硫化碳、汽油、甲醇、丙酮等;苯的氨基和硝基化合物,如苯胺、硝基苯等。 1.6高分子化合物

高分子化合物本身无毒或毒性很小,但在加工和使用过程中,可释放出游离单体对人体产生危害,如酚醛树脂遇热释放出苯酚和甲醛而具有刺激作用。某些高分子化合物由于受热、氧化而产生毒性更为强烈的物质,如聚四氟乙烯塑料受高热分解出四氟乙烯、六氟丙烯、八氟异丁烯,吸入后引起化学性肺炎或肺水肿。高分子化合物生产中常用的单体多数对人体有危害。 2、毒物进入人体的途径 毒物可经呼吸道、消化道和皮肤进入体内,在工业生产中,毒物主要经呼吸道和皮肤进入体内,亦可经消化道进入,但比较次要。 2.1呼吸道 是工业生产中毒物进入体内的最重要的途径。凡是以气体、蒸气、雾、烟、粉尘形式存在的毒物,均可经呼吸道侵入体内。人的肺脏由亿万个肺泡组成,肺泡壁很薄,壁上有丰富的毛细血管,毒物一旦进入肺脏,很快就会通过肺泡壁进入血循环而被运送到全身。通过呼吸道吸收最重要的影响因素是其在空气中的浓度,浓度越高,吸收越快。 2.2皮肤 在工业生产中,毒物经皮肤吸收引起中毒亦比较常见。脂溶性毒物经表皮吸收后,还需有水溶性,才能进一步扩散和吸收,所以水、脂皆溶的物质(如苯胺)易被皮肤吸收。 2.3消化道 在工业生产中,毒物经消化道吸收多半是由于个人卫生习惯不良,手沾染的毒物随进食、饮水或吸烟等而进入消化道。进入呼吸道的难溶性毒物被清除后,可经由咽部被咽下而进入消化道。 3、对人体的危害 有毒物质对人体的危害主要为引起中毒。中毒分为急性、亚急性和慢性。

主要化工产品(最新)

主要化工产品(最新)

一、我国石油化工产业 1、产业链概述 石油化工产业是以石油、天然气等为原料生产化学产品及其它精细化学品的加工工业。其产业链可概述为:把石油分离成原料馏分,进行热裂解,得到基本有机原料,主要是三烯(乙烯、丙烯、丁烯)、三苯(苯、甲苯、二甲苯)、乙炔、萘等基本有机化工原料。在“三烯、三苯、乙炔、萘”的基础上,通过各种合成步骤制得醇、醛、酮、酸、酯、醚、腈类等中间有机原料;在有机原料的基础上,通过各种聚合、缩合制得合成纤维、合成树脂、合成橡胶即三大合成材料以及其它精细化工产品。 上述产业链通过石油加工生产过程图及产业链产品关系图得到诠释(见图)。 (加《概论》两图) 2、石化工业的产品生产及进出口 由于石化工业的产品广泛应用于国民经济的各个领域,伴随着我国经济社会的发展进步,石化工业产品生产产量总体呈现逐年增长的势头。

伴随着我国经济社会的发展进步,同时受石油资源供应约束,一些基础有机化工原料处于不能满足需求的状态,需要进口;也由于石油化工产业全球市场化程度较高,尽管一些基础有机化工原料处于不能满足需求的状态,因市场机制的作用,需要出口。 表我国主要石化产品出口数量(单位:万吨)

3、一些基础有机原料产品 (1)乙烯 乙烯在常温常压下为无色气体,具有烃类特有的臭味,属C2系列,在石油化工基础原料中占主导地位。其衍生物主要有:环氧乙烷、乙二醇(醚味液体);氯乙烯(无色气体)(聚氯乙烯是塑料产量最大的品种);乙醛(无色液体);醋酸(无色液体);聚乙烯等。 乙烯产能是考量国家和地区石油化工产业发展的重要指标,目前,我

国乙烯生产能力世界排名第二。 乙烯产量稳步增长。2009年,我国乙烯产量达1069.7万吨,2004年—2009年期间,乙烯产量年均增长%。 乙烯生产布局。我国乙烯生产主要集中在中石油、中石化两大集团和合资企业中。从地域分布来看,华东产能占比最大,达到38.5%,依次为华南20.1%、东北19.7%、华北10.6%、其它地区占比11.0%。

罗新民 金属加工液中功能添加剂(防锈剂 润滑剂 表面活性剂 杀菌剂)的应用

金属加工液中功能添加剂的应用罗新民教授 二〇一〇年十月·苏州 -润滑剂、防锈剂、表面活性剂与杀菌剂-

主要内容 润滑剂 1 防锈剂 2 表面活性剂3 杀菌剂 4

§润滑剂能降低加工过程中的摩擦阻力和工具磨损,获得更好的加工精度和表面质量,延长工具使用寿命。它包括基础油、油性剂和极压抗磨剂。 §(一)基础油 §1、矿物油 §I类、II类、III类基础油:国产I类、II类,III类基础油主要从日本、韩国进口。 §溶剂油:D40,D60,D80,D70,D90,D110,异构烷烃等; §低黏度油:柴油,煤油,全损耗系统用油,70N,90N,150SN,非标油等; §高黏度油:500SN,150BS,减线油,抽余油等。

§2、植物油 §菜籽油,棉籽油,妥尔油,棕榈油,椰子油等。 §3、动物油:猪油,牛油等。 §4、合成油 §酯类油:有双酯、多元醇酯、季戊四醇酯、复酯、自乳化酯等多种类型。 §聚α-烯烃(PAO):用于要求高低温等特殊场合,如内燃机油和齿轮油等,在加工用油中较少用到。§硅油:用作脱模剂,消泡剂等。 §聚醚(PAG):线性聚合物,比水溶性油剂有更好的润湿性、冷却性、稳定性、抗菌性,使用寿命长。用作切削油、拉拔油、冲压油和水基淬火液等。

§合成酯的供应商: §CRODA禾大(收购了Uniqema):合成酯,聚醚,乳化剂。 §德国COGNIS(科宁)公司 §英国英锐驰化学有限公司 §Hatco公司(美国Chemtura科聚亚集团成员之一) §Lubrizol路博润的聚合酯、水溶/ 可乳化酯和聚亚烷基二醇衍生物 §科莱恩(Clariant)合成酯,乳化剂,杀菌剂

主要化工产品(最新)

一、我国石油化工产业 1、产业链概述 石油化工产业是以石油、天然气等为原料生产化学产品及其它精细化学品的加工工业。其产业链可概述为:把石油分离成原料馏分,进行热裂解,得到基本有机原料,主要是三烯(乙烯、丙烯、丁烯)、三苯(苯、甲苯、二甲苯)、乙炔、萘等基本有机化工原料。在“三烯、三苯、乙炔、萘”的基础上,通过各种合成步骤制得醇、醛、酮、酸、酯、醚、腈类等中间有机原料;在有机原料的基础上,通过各种聚合、缩合制得合成纤维、合成树脂、合成橡胶即三大合成材料以及其它精细化工产品。 上述产业链通过石油加工生产过程图及产业链产品关系图得到诠释(见图)。 (加《概论》两图) 2、石化工业的产品生产及进出口 由于石化工业的产品广泛应用于国民经济的各个领域,伴随着我国经济社会的发展进步,石化工业产品生产产量总体呈现逐年增长的势头。

伴随着我国经济社会的发展进步,同时受石油资源供应约束,一些基础有机化工原料处于不能满足需求的状态,需要进口;也由于石油化工产业全球市场化程度较高,尽管一些基础有机化工原料处于不能满足需求的状态,因市场机制的作用,需要出口。 表我国主要石化产品出口数量(单位:万吨)

3、一些基础有机原料产品 (1)乙烯 乙烯在常温常压下为无色气体,具有烃类特有的臭味,属C2系列,在石油化工基础原料中占主导地位。其衍生物主要有:环氧乙烷、乙二醇(醚味液体);氯乙烯(无色气体)(聚氯乙烯是塑料产量最大的品种);乙醛(无色液体);醋酸(无色液体);聚乙烯等。 乙烯产能是考量国家和地区石油化工产业发展的重要指标,目前,我

国乙烯生产能力世界排名第二。 乙烯产量稳步增长。2009年,我国乙烯产量达1069.7万吨,2004年—2009年期间,乙烯产量年均增长%。 乙烯生产布局。我国乙烯生产主要集中在中石油、中石化两大集团和合资企业中。从地域分布来看,华东产能占比最大,达到38.5%,依次为华南20.1%、东北19.7%、华北10.6%、其它地区占比11.0%。

专业的工业污垢清洗剂、金属防锈润滑剂、切削液等系列工业化学产品生产供应商

专业的工业污垢清洗剂、金属防锈润滑剂、切削加工液系列产品生产供应商华阳-恩赛有限公司(中美合资) 网址: 地址:CHINA 电话:-(山东分公司孙先生) 总部地址:辽宁省大连市金州新区双D港 1986年春,美国NCH公司和中国华阳技术贸易集团在大连合资创建了第一家中美合资企业——华阳-恩赛有限公司。?华阳恩赛一贯坚持把美国NCH公司的先进技术、科学管理和现代经营理念与中国实际有机融合,全方位向中国工业设备维护维修和机械零部件加工领域提供专用化学品;大批的高级管理、研发人才和高素质员工,以及遍布全国各中心城市、工业城市的分支机构和销售网络,使她在中国大陆始终处于行业龙头地位,成为国内专业性最强、影响最广、规模最大的设备维护化学品、零件工序化学品及其相关产品供应商。20多年来,华阳恩赛在打造中国专用化学品著名品牌的过程中,还创造了无数个中国第一,它们是:?第一个在中国引进工业品直销经营模式的公司; 第一个在中国实行全天候销售和技术服务的公司; 第一个在中国推介TPM全面生产维护概念的公司;?第一个在中国导入设备全系列维护化学品的公司;?第一个在中国供应航空飞行器维修化学品的公司; 第一个在中国拥有零件工序全系列化学品的公司;?第一个在中国经营期限达75年的中美合资公司;?第一个在中国通过ISO9001:2000的业内公司; 第一个在中国配套现场应用增值方案的业内公司; 第一个在中国应用Oracle管理软件的业内公司; 第一个在中国开展全员职业大学教育的业内公司; 第一个在中国实现年产量达10万吨的业内公司; …… 华阳恩赛严格执行与NCH公司签订的《许可证和技术合作协议》,不断推出技术先进、性能优良、质量稳定、使用简便、安全可靠的:?设备维护化学品(设备维护化学品——清洗剂、防锈剂等;飞机维修化学品——清洗剂;循环水处理药剂——阻垢剂、杀菌剂、分散剂等),广泛应用于航空航天、机电加工、石油化工、钢铁制造、能源动力、交通运输、电信通讯等行业的机械设备清洗、防锈、维护保养处理;?零件工序化学品(金属加工液——全合成液、微乳液、全乳液等;零件工序化学品——清洗剂、防锈剂等),集中应用于航空航天、机电加工、军工制造、电子产品、信息通讯、仪器仪表、光学器材、交通运输、机械设备、能源动力、原材料生产等领域的零部件和原材料机械加工过程中的润滑、冷却、净洗、防锈。?华阳恩赛重视环境保护和人身健康,以防止全球变暖、全球替代淘汰ODS为契机,成功地研制开发了系列环保型产品,为建

危险化学品名录(2015版)解读

《危险化学品目录(2015版)》解读 《危险化学品目录》(以下简称《目录》)是落实《危险化学品安全管理条例》(以下简称《条例》)的重要基础性文件,是企业落实危险化学品安全管理主体责任,以及相关部门实施监督管理的重要依据。根据《条例》规定,近日,国家安全监管总局会同国务院工业和信息化、公安、环境保护、卫生、质量监督检验检疫、交通运输、铁路、民用航空、农业主管部门制定了《目录(2015版)》,于2015年5月1日起实施,《危险化学品名录》(2002版)、《剧毒化学品目录》(2002年版)同时予以废止。 制定背景 2003年3月,根据《条例》(国务院令第344号),原国家安全监管局发布公告《危险化学品名录》(2002版)(原国家安全生产监督管理局公告2003年第1号),包括危险化学品条目3823个。2003年6月,国家安全监管总局、公安部、国家环境保护总局、卫生部、国家质量监督检验检疫总局、铁道部、交通部和中国民用航空总局联合发布公告《剧毒化学品目录》(2002年版)(原国家安全生产监督管理局等8部门公告2003年第2号),包括剧毒化学品条目335个。 根据联合国《全球化学品统一分类和标签制度》(以下简称GHS),我国制定了化学品危险性分类和标签规范系列标准,确立了化学品危险性28类的分类体系。由于《危险化学品名录》(2002版)主要采用爆炸品、易燃液体等8类危险化学品的分类体系,与现行化学品危险性28类的分类体系有巨大差异。现行《条例》(国务院令第591号)调整了危险化学品的定义,规定“危险化学品,是指具有毒害、腐蚀、爆炸、燃烧、助燃等性质,对人体、设施、环境具有危害的剧毒化学品和其他化学品”。同时,《剧毒化学品目录》(2002年版)列入的品种偏多,不符合剧毒化学品管理的实际情况,有必要进行调整。 制定过程 2011年7月21日,《目录》首次制修订工作会议在国家安全监管总局召开。国家安全监管总局、工业和信息化部、公安部、环境保护部、交通运输部、铁道部、农业部、卫生部、质检总局、民航局10个领导小组成员单位的有关司局负责人和专家出席会议。会议讨论通过了《目录制修订办法》,成立了《目录》制修订工作领导小组和专家组,并在国家安全监管总局化学品登记中心设立《目录》制修订工作组,承担目录制修订的具体工作。

《危险化学品重大危险源辨识》(GB18218-2009)

危险化学品重大危险源辨识 (GB18218-2009) 2009年3月31日发布2009年12月1日实施 前言 本标准的全部技术内容为强制性的。 本标准代替GB18218—2000《重大危险源辨识》。 本标准与GB18218—2000相比主要变化如下: ———将标准名称改为《危险化学品重大危险源辨识》; ———将采矿业中涉及危险化学品的加工工艺和储存活动纳入了适用范围; ———不适用范围增加了海上石油天然气开采活动; ———对部分术语和定义进行了修订; ———对危险化学品的范围进行了修订; ———对危险化学品的临界量进行了修订; ———取消了生产场所与储存区之间临界量的区别。 本标准由国家安全生产监督管理总局提出。 本标准由全国安全生产标准化技术委员会化学品安全标准化分技术委员会(TC288/SC3)归口。 本标准负责起草单位:中国安全生产科学研究院。 本单位参加起草单位:中石化青岛安全工程研究院。 本标准主要起草人:吴宗之、魏利军、刘骥、多英全、师立晨、高进东、孙猛、于立见、张海峰、杨春笋、彭湘潍。 本标准于2000年首次发布,本次修订为第一次修订。 危险化学品重大危险源辨识 1范围 本标准规定了辨识危险化学品重大危险源的依据和方法。 本标准适用于危险化学品的生产、使用、储存和经营等各企业或组织。 本标准不适用于: a)核设施和加工放射性物质的工厂,但这些设施和工厂中处理非放射性物质的部门除外;b)军事设施; c)采矿业,但涉及危险化学品的加工工艺及储存活动除外; d)危险化学品的运输; e)海上石油天然气开采活动。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本

危险化学品重大危险源辨识(GB18218-2018)

GB18218-2018 (2018年11月19日发布2019年3月1日起实施) 前言 本标准的全部技术内容为强制性的。 本标准按照GB/T1.1-2009给出的规则起草。 本标准代替GB 18218—2009《危险化学品重大危险源辨识》,与GB 18218—2009相比,主要技术变化如下: ——适用范围中明确厂外运输不包括在辨识范围内【见第1章d,2009年版本的第1章d】; ——修改了危险化学品、危险化学品重大危险源的定义(见3.1、3.4,2009年版的3.1、3.4); ——增加了混合物的定义(见3.7); ——修改了重大危险源分类,分为生产单元重大危险源和储存单元危险源(见4.1.1,2009年版的4.1.1); ——修改了危险化学品名称(见表1,2009年版的表1); ——修改了危险化学品分类方法(见4.1.2,2009年版的4.1.2); ——增加了危险化学品实际存在量的确定方式(见4.2.2); ——增加了对混合物的辨识要求(见4.2.3); ——增加了重大危险源的分级方法(见4.3) 本标准由中华人民共和国应急管理部提出并归口。 本标准负责起草单位:中国安全生产科学研究院、中国石油化工股份有限公司青岛安全工程研究院.。 本标准主要起草人:魏利军、王如君、多英全、师立晨、张圣柱、于立见、罗艾民、杨春生、宋占兵、杨国梁、李运才、赵文芳、王家见。 本标准所替代标准的历次版本发布情况为: ——GB18218-2000、GB18218-2009

1 范围 本标准规定了辨识危险化学品重大危险源的依据和方法。 本标准适用于生产、储存、使用和经营危险化学品的生产经营单位。 本标准不适用于: a) 核设施和加工放射性物质的工厂,但这些设施和工厂中处理非放射性物质的部门除 外; b) 军事设施; c) 采矿业,但涉及危险化学品的加工工艺及储存活动除外; d) 危险化学品的厂外运输(包括铁路、道路、水路、航空、管道等运输方式; e) 海上石油天然气开采活动。 2 规范性引用文件 下列文件对本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB30000.2 化学品分类和标签规范第2部分:爆炸物 GB30000.3 化学品分类和标签规范第3部分:易燃气体 GB30000.4 化学品分类和标签规范第4部分:气溶胶 GB30000.5化学品分类和标签规范第5部分:氧化性气体 GB30000.7化学品分类和标签规范第7部分:易燃液体 GB30000.8化学品分类和标签规范第8部分:易燃固体 GB30000.9化学品分类和标签规范第9部分:自反应物质和混合物 GB30000.10化学品分类和标签规范第10部分:自燃液体 GB30000.11化学品分类和标签规范第11部分:自燃固体 GB30000.12化学品分类和标签规范第12部分:自热物质和混合物 GB30000.13化学品分类和标签规范第13部分:遇水放出易燃气体的物质和混合物

科普:重要的化学品——哌啶

科普:重要的化学品——哌啶 哌啶,又称六氢吡啶,是一个杂环化合物,分子式为(CH2)5NH。 哌啶可以说是一个泊来词,是由英语“piperidine”直接音译而 来,为了表明它的意思,在音译过来之后加了口字旁。哌啶是一个 仲胺,可看作环己烷一个碳被氮替代后形成的化合物,即氮杂环己 烷。室温下为无色发烟液体,有类似氨、胡椒的刺激性气味,广泛 应用在有机合成,尤其是药物合成中。亦可用于DNA测序。 哌啶环存在于很多生物碱中,如奎宁和胡椒碱。工业上,它由吡 啶氢化制备,用二硫化钼(MoS2)作催化剂: 用钠-乙醇溶液也可将吡啶还原为哌啶。 在有机化学中,哌啶是很常用的仲胺,用于将酮转化为烯胺。另外,哌啶与次氯酸钙反应生成氯代胺C5H10NCl,该化合物发生脱卤化氢反应得到环状的亚胺。 附录1 与哌啶有关的化学实验 一、肉桂酰哌啶的制备(有机化学·合成实验) 反应机理如下: a.方法一 b.方法二

实验操作如下: 将1.2g的肉桂酸溶于24 mL 二氯甲烷,加2ml 三乙胺,然后在冰水浴下慢慢滴加1.2 mL氯甲酸甲酯,滴加完后在室温下继续搅拌1 h,将1.3 mL哌啶溶于8 mL 二氯甲烷,在冰盐浴下慢慢滴加到反应液中,室温下反应2 h。 先常压再减压除去了溶剂。用水和碳酸钠溶液交替洗涤固体,最后用大量水洗涤干净。有固体析出,将固体滤出,干燥,得白色固体。取微量的干燥产品,用二氯甲烷溶解,分别做TLC检测和气相色谱检测。 实验装置图如下: 二、香豆素-3-羧酸的合成(有机化学·合成实验) 本实验采用水杨醛和丙二酸脂在弱碱六氢吡啶的催化下进行Knoevenagel缩合合成香豆素-3-羧酸乙酯,然后经碱水解、酸化而成香豆素-3-羧酸。 首先,在干燥的100 mL圆底烧瓶中,加入2.2 mL(0.041mol)的水杨醛、3.4mL(0.045mol)丙二酸二乙酯和12.5 mL无水乙醇,再用滴管滴入0.25mL的六氢吡啶,加入几颗沸石,装上接有无水氯化钙干燥管的回流冷凝管,在水浴中加热回流1h。冷却后将反应物倒入10mL 冰水中,于冰水中结晶,立即有大量晶体析出。待结晶完全后,抽滤,滤饼每次用冰的50%的乙醇洗涤2~3次。得产品于80℃烘箱中干燥,得到3.68g白色晶体。 然后,在100mL圆底烧瓶中,加入10mL 95%的乙醇和NaOH溶液(2g固体NaOH溶于

科普:重要的化学品——高锰酸钾

科普:重要的化学品——高锰酸钾 高锰酸钾是什么?百科上的解释是:高锰酸钾是一种无机化合物,化学式为KMnO 4,又称灰锰氧,系紫红色晶体,为强氧化剂,可溶于水,遇乙醇即被还原。常用作消毒剂、水净化剂、氧化剂、漂白剂、毒气吸收剂、二氧化碳精制剂等。1659年被西方人发现。医疗上有用作清洁消毒,和用来消灭真菌之用。 高锰酸钾在生活中哪能找到呢?这种东西药店就有卖 的,那种一片一片地封在铝箔的药片板里的。而药店出售 的大多数是有淀粉杂质的,用于化学实验的纯的高锰酸钾 就只能从化学试剂店买了。可是,这种常见的化学药品却 因为易制毒而受到国家管制,不少人只能依赖网络,如淘 宝,去网购这种东西来做实验。 高锰酸钾究竟有多神秘呢?事实上,它是化学实验中的一种常见的氧化剂,可以氧化一些具有还原性的无机物与有机物,如亚硫酸钠、抗坏血酸(维生素C )等都可以被高锰酸钾氧化。当高锰酸钾与一些强还原剂混合时,甚至摩擦就可爆炸,硫、磷、硼氢化钠便属于强还原剂。它们的混合是禁忌的。 除了作为氧化剂,另一个用途就是在实验室制备纯氧。高锰酸钾受热分解,产生墨绿色的锰酸钾、棕黑色的锰氧化物(二氧化锰),并放出氧气: 。而同为高价态的氧化剂重ch óng 铬 酸钾(化学式K 2Cr 2O 7)对热的稳定性就要比它好得多。此外,当高锰酸钾接触盐酸,就可以氧化它,放出氯气,即使盐酸并不浓 : 。 有一个趣味实验,是挖一些高锰酸钾堆成小山状或放在瓶盖里,然后在高锰酸钾上倒入甘油(即丙三醇),过一会儿,便会发现甘油自燃——这是强氧化剂与还原剂(特别是可燃物)作用的结果,其化学反应方程式为: 。 如不慎将高锰酸钾弄在手上,留下了印记,只有等它慢慢消去了。如果是实验后高锰酸钾留在了仪器上(一般是二氧化锰之类的),可以用草酸、维生素C 、亚硫酸氢钠、盐酸羟胺(又名氯化羟胺)之类的还原剂来清洗。 除了以上说的高锰酸钾不能和可燃物或还原剂接触之外,还有一样东西不能和高锰酸钾接触——那就是硫酸。硫酸和高锰酸钾接触会产生一种爆炸性很强的物质——七氧化二锰,一旦条件不怎么对,就会自爆。

(完整版)国外几家主要的化学品公司介绍

国外几家主要的化学品公司介绍(要求加点分啊) 国外, 化学品 1.3主要的国际化造纸化学品公司介绍 1.3.1概述 国际大型化学品公司主要在北美的美国、欧洲的北欧部分如德国、荷兰、瑞士、瑞典、芬兰等经济发达国家,亚洲方面主要是日本和韩国造纸化学品技术,中国台湾和香港地区引进国外造纸化学技术比较早,新加坡等南亚国家也主要是引进美国和欧洲造纸化学品技术等。这些国家和地区的众多公司目前都在我国占有一定的化学品市场份额。 特别是2008年末到2009年底以来的世界经济危机之际,世界经济特别是欧美国家造纸及化学品工业受到很大冲击,只有中国虽然也受到了一定的影响,但在中国整体经济向好大环境下,中国造纸及化学品产业仍在快速发展。给上述这些公司在中国的发展带来了机遇。据资料介绍,科莱恩公司、巴斯夫公司、赫克力士公司等在国外的业务都是亏损的,只有中国市场成为了他们的利润点。 介绍国外化学品目的在于,目前,我国造纸化学品还不是很发达,大型造纸企业,还是更多的使用这些跨国公司造纸化学品。了解这些国外造纸化学品公司的经营管理模式也是我们造纸化学品项目值得更多借鉴的。 1.3.2主要几家公司介绍 1.3. 2.1凯密拉(Kemira) 芬兰一家大型跨国公司,是近几年迅速发展起来的。芬兰的林纸工业在全球占据着重要的地位,有着世界排名第2和第5的造纸巨头——斯道拉恩索和UPM,同样也造就了为其服务的制浆造纸化学品企业。这两家公司也在我国有合资公司,华泰斯道拉恩索和UPM芬欧汇川两家大型造纸企业,在我国拥有一定的地位。 该集团公司从2001年开始通过收购兼并,从单一区域性公司一跃成为全球最大的技术领先的制浆造纸化学品供应商之一。目前在全球制浆化学品中占7%市场份额,在造纸化学品中占有8%市场份额,在全球水处理业务上占3.3%的市场。 由四大业务部门组成:制浆造纸化学品、水处理化学品、专用化学品和涂料。其中制浆造纸化学品占公司业务的37%,从2000-2007年销售额从3.32亿欧元增长到10.18亿欧元,制浆造纸化学品中制浆化学品占42%,造纸化学品占51%,添加剂占7%。 该公司在全球有十几家研究机构,其中在中国的研发中心,也是其在亚洲的研发中心,设在了上海,加大了中国市场开发力度。虽然比较其它公司进入中国较晚,但发展势头特别快。并且在浙江宜兴建设造纸化学品生产基地。与山东兖州天成化工有限公司共同投资3.6 亿元成立了凯密拉天成化学品(兖州)有限公司。 1.3. 2.2赫克力士(Hercules) 该公司是进入我国较早从事造纸化学品的国外公司,总部位于美国特拉华州威明顿市,业务核心是造纸化学品与纤维素醚,其中造纸化学领域的业务占公司总体的44%,2005年制浆造纸化学品业务销售额达到9.73亿美元,在东欧、俄罗斯、中东,尤其是土耳其、巴西、中国和印度尼西亚,这些市场前几年呈2位数的业务增长,公司亚太地区的技术中心建在了上海,该公司是AKD中性施胶剂的发明者,在施胶剂产品一直有很大的技术优势。专业从事各种造纸化学品的生产,主要产品为AKD和ASA中性施胶剂、松香系施胶剂、杀菌

(完整版)实验室常用化学药品

各种药物 氨三乙酸 化学式CH6N9O6,分子量191.14,结构式N(CH2COOH)3,白色棱形结晶粉末,熔点246~249℃(分解),能溶于氨水、氢氧化钠,微溶于水,饱和水溶液pH 为2.3,不溶于多数有机溶剂,溶于热乙醇中可生成水溶性一、二、三碱性盐。属于金属络合剂,用于金属的分离及稀土元素的洗涤,电镀中可以代替氰化钠,但稳定性不如EDTA。 丙酮 最简单的酮。化学式CH3COCH3。分子式C3H6O。分子量58.08。无色有微香液体。易着火。比重0.788(25/25℃)。沸点56.5℃。与水、乙醇、乙醚、氯仿、DMF、油类互溶。与空气形成爆炸性混和物,爆炸极限2.89~12.8%(体积)。化学性质活泼,能发生卤化、加成、缩合等反应。广泛用作油脂、树脂、化学纤维、赛璐珞等的溶剂。为合成药物(碘化)、树脂(环氧树脂、有机玻璃)及合成橡胶等的重要原料。 冰乙酸 化学式CH3COOH。分子量60.05。醋的重要成份。一种典型的脂肪酸,无色液体。有刺激性酸味。比重1.049。沸点118℃,可溶于水,其水溶液呈酸性。纯品在冻结时呈冰状晶体(熔点16.7℃),故称“冰醋酸”,能参与较多化学反应。可用作溶剂及制造醋酸盐、醋酸酯(醋酸乙酯、醋酸乙烯)、维尼纶纤维的原料。 苯酚 简称“酚”,俗称“石炭酸”,化学式C6H5OH,分子量94.11,最简单的酚。无色晶体,有特殊气味,露在空气中因被氧化变为粉红,有毒!并有腐蚀性,密度1.071(25℃),熔点42~43℃,沸点182℃,在室温稍溶于水,在65℃以上能与任何比与水混溶,易溶于酒精、乙醚、氯仿、丙三醇、二硫化碳中,有弱酸性,与碱成盐。水溶液与氯化铁溶液显紫色。可用以制备水杨酸、苦味酸、二四滴等,也是合成染料、农药、合成树脂(酚醛树脂)等的原料,医学上用作消毒防腐剂,低浓度能止痒,可用于皮肤瘙痒和中耳炎等。高浓度则产生腐蚀作用。 1,2-丙二醇 化学式CH3CHOHCH2OH,分子量76.10,分子中有一个手征性碳原子。外消旋体为吸湿性粘稠液体;略有辣味。比重1.036(25/4℃),熔点-59℃,沸点188.2℃、83.2℃(1,333Pa),与水、丙酮、氯仿互溶,溶于乙醚、挥发油,与不挥发油不互溶,左旋体沸点187~189℃,比旋光度-15.8。丙二醇在高温时能被氧化成丙醛、乳酸、丙酮酸与醋酸。为无毒性抗冻剂。可用于酿酒、制珞中,是合成树脂的原料。医学上用作注射剂、内服药的溶剂与防腐剂,防腐能力比甘油大4倍,此外还可用于室内空气的消毒。 丙三醇 学名1,2,3-三羟基丙烷,分子式C3H8O3,分子量92.09,有甜味的粘稠液

相关文档
最新文档