Abaqus优化设计和敏感性分析高级教程

第12章优化设计和敏感性分析

本章主要讲解应用Abaqus进行结构优化设计和敏感性分析。

目前的产品结构设计,大多靠经验,规划几种设计方案,结合CAE分析择优选取,但规划的设计方案并不一定是最优方案,故本章前半部分讲解优化设计中的拓扑优化和形状优化,并制定操作SOP,辅以工程实例详解。

工程实际中,加工制造、装配误差等造成的设计参数变异,会对设计目标造成影响,因此寻找出参数的影响大小即敏感性,变得尤为重要,故本章后半部分着重讲解敏感性分析,并制定操作SOP,辅以工程实例求出设计参数敏感度,详解产品的深层次研究。

知识要点:

结构优化设计基础

拓扑、形状优化理论

拓扑、形状优化SOP及实例

敏感性分析理论

敏感性分析SOP及实例

12.1 优化设计基础

优化设计以数学中的最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,优化设计使结构更轻、更强、更耐用。

在Abaqus6.11之前,需要借用第三方软件(比如Isight、TOSCA)实现优化设计及敏感性分析,远不如Hyperworks及Ansys等模块化集成程度高。从Abaqus 6.11新增Optimization module后,借助于其强大的非线性分析能力,结构优化设计变得更具可行性和准确性。

12.1.1 结构优化概述

结构优化是一种对有限元模型进行多次修改的迭代求解过程,此迭代基于一系列约束条件向设定目标逼近,Abaqus优化程序就是基于约束条件,通过更新设计变量修改有限元模型,应用Abaqus进行结构分析,读取特定求解结果并判定优化方向。

Abaqus提供了两种基于不同优化方法的用于自动修改有限元模型的优化程序:拓扑优

化(Topology optimization)和形状优化(Shape optimization)。两种方法均遵从一系列优化目标和约束。

12.1.2 拓扑优化

拓扑优化是在优化迭代循环中,以最初模型为基础,在满足优化约束(比如最小体积或最大位移)的前提下,不断修改指定优化区域单元的材料属性(单元密度和刚度),有效地从分析模型中移走单元从而获得最优设计。其主体思想是把寻求结构最优的拓扑问题转化为对给定设计区域寻求最优材料的分布问题。

下图12-1为Abaqus帮助文件提供的应用实例,展示了汽车控制臂在17次迭代循环中设计区域单元被逐渐移除的优化过程,其中优化的目标函数是最小化控制臂的最大应变能、最大化控制臂的刚度,约束为降低57%产品体积。优化过程中,控制臂中部的部分单元不断被移除。

图 12-1拓扑优化进程示例

Abaqus拓扑优化提供了两种算法:通用算法(GeneralAlgorithm)和基于条件的算法(Condition-basedAlgorithm)。

通用拓扑优化算法是通过调整设计变量的密度和刚度以满足目标函数和约束,其较为灵活,可以应用到大多数问题中。相反,基于条件的算法则使用节点应变能和应力作为输入数据,不需要计算设计变量的局部刚度,其更为有效,但能力有限。两种算法达到优化目标的途径不同,Abaqus默认采用的是通用算法。

从以下几个方面比较两种算法:

中间单元:通用算法对最终设计会生成中间单元(相对密度介于0~1之间)。相反,基于条件的算法对最终设计生成的中间单元只有空集(相对密度接近于0)或实体(相对

密度为1)。

优化循环次数:对于通用优化算法,在优化开始前并不知晓所需的优化循环次数,正常情况在30~45次。基于条件的优化算法能够更快的搜索到优化解,默认循环次数为15次。

分析类型:通用优化算法支持线性、非线性静力和线性特征频率分析。两种算法均支持几何非线性、接触和大部分非线性材料。

目标函数和约束:通用优化算法可以使用一个目标函数和数个约束,这些约束可以全部是不等式限制条件,多种设计响应可以被定义为目标和约束,而基于条件的优化算法仅支持应变能作为目标函数,材料体积作为等式限制条件。

12.1.3 形状优化

形状优化主要用于产品外形仅需微调的情况,即进一步细化拓扑优化模型,采用的算法与基于条件的拓扑算法类似,也是在迭代循环中对指定零件表面的节点进行移动,重置既定区域的表面节点位置,直到此区域的应力为常数(应力均匀),达到减小局部应力的目的。比如图12-2所示的连杆,其进行形状优化,表面节点移动,应力集中降低。

图 12-2形状优化示例

形状优化可以用应力和接触应力、选定的自然频率、弹性应变、塑形应变、总应变和应变能密度作为优化目标,仅能用体积作为约束,但可以设置几何限制,以满足零件制造可行性(冲压、铸造等)。当然也可以冻结某特定区域、控制单元尺寸、设定对称和耦合限制。

12.1.4 优化术语

拓扑和形状优化必须在设定好的目标和约束条件下进行,如此程序才会在约束框架内向优化目标迈进。仅仅描述要减小应力或者增大特征值是不够,必须有更为特定的定义,比如,最小化两种载荷下的最大节点应力,最大化前5阶特征值之和,如此的优化目标称之为目标函数(ObjectiveFunction);同时,在优化过程中可以强制限定某些特定值,比如可以指定某节点的位移不超过一定值,如此的强制性限制叫做约束(Constraint)。

目标函数和约束都是结构优化的特定术语,Abaqus/CAE中用到的术语有:

设计区域(Design area):即结构优化的模型修改区域,可以是整个模型,也可以是模型的一部分或几个部分。

在给定的边界条件、载荷和制造约束条件下,拓扑优化通过增加或删除设计区域内单元的材料达到最优化设计,而形状优化则通过移动表面节点以修改设计区域表面达到优化目的。

设计变量(Design variables):设计变量即优化设计中需要改变的参数。

对于拓扑优化,设计区域中单元密度即是设计变量,Abaqus拓扑优化模块(ATOM)在其优化迭代中改变单元密度并将其耦合到刚度矩阵之中,实质是赋予单元极小的质量和刚度从而使其几乎不再参与结构的全局响应。

对于形状优化而言,设计区域的表面节点位移即是设计变量,优化时,Abaqus将节点向外或向内移动,抑或不动,限制条件决定表面节点移动的大小和方向。

设计循环(Design cycle):优化是一个不断更新设计变量的迭代过程,在每次迭代中Abaqus会对更新了变量的模型进行求解、查看结果以及判定是否达到优化目的,一次迭代过程即一个设计循环。

优化任务(Optimization task):一个优化任务即包含有设计响应、目标、约束条件和几何限制等在内的优化定义。

设计响应(Design responses):导入优化程序用于优化分析的输入值称之为设计响应。

设计响应可以从Abaqus的结果输出文件.odb中直接读取,比如刚度、应力、特征频率及位移等,或者对结果文件计算得到,比如重量、质心或相对位移等。设计响应是与模型区域紧密相关的标量值,例如一个模型区域内的最大应力或体积,同时,设计响应也与特定分析步、载荷工况有关。

目标函数(Objective functions):即定义的优化目标。

目标函数是从设计响应中萃取的标量值,如最大位移或最大应力。一个目标函数可以由几个设计响应组成函数公式表达。如果设定目标函数是最小化或最大化设计响应,Abaqus优化模块则加入每个设计响应值到目标函数进行计算。此外,如果定义了多目标函数,可以使用权重因子定义其对优化的影响程度。

约束(Constraints):约束也是从设计变量中萃取的标量值,但其不能从设计响应组合

得到。约束是用于限定设计响应值,比如体积减少50%;同时约束也可以是到独立于优化之外的制造和几何限制,比如约束优化后的结构能够用于铸造或冲压成形。

停止条件(Stop conditions):当满足某一停止条件时,优化迭代即终止。

全局停止条件是最大优化迭代(设计循环)次数;局部停止条件是优化结果达到某一最大/最小定义值。

12.2 优化设计SOP

12.2.1 优化设计SOP

先试算Abaqus初始结构模型,以确认边界条件、结果是否合适,然后结合图12-3的Abaqus/CAE优化模块,设置优化设计:

?创建优化任务。

?创建设计响应。

?应用设计响应创建目标函数。

?应用设计响应创建约束(可选)。

?创建几何限制(可选)。

?创建停止条件。

以上设置完成,进入Job模块创建优化进程,并提交分析。

图 12-3Abaqus/CAE优化模块

提交分析后,优化程序基于定义的优化任务及优化进程,开始优化迭代:

?准备设计变量(单元密度或者表面节点位置),

?更新有限元模型。

?执行Abaqus/Standard分析。

在优化迭代(设计循环)满足以下条件即终止:

?达到设定的最大迭代数

?达到设定的停止条件。

以上操作步骤可概括为图12-4所示的优化设计SOP(Standard Operating Procedure)。

图 12-4优化设计SOP

在图12-4SOP基础上,还需对关键步(设计响应、目标函数和约束)的设置详加说明。

12.2.2 设计响应设置

设计响应是从特定的结构分析结果中读取的唯一标量值,随后能够被目标函数和约束引用。要实现设计变量唯一标量值,必须在优化模块中特别运算,比如对体积的运算只能是“总和”,对区域应力的运算只能是“最大值”,由此可知Abaqus优化模块提供了以下两种设计响应操作:

最大值或最小值:寻找出选定区域内的节点响应值的最大/最小值,但对应力、接触应力和应变只能是“最大值”。

总和:对选定区域内节点的响应值作“总和”。Abaqus优化模块仅允许对体积、质量、惯性矩和重力作“总和”运算。

此外,可以定义基于另一个设计响应的响应,也可以定义由几个响应经数学运算而成

的组合响应。比如,已分别对两个节点定义了两个位移响应,可再定义两个位移响应的差值作组合响应。

下面详细介绍在不同优化情况下,可用或推荐使用的设计响应。

1、基于条件拓扑优化的设计响应

针对基于条件的拓扑优化算法,只能使用应变能和体积作为设计响应。

1)应变能(Strain energy ):即每个单元应变能的总和,可以定义为结构柔度,其是结构整体柔韧性或刚度的一种度量。众所周知,柔度是刚度的倒数,最小化柔度意味着最大化全局刚度。

针对线性模型的结构柔度,可以用式(12-1)计算。

∑=ku u energy Strain t (12-1)

其中,u 是位移矢量;k 是全局刚度矩。

如果加载条件是集中力或压力,是通过最小化应变能优化出最大的全局刚度;恰恰相反,如果加载的是热场,则通过最大化应变能优化出最大的全局刚度,因为优化修改模型会使结构变软导致应变能下降。此外,如果模型中有特定位移加载,应选择使用最大化应变能。

Abaqus/CAE 操作:切换到优化模块,Task →Condition-based topology task, Design Response →Create: Single-term, Variable: Strain energy 。

2)体积(Volume ):即设计区域的单元体积之和,可以用式(12-2)计算。

∑=e V lume V o (12-2)

其中,e V 是单元体积。

Abaqus/CAE 操作:切换到优化模块,Task →Condition-based topology task, Design Response →Create: Single-term, Variable:Volume 。

2、通用拓扑优化的设计响应

针对通用拓扑优化算法,可以使用重心、位移和旋转、特征频率、惯性矩、内力和内转矩、反作用力和反作用转矩、应变能、体积和重量作为设计响应。

1)重心(Center of gravity ):三个方向的重心可以用式(12-3)计算。

??????===dV

zdV z dV ydV y dV xdV x g g g ρρρρρρ ; ; (12-3) 其中,单元密度ρ使用的是优化并修改的模型现有相对密度;坐标轴可以是全局坐标

Abaqus/CAE 操作:切换到优化模块,Task →Generaltopology task, Design Response →Create: Single-term, Variable:Center of gravity 。

2)位移和旋转(Displacement and Rotation ):大部分优化问题,都可使用位移和/或旋转响应定义目标函数或约束。节点位移和旋转变量含义可从表12-1中查知。

表 12-1

位移和旋转变量

仅响应顶点或较小区域的位移或旋转,能够提升优化速度,此外,如果响应的顶点或区域是在冻结区域内,优化速度会提升更多。

Abaqus/CAE 操作:切换到优化模块,Task →Generaltopology task, Design Response →Create: Single-term, Variable:Displacement 。

3)模态特征频率(Modal Eigenfrequency ):模态特征频率值是结构分析中最简单的动态响应。

Abaqus 优化模块支持两种评估特征频率方法:

● 从模态分析中获得单一特征频率

● Kreisselmaier-Steinhauser 公式计算

两种方法中Kreisselmaier-Steinhauser 方法更加有效率,而单一特征频率方法有其唯一的优势——应用各阶特征频率之和作约束。

在最大化最低特征频率时,不仅仅要考虑第一阶的特征频率,还要考虑接下来的几阶,因为在优化中,随着结构的变化,模态振型可能会发生转换。

Abaqus/CAE 操作:切换到优化模块,Task →Generaltopology task, Design Response →Create: Single-term, Variable:Eigenfrequency from modal analysis orEigenfrequency calculated with Kreisselmaier-Steinhauser formula 。

4)惯性矩(Moment of inertia ):在三个方向或平面上的惯性矩可以用式12-4计算。

()()()??????-=-=-=+=+=+=;

;;;;22z 22y 22x yzdV Iyz xzdV Ixz xydV Ixy dV

y x I dV z x I dV z y I ρρρρρρ(12-4) Abaqus/CAE 操作:切换到优化模块,Task →Generaltopology task, Design

Response →Create: Single-term, Variable:Moment of inertia 。 5)内力和内转矩、反作用力和反作用转矩和重量在此无特别表述,应变能和体积与式(12-1)和式(12-2)一致。

3、形状优化的设计响应

针对形状优化,可以使用特征频率、应力、接触应力、应变、节点应变能密度和体积作为设计响应,其中仅体积设计响应可被用以约束定义。

1)特征频率(Eigenfrequency ):应用Kreisselmaier-Steinhauser 公式计算的特征值作为设计响应,并被定义到目标函数中。

Abaqus/CAE 操作:切换到优化模块,Task →Shape task, Design

Response →Create: Single-term, Variable:Eigenfrequencycalculated

with Kreisselmaier-Steinhauser formula 。

2)应力和接触应力(Stress and Contact stress ):无论应力是从高斯点还是从单元计算得到,优化模块都会把其插值到节点上。应力和接触应力设计响应尽可被用作定义目标函数。

Abaqus/CAE 操作:切换到优化模块,Task →Shape task, Design Response →Create: Single-term, Variable: Stress or Contact stress 。

3)应变(Strain ):如果是大变形模型,用应力作设计响应就不太合适了,比如金属结构进入塑性变形其塑性区域的应力值几乎一样大。在此情况下选用弹性应变、塑性应变或总应变作设计响应较为合适。

Abaqus/CAE 操作:切换到优化模块,Task →Shape task, Design Response →Create: Single-term, Variable: Strain 。

4)节点应变能密度(Nodal strain energy density ):其用式(12-5)计算。

j i j i u εσ=(12-5)

由式12-5可知,节点应变能密度综合考虑了应变和应力,所以针对非线性材料,局部

逐点应变能密度能够更好的表征材料失效。

Abaqus/CAE 操作:切换到优化模块,Task →Shapetask, Design Response →Create:Single-term, Variable: Strain energy density 。

5)体积(Volume ):参考上文已有之表述。

12.2.3 目标函数设置

目标函数用于定义优化的目标,其是通过对一组设计响应公式运算得到的唯一的标量值,比如设计响应为节点应变能,目标函数可以定义成最小化设计响应总和。优化问题可以用()[]{}x x ,u min φ表征,其中目标函数Ф值依赖于状态变量u 和设计变量x 。

由此可知,最小化N 个设计响应的目标函数可用式12-6表述。

()

??????-=∑=N 1i ref i i i W ??φmin min (12-6) 同理,最大化N 个设计响应的目标函数可用式12-7表述。

()

??????-=∑=N 1i ref i i i W ??φmax max (12-7) 其中,对每个设计响应i ?都引入一个权重因子i W 和一个参考值ref i ?。默认权重因子为1,对拓扑优化的默认参考值为0,而对形状优化的默认参考值是由软件计算而来。

另外,还有一个重要的目标函数优化公式,即最小化最大的设计响应,用式(12-8)表述。在每次设计循环,优化程序首先判断哪个设计响应具有最大值,然后最小化这个设计响应。

()[]{}ref i i i i W ??φ-=max min max min (12-8)

Abaqus/CAE 操作:切换到优化模块,Objective Function →Create: Target 。

12.2.4 约束设置

约束是对优化强加限制以获得合适之设计。其可用式(12-9)表述。即设计响应i ψ被常数*i ψ约束限制。

()[]0,x u ≤-*i i x ψψ(12-9)

通过约束以减少优化方案的尝试,提高优化速度,并获得合适的优化结果。

Abaqus/CAE 操作:切换到优化模块,Constraint →Create 。

12.2.5 几何限制

几何限制是对设计变量直接施加约束,可用式(12-10)表述。

()0K x K i i ≤-*(12-10)

其中,i K 是对设计变量x 布局的表达式。

几何限制包括两类:设计上的限制和制造上的限制

1、设计上的限制

设计上的限制有冻结区域、限制部件最大/最小尺寸。

● 冻结区域(Frozen area )

特别定义一个区域,使其从优化区域中排除,不修改冻结区域内的模型。对加载有预定义条件的区域都必须冻结,为简化此操作,Abaqus 优化模块能够自动冻结具有预定义条件和加载的区域。

Abaqus/CAE 操作:切换到优化模块,Geometric Restriction →Create: Frozen area 。 ● 最大/最小元件尺寸(Member size )

针对一些设计,不能有太薄的元件,以免加工困难。而针对类似铸造件,又不能有过厚的元件。一旦设定了尺寸限制,优化时间会增加很多,所以,如无必要不要使用此限制。

Abaqus/CAE 操作:切换到优化模块,Geometric Restriction →Create: Member size 。 ● 对称结构(Symmetric Structure )

设定对称限制,能够加速优化,比如施加轴对称和平面对称、点对称和旋转对称、循环对称等。

Abaqus/CAE 操作:切换到优化模块,Geometric Restriction →Create: Planarsymmetry, Pointsymmetry, Rotational symmetry, orCyclic symmetry 。

2、制造上的限制

制造上的限制主要是为了满足可注塑性和可冲压性。

●可注塑性/可锻造性(Moldable/Forgeable)

为满足可注塑性,要阻止优化模型含有空洞和负角。图12-5所示意的结构就不具备可注塑性。

(a) 含有空洞(b)含有负角

图 12-5不具备可注塑性

Abaqus/CAE操作:切换到优化模块,Geometric Restriction→Create: Demold control; Demold technique, Demolding with a central plane or Demolding at the region surface or Forging。

●可冲压性(Stampable)

考虑冲压的特殊性,在优化时,如果删除了一个单元,也会把其前后的单元一起删除,如图12-6所示。

图 12-6可冲压性结构

针对拓扑优化,Abaqus/CAE操作:切换到优化模块,Geometric Restriction→Create: Demold control; Demold technique,Stamping。

针对形状优化,Abaqus/CAE操作:切换到优化模块,Geometric Restriction→Create: Stamp control。

12.3 拓扑优化实例

针对拓扑优化,一般是用在概念性设计阶段,大幅度改变产品设计。本节举2例详解拓扑优化:C形夹(壳单元)概念设计、汽车摆臂(实体单元)概念设计。

12.3.1 C形夹的拓扑优化

本例以图12-7的C形夹作拓扑优化对象,在满足性能的前提下,最轻化结构。

1、问题描述

此C形夹的有限元模型见图12-7,边界条件:约束A点的XYZ自由度、约束B点的Y自由度、约束C点的Z自由度、D和E点分别施加方向相反的集中力100N。材料为厚度1mm的铜材C70250:密度8.82E-006kg/mm^3,杨氏模量131000MPa,泊松比0.34,屈服强度473MPa,极限强度816Mpa。

优化目标:最小化体积(最轻化);

约束条件:D点Y方向位移≤0.07mm;E点Y方向位移≥-0.07mm;

设计变量:设计区域中的单元密度。

图 12-7C形夹有限元模型

2、初始设计分析

从光盘打开本节图12-7所示的有限元模型12.3.1_C-clip_pre.cae,并提交求解。

查看位移云图如图12-8,得知D、E两点的Y方向位移分别为0.0369mm和-0.0369mm。

查看应力云图如图12-9,可知近蓝色区域应力值几乎为0,即其对结构强度并无贡献,也正是需要拓扑优化删除的区域。

图 12-8原始模型Y方向位移云图图 12-9原始模型应力云图

3、优化设置

把打开的12.3.1_C-clip_pre.cae另存为12.3.1_C-clip_opt.cae,CAE界面切换到优化模块以进行拓扑优化设计。

●创建优化任务

从菜单栏Task→Create→Topology optimization,Advanced:General optimization。

选择整个模型做设计区域,创建优化任务Task-C_clip。

对优化任务的设置,一般默认即可,但为防模型失效,如图12-10左图,在Basic选项卡冻结加载和边界区域;同时在初始设计循环时,材料密度突变会不收敛,故如图12-10右图,在Density选项卡对初始密度(Initial density)比值设置较大值0.9。

图 12-10优化任务设置

●创建设计响应

从菜单栏:Design Response→Create→Single-term。

体积响应:如图12-11所示,选择整个模型创建体积(V olume)响应,对选中的区域

体积和的计算默认为:Sum of values。

图 12-11体积设计响应设置

位移响应:选择节点D,创建Y方向(2-direction)的位移(Displacement)响应,跟踪选择区域节点中最大值(Maximum value),如图12-12所示。当然,这里只选了一个节点(D点),计算方式对结果无影响;

同上,选择节点E,创建Y方向(2-direction)的位移(Displacement)响应,区域节点状态值计算方式为Minimum value。

图 12-12D、E节点的位移设计响应

创建完成的3个设计响应如图12-13所示。

图 12-13创建完成的3个独立设计响应

●创建目标函数

从菜单栏:Objective Function→Create,命名为Objective-minVolume,如图12-13以最小化体积设计响应作优化目标。

图 12-14目标函数设置

●创建约束

从菜单栏:Constraint→Create。分别创建对节点D、E设计响应的约束,即约束节点位移:D点Y方向位移≤0.07mm,E点Y方向位移≥ -0.07mm。如图12-15所示。

4、优化结果

●创建并提交优化进程

切换到Job模块,从菜单栏:Optimization→Create。如图12-16创建名称为Opt-process-C-clip的优化进程,并默认设置最大循环次数50作为全局终止条件。

随后从菜单栏:Optimization→Submit:Opt-process-C-clip,提交优化进程。

图 12-15D、E位移约束

图 12-16创建优化进程

●查看优化结果

从菜单栏:Optimization→Results:Opt-process-C-clip,进入后处理模块。

后处理模块下,从工具箱中激活View cut,并打开View cut Manager,对Opt_Surface进行Cut操作,隐藏材料密度小于0.3倍原始密度的区域,查看优化结果如图12-17所示。

同时,输出优化进程中,目标函数和约束值变化。

操作如下:从工具箱Create XY data:ODB history output,分别输出目标函数体积、约束D点位移变化曲线,整理后如图12-18。

图 12-17优化结果

图 12-18目标函数体积和约束位移变化曲线

查看图12-19第36次循环后优化模型位移、应力云图,可与图12-8、图12-9作比较。

图 12-19第36次优化后的位移及应力云图

●导出优化的几何

切换到Job模块,从菜单栏:Optimization→Extract:Opt-process-C-clip,可输出Inp 和STL格式。

5、Inp解释说明

结构分析部分的Inp就不再赘述,在此节选优化迭代中的第36次设计循环的Inp文件:Opt-Process-C-clip-Job_036.inp

*************************************************************************

** NEW ELEMENT SET ADDED BY THE OPTIMIZATION SYSTEM

**重新定义单元集

*ELSET, ELSET=EL_P1_M39

608,

** NEW PROPERTY ADDED BY THE OPTIMIZATION SYSTEM

**对单元集赋予新的材料

*SHELL SECTION, ELSET=EL_P1_M39, MATERIAL=OPT_39

1.0000000, 5

**

** NEW MATERIAL ADDED BY THE OPTIMIZATION SYSTEM

**新添加的材料属性

*MATERIAL, NAME=OPT_39

**新的密度

*DENSITY

8.8200000e-011, 0.00000000,

**新的弹性模量

*ELASTIC, TYPE=ISOTROPIC

0.00013100000, 0.34100000, 0.00000000

**新的塑性应变-应力数据

*PLASTIC, HARDENING=ISOTROPIC

4.7336200e-007, 0.00000000, 0.00000000,

5.0900000e-007, 0.0010040100, 0.00000000,

……

**

本12.3.1节完整讲述了C形夹的拓扑优化,在满足强度要求的同时,把体积减少了48%。此外,为了加工制造方便,可加入平面对称限制条件,让优化后的结构具有对称性。

12.3.2 汽车摆臂的拓扑优化

本例以图12-20的汽车摆臂作拓扑优化对象,在满足性能的前提下,最轻化结构。

1、问题描述

此汽车摆臂的有限元模型见图12-20,所用材料为刚材,此模型是小应变,仅设置线性材料,其密度7.85E-006kg/mm^3,杨氏模量200000MPa,泊松比0.3。

此有限元模型,设置了3步线性静力分析步,即3个工况;分别Coupling相应节点到参考点上(A、B、C、D)。

边界条件:约束B点的Y、Z自由度,C点的X、Y、Z自由度,D点的Z自由度;

集中力加载:在1、2、3分析步,分别对A点加载X、Y、Z方向的1000N集中力;

优化目标:最小化体积;

约束条件:在1、2、3分析步,A点合位移分别小于0.05mm、0.02mm、0.04mm;

设计变量:设计区域中的单元密度。

图 12-20汽车摆臂的有限元模型

2、初始设计分析

从光盘打开本节图12-20所示的有限元模型12.3.2_Controlarm_pre.cae,并提交求解。

查看位移云图如图12-21,可大概了解结构的加载变形情况。

查看应力云图如图12-22,可知近蓝色区域应力值几乎为0,即其对结构强度并无贡献,也正是拓扑优化需要删除的区域。

ABAQUS(显式动力学)求解子弹侵彻

ABAQUS显式动力求解子弹侵入(基于米制国际单位)1. part模块 创建靶part-target及子弹part-bullet模型如上 2. 属性模块 2.1 柔性损伤 力学>>延性金属损伤>>柔性损伤: 2.31 - 3.33 0.001 2.31 -0.3333 0.001 2.18 -0.267 0.001 2.06 -0.2 0.001 1.95 -0.133 0.001 1.85 -0.0667 0.001 1.76 0 0.001 1.67 0.0667 0.001 1.59 0.133 0.001 1.52 0.2 0.001 1.46 0.267 0.001 1.4 0.333 0.001 1.35 0.4 0.001 1.3 0.467 0.001

1.26 0.533 0.001 1.23 0.6 0.001 1.2 0.667 0.001 1.15 0.73 0.001 1.06 0.851 0.001 0.945 1.02 0.001 0.816 1.24 0.001 0.685 1.51 0.001 0.202 3.33 0.001 子选项>>损伤演化>>能量>>指数>>最大>>断裂能>>500 2.2 剪切损伤 力学>>延性金属损伤>>剪切损伤: Ks=0.03 0.86 -10 0.001 0.86 1.7 0.001 0.859 1.72 0.001 0.86 1.73 0.001 0.865 1.75 0.001 0.874 1.77 0.001 0.886 1.78 0.001 0.901 1.8 0.001 0.921 1.81 0.001 0.944 1.83 0.001 0.97 1.85 0.001 1 1.86 0.001 1.04 1.88 0.001 1.08 1.89 0.001 1.12 1.91 0.001 1.17 1.92 0.001 1.22 1.94 0.001 1.28 1.96 0.001 1.34 1.97 0.001 1.41 1.99 0.001 1.48 2 0.001 1.56 2.02 0.001 1.56 10 0.001 子选项>>损伤演化>>能量>>指数>>最大>>断裂能>>500 2.3 密度 7800 2.4 弹性 2.1e11 0.3

abaqus系列教程-13ABAQUSExplicit准静态分析

13 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit 在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型成为很大时,显式过程比隐式过程需要较少的系统资源。关于隐式与显式过程的详细比较请参见第2.4节“隐式和显式过程的比较”。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 13.1 显式动态问题类比 为了使你能够更直观地理解在缓慢、准静态加载情况和快速加载情况之间的区别,我们应用图13-1来类比说明。

Abaqus-中显示动力学分析步骤

Abaqus-中显示动力学分析步骤

准静态分析——ABAQUS/Explicit 准静态过程(guasi-static process) 在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。准静态过程是一种理想过程,实际上是办不到的。 准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 1. 显式动态问题类比 假设两个载满了乘客的电梯。在缓慢的情况下,门打开后你步入电梯。为了腾出空间,邻近门口的人慢慢地推他身边的人,这些被推的人再去推他身边的人,如此继续下去。这种扰动在电梯中传播,直到靠近墙边的人表示他们无法移动为止。一系列的波在电梯中传播,直到每个人都到达了一个新的平衡位置。如果你稍稍加快速度,你会比前面更用力地推动你身边的人,但是最终每个人都会停留在与缓慢的情况下相同的位置。 在快速情况下,门打开后你以很高的速度冲入电梯,电梯里的人没有时间挪动位置来重新安排他们自己以便容纳你。你将会直接地撞伤在门口的两个人,而其他人则没有受到影响。

abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,笫2步做极限强度分析。 第1步:屈曲分析 载荷步定义如下: Step 1-Initial Step 2- Buckle

? Re Mbs M^nce C^wvoini live 2oc*$ *l^*?4 tjdp V :i.Jsa&# 录 +r A AJIu fffiC? fe3 Ha ? ;r????y fa-t n>rr ?: OfEYcm v Se?今 gh 3, gqcvKeiry C*p*?9r ? ? O?lec? ■ %?no?v C5 廉 H5Wr> MM fa Tin* Forti Sv Al€ *dep6?? ve^ tbjUx9)lo t JeiWA Tc?D -^lQZlll?hQ we' E ejewwiw b>w* biE Glcte 」r?>w* 69D eJe*MKi r?jw* bee CWfcr*?9*^ s£ Zac? “ Iraftet H U 匕“rb ? 2 更 K?4dCu^u!R? 虫 Hntwr GUput b 伽》ezi5 &■心 AcUxv? V H H?*?ctnr? 易 htecMtlar. hra, 日 CcrtadCcrtra 0 C?Wl >?wt K Ccctect sub lx 權 CwMoarSt Hj fiUdi _n ,.. ? ?! ? MCg WtW Swtfc lk2 pe**j". liwar p?nwbia?ko ▼ freque." 拯 sufAuun The 11?-51>^ )L>4ldH9jjn-2 “9 wioZ S *0 Sxe U>* oil^ 51 “ed S iU* TO . 0 . -ISO -MO mtb rew :t no 心 &逐Ply OCCOIIMV * 巧恪tc ?:?L -5Moe>?* bw tZfft to ?D7cp 炉、?ZlHWr? Me" “乡“r?x HMldrann ?2 vd 乡 tygeJa* 400 0 0 with x*w :? ?o tfi* oc

Abaqus 中显示动力学分析步骤

准静态分析——ABAQUS/Explicit 准静态过程(guasi-static process) 在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。准静态过程是一种理想过程,实际上是办不到的。 准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 1. 显式动态问题类比 假设两个载满了乘客的电梯。在缓慢的情况下,门打开后你步入电梯。为了腾出空间,邻近门口的人慢慢地推他身边的人,这些被推的人再去推他身边的人,如此继续下去。这种扰动在电梯中传播,直到靠近墙边的人表示他们无法移动为止。一系列的波在电梯中传播,直到每个人都到达了一个新的平衡位置。如果你稍稍加快速度,你会比前面更用力地推动你身边的人,但是最终每个人都会停留在与缓慢的情况下相同的位置。 在快速情况下,门打开后你以很高的速度冲入电梯,电梯里的人没有时间挪动位置来重新安排他们自己以便容纳你。你将会直接地撞伤在门口的两个人,而其他人则没有受到影响。

(完整word版)abaqus6.12-典型实例分析

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。其中,刚性墙的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28;保险杠、平板以及横梁的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28,塑形应力-应变数据如表2.1所示。 表2.1 应力-应变数据表 应力210 300 314 325 390 438 505 527 应变0.0000 0.0309 0.0409 0.0500 0.1510 0.3010 0.7010 0.9010 注:本例中的单位制为:ton,mm,s。 3.案例详细求解过程 本案例使用软件为版本为abaqus6.12,各详细截图及分析以该版本为准。3.1 创建部件 (1)启动ABAQUS/CAE,创建一个新的模型数据库,重命名为The crash simulation,保存模型为The crash simulation.cae。 (2)通过导入已有的*.IGS文件来创建各个部件,在主菜单中执行【File】→【Import】→【Part】命令,选择刚刚创建保存的的bumper_asm.igs文件,弹出【Create Part From IGS File】对话框如图3.1所示,根据图3.1所示设定【Repair Options】的相关选项,其它参数默认,单击【Ok】按钮,可以看到在模型树中显示了导入的部件bumper_asm。 图3.1 Create Part From IGS File对话框

abaqus系列教程 多步骤分析

11 多步骤分析 ABAQUS模拟分析的一般性目标是确定模型对所施加载荷的响应。回顾术语载荷(load)在ABAQUS中的一般性含义,载荷代表了使结构的响应从它的初始状态到发生变化的任何事情;例如:非零边界条件或施加的位移、集中力、压力以及场等等。在某些情况下载荷可能相对简单,如在结构上的一组集中载荷。在另外一些问题中施加在结构上的载荷可能会相当复杂,例如,在某一时间段内,不同的载荷按一定的顺序施加到模型的不同部分,或载荷的幅值是随时间变化的函数。采用术语载荷历史(load history)以代表这种作用在模型上的复杂载荷。 在ABAQUS中,用户将整个的载荷历史划分为若干个分析步(step)。每一个分析步是由用户指定的一个“时间”段,在该时间段内ABAQUS计算该模型对一组特殊的载荷和边界条件的响应。在每一个分析步中,用户必须指定响应的类型,称之为分析过程,并且从一个分析步到下一个分析步,分析过程也可能发生变化。例如,可以在一个分析步中施加静态恒定载荷,有可能是自重载荷;而在下一个分析步中计算这个施加了载荷的结构对于地震加速度的动态响应。隐式和显式分析均可以包含多个分析步骤;但是,在同一个分析作业中不能够组合隐式和显式分析。为了组合一系列的隐式和显式分析步,可以应用结果传递或输入功能。在ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)第7.7.2节“Transfering results between ABAQUS/Explicit and ABAQUS/Standard”中讨论了这个功能。而本指南不做进一步的讨论。 ABAQUS将它的所有分析过程主要划分为两类:线性扰动(linear perturbation)和一般性分析(general)。在ABAQUS/Standard或在ABAQUS/Explicit分析中可以包括一般分析步;而线性扰动分析步只能用于ABAQUS/Standard分析。对于两种情况的载荷条件和“时间”定义是不相同的,因而,从每一种过程得到的结果必须区别对待。 在一般分析过程中,即一般分析步(general step),模型的响应可能是非线性的或者是线性的。而在采用扰动过程的分析步中,即称为扰动分析步(perturbation step),响应只能是线性的。ABAQUS/Standard处理这个分析步作为由前面的任何一般分析步创建的预加载、预变形状态的线性扰动(即所谓的基本状态(base state));ABAQUS 的线性模拟功能比之单纯线性分析的程序是更加广义的。

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应得简单实例ABAQUS时程分析法计算地震反应得简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2、1e11Pa,泊松比0、3,所有振型得阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 得集中质量。反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越周期Tg=0、45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS得反应谱法计算过程以及后处理要比ANSYS方便得多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2、1e11,poisson’s ratio:0、3、

(完整word版)ABAQUS实例分析

《现代机械设计方法》课程结业论文 ( 2011 级) 题目:ABAQUS实例分析 学生姓名 XXXX 学号 XXXXX 专业机械工程 学院名称机电工程与自动化学院 指导老师 XX 2013年 5 月8 日

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (6) 二、具体步骤 (6) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (23)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生 成一个Abaqus输入文件。提交给Abaqus/Standard或 Abaqus/Explicit。 2.分析计算(Abaqus/Standard或Abaqus/Explicit):在分析计算阶段, 使用Abaqus/Standard或Abaqus/Explicit求解输入文件中所定义的

abaqus接触动力学分析

部件模态综合法 随着科学和生产的发展,特别是航空、航天事业的发展,越来越多的大型复杂结构被采用,这使得建模和求解都比较困难。一方面,一个复杂结构势必引入较多的自由度,形成高维的动力学方程,使一般的计算机在内存和求解速度方面都难以胜任,更何况一般的工程问题主要关心的是较低阶的模态。仅为了获取少数的几个模态,必须为求解高维方程付出巨大的代价也是不合适的。另一方面,正是由于结构的庞大和复杂,一个完整的结构往往不是在同一地区生产完成的,可能一个结构的各个主要零部件不得不由不同的地区、不同的厂家生产。而且由于试验条件的限制只能进行部件的模态实验,而无法对整体结构进行模态实验。针对这些主要的问题,为了获得大型、复杂结构的整体模态参数,于是发展了部件模态综合法。 部件模态综合法又叫子结构耦合法。它的基本思想是按工程观点或结构的几何轮廓,并遵循某些原则要求,把完整的结构进行人为抽象肢解成若干个子结构(或部件);首先对子结构(或部件)进行模态分析,然后经由各种方案,把它们的主要模态信息(常为低阶主模态信息)予以保留,并借以综合完整结构的主要模态特征。它的主要有点是,可以通过求解若干小尺寸结构的特征问题来代替直接求解大型特征值问题。同时对各个子结构可分别使用各种适宜的数学模型和计算程序,也可以借助试验的方法来获得他们的主要模态信息。 对于自由振动方程在数学上讲就是固有(特征)值方程。特征值方程的解不仅给出了特征值,即结构的自振频率和特征矢量——振兴或模态,而且还能使结构在动力载荷作用下的运动方程解耦,即所谓的振型分解法或叫振型叠加法。因此,特征值问题的求解技术,对于解决结构振动问题来说吧,是非常重要的。 考虑阻尼的振型叠加法 振型叠加法的定义:将结构各阶振型作为广义坐标系,求出对应于各阶振动的结构内力和位移,经叠加后确定结构总响应的方法。 振型叠加法的使用条件: ?(1)系统应该是线性的:线性材料特性,无接触条件,无非线性几何效应。 ?(2)响应应该只受较少的频率支配。当响应中各频率成分增加时,例如撞击和冲击问题,振型叠加技术的有效性将大大降低。 ?(3)载荷的主要频率应在所提取的频率范围内,以确保对载荷的描述足够精确。 ?(4)由于任何突然加载所产生的初始加速度应该能用特征模态精确描述。 ?(5)系统的阻尼不能过大。

ABAQUS教材学习:入门手册

ABAQUS教材:入门使用手册 一、前言 ABAQUS是国际上最先进的大型通用有限元计算分析软件之一,具有惊人的广泛的模拟能力。它拥有大量不同种类的单元模型、材料模型、分析过程等。可以进行结构的静态与动态分析,如:应力、变形、振动、冲击、热传递与对流、质量扩散、声波、力电耦合分析等;它具有丰富的单元模型,如杆、梁、钢架、板壳、实体、无限体元等;可以模拟广泛的材料性能,如金属、橡胶、聚合物、复合材料、塑料、钢筋混凝土、弹性泡沫,岩石与土壤等。 对于多部件问题,可以通过对每个部件定义合适的材料模型,然后将它们组合成几何构形。对于大多数模拟,包括高度非线性问题,用户仅需要提供结构的几何形状、材料性能、边界条件、荷载工况等工程数据。在非线性分析中,ABAQUS能自动选择合适的荷载增量和收敛准则,它不仅能自动选择这些参数的值,而且在分析过程中也能不断调整这些参数值,以确保获得精确的解答。用户几乎不必去定义任何参数就能控制问题的数值求解过程。 1.1 ABAQUS产品 ABAQUS由两个主要的分析模块组成,ABAQUS/Standard和ABAQUS/Explicit。前者是一个通用分析模块,它能够求解广泛领域的线性和非线性问题,包括静力、动力、构件的热和电响应的问题。后者是一个具有专门用途的分析模块,采用显式动力学有限元格式,它适用于模拟短暂、瞬时的动态事件,如冲击和爆炸问题,此外,它对处理改变接触条件的高度非线性问题也非常有效,例如模拟成型问题。 ABAQUS/CAE(Complete ABAQUS Environment) 它是ABAQUS的交互式图形环境。通过生成或输入将要分析结构的几何形状,并将其分解为便于网格划分的若干区域,应用它可以方便而快捷地构造模型,然后对生成的几何体赋予物理和材料特性、荷载以及边界条件。ABAQUS/CAE具有对几何体划分网格的强大功能,并可检验所形成的分析模型。模型生成后,ABAQUS/CAE可以提交、监视和控制分析作业。而Visualization(可视化)模块可以用来显示得到的结果。 1.2 有限元法回顾 任何有限元模拟的第一步都是用一个有限元(Finite Element)的集合

ABAQUS分析教程

ABAQUS瞬态动力学分析 瞬态动力学分析 一、问题描述 一质量块沿着长度为1500mm的等截面梁运动,梁的材料为钢(密度ρ=7.8E-9 ton/mm3,弹性模量E=2.1E5MPa,泊松比ν=0.3),宽为60mm,高为40mm。质量块的长为50mm,宽为60mm,高为30mm。质量块的密度ρ=1.11E-007 ton/mm3,弹性模量E=2.1E5MPa,泊松比ν=0.3,如图5.1所示。质量块以10000mm/s 的速度匀速通过悬臂梁(从固定端运动到自由端),计算梁自由端沿y方向的位移、速度和加速度。 图1 质量块沿梁运动的示意图 二、目的和要求 掌握结构的动力学分析方法,会定义历史输出步。 1)用六面体单元划分网格,厚度方向有4排网格。 2)采用隐式算法进行计算。 三、操作步骤 1、启动ABAOUS/CAE [开始][程序][ABAQUS 6.7-1][ABAQUS CAE]。 启动ABAQUS/CAE后,在出现的Start Session(开始任务)对话框中选择Create Model Database(创建新模型数据库)。 2、创建部件 在ABAQUS/CAE窗口顶部的环境栏中,可以看到模块列表Module:Part,这表示当前处在Part(部件)功能模块,可按照以下步骤来创建梁的几何模型。 创建两个零件分别命名为mass(质量块)和beam(梁),均为三维实体弹性体。 3、创建材料和截面属性 在窗口左上角的Module(模块)列表中选择Property(特性)功能模块。 (1)创建梁材料 Name:Steel,Density:7.8E-9,Young’s Modulus(弹性模量):210000,Poisson’s Ratio(泊松比):0.3。 (2)创建截面属性点击左侧工具箱中的(Create Section),弹出Create Sectio n对话框,Category:Solid,Type:Homogeneous,保持默认参数不变(Material:Steel;Plane stress/strain thickness:1 ),点击OK。

abaqus实例

一.创建部件 1.打开abaqus; 开始/程序/Abaqus6.10-1/Abaque CAE 2.Model/Rename/Model-1,并输入名字link4

3.单击Create part弹出Create part对话框, Name输入link-4; Modeling Space 选择2D Planar Type 选择Deformable Base Feature 选择Wire Approximate size 输入800;然后单击continue 4.单击(Create Lines:connected)通过点(0,0)、(400,0)、(400,300)、(0,300)单击(Create Lines:connected)连接(400,300)和(0,0)两点,单击提示区中的Done按钮(或者单击鼠标滚轮,也叫中键),形成四杆桁架结构

5.单击工具栏中的(Save Model Database),保存模型为link4.cae 二.定义材料属性 6.双击模型树中的Materials(或者将Module切换到Property,单击Create Material -ε) 弹出Edit Material对话框后。 执行对话框中Mechanical/Elasticity/Elastic命令, 在对话框底部出现的Data栏中输入Young’s Module为29.5e4, 单击OK.完成材料设定。

7.单击“Create Section ”,弹出Create Section对话框, Category中选择Beam; Type中选择Truss; 单击continue按钮 弹出Edit Section对话框, 材料选择默认的Material-1,输入截面积(Cross-sectional area)为100,单击ok按钮。

ABAQUS实例分析论文

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (5) 二、具体步骤 (5) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (22)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生

多体分析实例

第八章多体分析实例 多体分析:由多个刚体或柔体组成,各实体之间具有一定的约束关系和相对运动关系。Abaqus 的多体分析可以模拟系统的运动状况和系统各部分之间的相互作用,得到所关系部位的位移、速度、加速度、力和力矩等。如果是柔体,还可以得到柔体的应力、应变等分析结果。 8.1多体分析的主要方法 Abaqus模拟多体分析的 基本思路: abaqus使用两节点连接单元在系统各部分之间建立连接,并通过定义连接属性来描述各部分之间的相对运动约束关系。 基本步骤: 1.在PART 、ASSEMBLY或INTERACTION功能模块中,定义连接单元和约束所要用到的参 考点和基准坐标系 2.在INTERACTION模块中,设置连接单元、连接属性和约束 3.在STEP模块中,设置单元的历史变量输出;如果模型中出现较大的位移或转动,应将 几何非线性参数NLGEOM设置为ON 4.在LOAD模块中,定义边界条件和载荷,以及连接单元的边界条件和载荷 5.在VISUALIZATION模块中,查看连接单元的历史变量输出、控制连接单元的显示方式。8.1.1连接单元 用来模拟模型中的两个点或一个点和地面之间的运动和力学关系,所涉及到的点称为连接点。 8.1.2连接属性 分类:基本连接属性和组合连接属性 基本连接属性:平移连接属性和旋转连接属性 两个节点上的局部坐标系有如下三种情况: REQUIRED;IGNORED;OPTIONAN 两个连接点之间的相对运动分量:平移运动分量和旋转运动分量;又可以分为受约束的相对

运动分量和可用的相对运动分量。 几种常用的连接属性: JOIN;LINK;SLOT;REVOLVE;HINGE 8.1.3输出单元的分析结果 连接单元的作用:在两个连接点之间施加运动约束,度量两个连接点之间的相对运动、力和力矩 分析结果:运动分析结果和力与力矩的分析结果 8.2实例1:圆盘的旋转过程模拟

abaqus系列教程11多步骤分析 (1)

11多步骤分析 ABAQUS模拟分析的一般性目标是确定模型对所施加载荷的响应。回顾术语载荷(load)在ABAQUS中的一般性含义,载荷代表了使结构的响应从它的初始状态到发生变化的任何事情;例如:非零边界条件或施加的位移、集中力、压力以及场等等。在某些情况下载荷可能相对简单,如在结构上的一组集中载荷。在另外一些问题中施加在结构上的载荷可能会相当复杂,例如,在某一时间段内,不同的载荷按一定的顺序施加到模型的不同部分,或载荷的幅值是随时间变化的函数。采用术语载荷历史(load history)以代表这种作用在模型上的复杂载荷。 在ABAQUS中,用户将整个的载荷历史划分为若干个分析步(step)。每一个分析步是由用户指定的一个“时间”段,在该时间段内ABAQUS计算该模型对一组特殊的载荷和边界条件的响应。在每一个分析步中,用户必须指定响应的类型,称之为分析过程,并且从一个分析步到下一个分析步,分析过程也可能发生变化。例如,可以在一个分析步中施加静态恒定载荷,有可能是自重载荷;而在下一个分析步中计算这个施加了载荷的结构对于地震加速度的动态响应。隐式和显式分析均可以包含多个分析步骤;但是,在同一个分析作业中不能够组合隐式和显式分析。为了组合一系列的隐式和显式分析步,可以应用结果传递或输入功能。在ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)第results between ABAQUS/Explicit and ABAQUS/Standard”中讨论了这个功能。而本指南不做进一步的讨论。 ABAQUS将它的所有分析过程主要划分为两类:线性扰动(linear perturbation)和一般性分析(general)。在ABAQUS/Standard或在ABAQUS/Explicit分析中可以包括一般分析步;而线性扰动分析步只能用于ABAQUS/Standard分析。对于两种情况的载荷条件和“时间”定义是不相同的,因而,从每一种过程得到的结果必须区别对待。 在一般分析过程中,即一般分析步(general step),模型的响应可能是非线性的或者是线性的。而在采用扰动过程的分析步中,即称为扰动分析步(perturbation step),响应只能是线性的。ABAQUS/Standard处理这个分析步作为由前面的任何一般分析步创建的预加载、预变形状态的线性扰动(即所谓的基本状态(base state));ABAQUS 的线性模拟功能比之单纯线性分析的程序是更加广义的。

abaqus6.12 典型实例解析

(北京) CHINA UNIVERSITY OF PETROLEUM 《工程分析软件应用基础》保险杠撞击刚性墙的实例分析 院系名称:机械与储运工程学院 专业名称:机械工程 学生姓名: 学号: 指导教师: 完成日期2014年5月1日

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

abaqus动力学分析

目 录 第一章ABAQUS动力学问题概述 (1) §1-1 动力学问题 (1) §1-2 结构动力学研究的内容 (3) §1-3 振动的分类 (4) §1-4 结构动力学的研究方法 (5) §1-5 动力学问题的基本方程 (5) 小结 (6) §1-6 第2章结构特征值的提取 (7) §2-1 问题的产生 (7) §2-2 特征值的求解方法 (7) §2-3 特征值求解器的比较 (8) §2-4 重复的特征频率 (9) §2-5 征值频率的提取 (9) §2-6 频率输出 (12) §2-7 有预载结构的频率 (16) §2-8 复特征频率和刹车的啸声分析 (17) 第3章模态叠加法 (22) §3-1 模态叠加法的基本概念 (22) §3-2 模态叠加法的应用 (24) 第4章阻尼 (26) §4-1 引言 (26) §4-2 阻尼 (26) §4-3 在ABAQUS中定义阻尼 (27) 1

§4-4 阻尼选择 (31) 第5章稳态动力学分析 (33) §5-1 稳态动力学简介 (33) §5-2 分析方法 (35) §5-3 激励和输出 (36) §5-4 算例—轮胎的谐波激励稳态响应 (42) 第6章瞬态动力学分析 (49) §6-1 引言 (49) §6-2 模态瞬态动力学简介 (49) §6-3 分析方法 (54) §6-4 载荷和输出 (55) §6-5 算例—货物吊车 (58) 第7章基础运动 (64) §7-1 基础运动形式 (64) §7-2 初级基础运动 (65) §7-3 次级基础运动 (66) §7-4 在ABAQUS中定义基础运动 (66) §7-5 算例 (70) 第8章加速度运动的基线校准 (73) §8-1 加速度基线调整和校准简介 (73) §8-2 基线校准方法 (74) §8-3 加速度基线校准步骤 (76) §8-4 考虑基线校准的悬臂梁算例分析 (77) 2

相关文档
最新文档