侧浇口自动分离的注射模设计

侧浇口自动分离的注射模设计
侧浇口自动分离的注射模设计

水利工程施工课程设计计算书

《水利工程施工》课程设计计算说明书 一、基本资料 某工程截流设计流量Q=4150 m3/s,相应下游水位为39.51m,采用单戗立堵进占,河床底部高程30m,戗堤顶部高程是44m,戗堤端部边坡系数n=1,龙口宽度220m,合龙中戗堤渗透流量Q s0=220m3/s,合龙口的渗流量可近似按如下公式计算,Qs= Q s00 z(Z为上下游落差,Z0 为合龙闭气前 /z 最终上下游落差),请设计该工程在河床在无护底情况下的截流设计。已知上游水位~下泄流量关系如下: 截流设计是施工导流设计重要组成部分,其设计过程比较复杂,一般有多种设计方法,本次设计针对立堵截流。一般设计步骤分为:戗堤设计及截流水力分区设计,本次设计只涉及截流水力计算。 截流的水力计算中龙口流速的确定一般有图解法和三曲线法两种。以下采用三曲线法设计。 截流设计流量的确定,通常按频率法确定,也即根据已选定的截流时段,采用该时段内一定频率的某种特征流量值作为设计流量。一般地,多采用5%~10%的月平均或者旬平均流量作为设计标准。

二、计算过程含附图(三曲线法) 无护底时绘制V~Z 和V~B 曲线 步骤:1、作Q~Z 关系曲线,将已知的泄流水位Q d ~△H 上转化为Q d ~Z 关系, 并做Q d ~Z 曲线; 其中:Qs= Q s0 0/z z =22023.3/z ; Q d 可根据Z 值在Q d ~Z 曲线上查得; 由Q 0=Q+Q d +Q s 绘制龙口流量与下游落差Q~Z 关系曲线,曲线由以 下表格绘制:

2、计算Z B 和Z C (1)、B 点为非淹没流梯形断面与三角形断面分界点。 Z B =2 2241?α?g +(224αn Q g )2/5 -h s 其中,α为断面动能修正系数,常取1.0; ψ为流量系数,为0.85—0.95;此时取0.91; n 为戗堤端部边坡系数,取n=1; h s =39.51-30=9.51m ;

数值计算方法课程设计(C语言)

数值计算方法课程设计 姓名 学号 成绩

课程实际报告 实验一:秦九韶算法 题目 用选列主元高斯消去法解线性方程组 ???????=+- =-+-=-+-=--02 02 0 21 34343232121x x x x x x x x x x 算法语言: 利用c 语言的知识编写该算法程序 算法步骤叙述: 秦九昭算法的基思路是v[0]=a[0]*x+a[1] v[i]=v[i-1]*x+a[i+1];利用秦九昭算法计算多项式函数。 程序清单: #include void main() { float a[5],x,sum; int i; printf("presase input the value of x="); scanf("%f",&x); for (i =5;i >=0;i --) { printf("please input the value of a%d=",i); scanf("%f",&a[i]); } sum =a[5];

for(i=5;i>=1;i--) {sum=sum*x+a[i-1]; } printf("f(x)=%f/n",sum); } 输出结果计算:

实验总结: 通过运用C 语言,解决了秦九韶算法手写的复杂。为以后的雪地打下基础。 实验二:用选列主元高斯消去法解线性方程组 题目 用选列主元高斯消去法解线性方程组 ???????=+- =-+-=-+-=--02 0 2 0 21 34343232121x x x x x x x x x x 算法步骤叙述 第一步消元——在增广矩阵(A,b )第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A,b )做初等行变换使原方程组的第一列元素除了第一行的全变为0; 第二步消元——在增广矩阵(A,b )中第二列中(从第二行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A,b )做初等行变换使原方程组的第二列元素除了第一和第二行的全变为0; 第三步消元——在增广矩阵(A,b )中第三列中(从第三行开始)找到绝对值最大的元素,将其所在行与第三行交换,再对(A,b )做初等行变换使原方程组的第三列第四行元素为0; 第四,按x4-x3-x2-x1的顺序回代求解出方程组的解,x[n]=b[n]/a[n][n],x[i]=(b[i]-Σa[i][j]x[j])/a[i][i],i=n-1,…,2,1 程序清单: #include #include #define N 4 static double A[N][N] = {-3,-1,0,0,-1,2,-1,0,0,-1,2,-1,0,0,-1,2}; static double B[N]={1,0,0,0};

取水工程课程设计计算书

《城市水资源与取水工程》课程设计任务书 一.任务书 本课程设计的任务就是根据所给定的原始资料设计某城市新建水源工程的取水泵房。 一、设计目的 本课程设计的主要目的就是把《泵与泵站》、《城市水资源与取水工程》中所获得的理论知识加以系统化,并应用于设计工作中,使所学知识得到巩固与提高,同时培养同学们有条理地创造性地处理设计资料的独立工作能力。 二、设计基本资料 1、近期设计水量6,8,10万米3/日,要求远期9,12,15万米3/日(不包括水厂自用水)。 2、原水水质符合饮用水规定。河边无冰冻现象,根据河岸地质地形以决定采用固定式泵房由吸水井中抽水,吸水井采用自流管从取水头部取水,取水头部采用箱式。取水头部到吸水井的距离为100 米。 3、水源洪水位标高为73、2米(1%频率);估水位标高为65、5米(97%频率);常年平均水位标高为68、2 米。地面标高70、00。 4、净水厂混合井水面标高为9 5、20米,取水泵房到净水厂管道长380(1000)米。 5、地区气象资料可根据设计需要由当地气象部门提供。 6、水厂为双电源进行。 三、工作内容及要求 本设计的工作内容由两部分组成: 1、说明说 2、设计图纸 其具体要求如下: 1、说明书 (1)设计任务书 (2)总述 (3)取水头部设计计算

(4)自流管设计计算 (5)水泵设计流量及扬程 (6)水泵机组选择 (7)吸、压水管的设计 (8)机组及管路布置 (9)泵站内管路的水力计算 (10)辅助设备的选择与布置 (11)泵站各部分标高的确定 (11)泵房平面尺寸确定 (12)取水构筑物总体布置草图(包括取水头部与取水泵站) 2、设计图纸 根据设计计算成果及取水构筑物的布置草图,按工艺初步设计要求绘制取水头部平面图、剖面图;取水泵房平面图、剖面图及机组大样图,图中应绘出各主要设备、管道、配件及辅助设备的位置、尺寸、标高。绘制取水工程枢纽图。 泵站建筑部分可示意性表示或省略,在图纸上应列出泵站与取水头部主要设备及管材配件的等材料表。 二、总述 本次设计为一级泵站,给水泵站采用圆形钢筋混凝土结构,泵房设计外径为16m,泵房上设操作平台。自流管采用DN800的钢管,吸水管采用DN600的钢管,压水管为DN450的钢管,输水干管采用DN600的钢管。筒体为钢筋混凝土结构,所有管路配件均为钢制零件。水泵机组采用14sh—13A型水泵,JS—116—4型异步电动机,近期二用一备,远期三用一备。起重机选用DL型电动单梁桥式,,排水设备选用WQ20-15型潜水泵,通风设备选用T35-11型轴流风机两台。 三、取水头部设计计算 1、设计流量Q的确定: 考虑到输水干管漏损与净化场本身用水,取水用水系数α=1、05,所以 近期设计流量为: 2、取水头部的设计与计算

数值计算方法课程设计

重庆邮电大学 数学与应用数学 专业 《数值计算方法》课程设计 姓名: 李金徽 王莹 刘姝楠 班级: 1131001 1131002 1131002 学号: 2010213542 2010213570 2010213571 设计时间: 2012-6-4 指导教师: 朱伟

一、课程设计目的 在科学计算与工程设计中,我们常会遇到求解线性方程组的问题,对于系数矩阵为低阶稠密矩阵的线性方程组,可以用直接法进行消元,而对于系数矩阵为大型稀疏矩阵的情况,直接法就显得比较繁琐,而迭代法比较适用。比较常用的迭代法有Jacobi 迭代与Gauss - seidel 迭代。本文基于两种方法设计算法,并比较他们的优劣。 二、课程设计内容 给出Jacobi 迭代法和Gauss-Seidel 迭代法求解线性方程组的算法思想和MATLAB 程序实现,并对比分析这两种算法的优劣。 三、问题的分析(含涉及的理论知识、算法等) Jacobi 迭代法 方程组迭代法的基本思想和求根的迭代法思想类似,即对于线性 方程组Ax = b( 其中n n n R b R R A ∈?∈,),即方程组 )1(2211222221211 1212111?? ???? ?=+?++??=+?++=+?++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 将系数矩阵A 写为 )2(000000 21122 12122 11U L D a a a a a a a a a A n n n n nn --≡??? ?? ? ? ??---- ??????? ??----??????? ??= 若选取D M =,则U L A M N +=-=,方程组)1(转化为等价方程组 b x U L Dx ++=)(

截流水力计算

截流水力计算(课程设计资料) 土木水电学院水利水电工程系二零零六年十二月

截流水力计算 一切将河道水流截断的工程措施,统称截流。截流的方法很多,用的最多的是抛石截流。抛石截流又分为平堵截流和立堵截流。由于立堵截流不需要架桥,施工简单,截流费用低,因此现在国内外绝大部分工程均采用立堵截流。下面仅研究立堵截流水力计算。 抛石截流计算最主要的任务是确定抛投体的尺寸的重量,而抛投块的稳定计算国内外广泛采用的是兹巴什公式,即 V =(1) 式中 V ——石块极限抗冲流速; d ——石块化引为球形的粒径; s γ、γ——分别为石块和水的容重; K ——综合稳定系数。 由(1)式可知,抛投块体的粒径与抗冲流速的平方成正比。也就是说,抛投块体的粒径在很大程度上取决于龙口流速,因此研究龙口流速变化规律有重要的意义。下面介绍两种计算龙口流速的方法。 一、图解法计算龙口流速(方法一) 一般情况下,合龙过程中截流设计流量0Q 由四部分组成: d s ac Q Q Q Q Q =+++ (2) 式中 Q ——龙口流量; d Q ——分流量(分流建筑物中通过的流量) ac Q ——上游河槽中的调蓄流量; s Q ——戗堤渗透流量。 当s Q 和ac Q 不计算,则有: 0d Q Q Q =+ (2-1)

龙口流量按宽顶堰公式计算: 3 2 Q m - =(3) 式中B - ——龙口平均过水宽度; H——龙口上游水头(龙口如有护底,应从护底顶部算起); m——流量系数,按下式计算: (1Z m H =- Z H小于0.3 淹没流 0.385 m= Z H大于或等于0.3 非淹没流(3-1)由连续方程可得龙口流速计算公式: Q V Bh - =(4)式中V——龙口计算断面平均流速; h——龙口计算断面水深(从护底顶部算起); 在立堵截流中,常常规定:当出现淹没流时, s h h =, s h为龙口底部(或护底) 以上的下游水深(图一);当出现非淹没流时, c h h =, c h为临界水深。 h的计算按下列四种情况考虑: 1.梯形断面淹没流: s h h = 由于进占过程中龙口底部高程不变, s h为常数。 2. 梯形断面非淹没流: c h h = c h按下式计算: 2 33 () 1 c c aQ B nh g B h - - + =(4-1) 式中n——戗堤端部边坡系数; a——计算断面动能修正系数,常取 1.0 a=计算;

JAVA实现计算器课程设计

JAVA实现计算器课程设计 计算机科学系 计应0701班 指导老师:刘其昌 设计人员:陈秀桃 设计日期:2009年11月10日——2009年12月20日 计算器的设计 目录 第一章绪 论 ..................................................................... .. (2)

1.1 开发环 境 ..................................................................... . (2) 1.2 基本功能介 绍 ..................................................................... ......... 2 第二章系统设 计 ..................................................................... (3) 2.1 系统流程 图 ..................................................................... . (3) 2.2 系统功能框 图 ..................................................................... (3) 2.3 需求分 析 ..................................................................... ................ 4 第三章软件设 计 ..................................................................... (5) 3.1 界面设 计 ..................................................................... . (5) 3.2 代码设 计 .....................................................................

压铸流道设计探讨

压铸流道设计探讨 ⑤ 横浇道长度一般取30-50mm 左右 3、压铸模具内浇口的尺寸设计 Ag = G/(Vg*t*1000) Ag 内浇口的截面面积(mm2) G 通过内浇口的金属液体积(产品+冷料井)(mm3)Vg 内浇口处金属液的流动速度(m/s ) t 型腔的充填时间(s ) 铝合金一般浇口速度可参考下表设定 T 内浇口的厚度(mm )D 横浇道深度(mm ) D = (5-8)T(卧式冷室压铸机) D = (8-10)T(热室压铸机) ④ 横浇道深度的尺寸设计 1、压铸模流道设计方法,常用“逆向流量法”。压铸模流道,有如下主要部位,直浇道、横浇道、分支横浇道和内浇口,他们之间截面积关系要满足如下比例,可以保证减少卷入空气。直浇道:横浇道:∑分支横浇道:∑内浇口=1.15(1.15(1.15X)):1.15(1.15X):1.15X :1X 。所谓“逆向流量法”,就是首先确定内浇口截面积,其他部位的截面积就可以确定了。内浇口截面积如下确定:根据铸件的壁厚,查压铸手册,可以得到一个t 填充时间,根据填充时间的参数,用公式:内浇口截面积(长*宽)=铸件带冷料井总体积/(内浇口合金速度*填充时间)就可以获得内浇口截面积的数据。 2、对于横浇道的要求 ① 冷室卧式机压铸模具横浇道的入口处一般应位于压室上部内径2/3以上部位,以免压室中金属液在重力作用下过早进入横浇道,提前开始凝固。 ② 横浇道的截面积从直浇道起至内浇口应逐渐减小,如果出现截面扩大,则金属液流经时会出现负压,易吸入分型面上的气体,增加金属液流动中的涡流裹气。一般出口处截面比进口处小10-30%。 ③ 横浇道应有一定的长度和深度。保持一定长度的目的是起稳流和导向的作用。若深度不够,则金属液降温快,深度过深,则因冷凝过慢,压铸件不良率高,既影响生产率又增加回炉料用量。 注意:当铸件的壁厚很薄却表面质量要求较高是,选用较大的值,对力学性能,如抗拉强度和致密度要求较高时用较小 值

给排水课程设计计算书

《建筑给水排水工程》课程设计任务书及指导书 一、设计资料 (1)建筑资料 建筑各层平面图、建筑剖面图、厨厕大样图等。 建筑物为六层住宅,采用钢筋混凝土框架结构,层高为3M,室内外高差为0.1M。 (2)水源资料 在建筑物北面有城镇给水管道和城镇排水管道(分流制),据调查了解当在夏天用水高峰时外网水压为190kpa,但深夜用水低峰时可达310kpa;环卫部门要求生活污水需经化粪池处理后才能排入城镇排水管道。每户厨房内设洗涤盆一个,厕所内设蹲式(或坐式)大便器,洗脸盆、淋浴器(或浴盆)及用水龙头(供洗衣机用)各一个。每户设水表一个,整幢住宅楼设总表一个。 二、设计内容 1.设计计算书一份,包括下列内容 (1)分析设计资料,确定建筑内部的给水方式及排水体制。 (2)考虑厨厕内卫生器具的布置及管道的布置与敷设。 (3)室内外管道材料、设备的选用及敷设安装方法的确定。 (4)建筑内部给排水系统的计算。 (5)其它构筑物及计量仪表的选用、计算。 (6)室外管道定线布置及计算(定出管径、管坡等数据及检查井底标高,井径,化粪池进出管的管内底标高等)。 2.绘制下列图纸 (1)各层给排水平面图(1:100)。 (2)系统原理图 (3)厨厕放大图(1:50)。 (4)主要文字说明和图例等。

设计说明书 (一)给水方式的确定 单设水箱供水 由设计任务资料得知,市政给水供水在夏天用水高峰时外网水压为190kpa,但深夜用水低峰时可达310kpa,查规范得知,3层及以下的单位给水供水宜直接市政供水,而4到6层得用户则有水箱供水。 优点:系统简单,投资省,充分利用室外管网水压,节省电耗,拥有贮备水量,供水的安全可靠性较好。 缺点:设置高位水箱,增加了建筑物的结构荷载,降低经济效益,水压长时间持续不足时,需增大水箱容积,并有可能出现断水。 总的来说,整个系统由室外管网供水,下行上给。这种方式不仅节省了材料费用,并且免除了水泵带来的动力费用以及水箱造成的建筑物经济效益降低的问题。 (二)给水系统的组成 整个系统包括引入管、水表节点、给水管网和附件等。 系统流程图为:市政给水管网→室外水表→管道倒流防止器→室外给水环网→户用水表→室内管网 (三)管材及附件的选用 1、给水管材 生活给水管道与室外环网采用不锈钢管,其余配水管采用PP-R给水塑料管。 2、给水附件 DN>50mm的管道及环网上设置闸阀,DN<50mm的管道上设置截止阀。 (四)施工要求 1、室外管道 室外管道采用DN100不锈钢管连接成环状,连接形式为法兰连接,埋设在地下0.7m处,向建筑物内部供水。 2、室内管道 (1)室内管道PP-R给水塑料管采用热熔连接的形式。 (2)室内管道立管采用明装的形式装设在水表间内,支管采用暗装的形式埋在空心墙或暗敷于地板找平层中。同时在管道施工时,注意防漏、防露等问题。 (3)给水管与排水管平时、交叉时,其距离分别大于0.5m和0.15m;交叉处给水管在上。(4)管道穿越墙壁时,需预留孔洞,孔洞尺寸采用d+50mm-d+10mm,管道穿越楼板时应预埋金属套管。 (5)管道外壁之间的最小间距,管径DN≤32时,不小于0.1m;管径大于32mm时,不小于0.15m。 二、排水工程设计 (一)污废水排水工程设计 1、排水体制的选择 根据本工程实际排水条件,该建筑采用污废水合流排水系统,经化粪池处理后排入城市污废水管道。 由于本工程层数较少,采用伸顶通气立管。 2、排水系统的组成 由卫生器具、排水管道、检查口、清扫口、室外排水管道、检查井、化粪池、伸顶通气

两板式注塑模浇口和流道的优化设计

两板式注塑模浇口和流道的优化设计作者:M.A.阿姆兰,M. 哈德斯雷,S.阿姆里,R. 艾木莎,A.哈桑,S.斯姆西,和K.沙希尔 马来西亚Teknikal大学制造工程学院 邮箱:mohdamran@https://www.360docs.net/doc/915571785.html,.my 摘要 本文主要介绍了两板式注塑模浇口和流道的大小。此次研究以ECR 塑料产品中的上壳,下壳,支架三个产品作为研究对象,目的是找出浇口,流道的最佳尺寸和型腔的合理布局,并以最优布局消除因浇口和流道不合理产生的缺陷。这项研究使用了三种类型的软件:使用UG软件作为计算机辅助设计工具用来3D建模;使用犀牛软件后期处理工具设计浇口和流道;使用Moldex软件作为仿真工具来分析塑性流动。最终修改了一些两板式注塑模中浇注系统的大小和位置,来消除填充时缺料产生的空腔和熔接痕等问题。 关键词:计算机建模;流体分析;优化 PACS: 07.05Tp 1.介绍 注塑通常包括注射,补缩和冷却三个阶段。随着计算机在工程设计中的大量使用,仿真软件在模具制造行业中产生了重要的影响。目前,市场上这方面商用软件也越来越多地涌现出来[1]。ECR塑料产品的三部分使用相同的材料和颜色,但形状大小却各不相同。原本每一部分都需要独自的模具,此项研究中只需要一个一模多腔的模具便可完成。其难点在于型腔的位置、浇注系统的位置尺寸、以及冷却水道的位置[2]、[6]、[7]。Moldex软件就是用于分析塑性流动的仿真软件。 2.方法 本研究从设计通过UG软件对ECR产品进行3D建模,然后将建好的模型转移到犀牛软件上进行文件处理。在犀牛软件中对浇注系统如浇口,主流道,分流道,以及冷却水道和模架的设计。最后,使用从犀牛软件导出文件到Moldex软件。通过对注射、补缩、冷却、翘曲的分析 1

GATE-浇口设计

技术专栏 : 塑料射出成型模具的浇口设计 浇口(Gate)在射出成型模具的浇注系统(Feed System)中是连接流道(Runner)和型腔(Cavity)的熔胶通道。浇口设计和塑件质量有着密不可分的关系。 1. 浇口的位置和数目 1.1. 浇口位置与喷流(Jetting)的关系 浇口若能布置成冲击型浇口 -- 也就是使得进浇后的塑料熔体立刻冲击到一阻挡物(如型腔壁、芯型销等),让塑流稳定下来,就可以减少喷流的机率。 1.2. 浇口的位置和数目与熔接线(Weld Line)的关系 熔接线是两股熔胶的波前(Melt Front)相遇后所形成的线条。就塑件的外观或是强度而言,熔接线都是负面的。 每增加一个浇口,至少要增加一条熔接线,同时还要增加一个浇口痕(Gate Mark)、较多的积风(Air Trap)以及流道的体积。所以在型腔能够如期充填的前提下,浇口的数目是愈少愈好。为了减少浇口的数目,每一浇口应在塑流力所能及的流动比之内(Flow Length to Thickness Ratio),找出可以涵盖最大塑件面积的进浇位置。 更改浇口位置以后,能够将熔接线自敏感处移除为上策。如果熔接线无法移除,那么增加波前的熔胶温度(Melt Temperature);或是减少两相遇波前的熔胶温度差(Melt Temperature Difference);或是增加两波前相遇后的熔胶压力(Melt Pressure);或是增加熔胶波前相遇时的遇合角(Meeting Angle),都可以改善熔接线的质量。 1.3. 浇口的位置和数目与积风(Air Trap)的关系 积风是型腔内的空气和熔胶释出的气体被熔胶包围后的缺陷。积风的存在,重则导致短射(Short Shot)或焦痕(Burn Mark),轻亦影响外观和强度。 每增加一个浇口,就会增加积风发生的机率。当塑件厚薄差异大时,如果浇口位置设置不当,就会因为跑道现象(Race Track Effect)而导致积风。 1.4. 浇口位置与迟滞效应(Hesitation Effect)的关系 迟滞效应是熔胶流到厚薄交接处的时候,由于薄处的流阻较大,而在该处阻滞不前的效应。这种效应重则产生短射,轻亦形成迟滞痕(亦即高残余应力带)。 浇口应置于距离可能发生迟滞效应的最远处,以消除或减轻迟滞。 1.5. 浇口位置与缩痕(Sink Mark)和缩孔(Void)的关系 浇口应置于厚壁处以确保补缩的塑流(Compensation Flow)能够维持得最久,厚壁处才不会因为较大的收缩,而使得缩痕和缩孔更容易发生。 1.6. 浇口位置与溢料(Flash)的关系 型腔布置和浇口开设部位应立求对称,防止模具承受偏载而产生溢料现象。如(图一)所示,b) 的布置较之a)为合理。 1.7. 浇口位置与流动平衡(Flow Balance)的关系 就单型腔模具而言,熔胶波前于同一时间抵达型腔各末端,就叫做流动平衡。流动平衡的设计使得熔胶的压力、温度以及体积收缩率的分布比较均匀,塑件的质量较好。所以浇口位置的选择以是否达成流动平衡为准。 流动平衡与否,可以模拟充模的CAE进行确认。对浇口数目相同但是浇口位置不同的设计而言,能以最小的射压 (Injection Pressure)和锁模力(Clamp Force)充模的设计是流动最平衡的设计。

完整word版,仅参考工程水文及水力计算课程设计(赋石水库课程设计)

工程水文与水力计算 课程设计 赋石水库水利水电规划 、设计任务 1、选择水库死水位; 2、选择正常蓄水位; 3、计算电站保证出力和多年平均发电量; 4、选择水电站装机容量; 5、推求设计标准和校核标准的设计洪水过程线;6推求洪水特征水位和大坝坝址顶高程。 二、流域自然地理简况,流域水文气象资料概况: 1、流域和水库情况简介 西苕溪为太湖流域一大水系(图KS2-1),流域面积为2260km2,发源于浙江省安吉县天目山,干流全长150km,上游陡坡流急,安城以下堰塘遍布,河道曲折,排泄不畅,易遭洪涝灾害,又因流域拦蓄工程较少,灌溉水源不足,易受灾害。

图KS2-1西苕溪流域水系及测站分布1 赋石水库是一座防洪为主,结合发电、灌溉、航运及水产养殖的综合利用水库,位于安吉县丰城西10km,控制西苕溪主要支流西溪,坝址以上流域面积328km2。流域内气候温和、湿润,多年平均雨量1450km。流域水系及测站分布见图KS2-1 1、水文气象资料情况 在坝址下游1Km处设有潜渔水文站,自1954年开始有观测的流量资料。通过频率计算,得各设计频率的设计年径流量,选择典型年,计算缩放比,成果见表KS2-3典型年径流过程见表KS2-4 根据调查1922年9月1日在坝址附近发生一场大洪水,推算得潜渔站洪峰流量为1350m3s。这场洪水是发生年份至今最大的一次洪水。缺测年份内,没有大于 1160m3s的洪水发生。 经初步审查,可降雨和径流等实测资料可用于本次设计。 表KS2-3 设计年径流量及典型年径流量 表KS2-4 潜渔站设计年径流过程 月~枯水典型年Q~中水典型~丰水典型~~I枯水典型年Q~中水典型~丰水典型

计算方法课程设计

数理学院2014级信息与计算科学 课程设计 姓名:刘金玉 学号: 3141301240 班级: 1402 成绩:

实验要求 1.应用自己熟悉的算法语言编写程序,使之尽可能具有通用性。2.上机前充分准备,复习有关算法,写出计算步骤,反复检查,调试程序。(注:在练习本上写,不上交) 3.完成计算后写出实验报告,内容包括:算法步骤叙述,变量说明,程序清单,输出计算结果,结构分析和小结等。(注:具体题目 具体分析,并不是所有的题目的实验报告都包含上述内容!)4.独立完成,如有雷同,一律判为零分! 5.上机期间不允许做其他任何与课程设计无关的事情,否则被发现一次扣10分,被发现三次判为不及格!非特殊情况,不能请 假。旷课3个半天及以上者,直接判为不及格。

目录 一、基本技能训练 (4) 1、误差分析 (4) 2、求解非线性方程 (6) 3、插值 (12) 4、数值积分 (12) 二、提高技能训练 (16) 1、 (16) 2、 (18) 三、本课程设计的心得体会(500字左右) (21)

一、基本技能训练 1、误差分析 实验1.3 求一元二次方程的根 实验目的: 研究误差传播的原因与解决对策。 问题提出:求解一元二次方程20ax bx c ++= 实验内容: 一元二次方程的求根公式为 1,22b x a -+= 用求根公式求解下面两个方程: 2210(1)320(2)1010 x x x x +-=-+= 实验要求: (1) 考察单精度计算结果(与真解对比); (2) 若计算结果与真解相差很大,分析其原因,提出新的算法(如先求1x 再 根据根与系数关系求2x )以改进计算结果。 实验步骤: 方程(1): 根据求根公式,写出程序: format long a=1;b=3;c=-2; x1=((-1)*b+sqrt(b^2-4*a*c))/2*a x2=((-1)*b-sqrt(b^2-4*a*c))/2*a

压铸模设计要点及工艺解析

压铸模设计要点及工艺解析 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 压铸模设计要点及压铸工艺 金属液在通过浇口时,其填充方式可分为层流式填充、喷射流填充、雾化流填充三种方式。当浇口速度较低时,填充方式显层流的状态;当速度增加,金属液不再是连续流出,而是呈粗颗粒状喷出;当速度更高时,水则会呈雾状的细微颗粒喷出。采用层流填充或雾状流填充均可产生令人满意的铸件,粗颗粒流填充因在填充过程中热量损失多而填充不好。一般而言,浇口愈薄,浇口速度愈高才能达到雾化流的状态 金属液进入型腔的流动状态是由流道和内浇口的形式决定的。目前使用较多的流道形式有扇形流道和锥形流道两种。浇注系统由直浇道,横浇道和内浇道等三部份组成。扇形流道较适合于内浇口长度较短的产品,锥形流道适合于内浇口长度较长的产品。不管是扇形流道还是锥形流道,从流道开始到内浇口其截面积应该逐渐缩小,才能保证控制合金液的流态,并防止气体卷入浇注系统;横浇道应具有一定的长度,可对金属液起到稳流和导向作用压铸模设计要点: 一、模架 1.外表面要求光亮平整,前后模框加2个打出孔,注意要加在没有镶件的位置,防止零件掉出来。 2.为了防止模板变形,起码做2个支撑柱,一个放在分流锥,一个放在分流锥的上面,

注意不要与其他零件干涉。 3.模具底板要做通,便于散热。 4.定位圈内孔表面要求内圆磨后氮化,并沿出模方向抛光。 5.定位圈表面的冷却环底部到分流锥表面的长度一般等于料饼厚度。固定此冷却环的方式有2种:烧焊和加热压入。 6.分流锥一定要做运水来冷却,且离分流锥表面25-30mm. 7.模架四个导柱孔要做撬模槽,深度8-10mm。 8.模架一定要调质处理的,最好是锻打的模架。 二、内模,镶件 1.加工后热处理前做去应力处理。一般铝合金淬火HRC45+/-1°C,锌合金淬火HRC46+/-1-1°C 2.内模的配合公差:一般做到小于模框0.05-0.08mm左右,可以用吊环轻松取出放入模框。顶针配合公差:大于等于8mm的顶针间隙0.05mm,小于等于6mm的顶针间隙0.025mm。 3.3.凡是内模上面直角和锐角的地方一定要包R0.5mm以上。 4.内模表面多余眼孔用一字螺丝堵死。 三、流道及排渣系统设计 1.分流锥上面料饼的主流道要做到圆表面积的1/3以内。这样防止冷料快速进入型腔前就封闭了分型面。 2.分流锥上面主流道要做成“W”形状,料饼厚度做到15-20mm. 3.一般主流道的长度做到30-35mm,且单边做5-10°的出模。 4.一般横流道最好是拐弯,且做成2个台阶以上,防止冷料通过横流道进入型腔,导致产品表面冷隔纹。

设计流道的基本原则

149863 CAE小百科系列~连载十六 一:设计流道的基本原则 基本原理 普通的流道系统(Runner System)也称作浇道系统或是浇注系统,是熔融塑料自射出机射嘴(Nozzle)到模穴的必经通道。流道系统包括主流道(Primary Runner)、分流道(Sub-Runner)以及浇口(Gate)。下图显示了典型的流道系统组成。

●主流道:也称作主浇道、注道(Sprue)或竖浇道,是指自射出机射嘴与模具主流道衬套接触的部 分起算,至分流道为止的流道。此部分是熔融塑料进入模具后最先流经的部分。 ●分流道:也称作分浇道或次浇道,随模具设计可再区分为第一分流道(First Runner)以及第二分流 道(Secondary Runner)。分流道是主流道及浇口间的过渡区域,能使熔融塑料的流向获得 平缓转换;对于多模穴模具同时具有均匀分配塑料到各模穴的功能。 ●浇口:也称为进料口。是分流道和模穴间的狭小通口,也是

最为短小肉薄的部分。作用在于 利用紧缩流动面而使塑料达到加速的效果,高剪切率可使塑料流动性良好(由于塑料的 切变致稀特性);黏滞加热的升温效果也有提升料温降低黏度的作用。在成型完毕后浇口 最先固化封口,有防止塑料回流以及避免模穴压力下降过快使成型品产生收缩凹陷的 功能。成型后则方便剪除以分离流道系统及塑件。●冷料井:也称作冷料穴。目的在于储存补集充填初始阶段较冷的塑料波前,防止冷料直接进入 模穴影响充填质量或堵塞浇口,冷料井通常设置在主流道末端,当分流道长度较长 时,在末端也应开设冷料井。 设计基本原则 模穴布置(Cavity Layout)的考虑 ●尽量采用平衡式布置(Balances Layout )。 ●模穴布置与浇口开设力求对称,以防止模具受力不均产生偏载

压铸模设计与制造中应注意的问题

压铸模设计与制造中应注意的问题 发表时间:2018-03-20T17:07:31.863Z 来源:《基层建设》2017年第34期作者:李聪[导读] 摘要:压铸模设计的正确与否,直接关系到铸件的产量和质量,而且还应考虑到制造与生产中的工艺因素。 内江职业技术学院四川省内江市 641000 摘要:压铸模设计的正确与否,直接关系到铸件的产量和质量,而且还应考虑到制造与生产中的工艺因素。本文详细介绍了从压铸产品设计到压铸模制造全过程中应注意的问题。 关键词:压铸模设计;压铸模制造 1 压铸模设计的重要性 压铸模是压铸生产三大要素之一,结构正确合理的模具是压铸生产能否顺利进行的先决条件,并在保证铸件质量方面(下机合格率)起着重要的作用。由于压铸工艺的特点,正确选用各工艺参数是获得优质铸件的决定因素,而模具又是能够正确选择和调整各工艺参数的前提,模具设计实质上就是对压铸生产中可能出现的各种因素预计的综合反映。如若模具设计合理,则在实际生产中遇到的问题少,铸件下机合格率高。反之,模具设计不合理,例一铸件设计时动定模的包裹力基本相同,而浇注系统大多在定模,且放在压射后冲头不能送料的灌南压铸机上生产,无法正常生产,铸件一直粘在定模上。尽管定模型腔的光洁度打得很光,因型腔较深,仍出现粘在定模上的现象。所以在模具设计时,必须全面分析铸件的结构,熟悉压铸机的操作过程,要了解压铸机及工艺参数得以调整的可能性,掌握在不同情况下的充填特性,并考虑模具加工的方法、钻眼和固定的形式后,才能设计出切合实际、满足生产要求的模具。 2 压铸模设计应注意的问题 压铸模的设计主要根据压铸件的形状而定。但是模具设计和尺寸会对模具寿命产生影响。 (1)型腔。高强度钢材对死角和缺口相当敏感。因此,在设计时模腔壁厚及肋的变化要均匀和缓,尽可能采用较大的内圆角半径。为了降低金属侵蚀及热疲劳发生于浇口附近的可能性,腔壁、型芯或镶件应尽量远离浇口。 (2)冷却水道。冷却水道应处于使整个模腔表面温度尽可能均匀的位置。从冷却和力学角度看,管道表面需光滑。 (3)流道、浇口及溢流。要得到最佳的压铸效果,冷却系统必须和“热区”(流道、浇口、溢流和型腔)有一定的热平衡。因此,流道、浇口和溢流设计相当重要。在型腔内很难填满的部位,应设溢流,以使压铸金属流到这些部位。在具有相同尺寸的一模多腔模具中,所有的流道必须具有相同的流道长度和横截面积,浇口和溢流也必须完全相同。浇口的位置和流道的厚度及宽度对金属注入速度相当关键。流道的设计应使金属流畅地进入型腔各个部分,而不是喷射状地注入。流注金属过快流动会引起模具侵蚀。 3 压铸模制造中应注意的问题 (1)机械加工性。马氏体系的热作工具钢的机械加工性主要受像硫化锰等非金属夹杂物及钢材硬度的影响。因为压铸模的性能可以通过降低钢材中杂质含量而得到改善如硫和氧。切削加工的最佳组织是球化退火的铁素体基体上均匀分布着球化状的良好碳化物,这样使钢材具有较低的硬度。均质化处理使金属具有均匀的机械加工性。 (2)电火花加工。电火花加工的基本原理是在石墨或铜电极(阳极)和钢材(阴极)之间的不导电介质中放电。模具的侵蚀通过放电来控制。操作过程中,负电极进入钢材中获得所需形状。电火花加工中钢材的表面温度非常高,从而使其熔化和蒸发。在表面产生了一层熔化后再凝固的较脆层,紧接着这层的是再淬硬层和回火层。电火花加工对模具表面性能产生了不利的影响,破坏了钢材的加工性能。由于这个原因,作为一种预防措施,使用淬火和回火后钢材的电火花加工和钢材退火后的电火花加工。 (3)热处理。在机械加工后,为了得到最佳的高温屈服强度、抗回火性、韧性和延展性,必须进行热处理。钢材的性能受淬火温度和时间、冷却速度和回火温度控制。淬火时太慢的冷却速度能降低钢材的破坏韧性。快的冷却速度如盥浴淬火能产生最好组织,因而得到最高的模具寿命。在大多数情况下,优先考虑模具的使用寿命而采取较快的淬火冷却速度。脱碳可以引起早期热疲劳。模具应冷却至50℃~70℃后回火。要得到满意的组织,第二次回火是必不可少的。第二次回火温度应根据模具所需的最终使用硬度而决定。 (4)尺寸稳定性。压铸模淬火和回火时,通常会出现变形或扭曲。温度越高变形越大。在淬火前通常预留一定加工量以便淬火及回火后通过研磨等工序来调整模具到最后要求的尺寸。机械加工应力、热应力、组织变形应力都会对尺寸稳定性造成影响,所以在压铸模过程中,应注意加热及淬火的温度和速度,以便把尺寸的比变形范围控制在可调整的范围内。 4 合理的压铸模设计与制造有助于延长模具寿命 压铸模寿命会随压铸模的设计和尺寸、压铸合金类型、模具的维修和保养而发生很大变化。模具可以通过压铸前后适当的处理来延长寿命。延长模具寿命的方法有以下几种: (1)适当的预热。模具表面和熔融金属间的温差不能太大。由于这一原因,通常推荐预热。预热温度随压铸合金类型而定,通常在150℃~350℃。材料预热温度不能太高,否则会在压铸时由于模具温度太高而引起模具再回火,特别是模具较薄的肋部分升温非常快。逐步而均匀地预热很重要。最好是恒温的加热控制系统。 (2)正确的冷却。模具温度受冷水道和模具表面脱模剂的控制。为了减少热疲劳的危险,冷却水可预热至大约50℃。也推荐恒温控制的冷却系统,并不推荐使用低于20℃的冷却水。停机时间超过几分钟时,应调节冷水流量,以便模具不至于冷却的太快。 (3)消除应力。压铸时,模具表面由于温差而产生热应变,这种反复的应变会导致模具局部表面的残留应力产生。在大多数情况下,这种残留应力是拉应力,因此促使热疲劳的发生。消除应力处理会使模具残留拉应力下降,因此能提高模具寿命。所以我们建议在试模一段时间后进行消除应力处理,然后在压铸1000~2000模次,5000~10000模次后分别进行消除应力处理。这种处理可以在以后每隔10000~20000模次重复一次,一直到模具出现少量热疲劳。 结束语: 进一步提高模具的经济效益,必须规范热处理。除通过热处理产生最佳的硬度和韧性的配合外,还应尽量避免过大的尺寸变化和变形。热处理时最关键的因素是淬火温度和冷却速度。像正确的预热、适当的应力消除这类预防措施会更进一步提高模具使用寿命。这些生产的每一步中,品质都有大的变化。只有在每一个生产过程中追求最佳的质量,才能取得最好的效果。 参考文献: [1]刘文川.复杂铸型模具设计中的几个问题[J].模具工业,2014,(02)

压铸模资料

压铸模浇道的设计是整个压铸模成功与否的关键,流道分为直浇道、横浇道、内浇口等几个部分。以冷室压铸机的铝合金压铸模具为例,直浇道的选择与生产的铸造压力选择有关、与压室的充满度有关,充满度通常选择在30%~70%之间,而冲头的直径则要看铸件的总的投影面积及现有压铸机的锁模力大小而定,直浇道的厚度经验选1/3~1/2冲头直径,当然也有例外的时候,根据铸件的不同而形式也不同。横浇道的截面积设计原则是根据从直浇道至内浇口逐步缩小的原则,也就是通常所说的增速浇道设计原则。对于特殊壁厚零件,也有选择减速浇道设计原则的,但这是特例。计算经验公式为A1=(3~4)A2;D=(5~8)T; W=A1/D+tg@D;其中A1为横浇道面积;A2为内浇口面积;D为横浇道厚度;T为内浇口厚度;W为内浇口宽度;@取10~15°;内浇口的面积设计公式有很多,较常用的是A2=Q/ρvt;其中Q为通过内浇口的金属液的质量(g);ρ为金属液的密度(g/cm3);v为内浇口处金属液的速度(m/s);t为型腔的充填时间(s);内浇口的速度选择原则为:铝合金20~60;锌合金30~50;镁合金40~90;铜合金20~50;充填时间的选择是根据压铸件的平均壁厚来选择,这个要靠经验,一般在0.01~0.3s不等。由于充填速度及充填时间都要根据铸件的特性及经验去选择,往往设计选择不准确,这样的话很多场合就会用到另一个经验公式,即日本的尾关公式:A2=(3~5)倍×√总重量(g);这里的总重量为通过内浇口的金属液的总质量。为了保证模具不会因为内浇口因过大而要烧焊处理,一般情况都会采用可修原则,及内浇口先小后大。总之浇道的设计不是一成不变的,需要理论及实际经验相结合才能设计好,当然现在有很多模拟软件,可以在设计好之后进行模拟充填以判断浇道设计的合理性。 追问 我看过有些横浇道的截面积的和X0.8左右才是直浇道截面积,这样做岂不是将溶汤减速并且吸气了吗,但是我看铸件表面质量还是可以的,这是为什么呢?如果按照截面积逐级增加的话,到后来直浇道截面积会变得很大。 回答 我们在设定压铸工艺参数时,其中有一个是快压射位置,理论上快压射位置的起始点应该是在冲头在慢压射状态下将压室里的合金液缓慢的的推到内浇口,现在先进的压铸机可以设定为抛物线压射然后才转换成快压射。通过合理的慢压射速度的设定,有的先进的压铸机可以设定为抛物线压射来实现将压室中的气体排出而不是卷到液体内。上文说的也都是一些理论上的计算,实际生产过程中还是要理论结合实际的,除非有多套模拟软件模拟参考。 追问 但是客户一般使用的是力劲或TOYO设备,并不是特别先进的设备啊,还是不太明白“横浇道的截面积的和X0.8左右才是直浇道截面积”是为什么?

给水排水管网课程设计说明书及计算书

前言 水是人类生活、工农业生产和社会经济发展的重要资源,科学用水和排水是人类社会发展史上最重要的社会活动和生产活动内容之一。特别是在近代历史中,随着人类居住和生产的程式化进程,给水排水工程已经发展成为城市建设和工业生产的重要基础设施,成为人类生命健康安全和工农业科技与生产发展的基础保障。给水排水系统是为人们的生活、生产、和消防提供用水和排除废水的设施的总称。它是人类文明进步和城市化聚集居住的产物,是现代化城市最重要的基础设施之一,是城市社会文明、经济发展和现代化水平的重要标志。尤其是在面临全球水资源极其缺乏的今天,给排水管网的作用显得尤为重要。 由于城市给排水系统在新的时期赋予了新的内涵,与人们的生产和生活息息相关。看似平凡的规划设计却有着不平凡的现实意义,在满足规范和其它技术要求的条件下,根据城市的具体情况,科学规划设计城市给排水管网系统是一个非常重要的课题。 课程设计是学习计划的一个重要的实践性学习环节,是对前期所学基础理论、基本技能及专业知识的综合应用。通过课程设计调动了我们学习的积极性和主动性,培养我们分析和解决实际问题的能力,为我们走向实际工作岗位,走向社会打下良好的基础。 本设计为玉树囊谦县香达镇给排水管道工程设计。整个设计包括三大部分:给水管网设计、排水管网设计。给水管网的设计主要包括管网的定线、流量的设计计算、清水池容积的确定、管网的水力计算、管网平差和消防校核。排水管网设计主要包括排水管网定线、设计流量计算和设计水力计算。

目录 第一章设计任务书 (4) 第二章给水管网设计说明与计算 (6) 2.1给水管网的设计说明 (6) 2.1.1 给水系统的类型 (6) 2.1.2 给水管网布置的影响因素 (6) 2.1.3 管网系统布置原则 (7) 2.1.4 配水管网布置 (7) 2.2给水管网设计计算 (8) 2.2.1 设计用水量的组成 (8) 2.2.2 设计用水量的计算 (8) 2.2.3 管网水力计算 (12) 2.3二级泵站的设计 (20) 2.3.1 水泵选型的原则 (20) 2.3.2 二级泵站流量计算 (20) 2.3.3二级泵站扬程的确定 (20) 2.3.4 水泵校核 (21) 第三章排水管网设计说明与计算 (23) 3.1排水系统的体制及其选择 (23) 3.2排水系统的布置形式 (23) 3.3污水管网的布置 (23) 3.4污水管道系统的设计 (24) 3.4.1 污水管道的定线 (24) 3.4.2 控制点的确定 (24) 3.4.3 污水管道系统设计参数 (24) 3.4.4 污水管道上的主要构筑物 (25) 3.5污水管道系统水力计算 (26) 3.5.1 污水流量的计算 (26) 3.5.2 集中流量计算 (27) 3.5.3 污水干管设计流量计算 (27) 3.5.4 污水管道水力计算 (29) 3.6管道平面图及剖面图的绘制 (30)

相关文档
最新文档