最优化课程设计--黄金分割法及其算法实现(3

最优化课程设计--黄金分割法及其算法实现(3
最优化课程设计--黄金分割法及其算法实现(3

机械优化设计报告

姓名:刘洋

学号:S12080203054

院系:机械工程学院

专业:机械设计及理论

2012年 12月 4日

摘要

最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、同学、政府机关等各个部门及各个领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB软件已经成为最优化领域应用最广的软件之一。有了MATLAB 这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。

关键词:优化、黄金分割法、最速下降法、MATLAB、算法

Abstract

Optimization theory and methods and more attention, have penetrated into the production, management, business, military, decision-making and other fields, and optimization models and methods widely used in industry, agriculture, transportation, commerce, defense, construction, students, government various departments and agencies and other fields. With the rapid development of computer technology,

optimization theory and methods for the rapid progress of the optimization problem to solve practical software is also developing rapidly. Which, MATLAB software has become the most optimization software is one of the most widely used. With this powerful computing platform MATLAB, either using MATLAB optimization toolbox (OptimizationToolbox) in the function, but also can achieve the appropriate algorithm to optimize into the calculation.

Key words: Optimization、Golden section method、steepest descent method、MATLAB、algorithm

目录

摘要 (2)

第一章绪论 (5)

第二章黄金分割法的基本思想与原理 (6)

2.1 黄金分割法的基本思路 (6)

2.2 算法流程图 (7)

2.3 用matlab编写源程序 (7)

2.4 黄金分割法应用举例 (8)

第三章最速下降法的基本思想与原理 (9)

3.1 最速下降法的基本思路 (9)

3.2 算法流程图 (11)

3.3 用matlab编写源程序 (11)

3.4 最速下降法应用举例 (13)

第四章惩罚函数法的基本思想与原理 (13)

4.1 惩罚函数法的基本思路 (13)

4.2 算法流程图 (14)

4.3 用matlab编写源程序 (14)

4.4 最速下降法应用举例 (16)

第五章总结 (17)

参考文献 (18)

第1章绪论

在人类活动中,要办好一件事(指规划、设计等),都期望得到最满意、最好的结果或效果。为了实现这种期望,必须有好的预测和决策方法。方法对头,事半功倍,反之则事倍功半。优化方法就是各类决策方法中普遍采用的一种方法。历史上最早记载下来的最优化问题可追溯到古希腊的欧几里得(Euclid,公元前300年左右),他指出:在周长相同的一切矩形中,以正方形的面积为最大。十七、十八世纪微积分的建立给出了求函数极值的一些准则,对最优化的研究提供了某些理论基础。然而,在以后的两个世纪中,最优化技术的进展缓慢,主要考虑了有约束条件的最优化问题,发展了一套变分方法。六十年代以来,最优化技术进入了蓬勃发展的时期,主要是近代科学技术和生产的迅速发展,提出了许多用经典最优化技术无法解决的最优化问题。为了取得重大的解决与军事效果,又必将解决这些问题,这种客观需要极大地推动了最优化的研究与应用。另一方面,近代科学,特别是数学、力学、技术和计算机科学的发展,以及专业理论、数学规划和计算机的不断发展,为最优化技术提供了有效手段。现在,最优化技术这门较新的科学分支目前已深入到各个生产与科学领域,例如:化学工程、机械工程、建筑工程、运输工程、生产控制、经济规划和经济管理等,并取得了重大的经济效益与社会效益。

机械优化设计是最优化技术在机械设计领域的移植和应用,其基本思想是根据机械设计的理论,方法和标准规范等建立一反映工程设计问题和符合数学规划要求的数学模型,然后采用数学规划方法和计算机计算技术自动找出设计问题的最优方案,求解优化问题可以采用解析法,也可以采用数值法。由于数值法可用于求复杂函数的优化解,也可以用于处理没有数学解析表达式的优化设计问题,因此它是实际问题中常用的解法,很受重视。

第2章黄金分割法的基本思想与原理

2.1 黄金分割法的基本原理与步骤

一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点xmin

的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数,即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。

①如果f(a1)>f(a2),令a=a1,a1=a2,a2=a+0.618*(b-a);

②如果f(a1)

如果|(b-a)/b|和|(y1-y2)/y2|都大于收敛精度ε重新开始循环。

因为[a,b]为单峰区间,这样每次可将搜索区间缩小0.618倍,处理后的区间都将包含极小点的区间缩小,然后在保留下来的区间上作同样的处理,如此迭代下去,将使搜索区[a,b]逐步缩小,直到满足预先给定的精度时,即获得一维优化问题的近似最优解。

插入点原理图如下:

2.2 算法流程图

2.3 用matlab编写源程序

编写程序,并且输出每次的搜索区间。则源程序如下:golden程序

function [x,fval]=golden1(f,a,b,eps)

k=0;

a1=a+0.382*(b-a);%插入点的值

a2=a+0.618*(b-a);

y1=f(a1);

y2=f(a2);

while abs(b-a)>=eps%循环条件,eps为收敛精度

if y1>=y2%比较插入点的函数值的大小

a=a1;%缩短搜索区间

a1=a2;

y1=y2;

a2=a+0.618*(b-a); y2=f(a2); else b=a2; a2=a1; y2=y1;

a1=b-0.618*(b-a); y1=f(a1); end k=k+1;

end %停止迭代

x=(a+b)/2;%取最后两点的平均值作为极小点的数值近似解 fval=f(x);

fprintf('k=\n');%显示迭代次数 disp(k); end

2.4 黄金分割法应用举例

例1

根据0.618算法编写程序,求函数

36

102+-=t t f(t)

在区间[]10,0上的极大值。 解:

程序为:

>> z=@(t) t^2-10*t+36;[x,fval]=golden(z,0,10,10^-6) 运行结果: k=

34

t =

5.0000

fval =

11.0000

说明最小值点为5*=t ,最小值为11)(*=t f ,迭代次数为34

第3章 最速下降法的基本思想与原理

3.1 最速下降法基本思路

最速下降法的搜索法向是目标函数的负梯度方向,最速下降法从目标函数的负梯度方向一直前进,直到到达目标函数的最低点。

已知目标函数在()

k X 点的梯度为:

()()

()

()()()

()

()12

...

T

k k k k n

f X f X f X f X x x x ??

????

??=??????

?

当求目标函数的最小点时,由于函数沿负梯度方向下降最快,故在()

k X 点的

探索方向应取该点的负梯度方向,即

()()

()()()

k k k f X S f X

?=-

?

显然,()

k S

为单位向量。这样第1k +次迭代计算所得的新点为

()

()

()()(1)()()()()()

k k k k k k k k f X X X S X f X

αα+?=+=-

?

负梯度仅给出了最优化方向,而没有给出步长的大小,所以可能有各种各样的最速下降的过程,它们依赖于

()

()

()

k k f X

α?的大小。

步长()k α有两种取法:

一种方法是任意给定一个初始步长,使满足条件:

()()()()()()k k k k f X S f X α+<

另外一种方法是沿负梯度方向做一维探索,以求解一维最优化问题的最优步长α,即对目标函数极小,以得到最优步长:

()()()()()0

min ()()k k k k k f X S f X S ααα>+=+

以此最优步长作为由()k X 点出发沿该点的负梯度方向探索的步长()k α。 这种方法的迭代计算的收敛性,可用以下三式中的任一式或二式作为准则来进行判断:

()()()()()1()(1)

2()()

(1)

3k k k k k k f X f X f X f X X X

εεε--??≤?

?-?≤??

?-≤??

用最速下降法求无约束多维极值问题min (),n f x x R ∈的算法步骤如下:

(1) 取初始点(0)x ,精度0ε>,令0k =

(2) 计算搜索方向()()()k k v f x =-?,其中()()k f x ?表示函数()f x 在点()k x 处

的梯度;

(3) 若()k v ε≤,则停止计算;否则,从()k x 出发,沿()k v 进行一维搜索,

即求k λ,使得()()()()0

()min ()k k k k k f x v f x v λλλ≥+=+。此处的一维搜索可

以用黄金分割法等算法,当然也可以用MATLAB 的min f bnd 函数;

(4)

令(1)()(),1k k k k x x v k k λ+=+=+,转步骤(2)。

3.2 算法流程图

3.3 用matlab 编写源程序

编写程序,并且输出每次的搜索区间。则源程序如下:

fsxsteep 程序

function x=fsxsteep(f,e,a,b) % fsxsteep 函数 最速下降法

% x=fsxsteep(f,e,a,b)为输入函数 f 为函数 e 为允许误差 (a,b)为初始点;

% fsx TJPU 2008.6.15 x1=a;x2=b;

Q=fsxhesse(f,x1,x2); x0=[x1 x2]';

fx1=diff(f,'x1'); %对x1求偏导数 fx2=diff(f,'x2'); %对x2求偏导数 g=[fx1 fx2]'; %梯度

g1=subs(g); %把符号变量转为数值

d=-g1;

while (abs(norm(g1))>=e)

t=(-d)'*d/((-d)'*Q*d);t=(-d)'*d/((-d)'*Q*d); %求搜索方向x0=x0-t*g1; %搜索到的点

v=x0;

a=[1 0]*x0;

b=[0 1]*x0;

x1=a;

x2=b;

g1=subs(g);

d=-g1;

end;

x=v;

function x=fsxhesse(f,a,b)

% fsxhesse函数求函数的hesse矩阵;

% 本程序仅是简单的求二次函数的hesse矩阵!;

% x=fsxhesse(f)为输入函数 f为二次函数 x1,x2为自变量;

% fsx TJPU 2008.6.15

x1=a;x2=b;

fx=diff(f,'x1'); %求f对x1偏导数

fy=diff(f,'x2'); %求f对x2偏导数

fxx=diff(fx,'x1'); %求二阶偏导数对x1再对x1

fxy=diff(fx,'x2'); %求二阶偏导数对x1再对x2

fyx=diff(fy,'x1'); %求二阶偏导数对x2再对x1

fyy=diff(fy,'x2'); %求二阶偏导数对x2再对x2

fxx=subs(fxx); %将符号变量转化为数值

fxy=subs(fxy);

fyx=subs(fyx);

fyy=subs(fyy);

x=[fxx,fxy;fyx,fyy]; %求hesse矩阵

3.4 最速下降法应用举例

根据算法编写程序,求函数

2221)6()5(4-+-=x x f(x)

在初始点[]9,8上的极小值。 解:

程序为:

>> syms x1 x2; X=[x1,x2];

fx=(4*X(1)-5)^2+(X(2)-6)^2; x=fsxsteep(fx,0.001,8,9) 运行结果: x =

5 6

第4章 惩罚函数法的基本思想与原理

4.1 惩罚函数法基本思路

惩罚函数法是应用广泛,非常有效的间接解法,又称为序列无约束极小化方法(SUMT 法)。该方法通过将原约束优化问题中的等式和不等式约束函数加权处理后与原目标函数结合,得到新的目标函数(惩罚函数)。原问题转化为新的无约束优化问题,求解该新的无约束优化问题,间接得到原约束优化问题的最优解。 程序步骤:

①选择适当的初始罚因子)0(M 、初始点)0(X 、收敛精度ε和罚因子系数c 。在本程序中分别取令迭代步数k=0。

②采用牛顿法求无约束问题),(min )(k M X φ的极值点)()(*k M X 。

③检验迭代终止准则,若满足

ε≤--||)()(||)

1()

(*k k M

X M

X 及 ε≤---|)]

([)]

([)]([|)

1(*)1(*)(*k k k M X f M X f M X f 则停止迭代计算,输出最优点)()(**k M X X =;否则,转入步骤④。

④取)()1(k k cM M =+,)()(*)0(k M X X =,k=k+1,转入步骤②继续迭代。

4.2 算法流程图

k=0

i=0

求)()(i X φ?与

Hessian 矩阵)()(i X H

εφ≤?||)(||)(i X

)

()

(*)(i k X

M

X =ε

≤--||)()(||)1()(*k k M X M X ε≤---|)]

([)]([)]([|

)

1(*)1(*)(*k k k M X f M X f M X f 输出*

X 和

)(*X f

Y

N

)

()]([)(1)()()1(i i i i X X H X X φ?-=-+i=i+1

)()(*)0(k M X X = )()1(k k cM M =+

k=k+1

Y

N

结束

牛顿法求),(min )

(k M

X φ的极

值点)()

(*k M

X

给定)

0(X

、)

0(M

、c 、ε

4.3 用matlab编写程序

clc

syms x1 x2 M; %M为罚因子。

m(1)=1;

c=8; %c为递增系数。赋初值。

a(1)=20;

b(1)=20;

f=(x1-2)^2+(x2-1)^2+M*((x1^2-x2)^2+(x1+x2-2)^2);%外点罚函数

f0(1)=500;

%求偏导、Hessian元素

fx1=diff(f,'x1');

fx2=diff(f,'x2');

fx1x1=diff(fx1,'x1');

fx1x2=diff(fx1,'x2');

fx2x1=diff(fx2,'x1');

fx2x2=diff(fx2,'x2');

%外点法M迭代循环

for k=1:100

x1=a(k);x2=b(k);M=m(k);

%牛顿法求最优值

for n=1:100

f1=subs(fx1); %求解梯度值和Hessian矩阵

f2=subs(fx2);

f11=subs(fx1x1);

f12=subs(fx1x2);

f21=subs(fx2x1);

f22=subs(fx2x2);

if(double(sqrt(f1^2+f2^2))<=1e-6) %最优值收敛条件

a(k+1)=double(x1);b(k+1)=double(x2);f0(k+1)=double(subs(f));

break;

else

X=[x1 x2]'-inv([f11 f12;f21 f22])*[f1 f2]';

x1=X(1,1);x2=X(2,1);

end

end

if(double(sqrt((a(k+1)-a(k))^2+(b(k+1)-b(k))^2))<=1e-6)&&(double(abs((f0(k+1)-f0(k))/f0(k))) <=1e-6) %罚因子迭代收敛条件

%输出最优点坐标,罚因子迭代次数,最优值

a(k+1)

b(k+1)

k

f0(k+1)

break;

else

m(k+1)=c*m(k); end end

4.4 惩罚函数法应用举例

根据算法编写程序,求函数

2)(0)()1()2(21222112221≤-+=≤-=-+-=x x x g x x x g x x minf(x)

在初始点[]3,3上的极小值。

解:

运行结果:

ans =

1.0000

ans =

1.0000 k =

18

ans =

1.0000

第五章总结

刚开始觉得学习优化设计有很大的困难,但是随着对课本内容的学习跟老师的讲解,发现并不是像自己在学初想的那样困难,特别是在老师介绍了一些与机械优化设计相关的计算机语言和计算机软件后,真正体会到科学优化设计的强大跟简洁明了,与传统优化设计方法相比较,大大提高了设计效率和质量。

传统设计方法常在调查分析的基础上,参照同类产品通过估算,经验类比或试验来确定初始设计方案,如不能满足指标要求,则进行反复分析计算—性能检验—参数修改,到满足设计指标要求为止。整个传统设计过程就是人工凑试和定性分析比较的过程,是被动地重复分析产品性能,不是主动设计产品参数。按照传统设计方法做出的设计方案,有改进余地,但不是最佳设计方案。

而现代化设计工作是借助电子计算机,,应用一些精确度较高的力学数值分析方法,优化软件进行分析计算,找最优设计方案,实现理论设计代替经验设计,用精确计算代替近似计算,用优化设计代替一般的安全寿命可行性设计。

在进行程序求解的过程中,因为是初学Matlab软件,对很多问题的关键点不能够掌握,非线性约束如何书写,上、下限如何选择,函数格式如何书写,变量未定义等等或大或小的问题,但是在一步步排除错误、重新编写程序的过程中,渐渐的对Mtalab熟悉起来,懂得了一些优化方法的简单计算过程和原理,省去了繁琐复杂的优化计算过程。在学完课程之后,反思自己在学习过程中的得失,深深体会到,不论在人生的哪个阶段,都要对自己负责,做任何事都要耐心,细致,“千里之行,始于足下”,学会在物欲横流的社会大潮中,坚持踏踏实实走好人生的每一步。感谢所有老师和同学们!

参考文献

1 孙靖民,梁迎春.机械优化设计. 机械工业出版社,2006

2 张德丰.MATLAB语言高级编程,2010

最优化课程设计

《最优化》课程设计 题目:牛顿法与阻尼牛顿法算法分析 学院: 数学与计算科学学院 专业:数学与应用数学 姓名学号:廖丽红 1000730105 欧艳 1000730107 骆宗元 1000730122 沈琼赞 1000730127 指导教师:李向利 日期:2012年11月08日

摘要 本文基于阻尼牛顿法在解决无约束最优化问题中的重要性,对其原理与算法予以讨论。论文主要是参阅大量数学分析和最优化理论方法,还有最优化方法课程以及一些学术资料,结合自己在平时学习中掌握的知识,并在指导老师的建议下,拓展叙述牛顿法和其改进方法——阻尼牛顿法的优缺点,同时针对阻尼牛顿法的基本思路和原理进行研究,其搜索方向为负梯度方向,改善了牛顿法的缺点,保证了下降方向。 关键词:无约束牛顿法下降方向阻尼牛顿法最优解

Abstract This thesis is based on the importance of the damping Newton's method to solve unconstrained optimization problems, we give the discussion about its principles and algorithms. We search a large number of mathematical analysis and optimization theory methods, optimization methods courses, as well as some academic information ,and at the same time combined with knowledge we have learning in peacetime and thanks to the instructor's advice, we also give an expanding narrative for the Newton's method and the improved method -- damping Newton method's advantages and disadvantages, and make a study of the basic ideas and principles for damping Newton method at the same time , we find that a negative gradient direction is for the search direction of the damping Newton method, this method improves the shortcomings of the Newton method which can ensure the descent direction. Keywords: unconstrained , Newton's method , descent direction , damping Newton's method ,optimal solution

黄金分割线计算方法

黄金分割线计算方法 概要 黄金分割是一个古老的数学方法。对它的各种神奇的作用和魔力,数学上至今还没有明确的解释,只是发现它屡屡在实际中发挥我们意想不到的作用。 在股票的技术分析中,还有一个重要的分析流派--波浪理论中要用到黄金分割的内容。在这里,我们将通过它的指导买卖股票。 画黄金分割线的第-步是记住若干个特殊的数字:0.191 0.382 0.618 0.809 1.191 1.382 1.618 1.809 2.618 4.236 这些数字中0.382、0.618、1.382、1.618最为重要,股价极为容易在由这四个数产生的黄金分割线处产生支撑和压力。黄金分割线的应用 1. 0.382和0.618是反映了股市变化的重要转折点。当股价涨势趋近或达到38.2%和61.8%时,反跌很可能出现。反之,当股价跌势趋近或38.2%和61.8%时,反弹的可能性很大。 2. 当股价上升时,可按黄金率算出上升的空间价位。一般预计股价上升能力与反转价位点的数字是0.191、0.382、0.618、0.809和1。当股价涨幅超过1倍时,反跌点数字为1.91、1.382、1.618、1.809和2,依次类推。 例如:股市行情下跌结束后,股价最低价为5.8,那么,股价上升时,投资人可预算出股价上升后反跌的可能价位: 即: 5.8×(1+38.2%)=8.02元

5.8×(1+19.1%)= 6.91元 5.8×(1+61.8%)=9.38元 5.8×(1+80.9%)=10.49元 5.8×(1+100%)=11.6元 3.反之,当上升行情结束,下跌行情开始时,上述数字仍然可以预计反弹的不同价位。例如:当最高价为21元 即: 21×(1-19.1%)=16.99元 21×(1-38.2%)=12.98元 21×(1-61.8%)=8.02元 21×(1-80.9%)=4.01元 如何运用黄金分割线买卖股票:比如某股的最低价10元,那么,股价反转上升时,投资人可以预先计算出各种不同的反压价位,也就是10*(1+0.382)=13.8元,10*(1+0.618)=16.2元,10*(1+1)=20元,10*(1+0.5)=15元。同样跌势中用减法,然后,再依照股价变动、筹码转换及趋势位置的实际情形做斟酌。一般认为,股价在运动到上面数字点位时将受到阻力或支撑。如果我们知道其中两个数字在股市中的位置,在股市趋势不变的情况下,便可推算出下一步股价可能到达的价位。为什么必须知道两条黄金分割线在股价中的位置才可求下一步股价的位置呢?因为0、0.382、0.5、0.618、1仅体现一种比例关系,股票涨幅具体多少由庄家能量自定。 下面以重庆百货(600729)为例抛砖引玉:该股2001年2月8日收

最优化论文

厂址选择问题最优化论文 目录 摘要 (3) 1 问题重述 (4) 2 模型假设 (4) 3 模型的分析与建立 (4) 3.1模型分析与建立 (4) 4 模型的求解及结果分析 (6) 4.1问题的求解 (6) 4.2求解结果的分析 (7) 5模型优缺点分析 (7) 参考文献 (8) 附录 (8)

厂址选择问题 摘要 优化理论是一门实践性很强的学科,广泛应用于生产管理、军事指挥和科学试验等各种领域,Matlab优化工具箱提供了对各种优化问题的一个完整的解决方案。在应用于生产管理中时,为了使总的消费费用最小,常常需要解决一些厂址的选择问题。 对于该问题的厂址建设及规模分配,根据题意给出的一系列数据,可以建立数学模型,运用线性规划问题给出目标函数及约束条件,然后根据模型中的约束条件知,其中有等式约束和不等式约束,所以选用常用约束最优化方法中的外点罚函数来求解,因为外点罚函数是通过一系列惩罚因子{M k ,k=0,1,2, }, 求F(X,M k )的极小点来逼近原约束问题的最优点,当M k 趋于无穷大时,F(X,M k ) 的极小值点就是原问题的最优点X*。其中目标函数为F(X,M K )=f(X)+M K a(X),其 中 )) ( ( )] ( [ )] ( [ 1 2 1 2x g u x g x h i l i i m j j∑ ∑ = = + 给定终止限ε。根据外点罚的步骤及流 程图,编写出源程序,然后根据任意选取的初始点,并且罚因子及递增系数应取适当较大的值,从D外迭代点逼近D内最优解。 最后,根据外点罚函数的流程图,运用Matlab软件编写程序,求出最优解,即最优方案,使费用最小,并且也在规定的规模中。 关键字:Matlab 外点罚函数罚因子

最优化实验报告

最优化方法 课程设计报告班级:________________ 姓名: ______ 学号: __________ 成绩: 2017年 5月 21 日

目录 一、摘要 (1) 二、单纯形算法 (2) 1.1 单纯形算法的基本思路 (2) 1.2 算法流程图 (3) 1.3 用matlab编写源程序 (4) 二、黄金分割法 (7) 2.1 黄金分割法的基本思路 (7) 2.2 算法流程图 (8) 2.3 用matlab编写源程序 (9) 2.4 黄金分割法应用举例 (11) 三、最速下降法 (11) 3.1 最速下降法的基本思路 (11) 3.2 算法流程图 (13) 3.3 用matlab编写源程序 (13) 3.4 最速下降法应用举例 (13) 四、惩罚函数法 (17) 4.1 惩罚函数法的基本思路 (17) 4.2 算法流程图 (18) 4.3 用matlab编写源程序 (18) 4.4 惩罚函数法应用举例 (19) 五、自我总结 (20) 六、参考文献 (20)

一、摘要 运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。通过对数据的调查、收集和统计分析,以及具体模型的建立。收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各个部门及各个领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB软件已经成为最优化领域应用最广的软件之一。有了MATLAB 这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 关键词:优化、线性规划、黄金分割法、最速下降法、惩罚函数法

最优化课程设计--共轭梯度法算法分析与实现

最优化课程设计--共轭梯度法算法分析与实现(设计程序) 题目共轭梯度法算法分析与实现 班级 / 学号 14140101/2011041401011 学生姓名黄中武指导教师王吉波王微微 课程设计任务书 课程名称最优化方法课程设计院(系) 理学院专业信息与计算科学 课程设计题目共轭梯度法算法分析与实现课程设计时间: 2014 年 6月 16日至 2014 年 6月 27日 课程设计的要求及内容: [要求] 1. 学习态度要认真,要积极参与课程设计,锻炼独立思考能力; 2. 严格遵守上机时间安排; 3. 按照MATLAB编程训练的任务要求来编写程序; 4. 根据任务书来完成课程设计论文; 5. 报告书写格式要求按照沈阳航空航天大学“课程设计报告撰写规范”; 6. 报告上交时间:课程设计结束时上交报告; 7. 严禁抄袭行为,一旦发现,课程设计成绩为不及格。 一、运用共轭梯度法求解无约束最优化问题 要求:1)了解求解无约束最优化问题的共轭梯度法; 2)绘出程序流程图; 3)编写求解无约束最优化问题的共轭梯度法MATLAB程序; 4)利用编写文件求解某无约束最优化问题;

5)给出程序注释。 指导教师年月日 负责教师年月日 学生签字年月日 沈阳航空航天大学 课程设计成绩评定单 课程名称最优化理论与算法课程设计院(系) 理学院专业信息与计算科学课程设计题目共轭梯度法算法分析与实现学号 2011041401011 姓名黄中武指导教师评语: 课程设计成绩 指导教师签字 年月日 最优化方法课程设计沈阳航空航天大学课程设计用纸目录 目录 一、正 文 (1) 二、总结 ............................................................... 8 参考文 献 ............................................................... 9 附录 .. (10) 第 I 页 最优化方法课程设计沈阳航空航天大学课程设计用纸正文 一、正文 一无约束最优化问题的共轭梯度法

黄金分割线:运用于黄金技术分析的干货技巧

黄金分割线:运用于黄金技术分析的干货技巧黄金分割线作为现货黄金投资技术分析的一个重要方法,在实际操作中有着重要的指导作用。对于投资新手而言,正确的运用黄金分割将给你带来意想不到的效果。以下为小编梳理关于黄金分割的一些知识以便参考。 黄金分割线的特点: 黄金分割率的最基本公式,是将1 分割为0.618和0.382,它们有如下一些特点: (1)数列中任一数字都是由前两个数字之和构成。 (2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。 (3)后一数字与前一数字之比例,,趋近于1.618。 (4)1.618 与0.618 互为倒数,其乘积则约等于1。 (5)任一数字如与后两数字相比,其值趋近于2.618;如与前两数字相比,其值则趋近于0.382。理顺下来,上列奇异数字组合除能反映黄金分割的两个基本比值0.618 和0.382 以外,尚存在下列两组神秘比值。即:0.191、0.382、0.5、0.618、0.809 黄金分割线的由来: 数学家法布兰斯在13 世纪写了一本书,关于一些奇异数字的组合。这些奇异数字的组合是1、2、3、5、8、13、21、34、55、89、144、233......任何一个数字都是前面两数字的总和:2=1+1、3=2+1、5=3+2、8=5+3......,如此类推。 有人说这些数字是他从研究金字塔所得出。金字塔和上列奇异数字息息相关。金字塔的几何形状有五个面,八个边,总数为十三个层面。从任何一边看,都可以看到三个层面。金字塔的长度为5813 寸(5-8-13),而高底和底面百分比率是0.618。 述神秘数字的任何两个连续的比率,譬如55/89=0.618,89/144=0.618,

最优化论文

理学院 最优化理论与应用 课程设计 学号:XXXXXXX 专业:应用数学 学生姓名:XXXXXX 任课教师:XXXXXX教授 2015年10月

第一部分 在最优化理论与应用这门课中,我对求指派问题及指派问题的一个很好的解法匈牙利算法的应用比较感应趣。下面做出来讨论。 国内外的研究情况:“匈牙利算法”最早是由匈牙利数学家尼格(D.Koning )用来求矩阵中0元素个数的一种方法 ] 3[,由此他证明了“矩阵中独立0元素的最 多个数等于能覆盖所有0元素的最小直线数”。1955年由库恩(W.W.Kuhn )在求解著名的指派问题时引用了这一结论 ] 4[,并对具体算法做了改进,任然称为“匈 牙利算法”。解指派问题的匈牙利算法是从这样一个明显事实出发的:如果效率矩阵的所有元素 ≥ij a ,而其中存在一组位于不同行不同列的零元素,而只要令 对应于这些零元素位置的1 =ij x ,其余的 =ij x ,则z= ∑∑n i n j ij ij x a 就是问题的最 优解。 第二部分 结合我的基础知识对匈牙利算法的分析与展望 一.基础知识运用 企业员工指派问题的模型建立与求解 1.标准指派问题(当m=n 时,即为每个人都被指派一项任务) 假定某企业有甲乙丙丁戊五个员工,需要在一定的生产技术组织条件下,A ,B,C,D,E 五项任务,每个员工完成每项工作所需要耗费的工作时间如下: 求出:员工与任务之间应如何分配,才能保证完成工作任务的时间最短?最短时间为多少? 模型建立 设用C>0表示指派第i 个人去完成第j 项任务所用费时间,定义决策变量 , {j i ,1j i ,0项任务 个人去完成第当指派第项任务个人去完成第当不指派第=ij χ则指派问题的数学模型为:

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

最优化方法课程设计

湖南****大学 课程设计 资料袋 理学院学院(系、部)2013-2014 学年第一学期课程名称最优化方法指导教师黄力职称讲师 学生姓名**** 专业班级数学与应用数学101班学号********** 学生姓名**** 专业班级数学与应用数学101班学号********* 学生姓名**** 专业班级数学与应用数学101班学号********* 题目最优化方法 成绩起止日期2013 年12 月16 日~2013 年12 月23 日 目录清单 序号材料名称资料数量备注 1 课程设计任务书 1 2 课程设计说明书 1 3 附件:课程设计主要模块实现代码 1 张4 5 6

湖南******大学 课程设计任务书 2013—2014 学年第1学期 理学院学院(系、部)数学与应用数学专业101 班课程名称:最优化方法 设计题目:求解各类最优化问题 完成期限:自2013 年12 月16 日至2013 年12月23 日共 1 周 任务及内容设计的任务:1、掌握Lingo和Matlab软件的相关知识; 2、熟练掌握相关Lingo和Matlab语句的编辑和运用; 3、运用所学最优化方法知识完成对各类最优化问题的求解。 内容包括:求解各类最优化问题,包括:铁板问题、配棉问题、连续投资问题、销售问题、整数规划模型。 进度安排 起止日期工作内容 2013.12.16~2013.12.17 查找资料并分析 2013.12.18~2013.12.20 列出不等式算法,实现相关算法并运算相关程序2013.12.21~2013.12.22 整理所解决的问题的相关资料 2013.12.23 完成课程设计报告 主要参考资料[1]蒋邵忠.线性规划与网络优化.杭州:浙江大学出版社,1992. [2]赵凤治,周继英.约束最优化计算方法.北京:科学出版社,1991. [3]施光燕,钱伟懿,庞丽萍.最优化方法.北京:高等教育出版社,2007.8 [4]林锉云,董加礼.多目标优化的方法和理论.长春:吉林教育出版社,1992. [5]张延华,许阳明.MATLAB使用指南.北京:科学技术文献出版社,1998. [6]施阳,李俊等.MATLAB语言工具箱——TOOLBOX实用指南.西安:西北工业大学出版社,1998. 指导教师(签字):年月日系(教研室)主任(签字):年月日

黄金分割线与百分比线

北京工商大学实验报告 班级:数技08 姓名:zcr 学号:30 实验日期:2010 年9 月28 日 实验5 黄金分割线与百分比线 实验目的:掌握黄金分割线与百分比线 实验要求:画出的上升趋势和下降趋势的黄金分割线与百分比线,比较这两种支撑压力线适用对象。 实验原理:切线理论。 实验数据:沪深股市历史数据和实时数据。 实验步骤: 一、启动技术分析软件 二、选择股票并绘制其K线图。 三、移动图形,分别找出可以画黄金分割线与百分比线的位置。 四、使用WINDOWS的附件中的计算器,分别计算出黄金分割线、百分比线所 在价位。黄金分割数字:0.809、0.618、0.382、0.191;2、1.809、1.618、1.382、 1.191。上升趋势的黄金分割线所在价位等于最低价乘以大于1的黄金分割 数字;下降趋势的黄金分割线所在价位等于最高价乘以小于1的黄金分割数字。百分比数字:1/8、1/4、3/8、1/2、5/8、3/4、7/8,1/3、2/3。百分比线所在的价位等于最高价与最低价之差乘以百分比数字后,加上最低价。五、点击“当前操作”(或点击鼠标右键),选择“画线分析”,选用鼠标模式, 拉出画线按钮框。 六、点击画线按钮框中的“趋势线”按钮,在相应的价位上画出水平线,即为相 应的黄金分割线或百分比线。 七、写出计算的过程,并解释其的预测含义。 八、使用组合键ALT+PRTSC拷贝屏幕,将画好的图形粘贴到WORD文档中, 并完成实验报告。 九、将实验报告发送到指定服务器的目录下。

黄金分割线: 最高点价格为21.6 21.6*0.809=17.47 21.6*0.618=13.45 21.6*0.382=8.65 21.6*0.191=4.1256 此图为下降走势,乘以小于1的数,根据单点黄金分割线预测之后的压力位。百分比线:

最优化方法课程设计-斐波那契法分析与实现-完整版(新)

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 最优化方法 题目:斐波那契法分析与实现 院系:信息与计算科学学院 专业:统计学 姓名学号:小熊熊 11071050137 指导教师:大胖胖 日期: 2014 年 01 月 10 日

摘要 科学的数学化是当代科学发展的一个主要趋势,最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案. 一维搜索是指寻求一元函数在某个区间上的最优点的方法.这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化.本文就斐波那契法的一维搜索进行了详细的分析,并且成功的用 MATLAB 实现了斐波那契法求解单峰函数的极小值问题. 斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进行的,斐波那契法成功地实现了单峰函数极值范围的缩减.从理论上来说,斐波那契法的精度比黄金分割法要高.但由于斐波那契法要事先知道计算函数值的次数,故相比之下,黄金分割法更为简单一点,它不需要事先知道计算次数,并且当n 7 时,黄金分割法的收敛速率与斐波那契法越来越接近.因此,在实际应用中,常常采用黄金分割法. 斐波那契法也是一种区间收缩算法,和黄金分割法不同的是:黄金分割法每次收缩只改变搜索区间的一个端点,即它是单向收缩法. 而斐波那契法同时改变搜索区间的两个端点,是一种双向收缩法. 关键字:一维搜索斐波那契法单峰函数黄金分割法MATLAB

Abstract Mathematical sciences is a major trend in contemporary scientific development, optimization theory and algorithms is an important branch of mathematics, the problems it was discussed in numerous research programs in the best of what programs and how to find the optimal solution . One-dimensional search is the best method of seeking functions of one variable on the merits of a certain interval. Such methods not only have practical value, but also a large number of multi-dimensional optimization methods rely on a series of one-dimensional optimization article on Fibonacci the one-dimensional search method carried out a detailed analysis, and successful in MATLAB Fibonacci method for solving unimodal function minimization problem. Fibonacci method of one-dimensional search process is based on the Fibonacci sequence is called a Fibonacci conducted on, Fibonacci method successfully achieved a unimodal function extreme range reduction. Theory , Fibonacci method accuracy is higher than the golden section method, but the number of times due to the Fibonacci method to calculate function values to know in advance, so the contrast, the golden section method is more simply, it does not need to know in advance the number of calculations and at that time, the rate of convergence of golden section and the Fibonacci method getting closer, so in practical applications, often using the golden section method. Fibonacci method is also a range contraction algorithm, and the golden section method the difference is: golden section each contraction only one endpoint to change the search range that it is unidirectional shrinkage law Fibonacci search method while changing the two endpoints of the range, is a two-way contraction method. Key words: one-dimensional search Fibonacci method unimodal function Golden Section function MATLAB

算法设计与分析:回溯法-实验报告

应用数学学院信息安全专业班学号姓名 实验题目回溯算法 实验评分表

实验报告 一、实验目的与要求 1、理解回溯算法的基本思想; 2、掌握回溯算法求解问题的基本步骤; 3、了解回溯算法效率的分析方法。 二、实验内容 【实验内容】 最小重量机器设计问题:设某一个机器有n个部件组成,每个部件都可以m个不同供应商处购买,假设已知表示从j个供应商购买第i个部件的重量,表示从j个供应商购买第i个部件的价格,试用回溯法求出一个或多个总价格不超过c且重量最小的机器部件购买方案。 【回溯法解题步骤】 1、确定该问题的解向量及解空间树; 2、对解空间树进行深度优先搜索; 3、再根据约束条件(总价格不能超过c)和目标函数(机器重量最小)在搜索过程中剪去多余的分支。 4、达到叶结点时记录下当前最优解。 5、实验数据n,m, ] ][ [j i w,] ][ [j i c的值由自己假设。 三、算法思想和实现【实现代码】

【实验数据】 假设机器有3个部件,每个部件可由3个供应商提供(n=3,m=3)。总价不超过7(c<=7)。 部件重量表: 部件价格表: 【运行结果】

实验结果:选择供应商1的部件1、供应商1的部件2、供应商3的部件3,有最小重量机器的重量为4,总价钱为6。 四、问题与讨论 影响回溯法效率的因素有哪些? 答:影响回溯法效率的因素主要有以下这五点: 1、产生x[k]的时间; 2、满足显约束得x[k]值的个数; 3、计算约束函数constraint的时间; 4、计算上界函数bound的时间; 5、满足约束函数和上界函数约束的所有x[k]的个数。 五、总结 这次实验的内容都很有代表性,通过上机操作实践与对问题的思考,让我更深层地领悟到了回溯算法的思想。 回溯算法的基本思路并不难理解,简单来说就是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。回溯法的基本做法是深度优先搜索,是一种组织得井井

最优化方法课程设计实验报告_倒立摆

倒立摆控制系统控制器设计实验报告

成员:陈乾睿 2220150423 郑文 2220150493 学院:自动化 倒立摆控制系统控制器设计实验 一、实验目的和要求 1、目的 (1)通过本设计实验,加强对经典控制方法(LQR控制器、PID控制器)和智能控制方法(神经网络、模糊控制、遗传算法等)在实际控制系统中的应用研究。(2)提高学生有关控制系统控制器的程序设计、仿真和实际运行能力. (3)熟悉MATLAB语言以及在控制系统设计中的应用。 2、要求 (1)完成倒立摆控制系统的开环系统仿真、控制器的设计与仿真以及实际运行结果 (2)认真理解设计内容,独立完成实验报告,实验报告要求:设计题目,设计的具体内容及实验运行结果,实验结果分析、个人收获和不足,参考资料。程序

清单文件。 二、实验内容 倒立摆控制系统是一个典型的非线性系统,其执行机构具有很多非线性,包括:死区、电机和带轮的传动非线性等。 本设计实验的主要内容是设计一个稳定的控制系统,其核心是设计控制器,并在MATLAB/SIMULINK环境下进行仿真实验,并在倒立摆控制实验平台上实际验证。 算法要求:使用LQR以外的其它控制算法。 三、倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的应用开发前景。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:非线性,不确定性,耦合性,开环不稳定性,约束限制。 经过相关论文和文献的查询,我们决定采用模糊控制的方法进行倒立摆的控制。

黄金分割线详解

黄金分割线起源于古希腊,也叫黄金分割律,是数学的一种计算公式,在中国古典文献中也有过类似理论的记载。黄金分割线是现代金融外汇股票等交易中使用很普遍的一种技术分析方式,也是本站经常使用的一种方式,在每个交易平台中都有黄金分割线的功能(斐波那契回调线),我们可以随时调取使用。黄金分割线的实战运用主要集中在两个方面,一个是利用股价回调和反弹的幅度来预测股价运行趋势,另一个则是判断股价的回调支撑区和反弹压力区。 利用回调和反弹幅度来判断走势 利用黄金分割线,可以依据股价向下回调的幅度和向上反弹的高度,来判断行情的性质和股价未来的运行趋势。 1、从回调幅度判断 一轮真正的上升行情中,会有几次级别比较大的回调整理过程,这种回调整理的第一目标位,一般是前段上升行情高度的0.382线附近,第二和第三目标位则是前段上升行情高度的0.5线和0.618线附近。 如果股价回调到0.382线上方或附近时,就重拾升势,则表明股价的强势上升行情依旧。当股价向下击穿0.382这条重要支撑线后,该段上升行情的0.5线是最重要的支撑位。 如果股价回调到0.5线上方或附近时,就又重新返身向上,则说明股价的上升行情并未结束。当股价向下击穿0.5线这条重要支撑线后,该段上升行情高度的0.618线就是最后一个支撑位。

如果股价有效向下击穿0.618线,则说明这段上升行情即将结束,股价的上升趋势将转为水下降趋势或水平运动趋势。 2、从反弹幅度判断 一轮大的下跌行情中会有几次级别较大的反弹出货过程,这种反弹出货过程,对于投资者逢高卖出股票有很大的帮助,同时,还可以用黄金分割线来判断反弹行情的性质。 当股价从高位下跌过程中,由于前期跌势过猛,股价会有一个比较大的反弹。当这种反弹高度未到0.382线处,就又重新下跌,则意味着这种反弹是弱势反弹,股价未来的跌势可能会更加凶猛。 当股价的反弹高度未到0.5线处,就重新下跌,则预示着这种反弹是下跌途中的中级抵 抗,股价的下降趋势依旧,下跌行情尚未结束。 当股价的反弹高度达到0.618线处时,说明股价的下跌趋势将趋缓,下跌行情也有可能转向横向整理的行情。 不过,以上这些分析方法不适应那些前期涨幅过高的股票。 判断支撑和压力区(上) 黄金分割线的另一个运用就是利用不同黄金分割线之间的距离,将股价的上升和下降行情,划分为几个回调支撑区和反弹压力区,借以判断股价未来的运行趋势。 1、回调支撑区 在一轮比较大级别的上升行情中,股票运行态势按黄金分割标准划分,自上而下可分为四个区域,即无压力区、强力支撑区、最后支撑区和无支撑区等。

最优化理论与方法论文(DOC)(新)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

最优化算法-第1次实验内容 ( 1 )

《最优化算法》实验指导书1 一、实验名称:Lingo软件的介绍及使用 二、实验目的: 熟悉LINGO软件的使用方法、功能,会求解一般线性规划问题和简单非线性规划模型。针对实际问题,会建立线性规划模型并求解。 三、实验内容 1、熟悉LINGO软件的启动步骤。 2、熟悉LINGO软件的各菜单、命令按钮的作用。 3、学会如何使用LINGO的帮助文件。 4、学会输入线性规划模型和简单非线性规划模型的基本格式,并能看懂求 解结果。 四、实验步骤 1启动LINGO软件的步骤。当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口: 外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口 之下。在主窗口内的标题为LINGO Model –LINGO1的窗口是LINGO的默认模型窗口,建立 的模型都要在该窗口内编码实现。 LINGO包含了内置的建模语言,允许以简练、直观的方式描述较大规模的优化问题。模 型中所需数据可以以一定的格式保存在独立的文件中。 下面举两个例子。 2、示例:用LINGO求解线性规划 12 12 12 12 min z2x2x 2x5x12 s.t.x2x10 x,x0 =+ +≥ ? ? +≤ ? ?≥ ? 则在LINGO的模型窗口中输入如下代码:min=2*x1+2*x2; 2*x1+5*x2>=12;

x1+2*x2<=10; 注:(1)在输入目标函数时,因变量Z可不要输,只输“=”及后面表达式; (2)用*号表示乘号 (3)每一个约束条件或目标函数后用分号“;”结束; (4)非负约束可以不要输入,软件默认变量是非负的。 (5)可以用“!”开始写说明语句,但说明语句后也要用分号“;”结束。 然后点击工具条上的运行图标,屏幕上出现 Rows= 3 Vars= 2 No. integer vars= 0 ( all are linear) Nonzeros= 8 Constraint nonz= 4( 1 are +- 1) Density=0.889 Smallest and largest elements in abs value= 1.00000 12.0000 No. < : 1 No. =: 0 No. > : 1, Obj=MIN, GUBs <= 1 Single cols= 0 (以上这段是对模型的描述) Optimal solution found at step(最优解在第1步被找到): 1 Objective value(目标函数值): 4.800000 (下列显示的是最优解) Variable(变量) Value(值) Reduced Cost (缩减成本系数) X1 0.0000000 1.200000 X2 2.400000 0.0000000 (下列显示的是松驰变量或剩余变量) Row Slack or Surplus Dual Price (行)(松弛变量或剩余变量)(检验数,对偶问题的解) 1 4.800000 -1.000000 2 0.0000000 -0.4000000 3 5.200000 0.0000000 结论:原规划的最优解是x1=0,x2=2.4;最优值为4.8 注释: Reduced cost 是指缩减成本系数,基变量的一定为0,对非基变量表示该变量每增加一个单位,目标函数值减少的量(对求解max的函数而言)。 Dual price 对偶价格,表示当对应的约束有微小变动时,目标函数的变化率。 3、LINGO软件的菜单命令(LINGO WINDOWS命令) (一)文件菜单(File Menu) (1)新建(New) 从文件菜单中选用“新建”命令、单击“新建”按钮或直接按F2键可以创建一个新的“Model”窗口。在这个新的“Model”窗口中能够输入所要求解的模型。 (2)打开(Open) 从文件菜单中选用“打开”命令、单击“打开”按钮或直接按F3键可以打开一个已经存在的文本文件。这个文件可能是一个Model文件。 (3)保存(Save) 从文件菜单中选用“保存”命令、单击“保存”按钮或直接按F4键用来保存当前活动窗口(最前台的窗口)中的模型结果、命令序列等保存为文件。

相关文档
最新文档