银行家算法课程设计报告 (1)操作系统

银行家算法课程设计报告 (1)操作系统
银行家算法课程设计报告 (1)操作系统

目录

1. 设计目的 (1)

2. 问题描述 (1)

3. 需求分析 (1)

3.1 数据需求 (1)

3.2 基本功能需求 (1)

3.3 非功能性需求 (1)

4. 概要设计 (1)

4.1 数据结构 (1)

4.2 系统功能模块介绍 (2)

4.2.1 数据定义 (2)

4.2.2 输出矩阵 (2)

4.2.3 试分配资源 (2)

4.2.4 安全性检测 (2)

4.3 系统功能模块图 (2)

5. 详细设计 (2)

5.1 系统函数详细介绍 (2)

5.2 银行家算法 (3)

5.3 安全性算法 (4)

5.4 程序流程图 (4)

6. 调试分析 (6)

7. 使用说明 (8)

8. 设计总结 (8)

9. 参考文献 (9)

10.程序源代码 (9)

1.设计目的

通过银行家算法设计与实现,可以加深学生对死锁的理解,掌握死锁的预防、避免、检测和解除的基本原理,重点掌握死锁的避免方法—银行家算法。使学生初步具有研究、设计、编制和调试操作系统模块的能力。

2.问题描述

设计一个进程动态请求资源的模拟系统,实现随机产生进程请求资源的数量;资源安全性检查算法;资源的分配算法;以及输出显示每次请求的结果和系统资源的状态。

3.需求分析

3.1数据需求

字符范围:0,1,2……n

3.2基本功能需求

为进程随机产生请求资源的数量,系统通过资源安全性检查,检查是否满足安全要求。若安全,则才分配资源;不安全时,系统恢复申请前的状态;只有当进程满足全部的资源需求时,该进程执行结束,释放所占的资源。

3.3非功能性需求

用户界面需求:简洁、易用、易懂、友好的用户界面。

硬件需求:Windows 7系统,VC++6.0开发工具。

4.概要设计

4.1数据结构

主要用到的数据结构:

(1) 最大需求矩阵Max[][]

(2) 已分配矩阵Allocation[][]

(3) 仍需求矩阵Need[][]=Max[][]-Allocation[][]

(4) 可利用资源向量Available[]

(5) 申请各类资源向量Request[]

(6) 工作向量work[] , Finish[]

4.2系统功能模块介绍

4.2.1数据定义

int Max[MaxResource]

int Allocation[MaxResource]

int Need[MaxResource]

4.2.2试分配资源

据用户输入的数据进行试分配

4.2.3输出矩阵

据输入数据输出对应矩阵,并计算出需求矩阵

4.2.4安全性检测

进程间是安全的时候则可以输出相应的安全序列。如果错误,则可以回到数据的初始化状态

4.3系统功能模块图

图4.3-1 功能模块图

5.详细设计

5.1系统函数详细介绍

int Max[MaxResource] // 表示某个进程对某类资源的最大需求

int Allocation[MaxResource] // 表示某个进程已分配到某类资源的个数 int Need[MaxResource] // 表示某个进程尚需要某类资源的个数

int mark[MaxResource] //在使用FreeRecourse是以确定是否释放资

void Initialize(pcb *&head,int m,int n, int Available[MaxResource]) //初始化进程资源值

void AddPcb(pcb *&head,pcb node) //增加进程链表块

void ShowPcb(pcb *head,int *avail,int m) //显示进程初始化的资源值pcb *Seek(pcb *head,int pid) //查找进程在链表中的位置void FreeResource(pcb *&head,int Available[MaxResource],int m)//若进程所需资源已全部分配,则释放该进程占据的全部系统资源

pcb *Application(pcb *head,int *request,int *avail,int m) //再次给进程分配资源

pcb *Reasonable(pcb *head,int *finish,int *work,int m,int n) //找到当前安全可执行的进程返回

void Alter(pcb *p,int* work,int* finish,int record[][MaxResource],int m) //修改相关进程的资源值

int SafetyCheck(pcb *head,int *avail,int *safety,int Record[][MaxResource],int m,int n) //进程安全性算法

void ReturnSource(pcb *p,int *request,int *avail,int m) //若试分配失败,则恢复试分配前的资源状态

void main() //主函数

5.2银行家算法

(1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。

(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。

(3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数

值:

Available=Available-Request[i];

Allocation=Allocation+Request;

Need=Need-Request;

(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。

5.3安全性算法

(1)设置两个向量

①工作向量Work。它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;

②布尔向量Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false ②Need

(3)当进程P获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行: Work=Work+Allocation; Finish[i]=true; 转向步骤(2)。(4)如果所有进程的Finish[i]=true,则表示系统处于安全状态;否则,系统处于不安全状态。

5.4程序流程图

主程序流程图:

图5.4-1 主程序模块图

图5.4-2 银行家算法安全性检查算法流程图:

图5.4-3 安全检查算法

图5.4-4 释放资源算法6.调式分析

图6-1 初始化资源信息

图6-2 随机分配资源并进行安全检查

图6-2系统给进程0、1随机分配资源,显示所需的资源数。安全信息检查,输出安全序列号

图6-3 进程再申请资源

图6-3为给进程0再次分配资源,当满足所需资源时,进程执行完,释放系统所占的资源。

图6-4 分配资源超过可利用资源

图6-4分配资源超过可利用资源,系统处于不安全状态,本次申请作废,恢复原来的资源分配状态。

7.使用说明

按屏幕提示输入进程数。按回车键,输入资源数。按回车键输入系统中可利用的资源数值。回车后据提示输入第0个进程最大需求资源数。屏幕会显示给进程0随机分配的资源数和其所需资源数。据屏幕提示输入下一进程最大所需资源数。回车显示给下一进程随机分配的资源数和其所需资源数。循环操作直至分配完成。显示进程的资源分配信息,并检测其安全性。若显示安全,则可继续分配资源。不安全则本次申请分配作废,恢复原来的分配状态。

8.设计总结

通过这次实验,让我更加全面的复习C语言,也让我加深了操作系统的知识,知道了系统给进程分配资源时解决死锁的方法,对安全算法和银行家算法有了一定的了解。以前的自己C语言的编程还是有些基础,也做了大量的编程题,

所以,编程不是主要的问题。主要的问题就是对于操作系统系统分配资源的不熟悉,以及试验中所遇到的算法的了解不够,致使在编程中出现了一些错误,之后,通过借阅图书馆的书籍,查阅相关的资料,弄懂了算法的含义,解决了相关的问题,让我收获不少。

9.参考文献

[1]汤小丹等编著.计算机操作系统(第三版).西安:西安电子科技大学出版社,2007.5

[2]史美林编.计算机操作系统教程.北京:清华大学出版社,1999.11

[3]徐甲同编著.操作系统教程.西安:西安电子科技大学出版社,1996.8

[4]Clifford,A.Shaffer编著.数决结构与算法分析(C++版).北京:电子工业出版社,2005.7

[5]蒋立翔编著.C++程序设计技能百练.北京:中国铁道出版社,2004.1

10.程序源代码

#include

#include

#include

#define MaxResource 10 // 最大系统资源类

#define NULL 0

struct pcb //定义进程控制块PCB

{

int pid; //进程标号

int Max[MaxResource]; // 表示某个进程对某类资源的最大需求

int Allocation[MaxResource]; // 表示某个进程已分配到某类资源的个数 int Need[MaxResource]; // 表示某个进程尚需要某类资源的个数

int mark[MaxResource]; //在使用FreeRecourse是以确定是否释放资源

pcb *next;

};

void Initialize(pcb *&head,int m,int n, int Available[MaxResource]) //初始化进程资源值

{

int i,j=0;

void AddPcb(pcb *&head,pcb node);

pcb node;

printf("\t**请输入%d进程的%d个最大资源数**\t\n",n,m);

do{

node.pid=j;

printf("请输入第 %d个进程最大需求资源数:\n",node.pid);

for(i=0;i

scanf("%d",&node.Max[i]);

printf("系统给进程%d随机分配资源数为:\n ",node.pid);

for(i=0;i

{

node.Allocation[i]=rand()%node.Max[i];

printf("%10d",node.Allocation[i]);

Available[i]=Available[i]-node.Allocation[i];

}

printf("\n");

printf("进程%d还所需的资源数为:\n",node.pid);

for(i=0;i

{

node.Need[i]=node.Max[i]-node.Allocation[i];

printf("%10d",node.Need[i]);

}

for(i=0;i

node.mark[i]=0;

printf("\n");

AddPcb(head,node);

j++;

}while(j

}

void AddPcb(pcb *&head,pcb node) //增加进程链表块

{

pcb *p=(pcb*)malloc(sizeof(pcb));

pcb *last=NULL;

memcpy(p,&node,sizeof(pcb));

p->next=NULL;

if(head==NULL)head=p;

else

{

last=head;

while(last->next!=NULL)

last=last->next;

last->next=p;

}

}

void ShowPcb(pcb *head,int *avail,int m) //显示进程初始化的资源值{

pcb *p=NULL;

int j;

p=head;

if(p==NULL)

{

printf("当前没有进程,请重新输入进程!\n");

exit(0);

}

else

{

printf("进程号最大资源值已分配资源还需资源可利用的资源状态\n\n");

while(p!=NULL)

{

printf("p[%d]",p->pid);

for(j=0;j

{

printf("\t %4d %4d %4d %4d",p->Max[j],p->Alloc ation[j],p->Need[j],avail[j]);

if(p->mark[j])printf(" 已执行\n");

else printf(" 等待\n");

}

p=p->next;

}

}

}

pcb *Seek(pcb *head,int pid) //查找进程在链表中的位置

{

pcb *p=NULL;

p=head;

if(p==NULL)

{

printf("没有进程,进程链表空!\n");

return p;

}

else

{

while(p!=NULL)

{

if(p->pid==pid)break;

else

p=p->next;

}

if(NULL==p)

{

printf("没有这个进程!\n");

return p;

}

else

return p;

}

}

void FreeResource(pcb *&head,int Available[MaxResource],int m)//若进程所需资源已全部分配,则释放该进程占据的全部系统资源

{

pcb *p=NULL;

int i;

p=head;

if(!p)printf("没有进程,请先初始化进程!");

else

{

for(i=0;i

{

if((p->Need[i]==NULL)&&(p->mark[i]==NULL))

{

printf("进程%d的第%d个已经执行完,释放所占系统资源!\n",p->pid,i);

Available[i]+=p->Allocation[i];

p->mark[i]=1;

}

}

}

}

pcb *Application(pcb *head,int *request,int *avail,int m) //再次给进程分配资源

{

int pid,i;

pcb *p=NULL;

printf("请输入进程pid号: \n");

printf("p");

scanf("%d",&pid);

p=Seek(head,pid);

if(p==NULL)

{

printf("没有这个进程!\n");

return p;

}

printf("请输入给该进程再次分配的资源数: \n");

for(i=0;i

scanf("%d",&request[i]);

for(i=0;i

if(request[i]>p->Need[i])

{

printf("分配进程的资源数超过最大资源数!\n");

return NULL;

}

for(i=0;i

if(request[i]>avail[i])

{

printf("分配进程的资源数超过可利用的资源数!\n");

return NULL;

}

for(i=0;i

{

avail[i]=avail[i] - request[i];

p->Allocation[i]=p->Allocation[i] + request[i];

p->Need[i]=p->Need[i] - request[i];

}

FreeResource(p,avail,m);

return p;

}

pcb *Reasonable(pcb *head,int *finish,int *work,int m,int n) //找到当前安全可执行的进程返回

{

int i=0,j=0,count=0;

pcb *p=NULL;

while(1)

{

if(finish[i]!=-1)

{

p=Seek(head,finish[i]);

if(p!=NULL)

{

for(j=0;j

{

if(p->Need[j]>work[j])break;

else continue;

}

if(j==m)return p;//p进程安全

else i++;

}

}

else i++;

if(i==n)return NULL;

}

}

void Alter(pcb *p,int* work,int* finish,int record[][MaxResource],int m) //修改相关进程的资源值

{

int i;

for(i=0;i

record[p->pid][i]=work[i];

work[i]=work[i]+p->Allocation[i];

}

finish[p->pid]=-1;

}

int SafetyCheck(pcb *head,int *avail,int *safety,int Record[][MaxResource],int m,int n) //进程安全性算法

{

int *work=NULL;

int *finish=NULL;

pcb *p=NULL;

pcb *pro=NULL;

int i,count=0;

work=(int*)malloc(m*sizeof(int));

finish=(int*)malloc(n*sizeof(int));

p=head;

for(i=0;i

work[i]=avail[i];

i=0;

while(p!=NULL)

{

finish[i]=p->pid;

p=p->next;

i++;

}

i=0;

while(count

pro=Reasonable(head,finish,work,m,n);

if(pro!=NULL)

{

Alter(pro,work,finish,Record,m);

count++;

safety[i]=pro->pid;

i++;

}

else

{

printf("当前的系统处于不安全状态!\n");

break;

}

}

if(count==n)

{

printf("当前系统处于安全状态,存在一个安全序列 :\n");

for(i=0;i

printf("p[%d]->",safety[i]);

printf("\n");

}

free(finish);

free(work);

finish=NULL;

work=NULL;

if(count==n)return 1;

else return 0;

}

void ReturnSource(pcb *p,int *request,int *avail,int m) //若试分配失败,则恢复试分配前的资源状态

{

int i;

for(i=0;i

{

p->Allocation[i]-=request[i];

p->Need[i]+=request[i];

avail[i]+=request[i];

}

}

void main()

{

int n,m;

char ch;

int i,flag=0;

int Available[MaxResource]={0};

int Request[MaxResource]={0};

int Record[MaxResource][MaxResource]={0};

int Safety[MaxResource]={0}; //记录安全序列

pcb *head,*process;

head=NULL;process=NULL;

printf("请输入进程数:\n");

scanf("%d",&n);

printf("请输入资源数:\n");

scanf("%d",&m);

操作系统课程设计

课程设计报告 2015~2016学年第一学期 操作系统综合实践课程设计 实习类别课程设计 学生姓名李旋 专业软件工程 学号130521105 指导教师崔广才、祝勇 学院计算机科学技术学院 二〇一六年一月

- 1 -

- 2 -

一、概述 一个目录文件是由目录项组成的。每个目录项包含16B,一个辅存磁盘块(512B)包含32个目录项。在目录项中,第1、2字节为相应文件的外存i节点号,是该文件的内部标识;后14B为文件名,是该文件的外部标识。所以,文件目录项记录了文件内、外部标识的对照关系。根据文件名可以找到辅存i节点号,由此便得到该文件的所有者、存取权、文件数据的地址健在等信息。UNIX 的存储介质以512B为单位划分为块,从0开始直到最大容量并顺序加以编号就成了一个文件卷,也叫文件系统。UNIX中的文件系统磁盘存储区分配图如下: 本次课程设计是要实现一个简单的模拟Linux文件系统。我们在内存中开辟一个虚拟磁盘空间(20MB)作为文件存储器,并将该虚拟文件系统保存到磁盘上(以一个文件的形式),以便下次可以再将它恢复到内存的虚拟磁盘空间中。文件存储空间的管理可采用位示图方法。 二、设计的基本概念和原理 2.1 设计任务 多用户、多级目录结构文件系统的设计与实现。可以实现下列几条命令login 用户登录 logout 退出当前用户 dir 列文件目录 creat 创建文件 delete 删除文件 open 打开文件 close 关闭文件 - 3 -

read 读文件 write 写文件 mkdir 创建目录 ch 改变文件目录 rd 删除目录树 format 格式化文件系统 Exit 退出文件系统 2.2设计要求 1) 多用户:usr1,usr2,usr3,……,usr8 (1-8个用户) 2) 多级目录:可有多级子目录; 3) 具有login (用户登录)4) 系统初始化(建文件卷、提供登录模块) 5) 文件的创建:create (用命令行来实现)6) 文件的打开:open 7) 文件的读:read8) 文件的写:write 9) 文件关闭:close10) 删除文件:delete 11) 创建目录(建立子目录):mkdir12) 改变当前目录:cd 13) 列出文件目录:dir14) 退出:logout 新增加的功能: 15) 删除目录树:rd 16) 格式化文件系统:format 2.3算法的总体思想 - 4 -

银行家算法实验报告

操作系统 (实验报告) 银行家算法姓名:***** 学号:***** 专业班级:***** 学验日期:2011/11/22 指导老师:***

一、实验名称: 利用银行家算法避免死锁 二、实验内容: 需要利用到银行家算法,来模拟避免死锁:设计M个进程共享N类资源,M个进程可以动态的申请资源,并可以判断系统的安全性,进行打印出,相应的安全序列和分配表,以及最后可用的各资源的数量。 三、实验目的: 银行家算法是一种最有代表性的避免死锁的算法,在避免死锁的方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。 为实现银行家算法,系统必须设置若干数据结构,所以通过编写一个模拟动态资源分配的银行家算法程序,进一步深入理解死锁,产生死锁的必要条件,安全状态等重要的概念,并掌握避免死锁的具体实施方法。 四、实验过程 1.基本思想: 我们可以把操作系统看成是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程申请到资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过再测试系统现资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。 安全状态就是如果存在一个由系统中所有进程构成的安全序列P1……则系统处于安全状态。安全状态是没有死锁发生。而不安全状态则是不存在这样一个安全序列,从而一定会导致死锁。 2.主要数据结构: (1)可利用资源向量Available.这是一个含有m个元素的数组,其中的每一个 元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类的资源的分配和回收而动态地改变,如果Available[j]=K,则表示系统中现有Rj类资源K个。 (2)最大需求矩阵Max.这是一个n*m的矩阵,定义了系统中n 个进程中的每 一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K. (3)分配矩阵Allocation.这也是一个n*m的矩阵,它定义了系统中每一类资源

大作业_银行家算法课程设计报告

《操作系统》课程设计报告 设计题目:银行家算法的实现 :梅济民学号: 2012015014 同组人 :宇昊学号: 2012012962 班级: 2012级信息与计算科学 完成日期: 2015年 11 月 12 日

银行家算法分析、设计与实现 一、理论描述 银行家算法要求每个进程的最大资源需求,其基本思想是:始终保持系统处于安全状态,当设计进程提出资源请求时,系统先进行预分配,再判断系统分配后是否仍然处于安全状态。如果仍然处于安全状态,就进行实际分配;如果处于不安全状态,则拒绝该进程的资源请求。 二、算法描述及数据结构模型 #define False 0 #define True 1 int Max[100][100]={0};//各进程所需各类资源的最大需求 int Avaliable[100]={0};//系统可用资源 char name[100]={0};//资源的名称 int Allocation[100][100]={0};//系统已分配资源 int Need[100][100]={0};//还需要资源 int Request[100]={0};//请求资源向量 int temp[100]={0};//存放安全序列 int Work[100]={0};//存放系统可提供资源

int M=100;//作业的最大数为100 int N=100;//资源的最大数为10 三、源代码 void showdata()//显示资源矩阵 { int i,j; printf("系统目前可用的资源[Avaliable]:\n"); for(i=0;i

银行家算法-实验报告

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理》 题目:银行家算法 班级: 学号: 姓名:

一、实验目的 银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。 实验环境 Turbo C 2.0/3.0或VC++6.0 实验学时 4学时,必做实验。 二、实验内容 用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。程序能模拟多个进程共享多种资源的情形。进程可动态地申请资源,系统按各进程的申请动态地分配资源。要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。 三、实验说明 实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。 四、实验步骤 1、理解本实验中关于两种调度算法的说明。 2、根据调度算法的说明,画出相应的程序流程图。 3、按照程序流程图,用C语言编程并实现。 五、分析与思考 1.要找出某一状态下所有可能的安全序列,程序该如何实现? 答:要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述: 进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和; 通过这个描述来算出系统是否安全,从而找出所有的安全序列。 2.银行家算法的局限性有哪些?

银行家算法课程设计报告

中南大学软件技术课程设计报告 课程名称:模拟银行家算法原理班级: 学号: 姓名: 指导老师: 2009年5月2日

一设计目的 模拟实现银行家算法,用银行家算法实现资源分配。 二问题描述 在死锁的避免中,银行家算法把系统状态分为安全状态和不安全状态,只要能使系统始终处于安全状态,便可以避免发生死锁。所谓安全状态,是指系统能按某种顺序为每个进程分配所需资源,直到最大需求,使每一个进程都可以顺利完成,即可找到一个安全资源分配序列。模拟实现这个工作过程。 三设计思路 我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。 四详细设计 1、初始化

由用户输入数据,分别对可利用资源向量矩阵AVAILABLE、最大需求矩阵MAX、分配矩阵ALLOCATION、需求矩阵NEED赋值。 2、银行家算法 在避免死锁的方法中,所施加的限制条件较弱,有可能获得令人满意的系统性能。在该方法中把系统的状态分为安全状态和不安全状态,只要能使系统始终都处于安全状态,便可以避免发生死锁。银行家算法的基本思想是分配资源之前,判断系统是否是安全的;若是,才分配。 设进程cusneed提出请求REQUEST [i],则银行家算法按如下规则进行判断。 (1)如果REQUEST [cusneed] [i]<= NEED[cusneed][i],则转(2);否则,出 错。 (2)如果REQUEST [cusneed] [i]<= AVAILABLE[cusneed][i],则转(3);否 则,出错。 (3)系统试探分配资源,修改相关数据: AVAILABLE[i]-=REQUEST[cusneed][i]; ALLOCATION[cusneed][i]+=REQUEST[cusneed][i]; NEED[cusneed][i]-=REQUEST[cusneed][i]; (4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废, 系统恢复原状,进程等待。

操作系统课程设计(银行家算法的模拟实现)

操作系统课程设计 (银行家算法的模拟实现) 一、设计目的 1、进一步了解进程的并发执行。 2、加强对进程死锁的理解。 3、用银行家算法完成死锁检测。 二、设计容 给出进程需求矩阵C、资源向量R以及一个进程的申请序列。使用进程启动拒绝和资源分配拒绝(银行家算法)模拟该进程组的执行情况。 三、设计要求 1、初始状态没有进程启动。 2、计算每次进程申请是否分配,如:计算出预分配后的状态情况(安全状态、不安全状态),如果是安全状态,输出安全序列。 3、每次进程申请被允许后,输出资源分配矩阵A和可用资源向量V。 4、每次申请情况应可单步查看,如:输入一个空格,继续下个申请。 四、算法原理 1、银行家算法中的数据结构

(1)、可利用资源向量Available,这是一个含有m个元素的数组,其中的每个元素代表一类可利用资源的数目,其初始值是系统中所配置的该类全部资源的数目,其数值随该类资源的分配和回收而动态改变。如果Available[j]=K,则表示系统中现有Rj类资源K个。 (2)、最大需求矩阵Max,这是一个n*m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K。 (3)、分配矩阵Allocation。这也是一个n*m的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。如果Allocation[i,j]=K,则表示进程i当前已经分得Rj类资源的数目为K。 (4)、需求矩阵Need。这也是一个n*m的矩阵,用以表示每个进程尚需要的各类资源数。如果Need[i,j]=K,则表示进程i还需要Rj类资源K个,方能完成其任务。上述三个矩阵间存在以下关系:Need[i,j]=Max[i,j]-Allocation[i,j] 2、银行家算法应用 模拟实现Dijkstra的银行家算法以避免死锁的出现,分两部分组成:一是银行家算法(扫描);二是安全性算法。 (1)银行家算法(扫描) 设Requesti是进程Pi的请求向量,如果Requesti[j]=K,表示进程Pi需要K个Ri类型的资源。当Pi发出资源请求后,系统按下述步骤进行检查:

操作系统课程设计报告

上海电力学院 计算机操作系统原理 课程设计报告 题目名称:编写程序模拟虚拟存储器管理 姓名:杜志豪.学号: 班级: 2012053班 . 同组姓名:孙嘉轶 课程设计时间:—— 评语: 成绩: 目录 一、设计内容及要求 (4) 1. 1 设计题目 (4) 1.2 使用算法分析: (4)

1. FIFO算法(先进先出淘汰算法) (4) 1. LRU算法(最久未使用淘汰算法) (5) 1. OPT算法(最佳淘汰算法) (5) 分工情况 (5) 二、详细设计 (6) 原理概述 (6) 主要数据结构(主要代码) (6) 算法流程图 (9) 主流程图 (9) Optimal算法流程图 (10) FIFO算法流程图 (10) LRU算法流程图 (11) .1源程序文件名 (11) . 2执行文件名 (11) 三、实验结果与分析 (11) Optimal页面置换算法结果与分析 (11) FIFO页面置换算法结果与分析 (16) LRU页面置换算法结果与分析 (20) 四、设计创新点 (24) 五、设计与总结 (27)

六、代码附录 (27) 课程设计题目 一、设计内容及要求 编写程序模拟虚拟存储器管理。假设以M页的进程分配了N

块内存(N

银行家算法课程设计报告

银行家算法课程设计报 告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

中南大学 软件技术课程设计报告 课程名称:模拟银行家算法原理 班级: 学号: 姓名: 指导老师: 2009年5月2日 一设计目的 模拟实现银行家算法,用银行家算法实现资源分配。 二问题描述 在死锁的避免中,银行家算法把系统状态分为安全状态和不安全状态,只要能使系统始终处于安全状态,便可以避免发生死锁。所谓安全状态,是指系统能按某种顺序为每个进程分配所需资源,直到最大需求,使每一个进程都可以顺利完成,即可找到一个安全资源分配序列。模拟实现这个工作过程。 三设计思路 我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请

资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。 四详细设计 1、初始化 由用户输入数据,分别对可利用资源向量矩阵AVAILABLE、最大需求矩阵MAX、分配矩阵ALLOCATION、需求矩阵NEED赋值。 2、银行家算法 在避免死锁的方法中,所施加的限制条件较弱,有可能获得令人满意的系统性能。在该方法中把系统的状态分为安全状态和不安全状态,只要能使系统始终都处于安全状态,便可以避免发生死锁。银行家算法的基本思想是分配资源之前,判断系统是否是安全的;若是,才分配。 设进程cusneed提出请求REQUEST [i],则银行家算法按如下规则进行判断。 (1)如果REQUEST [cusneed] [i]<= NEED[cusneed][i],则转(2);否则, 出错。 (2)如果REQUEST [cusneed] [i]<= AVAILABLE[cusneed][i],则转(3); 否则,出错。 (3)系统试探分配资源,修改相关数据: AVAILABLE[i]-=REQUEST[cusneed][i]; ALLOCATION[cusneed][i]+=REQUEST[cusneed][i];

银行家算法_实验报告

课程设计报告课程设计名称共享资源分配与银行家算法 系(部) 专业班级 姓名 学号 指导教师 年月日

目录 一、课程设计目的和意义 (3) 二、方案设计及开发过程 (3) 1.课题设计背景 (3) 2.算法描述 (3) 3.数据结构 (4) 4.主要函数说明 (4) 5.算法流程图 (5) 三、调试记录与分析 四、运行结果及说明 (6) 1.执行结果 (6) 2.结果分析 (7) 五、课程设计总结 (8)

一、程设计目的和意义 计算机科学与技术专业学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,其目的在于加深催操作系统基础理论和基本知识的理解,加强学生的动手能力.银行家算法是避免死锁的一种重要方法。通过编写一个模拟动态资源分配的银行家算法程序,进一步深入理解死锁、产生死锁的必要条件、安全状态等重要概念,并掌握避免死锁的具体实施方法 二、方案设计及开发过程 1.课题设计背景 银行家算法又称“资源分配拒绝”法,其基本思想是,系统中的所有进程放入进程集合,在安全状态下系统受到进程的请求后试探性的把资源分配给他,现在系统将剩下的资源和进程集合中其他进程还需要的资源数做比较,找出剩余资源能满足最大需求量的进程,从而保证进程运行完成后还回全部资源。这时系统将该进程从进程集合中将其清除。此时系统中的资源就更多了。反复执行上面的步骤,最后检查进程的集合为空时就表明本次申请可行,系统处于安全状态,可以实施本次分配,否则,只要进程集合非空,系统便处于不安全状态,本次不能分配给他。请进程等待 2.算法描述 1)如果Request[i] 是进程Pi的请求向量,如果Request[i,j]=K,表示进程Pi 需要K个Rj类型的资源。当Pi发出资源请求后,系统按下述步骤进行检查: 如果Requesti[j]<= Need[i,j],便转向步骤2;否则认为出错,因为它所需要的资源数已超过它所宣布的最大值。 2)如果Requesti[j]<=Available[j],便转向步骤3,否则,表示尚无足够资源,进程Pi须等待。 3)系统试探着把资源分配给进程Pi,并修改下面数据结构中的数值: Available[j]:=Available[j]-Requesti[j]; Allocation[i,j]:=Allocation[i,j]+Requesti[j]; Need[i,j]:=Need[i,j]-Requesti[j];

银行家算法报告和代码

1
课程设计(论文)
题 目: 银行家算法 院 (系): 信息与控制工程系 专业班级: 姓 名: 学 号: 指导教师:
2016 年 1 月 15 日
页脚内容 16

1
西安建筑科技大学华清学院课程设计(论文)任务书
专业班级: 学生姓名:
指导教师(签名):
一、课程设计(论文)题目
银行家算法:设计一个 n 个并发进程共享 m 个系统资源的程序以实现银行家算法。
二、本次课程设计(论文)应达到的目的
操作系统课程实践性比较强。课程设计是加强学生实践能力的一个强有力手段。课程设计要求学 生在完成程序设计的同时能够写出比较规范的设计报告。严格实施课程设计这一环节,对于学生基本 程序设计素养的培养和软件工作者工作作风的训练,将起到显著的促进作用。
本题目要达到目的:了解多道程序系统中,多个进程并发执行的资源分配。掌握银行家算法,了 解资源在进程并发执行中的资源分配情况。掌握预防死锁的方法,系统安全状态的基本概念。
三、本次课程设计(论文)任务的主要内容和要求(包括原始数据、技术参 数、设计要求等)
要求: 1)能显示当前系统资源的占用和剩余情况。 2)为进程分配资源,如果进程要求的资源大于系统剩余的资源,不与分配并且提示分配不成功; 3)撤销作业,释放资源。 编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法, 有效地防止和避免死锁的发生。 银行家算法分配资源的原则是:系统掌握每个进程对资源的最大需求量,当进程要求申请资源时, 系统就测试该进程尚需资源的最大量,如果系统中现存的资源数大于或等于该进程尚需求资源最大量 时,就满足进程的当前申请。这样就可以保证至少有一个进程可能得到全部资源而执行到结束,然后 归还它所占有的全部资源供其它进程使用。
四、应收集的资料及主要参考文献:
操作系统经典算法的编程实现资料非常丰富,可以在图书馆找书籍或在因特网上找资料,都很容 易找到,但是大部分代码是不全的,不能直接运行,希望大家只是把它当参考,编码还是自己做。
参考文献: 【1】汤小丹、梁红兵、哲凤屏、汤子瀛 编著.计算机操作系统(第三版).西安:西 安电子科技大学出版社,2007.5 【2】史美林编.计算机操作系统教程.北京:清华大学出版社,1999.11 【3】徐甲同编著.操作系统教程.西安:西安电子科技大学出版社,1996.8 【4】Clifford,A.Shaffer 编著.数决结构与算法分析(C++版).北京:电子工业出版 社,2005.7 【5】蒋立翔编著.C++程序设计技能百练.北京:中国铁道出版社,2004.1
五、审核批准意见
教研室主任(签字)
1 页脚内容

计算机操作系统银行家算法实验报告

计算机操作系统实验报告 一、实验名称:银行家算法 二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写 一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 三、问题分析与设计: 1、算法思路:先对用户提出的请求进行合法性检查,即检查请 求是否大于需要的,是否大于可利用的。若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。 2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步 骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣 布的最大值。 (2)如果Request<or=Available,则转向步骤(3);否则,表示 系统中尚无足够的资源,进程必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构 中的数值: Available=Available-Request[i]; Allocation=Allocation+Request;

Need=Need-Request; (4)系统执行安全性算法,检查此次资源分配后,系统是否处于安 全状态。 3、安全性算法步骤: (1)设置两个向量 ①工作向量Work。它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation; ②布尔向量Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。 (2)从进程集合中找到一个能满足下述条件的进程: ①Finish[i]=false ②Need

银行家算法课程设计报告

《操作系统原理》课程设计报告 1设计目的 (1)进一步了解进程的并发执行 (2)加强对进程死锁的理解 (3)用银行家算法完成死锁检测 2设计内容 给出进程需求矩阵C、资源向量R以及一个进程的申请序列。使用进程启动拒绝和资源分配拒绝(银行家算法)模拟该进程组的执行情况。 3设计要求 (1)初始状态没有进程启动; (2)计算每次进程申请是否分配,如:计算出预分配后的状态情况(安全状态,不安全状态),如果是安全状态,输出安全序列; (3)每次进程申请被允许后,输出资源分配矩阵A和可用资源向量V; (4)每次申请情况应可单步查看,如:输入一个空格,继续下个申请。 4算法原理 4.1银行家算法中的数据结构 (1)可利用资源向量Available 它是一个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源数目。其数值随该类资源的分配和回收而动态地改变。如果Available[j]=K,则表示系统中现有Rj类资源K 个。 (2)最大需求短阵Max 这是—个n×m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max(i,j)=K,表示进程i需要Rj类资源的最大数目为K。(3)分配短阵Allocation 这是一个n×m的矩阵,它定义了系统中每一类资源当前已分配给每个进程的资源数。如果Allocation(i,j)=K,表示进程i当前已分得Rj类资源的数目为K。 (4)需求矩阵Need

它是一个n×m的矩阵,用以表示每一个进程尚需的各类资源数,如果Need[i,j]=K,则表示进程i还需要Rj类资源k个,方能完成其任务。 上述三个矩阵间存在下述关系: Need[i,j]=Max[i,j]-Allocation[i,j] 4.2银行家算法 设Requesti是进程Pi的请求向量。如果Requesti[j]=k,表示进程只需要k个Rj类型的资源。当Pi发出资源请求后,系统按下述步骤进行检查: (1)如果 Requesti[j]<=Need[i,j],则转向步骤2;否则,认为出错,因为它所 3需要的资源数已超过它所宣布的最大值。 (2)如果Requesti[j]<=Available[j] ,则转向步骤3;否则,表示系统中尚无足够的资源,Pi必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值: Available[j]:=Available[j]-Requesti[j]; Allocation[i,j]:=Allocation[i,j]+Requesti[j]; Need[i,j]:=Need[i,j]-Requesti[j]; (4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。若安全,才正式将资源分配给进程Pi,以完成本次分配;否则,将试探分配作废,恢复原来的资源分配状态,让进程Pi等待。 4.3安全性算法 系统所执行的安全性算法可描述如下: (1)设置两个向量 ①、工作向量Work。它表示系统可提供给进程继续运行所需要的各类资源数目,它含有m个元素,执行安全算法开始时,Work = Available。 ②、Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]:=false ;当有足够资源分配给进程时,令 Finish[i]:=true。 (2)从进程集合中找到一个能满足下述条件的进程: ①、Finish[i]=false; ②、Need[i,j]<=Work[j];如找到,执行步骤(3);否则,执行步骤(4)。 (3)当进程Pi获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行: Work[j]:=Work[i]+Allocation[i,j]; Finish[i]:=true; goto step 2; (4)如果所有进程的Finish[i]:=true,则表示系统处于安全状态;否则,系统处于不安全状态。

操作系统(一个小型操作系统的设计与实现)课程设计

南通大学计算机科学与技术学院操作系统课程设计报告 专业: 学生姓名: 学号: 时间:

操作系统模拟算法课程设计报告 设计要求 将本学期三次的实验集成实现: A.处理机管理; B.存储器管理; C.虚拟存储器的缺页调度。 设计流程图 主流程图 开始的图形界面 处理机管理存储器管理缺页调度 先来先服务时 间 片 轮 转 首 次 适 应 法 最 佳 适 应 法 先 进 先 出 L R U 算 法

A.处理机调度 1)先来先服务FCFS N Y 先来先服务算法流程 开始 初始化进程控制块,让进程控制块按进程到达先后顺序让进程排队 调度数组中首个进程,并让数组中的下一位移到首位 计算并打印进程的完成时刻、周转时间、带权周转时间 其中:周转时间 = 完成时间 - 到达时间 带权周转时间=周转时间/服务时间 更改计时器的当前时间,即下一刻进程的开始时间 当前时间=前一进程的完成时间+其服务时间 数组为空 结束

2)时间片轮转法 开始 输入进程总数 指针所指的进程是 否结束 输入各进程信息 输出为就绪状态的进程的信息 更改正在运行的进程的已运行时间 跳过已结束的程序 结束 N 指向下一个进程 Y 如果存在下一个进程的话 Y N 输出此时为就绪状态的进程的信息 时间片轮转算法流程图

B.存储器管理(可变式分区管理) 1)首次适应法 分配流程图 申请xkb内存 由链头找到第一个空闲区 分区大小≥xkb? 大于 分区大小=分区大小-xkb,修改下一个空闲区的后向指针内容为(后向指针)+xkb;修改上一个空闲区的前向指针为(前向指针)+xkb 将该空闲区从链中摘除:修改下一个空闲区的后向地址=该空闲区后向地址,修改上一个空闲区的前向指针为该空闲区的前向指针 等于 小于延链查找下 一个空闲区 到链尾 了? 作业等待 返回是 否 登记已分配表 返回分配给进程的内存首地址 开始

银行家算法设计报告

基于银行家算法的研究 摘要 1.研究的目的和意义 加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。死锁的产生,必须同时满足四个条件,即一个资源每次只能由一个进程占用:第二个为等待条件,即一个进程请求资源不能满足时,它必须等待,但它仍继续保持已得到的所有其他资源:第四个为循环等待条件,系统中存在若干个循环等待的进程,即其中每一个进程分别等待它前一个进程所持有的资源。防止死锁的机构只能确保上述四个条件之一不出现,则系统就不会发生死锁。通过这个算法可用解决生活中的实际问题,如银行贷款等. 2.研究的内容及方法 银行家算法是最有代表性的避免死锁的算法,由于该算法能用于银行系统现金贷款的发放而得名。其实现思想是:允许进程动态地申请资源,系统在每次实施资源分配之前,先计算资源分配的安全性,若此次资源分配安全(即资源分配后,系统能按某种顺序来为每个进程分配其所需的资源,直至最大需求,使每个进程都可以顺利地完成),便将资源分配给进程,否则不分配资源,让进程等待。 关键词:银行家算法安全死锁

目录 摘要 (i) 1绪论 (1) 1.1前言 (1) 1.2本文主要研究内容 (1) 2需求分析 (2) 2.1死锁的概念 (2) 2.2关于死锁的一些概念 (2) 2.3资源分类 (2) 2.4产生死锁的必要条件 (2) 2.5死锁预防 (3) 2.6银行家算法 (3) 3概要设计 (4) 3.1设计思路 (4) 3.2 数据结构 (4) 3.3主要函数说明 (5) 4详细设计 (6) 4.1算法描述 (6) 4.1.1银行家算法 (6) 4.1.2 安全性检查算法 (7) 4.2函数的实现过程 (7) 4.3程序流程图 (9) 5测试结果 (10) 6结果分析 (12) 7总结 (13) 源程序清单 (14)

银行家算法课程设计

操作系统课程设计报告 题目:银行家算法 安全性算法 院(系):计算机科学与工程 专业:软件工程 班级:130608班 学生:姚骏川 学号:130608118 指导教师:姜虹 2015年12月28

目录 摘要 .............................................................................................................. 错误!未定义书签。 1 绪论 (1) 1.1前言 (1) 1.2研究意义 (1) 2 需求分析 (3) 2.1题目描述 (3) 2.2银行家算法 (3) 2.3基本要求 (3) 2.4目的 (3) 3 概要设计 (5) 3.1算法思路: (5) 3.2银行家算法步骤 (5) 3.3安全性算法步骤 (5) 3.4数据结构: (6) 4 详细设计 (8) 4.1主要函数的核心代码: (8) 4.2系统主要过程流程图 (8) 4.3银行家算法流程图 (9) 5 测试与分析 (10) 5.1测试数据 (10) 5.2银行家算法的演示 (10) 5.3分配资源由于大于可利用资源则失败。 (11) 5.4 增加一个作业得到不安全序列。 (11) 5.5分配资源由于大于最大资源则失败。 (12) 附录源程序清单 (15)

1 绪论 1.1前言 Dijkstra (1965)提出了一种能够避免死锁的调度算法,称为银行家算法。 它的模型基于一个小城镇的银行家,他向一群客户分别承诺了一定的贷款额度,每个客户都有一个贷款额度,银行家知道不可能所有客户同时都需要最大贷款额,所以他只保留一定单位的资金来为客户服务,而不是满足所有客户贷款需求的最大单位。 这里将客户比作进程,贷款比作设备,银行家比作系统。 客户们各自做自己的生意,在某些时刻需要贷款。在某一时刻,客户已获得的贷款和可用的最大数额贷款称为与资源分配相关的系统状态。一个状态被称为是安全的,其条件是存在一个状态序列能够使所有的客户均得到其所需的贷款。如果忽然所有的客户都申请,希望得到最大贷款额,而银行家无法满足其中任何一个的要求,则发生死锁。不安全状态并不一定导致死锁,因为客户未必需要其最大贷款额度,但银行家不敢抱这种侥幸心理。 银行家算法就是对每一个请求进行检查,检查如果满足它是否会导致不安全状态。若是,则不满足该请求;否则便满足。 检查状态是否安全的方法是看他是否有足够的资源满足一个距最大需求最近的客户。如果可以,则这笔投资认为是能够收回的,然后接着检查下一个距最大需求最近的客户,如此反复下去。 如果所有投资最终都被收回,则该状态是安全的,最初的请求可以批准。1.2研究意义 在多道程序系统中,多个进程的并发执行来改善系统的资源利用率,提高系统的吞吐量,但可能发生一种危险——死锁。所谓死锁(Deadlock),是指多个进程在运行过程中因争夺资源而造成的一种僵局(DeadlyEmbrace),当进程处于这种状态时,若无外力作用,他们都无法在向前推进。 要预防死锁,有摒弃“请求和保持”条件,摒弃“不剥夺”条件,摒弃“环

银行家算法设计实验报告

银行家算法设计实验报告

银行家算法设计实验报告 一.题目分析 1.银行家算法: 我们可以把操作系统看做是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求资源相当于客户向银行家贷款。操作系统按银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程尚需求的资源量,若是系统现存的资源可以满足它尚需求的资源量,则按当前的申请量来分配资源,否则就推迟分配。 当进程在执行中继续申请资源时,先测试该进程申请的资源量是否超过了它尚需的资源量。若超过则拒绝分配,若没有超过则再测试系统尚存的资源是否满足该进程尚需的资源量,若满足即可按当前的申请量来分配,若不满足亦推迟分配。 2.基本要求: (1)可以输入某系统的资源以及T0时刻进程对资源的占用及需求情况的表项,以及T0时刻系统的可利用资源数。 (2)对T0时刻的进行安全性检测,即检测在T0时刻该状态是否安全。

(3)进程申请资源,用银行家算法对其进行检测,分为以下三种情况: A. 所申请的资源大于其所需资源,提示分配不合理不予分配并返回 B. 所申请的资源未大于其所需资源, 但大于系统此时的可利用资源,提 示分配不合理不予分配并返回。 C. 所申请的资源未大于其所需资源, 亦未大于系统此时的可利用资源,预 分配并进行安全性检查: a. 预分配后系统是安全的,将该进 程所申请的资源予以实际分配并 打印后返回。 b. 与分配后系统进入不安全状态,提示系统不安全并返回。 (4)对输入进行检查,即若输入不符合条件,应当报错并返回重新输入。 3.目的: 根据设计题目的要求,充分地分析和理解题 目,叙述系统的要求,明确程序要求实现的功能以及限制条件。 明白自己需要用代码实现的功能,清楚编写每部分代码的目的,做到有的放矢,有条理不遗漏的用代码实现银行家算法。

计算机操作系统课程设计

计算机操作系统课程设计 班级:计091-1 姓名: 学号: 使用语言:C++ 指导老师: 学院:

一、系统要求 1、实验目的 通过一个简单多用户文件系统的设计,加深理解文件系统的内部功能及内部实现。 2、实验内容 为linux系统设计一个简单的二级文件系统。要求做到以下几点: (1)可以实现下列几条命令(至少4条); login 用户登陆 dir 列文件目录 create 创建文件 delete 删除文件 open 打开文件 close 关闭文件 read 读文件 write 写文件 (2)列目录时要列出文件名、物理地址、保护码和文件长度; (3)源文件可以进行读写保护。

二、系统分析 1、设计思想 本文件为二级文件系统,即要实现对文件的增删改查,同时又具备登陆系统、注册用户的功能,各个用户之间的文件系统互不干扰。 本文件系统采用两级目录,其中第一级对应于用户账号,第二级对应于用户帐号下的文件。另外,为了简便文件系统未考虑文件共享,文件系统安全以及管道文件与设备文件等特殊内容。 系统采用结构体来存储用户、文件目录、文件数据内容: 0 48*5 48*5+44*50 48*5+44*50+264*200 每个分区都是由结构体组成,每个个去的结构体的个数由格式化系统是决定。

整个系统的编码构成主要分为: Allstruct.h 定义了每个分区的结构体; Mysys.h 声明了对系统操作的各种方法;Myuserfile.h 声明了对文件操作的各种方法; Mymain.cpp 整个系统的主函数,操作入口; Mysys.cpp 包含了mysys.h,实现了操作系统的各种方法;Myuserfile.cpp 包含了myuserfile.h,实现了操作文件的各种方法; 2、主要数据结构 Allstruct.h文件的内容: struct s_user //用户区结构体 { long isuse; //是否使用 char name[20]; //用户名 char psd[20]; //密码 long address; //目录地址 };

操作系统课程设计实验报告用C实现银行家算法

操作系统课程设计实验报告用C实现银行家算 法 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

操作系统 实 验 报 告 (2) 学院:计算机科学与技术学院 班级:计091 学号:姓名:

时间:2011/12/30 目录 1.实验名称 (3) 2.实验目的 (3) 3.实验内容 (3) 4.实验要求 (3) 5.实验原理 (3) 6.实验环境 (4) 7.实验设计 (4) 数据结构设计 (4) 算法设计 (6) 功能模块设计 (7) 8.实验运行结果 (8) 9.实验心得 (9) 附录:源代码(部分) (9) 一、实验名称: 用C++实现银行家算法 二、实验目的: 通过自己编程来实现银行家算法,进一步理解银行家算法的概念及含义,提高对银行家算法的认识,同时提高自己的动手实践能力。 各种死锁防止方法能够阻止发生死锁,但必然会降低系统的并发性并导致低效的资源利用率。死锁避免却与此相反,通过合适的资源分配算法确保不会出现进程循环等

待链,从而避免死锁。本实验旨在了解死锁产生的条件和原因,并采用银行家算法有效地防止死锁的发生。 三、实验内容: 利用C++,实现银行家算法 四、实验要求: 1.完成银行家算法的设计 2.设计有n个进程共享m个系统资源的系统,进程可动态的申请和释放资源,系统按各进程的申请动态的分配资源。 五、实验原理: 系统中的所有进程放入进程集合,在安全状态下系统收到进程的资源请求后,先把资源试探性的分配给它。之后,系统将剩下的可用资源和进程集合中的其他进程还需要的资源数作比较,找出剩余资源能够满足的最大需求量的进程,从而保证进程运行完毕并归还全部资源。这时,把这个进程从进程集合中删除,归还其所占用的所有资源,系统的剩余资源则更多,反复执行上述步骤。最后,检查进程集合,若为空则表明本次申请可行,系统处于安全状态,可以真正执行本次分配,否则,本次资源分配暂不实施,让申请资源的进程等待。 银行家算法是一种最有代表性的避免的算法。在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。为实现银行家算法,系统必须设置若干。要解释银行家算法,必须先解释操作系统安全状态和不安全状态。安全序列是指一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和。

相关文档
最新文档