解三角形应用举例导学案

解三角形应用举例导学案
解三角形应用举例导学案

解三角形应用举例

2014高考会这样考考查利用正弦定理、余弦定理解决实际问题中和三角形有关的角度、方向、距离等测量问题.

复习备考要这样做 1.会从实际问题抽象中解三角形问题,培养建模能力;2.掌握解三角形实际应用的基本方法,体会数学在实际问题中的应用.

1.用正弦定理和余弦定理解三角形的常见题型

测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.

2.实际问题中的常用角

(1)仰角和俯角

与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).

(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等.

(3)方位角

指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).

(4)坡度:坡面与水平面所成的二面角的正切值.

3.解三角形应用题的一般步骤

(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.

(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.

(3)根据题意选择正弦定理或余弦定理求解.

(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.[难点正本疑点清源]

解三角形应用题的两种情形

(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.

(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.

1.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角是70°,则∠BAC=________.

答案130°

解析 由已知得∠BAD =60°,∠CAD =70°,

∴∠BAC =60°+70°=130°. 2. (2011·上海)在相距2千米的A ,B 两点处测量目标C ,若∠CAB =75°, ∠CBA =60°,则A ,C 两点之间的距离是__________千米. 答案 6

解析 如图所示,由题意知∠C =45°,

由正弦定理得AC sin 60°=2sin 45°,

∴AC =

222

·3

2= 6. 3. 江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________ m. 答案 10 3

解析 如图,OA 为炮台,M 、N 为两条船的位置,∠AMO =45°,∠ANO

=60°,OM =AOtan 45°=30, ON =AOtan 30°=33

×30=103, 由余弦定理得, MN =

900+300-2×30×103×

3

2

=300=103(m). 4. 某登山队在山脚A 处测得山顶B 的仰角为45°,沿倾斜角为30°的斜坡前进1 000 m 后到达D 处,又测得山顶的仰角为60°,则山的高度BC 为____________ m. 答案 500(3+1)

解析 过点D 作DE ∥AC 交BC 于E ,因为∠DAC =30°,故∠ADE

=150°.于是∠ADB =360°-150°-60°=150°. 又∠BAD =45°-30°=15°, 故∠ABD =15°,由正弦定理得AB =ADsin ∠ADB sin ∠ABD

1 000sin 150°

sin 15°

=500(6+2)(m).

所以在Rt △ABC 中,BC =ABsin 45°=500(3+1)(m).

5. 两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站北偏东40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的 ( ) A .北偏东10° B .北偏西10° C .南偏东10° D .南偏西10° 答案 B

解析 灯塔A 、B 的相对位置如图所示, 由已知得∠ACB =80°, ∠CAB =∠CBA =50°, 则α=60°-50°=10°,即北偏西10°.

题型一 测量距离问题

例1 要测量对岸A 、B 两点之间的距离,选取相距 3 km 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A 、B 之间的距离.

思维启迪:将题中距离、角度转化到一个三角形中,再利用正、余弦定理解三角形. 解 如图所示,在△ACD 中, ∠ACD =120°,∠CAD =∠ADC =30°,

∴AC =CD = 3 km.

在△BCD 中,∠BCD =45°, ∠BDC =75°,∠CBD =60°. ∴BC =

3sin 75°sin 60°=6+2

2

.

在△ABC 中,由余弦定理,得 AB2=(3)2+?

??

??6+222-2×3×6+22×cos 75°

=3+2+3-3=5,

∴AB = 5 (km),∴A 、B 之间的距离为 5 km.

探究提高 这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解. 注意:①基线的选取要恰当准确;②选取的三角形及正、余弦定理要恰当.

如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,

C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD.已知

某人从O 沿OD 走到D 用了2分钟,从D 沿着DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米. 答案 507

解析 连接OC ,在△OCD 中, OD =100,CD =150, ∠CDO =60°, 由余弦定理可得

OC2=1002+1502-2×100×150×1

2

=17 500,

解得OC =507(米). 题型二 测量高度问题

例2 某人在塔的正东沿着南偏西60°的方向前进40米后,望见塔在东北方向,若沿途测得塔顶的最大仰角为30°,求塔高.

思维启迪:依题意画图,某人在C 处,AB 为塔高,他沿CD 前 进,CD =40米,此时∠DBF =45°,从C 到D 沿途测塔的仰角,只有

B 到测试点的距离最短时,仰角才最大,这是因为tan ∠AEB =AB

BE ,AB 为定值,BE 最小时,

仰角最大.要求出塔高AB ,必须先求BE ,而要求BE ,需先求BD(或BC). 解 如图所示,某人在C 处,AB 为塔高, 他沿CD 前进,CD =40,此时∠DBF =45°,过点B 作BE ⊥CD 于E ,

则∠AEB =30°,

在△BCD 中,CD =40,∠BCD =30°,∠DBC =135°, 由正弦定理,得

CD sin ∠DBC =BD

sin ∠BCD

∴BD =40sin 30°

sin 135°=202(米).

∠BDE =180°-135°-30°=15°. 在Rt △BED 中, BE =DBsin 15°=202×

6-2

4

=10(3-1)(米). 在Rt △ABE 中,∠AEB =30°, ∴AB =BEtan 30°=103(3-3)(米).

故所求的塔高为10

3

(3-3)米.

探究提高 在测量高度时,要正确理解仰角、俯角的概念,画出准确的示意图,恰当地选取相关的三角形和正、余弦定理逐步进行求解.注意综合应用方程和平面几何、立体几何等知识.

如图所示,B ,C ,D 三点在地面的同一直线上,DC =

a ,从C ,D 两点测得A 点的仰角分别为β和α(α<β),则A 点距地面的高AB 为__________. 答案

asin αsin β

sin β-α

解析 AB =ACsin β,AC sin α=DC sin ∠DAC =a

sin β-α ,

解得AB =asin αsin β

sin β-α

.

题型三 测量角度问题

例3 某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile 的C 处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h 的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.

思维启迪:本题中所涉及的路程在不断变化,但舰艇和渔轮相遇时所用时间相等,先设出所用时间t ,找出等量关系,然后解三角形.

解 如图所示,根据题意可知AC =10,∠ACB =120°,设舰艇靠近

渔轮所需的时间为t h ,并在B 处与渔轮相遇,则AB =21t ,BC =9t ,在△ABC 中,根据余弦定理得AB2=AC2+BC2-2AC·BC·cos 120°,所以

212t2=102+81t2+2×10×9t×12,即360t2-90t -100=0,解得t =23或t =-5

12(舍去).所以舰

艇靠近渔轮所需的时间为2

3 h.

此时AB =14,BC =6.

在△ABC 中,根据正弦定理得BC sin ∠CAB =AB

sin 120°,

所以sin ∠CAB =6×

3214=33

14

即∠CAB ≈21.8°或∠CAB ≈158.2°(舍去).

即舰艇航行的方位角为45°+21.8°=66.8°.

所以舰艇以66.8°的方位角航行,需23

h 才能靠近渔轮.

探究提高 对于和航行有关的问题,要抓住时间和路程两个关键量,解三角形时将各种关系集中在一个三角形中利用条件.

如图所示,位于A 处的信息中心获悉:在其正东方

向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ等于 ( ) A.

21

7

B.2114

C.32114

D.2128

答案 B

解析 如图所示,在△ABC 中,AB =40,AC =20,∠BAC = 120°,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos 120°= 2 800,所以BC =207. 由正弦定理,得

sin ∠ACB =AB BC ·sin ∠BAC =21

7

.

由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =27

7.

故cos θ=cos(∠ACB +30°)

=cos ∠ACBcos 30°-sin ∠ACBsin 30°=21

14

.

正、余弦定理在实际问题中的应用

典例:(12分)如图,在海岸A 处发现北偏东45°方向,距A 处(3-1)

海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B 处向北偏东30°方向逃窜.问:缉私船

沿什么方向行驶才能最快截获走私船?并求出所需时间. 审题视角 (1)分清已知条件和未知条件(待求). (2)将问题集中到一个三角形中,如△ABC 和△BCD. (3)利用正弦定理或余弦定理求解. 规范解答

解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船, 则CD =103t(海里),BD =10t(海里),[1分] 在△ABC 中,由余弦定理,有 BC2=AB2+AC2-2AB·ACcos ∠BAC =(3-1)2+22-2(3-1)·2·cos 120°=6. ∴BC =6(海里).[3分] 又∵BC sin ∠BAC =AC

sin ∠ABC

∴sin ∠ABC =AC·sin ∠BAC BC =2·sin 120°6=2

2,

∴∠ABC =45°,∴B 点在C 点的正东方向上,

∴∠CBD =90°+30°=120°,[5分] 在△BCD 中,由正弦定理,得BD sin ∠BCD =CD sin ∠CBD ,

∴sin ∠BCD =BD·sin ∠CBD CD =10t·sin 120°103t

=1

2.

∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.[8分]

又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴D =30°,∴BD =BC ,即10t = 6. ∴t =

6

10

小时≈15(分钟).[11分] ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.[12分]

解斜三角形应用题的一般步骤为

第一步:分析——理解题意,分清已知与未知,画出示意图; 第二步:建模——根据已知条件与求解目标,把已知量与求 解量尽量集中在有关的三角形中,建立一个解斜三 角形的数学模型;

第三步:求解——利用正弦定理或余弦定理有序地解出三角 形,求得数学模型的解;

第四步:检验——检验上述所求的解是否符合实际意义,从 而得出实际问题的解.

温馨提醒 (1)由实际出发,构建数学模型是解应用题的基本思路.如果涉及三角形问题,我们可以把它抽象为解三角形问题进行解答,之后再还原成实际问题,即利用上述模板答题. (2)本题的易错点:不能将已知和待求量转化到同一个三角形中,无法运用正、余弦定理求解.

方法与技巧

1.合理应用仰角、俯角、方位角、方向角等概念建立三角函数模型.

2.把生活中的问题化为二维空间解决,即在一个平面上利用三角函数求值. 3.合理运用换元法、代入法解决实际问题. 失误与防范

在解实际问题时,应正确理解如下角的含义.

1.方向角——从指定方向线到目标方向线的水平角.

2.方位角——从正北方向线顺时针到目标方向线的水平角. 3.坡度——坡面与水平面所成的二面角的正切值. 4.仰角与俯角——与目标视线在同一铅直平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时称为仰角,目标视线在水平视线下方时称为俯角.

A 组 专项基础训练

(时间:35分钟,满分:57分) 一、选择题(每小题5分,共20分)

二、1. 如果在测量中,某渠道斜坡的坡度为3

4,设α为坡角,那么cos α等于

( )

A.35

B.45

C.34

D.43

答案 B

解析 因为tan α=34,所以cos α=4

5

.

2. 有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为( )

A .1

B .2sin 10°

C .2cos 10°

D .cos 20° 答案 C

解析 如图,∠ABC =20°,AB =1,

∠ADC =10°,∴∠ABD =160°. 在△ABD 中,由正弦定理得 AD sin 160°=AB

sin 10°

∴AD =AB·sin 160°sin 10°=sin 20°

sin 10°

=2cos 10°.

3. 一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点

B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是 ( ) A .50 m B .100 m

C .120 m

D .150 m 答案 A

解析 设水柱高度是h m ,水柱底端为C ,则在△ABC 中,∠A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h)2=h2+1002-2·h·100·cos 60°,即h2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.

4. 如图,设A 、B 两点在河的两岸,一测量者在A 所在的同侧河岸边选

定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A 、B 两点的距离为 ( ) A .50 2 m B .50 3 m C .25 2 m

D.252

2

m

答案 A

解析 ∵∠ACB =45°,∠CAB =105°, ∴∠ABC =180°-105°-45°=30°. 在△ABC 中,由正弦定理得

AB sin C =AC

sin B

, ∴AB =AC·sin C

sin B =50×

221

2

=50 2 (m).

二、填空题(每小题5分,共15分) 5. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是______________.

答案 203米、40

3

3米

解析 如图,依题意有甲楼的高度为AB =20·tan 60°=203(米),又 CM =DB =20(米),∠CAM =60°,所以AM =CM·1tan 60°=2033(米),故

乙楼的高度为CD =203-2033=403

3

(米).

6. 一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行

驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为______ km. 答案 30 2

解析 如图所示,依题意有 AB =15×4=60,∠MAB =30°,∠AMB =45°, 在△AMB 中,

由正弦定理得60sin 45°=BM

sin 30°

解得BM =30 2 (km). 7. 如图,在四边形ABCD 中,已知AD ⊥CD ,AD =10,AB =14,∠BDA

=60°,∠BCD =135°,则BC 的长为________. 答案 8 2

解析 在△ABD 中,设BD =x ,则BA2=BD2+AD2-

2BD·AD·cos ∠BDA ,即142=x2+102-2·10x·cos 60°,整理得x2-10x -96=0,解之得x1=16,x2=-6(舍去). 在△BCD 中,由正弦定理:BC sin ∠CDB =BD

sin ∠BCD

∴BC =

16

sin 135°

·sin 30°=8 2.

三、解答题(共22分)

8. (10分)如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同 一水平面内的两个观测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30 m ,并在点C 处测得塔顶A 的仰角为60°,求塔高AB. 解 在△BCD 中,∠CBD =180°-15°-30°=135°, 由正弦定理,得

BC sin ∠BDC =CD

sin ∠CBD

所以BC =30sin 30°

sin 135°

=15 2 (m).

在Rt △ABC 中,AB =BC·tan ∠ACB =152tan 60° =15 6 (m).

所以塔高AB 为15 6 m.

9. (12分)如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点, AD =10,AC =14,DC =6,求AB 的长. 解 在△ADC 中,AD =10, AC =14,DC =6,

由余弦定理得cos ∠ADC =AD2+DC2-AC2

2AD·DC

100+36-1962×10×6=-1

2

∴∠ADC =120°,∴∠ADB =60°. 在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =AD sin B ,

∴AB =AD·sin ∠ADB sin B =10sin 60°

sin 45°

10×

3

2

22

=5 6. B 组 专项能力提升

(时间:25分钟,满分:43分) 一、选择题(每小题5分,共15分)

1. 在△ABC 中,已知∠A =45°,AB =2,BC =2,则∠C 等于

( )

A .30°

B .60°

C .120°

D .30°或150° 答案 A

解析 利用正弦定理可得

2sin 45°=2

sin C

, ∴sin C =1

2

,∴∠C =30°或150°.

又∵∠A =45°,且∠A +∠B +∠C =180°, ∴∠C =30°,故选A.

2. 某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是 3 km ,那么x 的值为

( )

A. 3 B .2 3 C.3或2 3

D .3

答案 C

解析 如图所示,设此人从A 出发,则AB =x ,BC =3,AC =3, ∠ABC =30°,

由余弦定理得(3)2=x2+32-2x·3·cos 30°, 整理,得x2-33x +6=0,解得x =3或2 3.

3. 一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是 ( ) A .102海里 B .103海里 C .203海里 D .202海里 答案 A

解析 如图,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=AB sin 45°

,解得BC =102(海里).

二、填空题(每小题5分,共15分)

4. 一船由B 处向正北方向航行,看见正西方向有相距10海里的两个灯塔C 、D 恰好与它在一条直线上,继续航行半小时后到达A 处,看见灯塔C 在它的南偏西60°方向,灯塔D 在它的南偏西75°方向,则这艘船的速度是______海里/小时. 答案 10

解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10,在直角三角形ABC 中,得AB =5,于是这艘船的速度是5

0.5

=10(海里/小时).

5. 某路边一树干被大风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是__________米. 答案

206

3

解析 如图,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠ABO

=45°,∠AOB =75°,∴∠OAB =60°. 由正弦定理知,AO sin 45°=20sin 60°,

∴AO =206

3

(米).

6. 在△ABC 中,D 为边BC 上一点,BD =1

2DC ,∠ADB =120°,AD =2.若△ADC 的面积

为3-3,则∠BAC =______.

答案 60°

解析 S △ADC =12×2×DC×32

=3-3,

解得DC =2(3-1),

∴BD =3-1,BC =3(3-1).

在△ABD 中,AB2=4+(3-1)2-2×2×(3-1)×c os 120°=6,∴AB = 6. 在△ACD 中,AC2=4+[2(3-1)]2-2×2×2(3-1)×cos 60°=24-123,∴AC = 6(3-1),

则cos ∠BAC =AB2+AC2-BC22AB·AC =1

2

,∴∠BAC =60°.

三、解答题

7. (13分)如图,A 、B 、C 、D 都在同一个与水平面垂直的平面内,

B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°、30°,于水面

C 处测得B 点和

D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B 、D 的距离(计算结果精确到0.01 km ,2≈1.414,6≈2.449).

解 在△ACD 中,∠DAC =30°, ∠ADC =60°-∠DAC =30°,所以CD =AC =0.1. 又∠BCD =180°-60°-60°=60°,

故CB 是△CAD 底边AD 的中垂线,所以BD =BA. 在△ABC 中,

AB sin ∠BCA =AC

sin ∠ABC

所以AB =ACsin 60°sin 15°=32+6

20,即BD =32+620≈0.33(km).故B 、D 的距离约为

0.33 km.

高中数学 第八章 解三角形 8.3 解三角形的应用举例(二)学案 湘教版必修4

8.3 解三角形的应用举例(二) [学习目标] 1.利用正弦、余弦定理解决生产实践中的有关距离的测量问题.2.利用正弦、余弦定理解决生产实践中的有关高度的测量问题.3.培养学生提出问题、正确分析问题、独立解决问题的能力,并激发学生的探索精神. [知识链接] “遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?通过本节的学习,我们将揭开这个奥秘. [预习导引] 1.仰角与俯角 与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图. 2.高度问题 测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题. 要点一测量底部不能到达的建筑物的高度 例1 如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,求出山高CD.

解 在△ABC 中, ∠BCA =90°+β, ∠ABC =90°-α, ∠BAC =α-β,∠CAD =β. 根据正弦定理得AC sin∠ABC =BC sin∠BAC , 即 AC sin (90°-α)=BC sin (α-β) , ∴AC =BC cos αsin (α-β)=h cos α sin (α-β) . 在Rt△ACD 中,CD =AC sin∠CAD =AC sin β = h cos αsin β sin (α-β) . 即山的高度为 h cos αsin β sin (α-β) . 规律方法 利用正弦定理和余弦定理来解题时,要学会审题及根据题意画示意图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化. 跟踪演练1 某登山队在山脚A 处测得山顶B 的仰角为35°,沿倾斜角为20°的斜坡前进1000米后到达D 处,又测得山顶的仰角为65°,则山的高度为________m(精确到1m.2≈1.4142,sin35°≈0.5736). 答案 811 解析 过点D 作DE∥AC 交BC 于E ,因为∠DAC =20°, 所以∠ADE =160°,于是∠ADB =360°-160°-65°=135°. 又∠BAD =35°-20°=15°,所以∠ABD =30°.在△ABD 中,

1.2解三角形应用举例(测量距离、高度、角度)解析 (2)

福建美佛儿学校自主型发展大课堂数学导学案 班级 姓名 设计者 日期 课题:§1.2应用举例(第一课时 测量距离问题) 课时: 3课时 ●教学目标 知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,帮助学生掌握解法,能够类比解决实际问题。 情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ●教学重点 实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点 根据题意建立数学模型,画出示意图 ●教学过程 一、课题导入 1、[复习旧知] 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、[设置情境] 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。 二、讲授新课 (1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 [例题讲解] (2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=?51,∠ACB=?75。求A 、B 两点的距离(精确到0.1m)

北师大版必修5高中数学2.3《解三角形的实际应用举例》word导学案

2016北师大版必修5高中数学2.3《解三角 形的实际应用举例》 w o r d导学案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

陕西省咸阳市泾阳县云阳中学高中数学 2.3解三角形的实际应用举 例导学案北师大版必修5 个性笔记【学习目标】 1.会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确 定解三角形的方法; 2.搞清利用正余弦定理可解决的各类应用问题的基本图形和基本等量关 系. 【学习重点】 灵活应用正、余弦定理及三角恒等变换解决实际生活中与解三 角形 有关的问题。 【使用说明】 1.规范完成导学案内容,用红笔做好疑难标记,要求在40分钟 独立完成 2.该学案分A,B,C三个层次,其中A,B层次必须每一位同学都 完成,C层次供学有余力的同学完成。 【学习过程】 (一)基础学习 【A】预备知识:1.有关公式(正弦定理、余弦定理、三角形内 角和定理、三角形面积公式等); 2. 正弦定理和余弦定理解三角形的常见问题有: 测量距离问题、测量高度问题、测量角度问题、计算面积问 题、航海问题、物理问题等; 3. 实际问题中有关术语、名称.(1)仰角和俯角:在目标视线 和水平视线所成的角中,目标视线在水平视线上方的角叫仰角; 在水平视线下方的角 叫俯角 (2)方位角:指正北方向顺时针转到目标方向线水平角. 【B】课前热身1. 某人朝正东方走x km后,向左转1500,然后朝新 方向走3km,结果它离出发点恰好3km,那么x等于 () A 3 B3 2 D 3 2 C 3或3 60,从甲楼 2. 甲、乙两楼相距20m,从乙楼底望甲楼顶的仰角为0 30,则甲、乙两楼的高分别是 顶望乙楼顶的俯角为0 ()

解三角形(学案)

第一章 解三角形(学案) 1.已知△ABC 中,30A =,105C =,8b =,则等于( )A 4 B 2. △ABC 中,45B =,60C =,1c =,则最短边的边长等于( )A 36 B 26 C 21 D 2 3 3.长为5、7、8的三角形的最大角与最小角之和为 ( )A 90°B 120°C 135°D 150° 4.△ABC ABC 一定是 ( ) A 直角三角形 B 钝角三角形 C 等腰三角形 D 等边三角形 5.△ABC 中,60B =,2 b a c =,则△ABC 一定是 ( ) A 锐角三角形 B 钝角三角形 C 等腰三角形 D 等边三角形 6.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( ) A 有 一个解 B 有两个解 C 无解 D 不能确定 7. △ABC 中,8b =,16ABC S =,则A ∠等于 ( ) A o 30 B o 60 C o 30或o 150 D o 60或o 120 8.△ABC 中,若60A =, )A 2 B 21 C 3 D 2 3 ABC ,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( ) D 0 10.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( ) A 锐角三角形 B 直角三角形 C 钝角三角形 D 由增加的长度决定 11 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( ) C. 200米 12 海上有A 、B 两个小岛相距10 海里,从A 岛望C 岛和B 岛成60°视角, 从B 岛望C 岛和A 岛成75°的视角, 则B 、C 间的距离是 ( ) A.10 海里 B.5海里 海里 海里 13.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 。 14.在△ABC ,150c =,30B =,则边长a = 。 15.在钝角△ABC 中,已知1a =,2b =,则最大边c 的取值范围是 。 16.三角形的一边长为14,这条边所对的角为60,另两边之比为8:5,则这个三角形的面积为 。

北师大版广东省阳江第一中学高中数学 《解三角形》小结与复习导学案 必修5

高中数学 广东省阳江第一中学高中数学 《解三角形》小结与复习导学案 必 修5 【问题导学】阅读课本P 23后回答下列问题: 2、三角形的面积公式: _____________________________________________________________ 4、在△ABC 5、在△ABC 中,0 45,30,2===C A a ,则△ABC 的面积S=__________。 【课内探究】 例1、在△ABC 中,若B c a C b cos )2(cos -=:(1) 求B 的大小; (2) 若4,7=+=c a b ,求△ABC 的面积S 。 例2、在△ABC 中,若)cos(2cos ,2C B A a +==,2=?,求角A 及b 、c 的大小。

高中数学 例3:如右图所示,在坡度一定的坡上的一点A 顶端C 对于山坡的斜度为 15,向山顶前进100米后到达B 顶端C 对于山坡的斜度为 45 ,已知建筑物高CD=50水平面倾斜角θ的余弦值。 【总结提升】 【课后作业】 1、△ABC 中,C c B b sin sin =,且C B A 222sin sin sin +=,则它是( ) 三角形 A 、 等腰 B 、直角 C 、等腰直角 D 、等腰或者直角 2、△ABC 中,6c =,0 120,30==B A ,则△ABC 的面积S=( ) A 、9 B 、18 C 、39 D 、318 3、△ABC 中,8,5a b ==,ABC ?的面积S=12,则=C 2cos ________。 4、锐角△ABC 中,A c a sin 23=:(1) 求角C 的大小; (2) 若7= c ,△ABC 的面积为,求b a +的值。 5、如图,某观测站C 在港口A 的南偏西20°方向上,在港口A 南偏东40°方向上的B 处有一艘船正向港口A 驶去,行驶了20 km 后,到达D 处,在观察站C 测得C ,B 间的距离为31 km ,C ,D 间的距离为21 km :(1)求观察站C 与港口A 之间的距离;(2)这艘船到达港口A 还需行驶多少km? A C D 200 400

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

2015年高考数学复习学案:解三角形

【考点概述】 1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 2、能运用正弦、余弦定理等知识和方法解决一些与几何计算和测量有关的实际问题. 【重点难点】 三角形中的边角互化、一解两解问题以及动态最值问题. 【命题趋势】 1、 近几年高考命题加强了对知识综合性和应用性的考察,故三角形中三角问题常常与其他 数学知识相联系,既考查解三角形的知识与方法,又考查运用三角公式进行恒等变形的技能及三角函数的应用意识. 2、解三角形问题在高考中经常以填空题出现(2010年江苏卷第13题,2010年上海理科卷第18题,2010年全国理科卷第16题、2010年天津理科卷第15题、2010年北京理科卷第10题、2010年广东理科卷第11题、2010年山东理科卷第15题等),但近几年来以解答题形式出现的频率较高(2010年江苏卷第17题、2010年陕西理科卷第17题、2010年福建理科卷第19题、2009年海南理理科卷第17题、2009年天津理科卷第17题、2009年辽宁理科卷第17题、2009年安徽理科卷第16题、2009年浙江理科卷第18题等),因为与实际问题的联系密切,今后这部分仍然是高考命题的一个热点. 【知识要点】: 1、 正弦定理: C c B b A a sin sin sin ===2R 正弦定理的变形:sin :sin :sin ::A B C a b c = 利用正弦定理,可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和一角. (2)已知两边和其中一边对角,求另一边的对角,进而求出其他的边和角. 2、余弦定理: =2 a A bc c b cos 22 2 -+; cos A =bc a c b 22 22-+ =2 b B a c c a cos 22 2 -+; cos B =ac b c a 22 22-+ =2 c C ab b a cos 22 2 -+; cos C =ab c b a 22 22-+ 利用余弦定理,可以解决以下三类有关三角形的问题: (1)已知三边,求三个角. (2)已知两边和它们的夹角,求第三边和其他两个角. (3)已知两边和其中一边对角,求第三边和其他两个角. 3、三角形的面积公式:C ab S ABC sin 21= ?=A bc B ac sin 2 1 sin 21=.

人教a版必修5学案:第1章《解三角形》章末整合(含答案)

章末整合 知识概览 对点讲练 知识点一正、余弦定理解三角形的基本问题 例1在△ABC中, (1)已知a=3,b=2,B=45°,求A、C、c; (2)已知sin A∶sin B∶sin C=(3+1)∶(3-1)∶10,求最大角. 回顾归纳已知三角形的两边和其中一边的对角,应用正弦定理解三角形时,有时可能出现一解、两解或无解情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍. 变式训练1(1)△ABC中,AB=1,AC=3,∠C=30°,求△ABC的面积; (2)已知a、b、c是△ABC中∠A、∠B、∠C的对边,S是△ABC的面积.若a=4,b=5,S=53,求c的长度.

知识点二 正、余弦定理在三角形中的应用 例2 在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长.已知b 2=ac 且a 2-c 2 =ac -bc . (1)求角A 的大小;(2)求b sin B c 的值. 回顾归纳 (1)在三角形的三角变换中,正、余弦定理及勾股定理是解题的基础.如果题目中同时出现角及边的关系,往往要利用正、余弦定理化成仅含边或仅含角的关系. (2)要注意利用△ABC 中A +B +C =π,以及由此推得的一些基本关系式:sin(B +C )=sin A ,cos( B + C )=-cos A ,tan(B +C )=-tan A ,sin B +C 2=cos A 2 等,进行三角变换的运算. 变式训练2 在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2B +C 2-cos 2A =7 2 . (1)求角A 的度数; (2)若a =3,b +c =3,求b 、c 的值. 知识点三 正、余弦定理在实际问题中的应用 例3 A 、B 、C 是一条直路上的三点,AB =BC =1 km ,从这三点分别遥望一座电视发射塔P ,A 见塔在东北方向,B 见塔在正东方向,C 见塔在南偏东60°方向.求塔到直路的距离.

高中数学-解三角形应用举例练习及答案

高中数学-解三角形应用举例练习 一、选择题 1. △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为………………………………………………( ) A.直角三角形 B.等腰直角三角形 C.等边三角形 D.等腰三角形 2.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是……………………………………………………….( ) A.103海里 B.3610海里 C. 52海里 D.56海里 3. 有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长( ) A. 1公里 B. sin10°公里 C. cos10°公里 D. cos20°公里 4. .已知平行四边形ABCD 满足条件0)()(=-?+→ -→-→-→-AD AB AD AB ,则该四边形是………( ) A.矩形 B.菱形 C.正方形 D.任意平行四边形 5. 一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°, 另一灯塔在船的南偏西75°,则这只船的速度是每小时………………………………………………………………………………………… . ( ) A.5海里 B.53海里 C.10海里 D.103海里 6.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三辆车的距离d 2之间的关系为 ………………………………………………………………………..( ) A. 21d d > B. 21d d = C. 21d d < D. 不能确定大小 二、 填空题

最新解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________. 9. (2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h. 三、解答题

解三角形学案

解三角形知识点 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C < ; ③若222a b c +<,则90C > .

解三角形应用举例

东方中学教案 1.知识与技能: 会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;通过解三角形的应用的学习,提高解决实际问题的能力 2.过程与方法: 通过巧妙的设疑,顺利的引导新课,为下节课做好铺垫。结合学生的实际情况,采用“提出问题—引发思考—探索猜想—总结规律—反馈练习”的教学过程,根据大纲要求以及教学内容之间的内在联系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法。 3.情感、态度与价值观: 实际问题中抽象出一个或几个三角形,然后逐个解三角形,得到实际问题的解。

修改简记教学过程: 一、复习引入: 二、讲解范例: 例1 自动卸货汽车的车箱采用液压结构,设计时需要计算 油泵顶杆BC的长度已知车箱的最大仰角为60°,油泵顶点 B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角 为6°20′,AC长为1.40m,计算BC的长(保留三个有效数字) 分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件, AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC 的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得 BC2=AB2+AC2-2AB·AC cos A =1.952+1.402-2×1.95×1.40×cos66°20′=3.571 ∴BC≈1.89 (m) 答:油泵顶杆B C约长1.89 m 评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转 换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系 从题目准确地提炼出来 例2某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔 船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向, 以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救, 试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间

高中数学必修五导学案 解三角形答案

必修五解三角形测试题答案 一、选择题:共8小题,每小题5分,共计40分 二、填空题:本大题共6小题,每小题5分,满分30分. 9.______________14/5___________ 10._2___ 11. __________2_ 12._______ 90_______ 13. ___________ 120 14.__不用做___)),(),((321_____ 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.解:(1)在ABC ?中,由 cos A =,可得sin A =,又由s i n s i n a c A C =及 2a =,c =可得sin C = 由2 2 2 2 2cos 20a b c bc A b b =+-?+-=,因为0b >,故解得1b =. 所以sin 1C b = = (2)由cos 4A =- sin 4 A =, 得2 3cos 22cos 14A A =-=- ,sin 2sin cos A A A == 所以3cos(2)cos 2cos sin 2sin 3 3 3 8 A A A π π π -+ =-= 16.解:(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=, sin sin()sin sin B A C A C +=,则2sin sin sin B A C =, 再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.

(II)若1,2a c ==,则2 2b ac ==,∴2223 cos 24 a c b B a c +-==, sin C == , ∴△ABC 的面积11sin 1222S ac B = =??=. 17. 【解析】(Ⅰ),,(0,)sin()sin 0A C B A B A C B ππ+=-∈?+=> 2sin cos sin cos cos sin sin()sin B A A C A C A C B =+=+= 1cos 23 A A π?= ?= (II)2 2 2 2 2 2 2cos 2 a b c bc A a b a c B π =+-?==+?= 在Rt ABD ?中,AD = == 18. 【解析】 解:(1)证明:由 sin( )sin()44 b C c B a π π +-+=及正弦定理得: sin sin()sin sin()sin 44 B C C B A ππ +-+=, 即sin )sin )B C C C B B -+= 整理得:sin cos cos sin 1B C B C -=,所以sin()1B C -=,又30,4 B C π << 所以2 B C π -= (2) 由(1)及34B C π+=可得5,88B C ππ= =,又,4 A a π ==所以sin 5sin 2sin ,2sin sin 8sin 8 a B a C b c A A ππ = ===, 所以三角形ABC 的面积 151 sin sin cos 2888842 bc A πππππ===== 19.考点分析:本题考察三角恒等变化,三角函数的图像与性质. 解析:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+?+ cos22x x ωωλ=-+π 2sin(2)6 x ωλ=-+.

解三角形学案高三公开课

解三角形 【考纲要求】(1)掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几 何计算有关的实际问题. 【重难点】三角形中的边角互化、恒等变换问题. 【知识梳理】 1.正、余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理 正弦定理 余弦定理 公式 a sin A =b sin B =c sin C =2R a 2=_____________; b 2=_____________; c 2=_____________ 常见 变形 (1)a =_____,b =_____,c =_____; (2)sin A =____,sin B =____,sin C =____; (3)a ∶b ∶c =____________________; (4)a sin B =b sin A ,b sin C =_____, cos A =_____________; cos B =_____________; cos C =_____________ 2.三角形的面积公式:=?ABC S _________________________________________. 【典例精讲】 考点1 正、余弦定理的简单运用 例1(1)【2015高考北京,文11】在C ?AB 中,3a =,6b =23 π∠A =,则∠B =. (2)【2016高考全国I 卷】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =, 2cos 3 A =,则b=( ) (A 2 B 3 C )2( D )3 (3)【2013全国II 卷】ABC ?的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π =, 4 C π=,则ABC ?的面积为( ) (A )232(B 31(C )232( D 31 变式 在ABC ?中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =32,A =30°,

解三角形应用举例

第7节 解三角形应用举例 最新考纲 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题. 知 识 梳 理 1.仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1). 2.方向角 相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角 指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 4.坡度:坡面与水平面所成的二面角的正切值. [常用结论与微点提醒] 1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混. 2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)东北方向就是北偏东45°的方向.( ) (2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为? ?????0,π2.( ) (4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )

解析 (2)α=β;(3)俯角是视线与水平线所构成的角. 答案 (1)√ (2)× (3)× (4)√ 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ) A.北偏东15° B.北偏西15° C.北偏东10° D.北偏西10° 解析 如图所示,∠ACB =90°, 又AC =BC , ∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案 B 3.(教材习题改编)如图所示,设A ,B 两点在河的两岸,一测量 者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m , ∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的 距离为( ) A.50 2 m B.50 3 m C.25 2 m D.2522 m 解析 由正弦定理得AB sin ∠ACB =AC sin B , 又∵B =30°,∴AB =AC sin ∠ACB sin B =50×2212 =502(m). 答案 A 4.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h ,15 n mile/h ,则下午2时两船之间的距离是______n mile. 解析 设两船之间的距离为d , 则d 2=502+302-2×50×30×cos 120°=4 900, ∴d =70,即两船相距70 n mile.

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

新课标高中数学必修5第一章解三角形导学案WORD版

§1.1.1 正弦定理 课型:新授课 编写人: 审核人: 【学习目标和重点、难点】 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法; 3. 会运用正弦定理解斜三角形的两类基本问题. 【学习内容和学习过程】 一、新课导入 试验:固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动. 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来? 二、新课导学 探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ?ABC 中,设BC =a ,AC =b ,AB =c ,∠C=90° 根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1c C c ==, 从而在直角三角形ABC 中,sin sin sin a b c A B C == . 探究2:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B =,同理可得sin sin c b C B = , 从而sin sin a b A B =sin c C = . 类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.

新知:正弦定理 在一个三角形中,各边和它所对角的 的比相等,即 sin sin a b A B =sin c C = . 试试: (1)在ABC ?中,一定成立的等式是( ). A .sin sin a A b B = B .cos cos a A b B = C . sin sin a B b A = D .cos cos a B b A = (2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 . [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =; (2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A = sin c C . (3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =;b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b =;sin C = . (4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形. 三、课堂巩固 例1. 在ABC ?中,已知45A =?,60B =?,42a =cm ,解三角形. 变式:在ABC ?中,已知45B =?,60C =?,12a =cm ,解三角形.

2015年高中数学第一章解三角形第1课时正弦定理(1)学案(无答案)新人教版必修5

1 解三角形 【知识结构】 正、余弦定理的应用解三角形余弦定理正弦定理→→? ?? 【重点难点】 重点:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 难点:(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 第1课时 正弦定理(1) 【学习导航】 知识网络 直角三角形的边角关系→任意三角形的边角 关系→正弦定理 学习要求 1.正弦定理的证明方法有几种,但重点要突 出向量证法; 2.正弦定理重点运用于三角形中“已知两角 一边”、“已知两边一对角”等的相关问题 【课堂互动】 自学评价 1.正弦定理:在△ABC 中, ===C c B b A a sin sin sin R 2, 2.正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角; (2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角 【精典范例】 【例1】在ABC ?中,30A =?,105C =?, 10a =,求b ,c . 分析:正弦定理可以用于解决已知两角和一边 求另两边和一角的问题. 【解】因为30A =?,105C =?,所以45B =?.因为 sin sin sin a b c A B C ==, 所 以s i n 10s i 4512s i n s i n a B b A ?===? ,sin 10sin105sin sin 30a C c A ?===? 因此, b ,c 的长分别为 和. 【例2】根据下列条件解三角形: (1 )60,1b B c =?=; (2 )45,2c A a =?=. 分析:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 【解】(1)sin sin b c B C =, ∴sin 1sin 2c B C b ===, ,60b c B >= ,∴C B <,∴C 为锐角, ∴30,90C A == ,∴2a =. (2)sin sin a c A C = , ∴sin sin c A C a ===,∴60120C = 或, ∴当sin 6075,1sin c B C B b C === 时, ∴当sin 12015, 1sin c B C B b C === 时, 所以,1,75,60b B C === 或1,15,120b B C === . 追踪训练一 1.在△ABC 中,0105=C ,045=B ,5=c ,

解三角形应用举例

第三章 三角函数、三角恒等变换及解三角形第8课时 解三角 形应用举例 1. (必修5P 11习题4改编)若海上有A 、B 、C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B 、C 间的距离是________海里. 答案:5 6 解析:由正弦定理, 知 BC sin60°=AB sin (180°-60°-75°) , 解得BC =56(海里). 2. (必修5P 20练习第4题改编)江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 答案:10 3 解析:如图,OA 为炮台,M 、N 为两条船的位置,∠AMO =45°,∠ANO =60°,OM =AOtan45°=30,ON =AOtan30°= 3 3 ×30=103,由余弦定理,得 MN = 900+300-2×30×103× 3 2 =300=103(m). 3. (必修5P 18例1改编)如图,要测量河对岸A 、B 两点间的距离,今沿河岸选取相距40 m 的C 、D 两点,测得∠ACB=60°,∠BCD =45°,∠ADB =60°,∠ADC =30°,则AB 的距离是__________ m. 答案:20 6 解析:由已知知△BDC 为等腰直角三角形,故DB =40;由∠ACB=60°和∠ADB=60°知A 、B 、C 、D 四点共圆, 所以∠BAD=∠BCD=45°;

在△BDA 中,运用正弦定理可得AB =20 6. 4. (必修5P 21习题2改编)某人在C 点测得塔顶A 在南偏西80°,仰角为45°,此人沿南偏东40°方向前进10 m 到D ,测得塔顶A 的仰角为30°,则塔高为________m. 答案:10 解析:如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h. 在Rt △AOD 中,∠ADO =30°,则OD =3h. 在△OCD 中,∠OCD =120°,CD =10. 由余弦定理得OD 2=OC 2+CD 2 -2OC·CD cos ∠OCD , 即(3h)2 =h 2 +102 -2h×10×cos120°, ∴ h 2 -5h -50=0,解得h =10或h =-5(舍). 5. 如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进mkm 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围nkm 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件________时,该船没有触礁危险. 答案:mcos αcos β>nsin(α-β) 解析:∠MAB=90°-α,∠MBC =90°-β=∠MAB+∠AMB=90°-α+∠AMB,∴ ∠AMB =α-β.由题可知,在△ABM 中,根据正弦定理得BM sin (90°-α)=m sin (α-β), 解得BM = mcos αsin (α-β).要使船没有触礁危险,需要BMsin(90°-β)=mcos αcos β sin (α-β) >n , 所以α与β满足mcos αcos β>nsin(α-β)时船没有触礁危险. 1. 用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (1) 仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2) 方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等.

相关文档
最新文档