一种爬梯机械人的毕业设计

一种爬梯机械人的毕业设计
一种爬梯机械人的毕业设计

一种爬梯机械人的设计

[摘要]

在日常生活和生产中经常要将重物搬上楼梯,传统的方法基本是靠人力搬运完成,有时由于重物太重或人手不足而无法搬运,本课题就是为克服这个难题而设计的。本论文主要对爬楼机器人星型轮的传动机构及控制系统进行详细设计。首先介绍了国内外爬楼机器人研究现状,阐明本课题研究的目的、意义。然后进一步介绍了本爬楼机器人总体结构。在深入分析爬楼机构及其攀爬对象的基础上,设计了相对优势较明显的轮组结构爬楼机器人。对机器人小车的运动学模型进行分析,论证小车实现任意曲线运动所包含的自转、直线前进、圆弧前进三个基本运动单元的可行性。引入虚拟样机技术,通过Pro/Engineer三维建模并进行模拟运动仿真。文章最后研究设计了在各种环境下,以单片机 C8051F310 为核心的爬楼控制系统。在控制系统中,采用超声波传感器的对称排列,获取了自主上楼梯所必须地两个关键参数θ和 q;对驱动大功率电机的电路进行分析,设计了更适合大功率,更安全的电机驱动电路,直流马达配合高功率MOSFETⅡ型驱动器。

关键词:爬楼机器人;三星轮; MOSFET驱动电路;单片机 C8051F310

Abstract

Moving weight from up and down is required in our daily activities and productivities, and it was done by hand. While it is too heavy or short –handed to finished in some times. This thesis is designed to overcome the obstacles and it gives a detailed designing on transmission device and control system of star-like wheel of stair-climbing robot. Firstly ,it introduced a current situation of stair-climbing robot at home and abroad, clarified the purposes and meanings, introduced a overall structure of stair-climbing robot.After deeply analysis the stair-climbing frame and the object, designed a wheelsets stair-climbing robot with more advantages than others . Analyzed the kinematics model of the robot car,and demonstrate the available of achieving any curve movement with the rotation, straight forward, and arc forward . Robot can achieve track controlling based on speed matching. With the aid of virtual prototyping technology, through the 3D software of Solid Works, the dynamic analysis of the stair-climbing robot is carried out in ADAMS. At last, the thesis design the controller system with the core of C8051F310 based on rule environment ,In the control system, with the help of arranged ultrasonic sensors, get the two key parameters θ and q which import for climbing staircase Analyzed the circuit of high-power motor driving, design a more suitable circuit than IC L298N.Which is dc generator with highly efficient driving MOSFETⅡ.

Key words:Stair-climbing robot;Three–star wheels;MOSFET driving circuit;Single chip microcomputer C8051F310

目录

[摘要] ----------------------------------------------------------------------------------------------------------------------------- I Abstract ------------------------------------------------------------------------------------------------------------------------ II 第一章引言 ------------------------------------------------------------------------------------------------------------------ 1 1.1 课题研究的目的和意义 ------------------------------------------------------------------------------------------ 1 1.2 移动机器人的发展概况 ------------------------------------------------------------------------------------------ 1 1.3 爬楼梯机器人目前的研究状况--------------------------------------------------------------------------------- 4 1.4 论文研究的主要内容---------------------------------------------------------------------------------------------- 6第二章爬楼机器人的总体设计 ---------------------------------------------------------------------------------------- 8 2.1 爬楼机器人的设计要求 ------------------------------------------------------------------------------------------ 8 2.2 爬楼机器人的总体方案 ------------------------------------------------------------------------------------------ 8第三章爬楼机器人传动、轮组及转向机构设计 --------------------------------------------------------------- 11 3.1爬楼梯机器人小车的执行电机选择------------------------------------------------------------------------- 11

3.1.1技术指标------------------------------------------------------------------------------------------------------ 11

3.1.2电机选型 ------------------------------------------------------------------------------------------------------- 11 3.2爬楼机器人的机构设计 ----------------------------------------------------------------------------------------- 13

3.2.1 机器人小车传动机构设计 ------------------------------------------------------------------------------- 13

3.2.2传动部件的设计与校核 ----------------------------------------------------------------------------------- 15

3.2.3爬楼机器人转向机构设计 -------------------------------------------------------------------------------- 19

3.2.4机器人小车结构设计--------------------------------------------------------------------------------------- 20 3.3爬楼机器人小车三维实体建模 ------------------------------------------------------------------------------- 22

3.3.1 Pro/E软件介绍 ----------------------------------------------------------------------------------------------- 22

3.3.2三维实体建模------------------------------------------------------------------------------------------------- 22 3.4 爬楼机器人小车行驶性能分析------------------------------------------------------------------------------- 23

3.4.1可跨越最大垂直障碍高度 -------------------------------------------------------------------------------- 23

3.4.2最小转弯半径------------------------------------------------------------------------------------------------- 24第四章爬楼机器人控制系统设计----------------------------------------------------------------------------------- 26 4.1 机器人爬楼梯的控制目标 ------------------------------------------------------------------------------------- 26 4.2 机器人的体系结构及系统组成------------------------------------------------------------------------------- 26 4.3控制系统主要硬件的选择 -------------------------------------------------------------------------------------- 28

4.3.1单片机的选型------------------------------------------------------------------------------------------------- 28

4.3.2传感器的选择------------------------------------------------------------------------------------------------- 29 4.4机器人控制系统的程序编制----------------------------------------------------------------------------------- 31第五章总结与展望 ------------------------------------------------------------------------------------------------------ 38

5.1全文总结------------------------------------------------------------------------------------------------------------- 38 5.2展望 ------------------------------------------------------------------------------------------------------------------- 38致谢 ------------------------------------------------------------------------------------------------------------------------- III 参考文献 ---------------------------------------------------------------------------------------------------------------------- IV

第一章引言

自盘古开天辟地,人类诞生以来,人们就一直用智慧开辟着完美的生活!进入新的21世纪,人类除了致力于自身的发展外,还十分关注机器人、外星人和克隆人等问题。机器人正是本论文研究的对象。

“机器人”这人名词对许多人来说,并不陌生。从古代的神话传说,到现代的科学幻想小说,戏剧,电影和电视,都有许多关于机器人的精彩描绘。而且越来越多的机器人出现在我们的生活生产中,更多科学工作者和业余爱好者也投入到机器人研究的行列当中来。

机器人应用范围遍及工业、科技和国防的各个领域。在“机器人王国”日本,一直拥有全世界 60%左右的机器人,工业机器人应用于最多的工业部部门依次为家用电器制造、汽车制造、塑料成型、通用机械制造和金属加工等工业,而且正应用于更多的新领域中。据统计,目前全世界服役机器人约100万台;机器人学也维持较好的发展势头,充满希望的进入这崭新的世纪。

1.1 课题研究的目的和意义

本文讨论的移动机器人是具有越障功能,能够灵巧翻越楼梯的一种光机电一体化的智能装置。用作搬运的自主移动机器人,要求能随工作任务和环境的改变,智能地重规划行驶路径,并要求能快速适应工作环境。要达到这种水平,当前还有很多问题需要深入的研究,而其中的机器人楼梯环境顺利翻爬问题是较为重要的一个研究课题。

越障机器人的研究,对扩展机器人的作业空间,在人不能到达或不便到达的环境中进行作业,具有重要的意义。越障机器人还可用于工业中的一些险难作业,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境.减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。楼梯是人造环境中的最常见的障碍,也是最难跨越的障碍之一,爬楼梯机器人的研究是解决当前全自主机器人在非结构环境下正常工作的重要环节之一。爬楼梯机器人可应用于危险环境探查、侦察、救灾、导盲、助残、搬运、清扫、维修、安装等作业,其实际意义重大。

1.2 移动机器人的发展概况

机器人一词最早使用是在 1920 年捷克作家卡雷尔2查培克的剧本《罗萨姆的万能机器人》中,剧中机器人(Robot)这个词的本意是苦力,即剧作家笔下的一个具有人的外表、特征和功能的机器,是一种人造的劳力。

机器人一词虽出现得较晚,然而这一概念在人类的想象中却早已出现。制造机器人是机器人技术研究者的梦想,代表了人类重塑自身、了解自身的一种强烈愿望。自古以来,就有不少科学家和杰出工匠制造出了具有人类特点或具有模拟动物特征的机器人雏形。

西周时期,我国的能工巧匠偃师就研制出了能歌善舞的伶人,这是我国最早记载的具备有机器人概念的文字资料。春秋后期,我国著名的木匠鲁班在机械方面也是一位发明家,据《墨经》记载,他曾制造过一只木鸟,能在空中飞行“三日而不下”,体现了我国劳动人民的聪明才智。

1954 年,美国人乔治2德沃尔设计了第一台电子程序可编的工业机器人,并于 1961 年发表了该机器人专利。1962 年,美国万能自动化(Unimation)公司的第一台机器人Unimate 在美国通用汽车公司(GM)投入使用,这标志着第一代机器人的诞生。从此,机器人开始成为人类生活中的现实。

要给机器人下个合适的和为人们普遍同意的定义是困难的。就目前各种定义的共同之处来说,即认为机器人(1)像人或人的上肢,并能模仿人的动作;(2)具有智力或感觉与识别能力;(3)是人造的机器或机械电子装置。“智能机器人”是一种集数学、物理、化学、生物、机械、电子、材料、能源、计算机硬件、软件、人工智能等众多领域的科学与技术知识于一身的综合技术平台。机器人技术的迅速发展,已对许多国家的工业生产、太空和海洋探索、以及整个国民经济和人民生活产生了重大影响,而且这种影响必将进一步扩大。

目前在工业上运行的 90%以上的机器人,都不具有智能。随着工业机器人数量的快速增长和工业生产的发展,对机器人的工作能力也提出更高的要求,特别是需要各种具有不同程度智能的机器人和特种机器人。这些智能机器人,有的能够模拟人类用两条腿走路,可在凹凸不平的地面上行走移动;有的具有视觉和触觉功能,能够进行独立操作、自动装配和产品检验;有的具有自主控制和决策能力……这些智能机器人,不仅应用各种反馈传感器,而且还运用人工智能中各种学习、推理和决策技术。智能机器人还应用许多最新的智能技术,如临场感技术、虚拟现实技术、多智能体技术、人工神经网络技术、遗传算法和遗传编程、仿生技术、多传感器集成和融合技术以及纳米技术等[4]。21 世纪的机器人智能水平,将提高到更高的水平,令人赞叹。

自从20世纪60年代初,第一台工业机器人发明以来,机器人的发展已有半个多世纪,机器人的应用越来越广泛,几乎渗透到所有的领域。机器人大致经过三代的演变:

第一代是可编程的示教再现型机器人;第二代是具有一定感觉功能和自适应能力的离线编程机器人;第三代机器人是智能机器人。机器人正在向智能化的趋势发展,智能化的机器系统将从事目前传统机器系统和人工难以胜任的恶劣环境下的一些操作。

移动机器人是机器人学中的一个重要分支,是一类能够通过传感器感知环境和自身状态,实现在非结构环境下,动态决策与规划、行为控制与执行等多项功能于一体的高智能化机器系统。它与机器人学、计算机视觉、多传感器信息融合、智能控制以及多智能体(Multi-Agent)、机械学等学科密切相关,体现了信息科学和人工智能技术的最新成果,具有重要的军用及民用价值,是现代机器人学中一个重要而且相当活跃的研究领域。

移动机器人的研究早在上世纪60年代就已经开始,斯坦福研究院(SRI)的 Nils Nilssen和Charles Roson等人,在1962至1972年制造出了取名为Shakey的自主移动机器人。从上世纪80年代开始,美国国防高级研究计划局(DARPA)就制定了地面无人作战平台的战略计划,从此,在全世界掀开了全面研究室外移动机器人的序幕。从此,在全世界掀开了全面研究室外移动机器人的序幕,如 DARPA 的自主地面车辆(ALV)计划(1983—1990),能源部制订的为期 10 年的机器人和智能系统计划(RIPS)(1986—1995),以及后来的空间机器人计划;日本通产省组织的极限环境下作业的机器人计划等。

自上世纪 90 年代以来,以研制高水平的环境信息传感器和信息处理技术、高适应性的移动机器人控制技术,真实环境下的规划技术为标志,开展了移动机器人更高层次的研究。美国MIT人工智能实验室开发的一个人形机器人Cog,使用一套传感系统来模拟人的感官。美国佐治亚理工大学的Nomad 150机器人利用激光传感器构建3-D坐标和地图。美国卡耐基-梅隆大学的BookStore 计划完全采用了视觉作为导航,实现了基于图像表现的视觉定位和导航。美国 NASA 研制的火星探测机器人“索杰娜”于1997年登上火星,2004 年初美国又相继发射了“勇气号”和“机遇号”火星车,引起了全世界的广泛关注。德国慕尼黑国防大学的移动机器人,能够在整幢大楼中进行自主定位和导航,并可以和人类进行多语言交流,完成由人用语言布置的任务。

国内在移动机器人方面的研究起步较晚,主要的研究工作有:清华大学的 THMR-V 自动驾驶小车,香港城市大学的自动导航车和服务机器人,中国科学院沈阳自动化研究所的 AGV和防爆机器人,中国科学院自动化所自行设计和制造的 CASIA-I 全方位移动机器人视觉导航系统等。

近几年,通过足球机器人比赛的广泛开展,移动机器人作为其中的 RoboCup 中型组全自主机器人,在国内高校和科研院所的积极参与下取得了巨大的进展。目前以上海交通大学的“蛟龙”系列,中科院自动化研究所,深圳固高公司和上海广茂达公司的移动机器人发展较为迅速。

移动机器人在研究和开发过程中所涉及的研究领域很广,包括智能机器人系统、专家系统、多智能体系统、智能体结构设计、图像处理(image-processing)、传感器数据融合(sensor data fusion)、决策对策、进化算法等[8~9]。该研究可以催生成熟的一系列高新技术,将为社会经济和文化的发展提供重要手段。

1.3 爬楼梯机器人目前的研究状况

机器人作为一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器。对不同任务和特殊环境的适应性,也是机器人与一般自动化装备的重要区别。非结构环境中的多功能全自主的移动机器人技术多年来一直是机器人研究中的热点问题之一。但是非结构环境给移动机器人的运动造成了自主决策和路径规划的困难。越障机器人的研究,对扩展机器人的作业空间,在人不能到达或不便到达的环境中进行作业,具有重要的意义。越障机器人还可用于工业中的一些险难作业,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境.减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。其中,移动机器人从事各项事务响应任务时,楼梯是人造环境中的最常见的障碍,也是最难跨越的障碍之一。针对各种不同的运动环境,一直以来移动机器人所采用的运动方式大体包括轮式、履带式、足式等。

国外对爬楼梯装置的研究开始得相对较早,最早的专利是 1892 年美国的 Bray 发明的爬楼梯轮椅。此后,各国纷纷开始投入此项研究,其中美国、英国、德国和日本占主导地位,技术相对比较成熟,且有一些产品已经投入市场使用。我国对此类装置的研究虽然起步较晚,但近年来也涌现了很多这方面的专利,然而投入实际使用的还很少。总结目前国内外现有的爬楼梯装置和专利,按爬楼梯功能实现的原理主要分为履带式、轮组式、步行式爬楼梯装置。下面分别对国外、国内各种类型装置的发展作简要介绍,并分析其各自优缺点。

(1)步行式

早期的爬楼梯装置一般都采用步行式,其爬楼梯执行机构由铰链杆件机构组成。上楼时先将负重抬高,再水平向前移动,如此重复这两个过程直至爬完一段楼梯。步行式爬楼梯装置模仿人类爬楼的动作,外观可视为足式机器人,采用多条机械腿交替升降、支撑座椅爬楼的原理。

步行式爬楼梯装置爬楼时运动平稳,适合不同尺寸的楼梯;但它对控制的要求很高,操作比较复杂,在平地行走时运动幅度不大,动作缓慢。

(2)履带式

履带式爬楼梯装置的原理类似于履带装甲运兵车或坦克,其原理简单,技术也比较成熟。英国 Baronmead 公司开发的一种电动轮椅车,底部是履带式的传动结构,可爬楼梯的最大坡度为 35°,上下楼梯速度为每分钟 15--20 个台阶。法国 Topchair 公司生产的电动爬楼梯轮椅,它的底部有四个车轮供正常情况下平地运行使用,当遇到楼梯等特殊地形时,用户通过适当操作将两侧的橡胶履带缓缓放下至地面,然后把这四个车轮收起,依靠履带无需旁人辅助便能自动完成爬楼等功能。

履带式结构传动效率比较高[16],行走时重心波动很小,运动非常平稳,且使用地形范围较广,在一些不规则的楼梯上也能使用。它除了具备爬楼梯功能外,也能作为普通的电动轮椅使用。但是这类装置仍存在很多不足之处:重量大、运动不够灵活、爬楼时在楼梯边缘造成巨大的压力,对楼梯有一定的损坏;且平地使用所受阻力较大,而且转弯不方便,这些问题限制了其在日常生活中的推广使用。

(3)轮组式

轮组式爬楼梯装置按轮组中使用小轮的个数可分为两轮组式、三轮组式以及四轮组式。单轮组式结构稳定性较差,在爬楼过程中需要有人协助才能保证重心的稳定[6];而双轮组式虽能实现自主爬楼,但由于其体积庞大且偏重,影响了它的使用范围。

美国著名发明家 Dean Kamen 发明的了一种能自动调节重心的两轮组式轮椅 iBOT。它有 6 个轮子,前面有一对实心脚轮,后面有两对行星结构的充气轮胎,通过两后轮交替翻转可以上下楼梯。iBOT 几乎能适用于所有楼梯,此外它也能在沙滩、斜坡和崎岖的路面上行驶,而且后轮可以直立行走,为使用者提供了更多方便之处,帮助他们能达到正常人的高度。它最大的优点就是在轮椅重心安装了陀螺仪,控制器根据陀螺仪的信号调整重心的位置,使轮椅能在不同状态下保持平衡。经过数十年的研究开发,它己经由 iBOT3000 发展到了 iBOT4000,功能也越来越强大,是目前该领域中性能最高的

产品,它的售价在 3 万美元左右,相当于一辆中档桥车的价格,难以被普通使用者接受。

我国在上世纪八十年代对轮组式爬楼梯装置已有研究,1987年专利号为 86210653 的国家专利中介绍了一种平地、楼梯运行多用轮椅,前滚轮和后滚轮都用多个星形轮组成,除自转外还绕滚轮轴公转而实现上下楼。内蒙古民族大学物理与机电学院的苏和平等人借鉴了iBOT的爬楼方式,采用星形轮系作为爬楼梯机构,设计了一种双联星形机构电动爬楼梯轮椅。改轮椅爬楼时需要人工辅助或者楼梯扶手的辅助支撑,使其能调整重心的位置,安全爬楼。

轮组式爬楼梯装置的活动范围广,运动灵活,但是上下楼梯时平稳性不高,重心起伏较大,会使乘坐者感到不适。此外,轮组式爬楼梯装置体积较大[12~13],很难在普通住宅楼梯上使用。

(4)复合类机器人

基于履带式、轮式、腿式移动机器人的优缺点[9],在研究中,采用了腿-履复合和轮-腿-履带复合等结构。设计主要是依靠腿式机构来完成越障,以及履带平稳性和轮组的灵活性来达到功能的完整。机器人摆臂在一定范围可上下摆动,辅助越障、攀爬,具有较强的越障性能、路面通过性和上下台阶能力。

但是各种机构的复合也给控制方面提出了更高的要求,而且爬楼过程中的稳定性、如何适应不同尺寸的楼梯、如何实现手动操作省力与省时的问题以及反向自锁等问题仍然存在。

综上所述,国外在爬楼梯装置方面的研究已经有一百多年的历史,成果也较多,但是它们大多结构复杂、造价昂贵,远远超出了发展中国家人民的经济承受能力。国内的研究相对较晚,虽然也诞生了很多专利,但由于受到体积、重量、稳定性及安全性的限制,还没有产品真正投入使用。由此可见,为了解决移动机器人使用受限的问题,同时考虑到我国使用者的经济承受能力,需要研究一种价格低廉、功能多样的爬楼梯装置。

1.4 论文研究的主要内容

本课题以开发具备初步爬楼梯能力的机器人小车为目的,重点研究设计符合中国国情爬楼梯的轮组结构,并设计基于单片机的底层驱动控制系统。本文所从事的工作主要有以下几点:

一种爬楼机器人

一种爬梯机械人的设计 [摘要] 在日常生活和生产中经常要将重物搬上楼梯,传统的方法基本是靠人力搬运完成,有时由于重物太重或人手不足而无法搬运,本课题就是为克服这个难题而设计的。本论文主要对爬楼机器人星型轮的传动机构及控制系统进行详细设计。首先介绍了国内外爬楼机器人研究现状,阐明本课题研究的目的、意义。然后进一步介绍了本爬楼机器人总体结构。在深入分析爬楼机构及其攀爬对象的基础上,设计了相对优势较明显的轮组结构爬楼机器人。对机器人小车的运动学模型进行分析,论证小车实现任意曲线运动所包含的自转、直线前进、圆弧前进三个基本运动单元的可行性。引入虚拟样机技术,通过Pro/Engineer三维建模并进行模拟运动仿真。文章最后研究设计了在各种环境下,以单片机 C8051F310 为核心的爬楼控制系统。在控制系统中,采用超声波传感器的对称排列,获取了自主上楼梯所必须地两个关键参数θ和 q;对驱动大功率电机的电路进行分析,设计了更适合大功率,更安全的电机驱动电路,直流马达配合高功率MOSFETⅡ型驱动器。 关键词:爬楼机器人;三星轮; MOSFET驱动电路;单片机 C8051F310

Abstract Moving weight from up and down is required in our daily activities and productivities, and it was done by hand. While it is too heavy or short –handed to finished in some times. This thesis is designed to overcome the obstacles and it gives a detailed designing on transmission device and control system of star-like wheel of stair-climbing robot. Firstly ,it introduced a current situation of stair-climbing robot at home and abroad, clarified the purposes and meanings, introduced a overall structure of stair-climbing robot.After deeply analysis the stair-climbing frame and the object, designed a wheelsets stair-climbing robot with more advantages than others . Analyzed the kinematics model of the robot car,and demonstrate the available of achieving any curve movement with the rotation, straight forward, and arc forward . Robot can achieve track controlling based on speed matching. With the aid of virtual prototyping technology, through the 3D software of Solid Works, the dynamic analysis of the stair-climbing robot is carried out in ADAMS. At last, the thesis design the controller system with the core of C8051F310 based on rule environment ,In the control system, with the help of arranged ultrasonic sensors, get the two key parameters θ and q which import for climbing staircase Analyzed the circuit of high-power motor driving, design a more suitable circuit than IC L298N.Which is dc generator with highly efficient driving MOSFETⅡ. Key words:Stair-climbing robot;Three–star wheels;MOSFET driving circuit;Single chip microcomputer C8051F310 II

爬楼梯机器人设计

爬楼梯机器人设计 摘要 机器人是一门涉及计算机科学、机械、电子、自动控制、人工智能等多个方面的科学。 步行者机器人是一台在四连杆机构的基础上而设计出来的爬楼梯机器人。它最大的特点是能够始终保持自身重心,实现爬上楼梯的目的,动作稳定,优美。虽然该作品结构较为简单,但是其中采用了模块化设计,使其可以随时更新、升级(这是现今机电一体化工程中鲜有的设计方法);使机器不仅能适应不同的楼梯,更可以在不同情况的路面上发挥其作用。其中利用的仿生学原理使该机器人即使在路况不是很好的情况下也可以稳定的进行工作。 1、进行了较完善和全面的方案设计而后分析论证。重点分析讨论了其中具有代表性的三个方案。并从中选取一个作为设计方案。 2、对于机器人运动方式,系统设计及其驱动要求进行了认真仔细的分析,对比和计算校核。 3、针对已定方案的设计计算,进行了实际制作从而验证了机构的可行性。关键词:机器人爬行台阶 目 录 前 言 (1) 第一章机械的功能原理设计 1.1 实现功能 (2) 1.2 原理设计 (2) 第二章运动方案设计分析

2.1 方案设计 (3) 2.1.1 方案一 (3) 2.1.2 方案二 (3) 2.1.3 方案三 (3) 2.2 方案的对比和分析 (4) 第三章零件的选定与基本计算 3.1 材料选取与电机选取 (4) 3.2 驱动系统技术参数的计算 (5) 3.2.1 功率的计算 (5) 3.2.2 死点位置的计算与处理 (6) 第四章 制作与改进 4.1 制作过程遇到的问题及改进方案 (7) 4.2 调试及改进结果 (7) 4.3机械运动方案图 (9) 第五章总结 5.1总结和设计制作感受 (10) 参考文献及相关网址 (11) 前言 在一个学期的《机械原理》课程学习中,我们学到了有关机械原理的基本概念、基本理论和基本方法。老师授课深入浅出,很适合我们学习专业课的认识规律,便于我们理解和掌握,在整个课程的学习中取得了良好的效果和成绩。

爬杆作业机器人设计

摘要 在市政工程中,有大量的安装及维修等工作需要爬杆作业。对于较粗的杆件,人工攀爬和工程车作业都比较方便,但是对于一些直径较细,强度较小的杆件比如路灯杆等,人工攀爬较为困难。因此本文设计了一爬杆机器人,可以在没有障碍的光杆上爬行,对人工攀爬较难的作业具有较大的现实意义。 本文设计的爬杆机器人由曲柄滑块机构、并联盘形凸轮机构、移动凸轮机构以及上下机械手爪等组成,通过弹簧的预紧力来实现机器人手爪对杆的抱紧,通过曲柄滑块机构、凸轮机构等实现攀爬动作,同时机器人只需一个驱动源就能带动整个机器人的运动,能攀爬变直径的杆,工作简单可靠,运动灵活,可以广泛应用于各种高空作业。 关键字:爬杆机器人,变直径杆,夹紧,攀爬

ABSTRACT In the municipal engineering, there are a large number of installation and repair work needed to climb rod operation, For the coarse bar,artificial climbing and vehicle operation is convenient, artificial climbing is difficultfor for some small diameter low strength member such as a road lamp pole,so this paper designs a pole climbing robot,which can crawl on no obstacle bar,it has great practical significance for artificial climbing The pole climbing robot consist of songCrank slider mechanism, parallel plate cam mechanism.moving cam mechanism, the robot tight the wallHold by the spring pretightening force.so as to realize Climbing action. at the same time the robot can drive by a robot motion and at the same time all devices were designed perfectl. In this text.its mechanism electric control principle and various features .it can be widely applied to various kinds of high-altitude operation. Key words:pole-climbing robot,variable-diameter pole sepal,pole-climbing

机械系统设计课程论文爬楼机器人设计

2012机械系统设计课程论文 爬楼机器人设计 一、设计要求 设计一台能够转向和平地上行走的爬楼机器人,要求机器人从四个方位都能攀爬楼梯,在攀爬过程中机器人要保持水平姿态。从机械系统观念出发,提出不少于二套设计设计方案,并进行必要的方案评价和技术论证。 二、设计背景与意义 在城市里, 楼梯是人造环境中最常见的障碍,也是最难跨越的障碍之一。因此, 机器人的爬梯能力是移动机器人的重要越障性能指标。通过加载不同的仪器设备,机器人可广泛用于危险环境探查、救灾、助残、搬运等作业, 其应用价值巨大[1][2]。 三、爬楼机器人研究现状 总结目前国内外现有的爬楼梯装置和专利,按爬楼梯功能实现的原理主要分为履带式、轮组式、步行式爬楼梯装置[3]。 (l)履带式 履带式爬楼梯装置的原理类似于履带装甲运兵车或坦克,其原理简单,技术也比较成熟。履带式结构传动效率比较高,行走时重心波动很小,运动非常平稳,且使用地形范围较广,在一些不规则的楼梯上也能使用。它除了具备爬楼梯功能外,也能作为普通的电动轮椅使用。但是这类装置仍存在很多不足之处:重量大、运动不够灵活、爬楼时在楼梯边缘造成巨大的压力,对楼梯有一定的损坏;且平地使用所受阻力较大,而且转弯不方便,这些问题限制了其在日常生活中的推广使用。 (2)轮组式 轮组式爬楼梯装置按轮组中使用小轮的个数可分为两轮组式、三轮组式以及四轮组式。单轮组式结构稳定性较差,在爬楼过程中需要有人协助才能保证重心的稳定;而双轮组式虽能实现自主爬楼,但由于其体积庞大且偏重,影响了它的使用范围。 轮组式爬楼梯装置的活动范围广,运动灵活,但是上下楼梯时平稳性不高,重心起伏较大,会使乘坐者感到不适。此外,轮组式爬楼梯装置体积较大,很难在普通住宅楼梯上使用。 (3)步行式 早期的爬楼梯装置一般都采用步行式,其爬楼梯执行机构由铰链杆件机构组成。上楼时先将负重抬高,再水平向前移动,如此重复这两个过程直至爬完一段楼梯。步行式爬楼梯装置模仿人类爬楼的动作,外观可视为足式机器人,采用多条机械腿交替升降、支撑座椅爬楼的原理。步行式爬楼梯装置爬楼时运动平稳,适合不同尺寸的楼梯;但它对控制的要求很高,操作比较复杂,在平地行走时运动幅度不大,动作缓慢。 四、两种设计方案 <方案一> 袋鼠滑冰”机器人 (1)、设计构想 本产品通过曲柄凸轮机构的运动特色,设计出爬楼梯时的组件,也就是四个脚。人爬楼梯时,腿是弯曲的,用在机构上,就可以采用曲柄式的摇臂,带动袋鼠腿式的板结构,实现

爬杆机器人

1 绪论 1.1 背景 “机器人学的进步和应用是本世纪自动控制最有说服力的成就,是当代最高意义的自动化”。这是宋健院士对机器人在上个世纪所取得的成就的精辟概括。同时机器人技术也是20世纪人类最伟大的发明之一,自60年代初问世以来,经历40余年的发展已取得长足的进步。走向成熟的工业机器人,各种用途的特种机器人的实用化,昭示着机器人技术灿烂的明天。 所以我们必须走进它,了解它。近年来,在我国大学,机器人作为机械电子学、计算机技术、人工智能等的典型载体被广泛地用来作为工科本科生的讲授课程之一;在中学,模型机器人则逐渐成为素质教育,技能实践的选题之一,各种机器人比赛正方兴未艾。进入21世纪,人们也愈来愈亲身感受到机器人深入产业、深入生活、深入社会的坚实步伐。这些都说明了机器人技术离我们越来越近了。 但大家是否可以给耳熟能详的机器人一个准确的定义呢?有人认为机器人无所不能,有人认为机器人必须像人。那么,何为机器人?虽然很难给机器人下准确的定义,但是通常的理解就是:机器人是一种在计算机控制下的可编程的自动机器,根据所处的环境和作业的需要,它具有至少一项或多项拟人功能,如抓取功能或移动功能,或两者兼而有之,另外还可能程度不等地具有某些环境感知功能(如视觉、力觉、触觉、接近觉等)以及语音功能乃至逻辑思维、判断决策功能等,从而使它能在要求的环境中代替人进行作业。 如今进入二十一世纪,随着科技的迅速发展,现代化进程的日益加快,机器人的创新与研究越来越成为一个国家科技力量的具体体现,越来越多的机器人已成为各个领域重要的组成部分,因此机器人的发展也日益成熟,为人们的生活提供了更多的方便与快捷。在世界经济快速发展的前提下,我国国民经济也有着飞速的增长,人民生活水平日益提高,伴随着城市和乡村矗立起无数的高层建筑和无数的高高的杆类,如电线杆、路灯杆等等。这些杆类长年累月的暴露在空气中,很容易受到腐蚀和污染,不仅影响着城市的美观,而且缩短了它们的寿命,也大大提高的它的危险性,对人们造成诸多不便与危险。 然而,如果人工的对这些杆类进行清洗与保养,由于其条件所致,势必需要清洗工人高空作业完成,这样不仅工作效率低下,耗资巨大,而且安全系数低,很容易造成危险。如果采取高压水枪清洗,则太浪费人力物力,得不偿失了。这时,人们通过设想,能不能设计一种机器人,使得它能够代替人类进行对杆类的清洗或进行相关工作,用这些机器人代替人工进行高空危险作业,从而把工人从危险、恶劣、繁重的劳动环境中解脱出来,不仅提高的工作效率,同时也保护了工人的生命安全。

爬楼梯机器人开题报告

开题报告论文题名全方位移动爬楼梯机器人小车的研究 专业名称:机械电子工程_ 学号:_ 082358 __ 学生姓名:鱼帅 导师姓名:_刘光磊__

目录 一、课题意义 (2) (一)具有越障功能移动机器人的简介 (2) (二) 具有越障功能机器人研究的文献综述 (4) 二、课题方案 (8) (一)课题研究的主要内容 (8) (二)研究目标及创新 (10) 三、可行性分析 (10) 四、课题进度安排 (12) 五、参考文献 (12)

一、课题意义 (一)具有越障功能移动机器人的简介 机器人作为一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器。对不同任务和特殊环境的适应性,也是机器人与一般自动化装备的重要区别。非结构环境中的多功能全自主的移动机器人技术多年来一直是机器人研究中的热点问题之一.但是非结构环境给移动机器人的运动造成了自主决策和路径规划的困难.越障机器人的研究.对扩展机器人的作业空间,在人不能到达或不便到达的环境中进行作业,具有重要的意义。越障机器人还可用于工业中的一些险难作业,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境.减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。其中,移动机器人从事各项事务响应任务时,楼梯是人造环境中的最常见的障碍,也是最难跨越的障碍之一。针对各种不同的运动环境,一直以来移动机器人所采用的运动方式大体包括轮式、履带式、足式等。 国外对爬楼梯装置的研究开始得相对较早,最早的专利是1892年美国的Bray发明的爬楼梯轮椅。此后,各国纷纷开始投入此项研究,其中美国、英国、德国和日本占主导地位,技术相对比较成熟,且有一些产品已经投入市场使用。我国对此类装置的研究虽然起步较晚,但近年来也涌现了很多这方面的

创新研修课: 足式机器人足部结构设计

机器人足部构型研究报告 姓名:学号: 联系电话: 电子邮箱: 院系及专业: 指导老师:

一.足式机器人的优点 足式运动在不平地面和松散地面上的运动速度较高,而能耗较少。对环境具有很强的适应性,既可以进入相对狭窄的空间,也可以跨越障碍,与其它各种移动方式相比,具有更广阔的应用前景。 1.足式机器人对步行环境要求很低,能适应各种地面且具有较高的逾越障碍的能力,不仅能够在平面行走,而且能够方便的上下台阶及通过不平整、不规则或较窄的路面,它的移动“盲区”很小。 2足式机器人具有广阔的工作空间,由于行走系统占地面积小,活动范围很大,其上配置的机械手具有更大的活动空间,也可使机械手臂设计得较为短小紧凑。 二.几种足部设计与构型 1.足一地接触力 行走时,足部所受到的地面的反作用力分为垂直、前后和左右方向。由于在 垂直方向上的反作用力的分力最大,在每个步态的周期转折点处出现极值,在脚 跟着地时出现一极大值,随着脚部逐渐放平,受力面积也逐渐增大,受力则减小, 当脚部完全放平时,受力最小,到脚跟离地,脚趾登地时出现另一个极大值,在 整个步行周期中,在垂直方向上受力曲线呈现对称双峰性质,如图1所示。 图1:脚部受力双峰曲线 2.平行四边形脚部机构

图2所示是一个用平行四边形机构作为脚趾的脚部机构,此种机构保 证了着地时脚部与地面的多点接触,类似人类行走时脚部着地的情况。平行四边 形依靠弹簧C施加作用于地面的扭力矩从而保证A、B两点同时触地,并帮助行 走时弹性起步,减少行走中能量得到消耗。 图2:平行四边形脚部机构 图3:典型的足部机构 3. LOLA脚部结构 几乎所有机器人的脚部都是一个整体,所以很难保证行走时的稳定性。不易实现行走过程中脚跟着地脚尖离地的行走方式,并且即使行走地面,只是稍微不平,就可能造成脚掌与地面接触不规律,影响仿人机器人的稳定性。 为了缓解上述问题,由德国慕尼黑工业大学研制的仿人机器人LOLA增加了一个脚趾自由度,行走速度有了很大的提高。 LOLA仿人机器人的脚部结构如图所示,由图可以看出,LOLA机器人的脚部增加了主动趾关节,通过控制脚趾转动的角度,来完成类人的行走方式“脚跟着地一脚尖离地”,并且能更好的适应地面。

轮式爬楼梯轮椅设计

轮式爬楼梯轮椅设计 一、本课题的研究目的和意义: 高龄人群以及下肢残障者的最大障碍是步行能力的减弱甚至缺失,他们不仅丧失行动力,更需要有劳动能力的人来加以护理。目前,大多数老体弱者及肌体伤残者都选择轮椅作为他们的代步工具,而且使用范围越来越广。轮椅也由手动轮椅、电动轮椅趋向智能轮椅的方向发展,但由于他们一般采用传统的轮式结构,一般仅适合在平地上使用,很少具备爬楼和翻越障碍的能力。楼梯和路障使轮椅的使用受到了很大的限制,很多场合尤其是室外,比如银行、购物中心门前等或多或少有几级台阶,室内也有很多地方没有电梯,这也给轮椅用户造成很多不便。当然,国家也花费了大量的人力和财力在某些场所修建了相应的轮椅坡道和其他公用设施以方便残疾人活动。但由于各种因素的影响,这些措施的作用也非常有限。 为了给老年人和残疾人提供高性能的代步工具,解决楼梯或路障对他们使用轮椅造成的不便,帮助他们提高行动自由度,重新更好的融入社会,并考虑到我国的基本国情,研究一种价格适宜、小巧轻便的轮式爬楼梯轮椅装置具有重大的意义和实用价值。 二、文献综述(国内外研究情况及其发展): 轮椅是康复的重要工具,它不仅是肢体伤残者的代步工具,更重要的是使他们借助于轮椅进行身体锻炼和参与社会活动。目前,我国已经进入老龄化社会,随着老人的数量不断增加,由于行动不便对轮椅的需求数量增加,普通的轮椅很难适应我国老人上下楼的需要,因为我国大部分楼房建筑是以六层以下建筑为主,该类建筑中没有安装电梯,对于使用轮椅的人来说,上下楼及其不方便,或重心易下滑,单人难上楼,需另建专用车道。因此迫切需要开发能够简便、轻巧的上下楼轮椅。 在我国,每年约有数十万老人、残疾人等需坐轮椅车行走。过去旧式轮椅车存在不能自行上、下楼等问题,使病人的活动空间大为缩小。并使监护人看护病人也很困难。为了给千百万残疾人一个自由、舒适的空间,再加上该产品有着很大实用性,存在着非常广阔的市场。于是人们不断进行着艰苦的研究,一代又一代可上楼的轮椅应运而生。可自上下楼的轮椅能更好的满足残疾病人的生活需求,使其可以自己穿梭于没有助残设施的高楼大厦内。 在我国残疾人的数量是可观的,越来越多的人关注起他们的日常生活和精神生活。他们

关节式履带机器人的爬梯性能研究

关节式履带机器人的爬梯性能研究3 陈慧宝,李 婷,徐解民 (上海大学机电工程与自动化学院, 上海200072) 摘 要:爬梯能力是关节式履带机器人的重要越障性能指标,针对爬梯过程中质心变化规律和运动过程中机体的稳定性等方面进行分析,并通过对爬梯过程进行运动学仿真实验,优化参数,提高设计的可行性及运动过程的平稳性。 关键词:关节式履带移动机器人;爬梯;运动学仿真 中图分类号:TP24 文献标识码:A 文章编号:1008-5300(2006)02-0060-04 A Study on Stair2cli m bing Perf or mance of Articulated2tracked Mobile Robot CHEN Hu i2bao,L I Ting,XU J ie2m in (Shangha i U niversity,School of M echatronics and A uto m ation, Shanghai200072,China) Abstract:The stair2cli m bing ability is one of i m portant obstacle neg otiati on perf or mances of r obot.By analy2 zing as pects of the change of center of mass during stair2cli m bing,and stability of moti on,this paper p resents a series of kine matics si m ulati on ex peri m ents of stair2cli m bing moti on t o op ti m ize para meters.The si m ulati on can als o hel p t o i m p r ove the feasibility of the design and the stability of moti on. Key words:articulated2tracked mobile r obot;stair2cli m bing;kine matics si m ulati on 0 引 言 机器人的爬梯能力是移动机器人的重要越障性能指标,传统的履带式机器人虽然能够完成上述任务,但是体积较大。特殊车轮机构亦有发展,例如采用行星轮机构,该结构所用零件和马达较多,重量较重,机械效率较差,所爬台阶高度大致为行星轮板高的三分之二。腿式移动载体(一般以连杆机构或者气动机构较为常见)是另一类爬梯机构方案,模仿人类或其它动物腿部运动,该类机构较容易跨越障碍物,安稳地上下楼梯,以及在极度崎岖的地面上平顺地运动。但是由于机构复杂,移动面又时有变化,故设计时变得十分复杂;为达到动态稳定的要求,在控制上也变得更为精细,所以此型机器人的移动速度不会很快。关节式履带机器人通过在原有履带移动机构上加上关节摆臂,不但充分利用了履带式机器人良好的地面适应性,而且大大提高了机构的越障性能,使其更能应付地表的突然变化,其机身在陡峭的斜面或楼梯上行进时也较易保持稳定的姿态。文中以关节式履带机器人为研究对象对其爬梯运动性能进行研究。 1 关节式履带机器人的爬梯运动 由上海大学精密机械工程系研制的关节式履带机器人其基本组成如图1所示,由前摆臂和主车体构成,采用后轮驱动。 机器人通过调节摆臂关节角度适应地面的变化,爬梯过程如下:首先,机器人根据障碍高度选择一定的初始关节角度,如图2(1)所示开始爬梯;当摆臂越过第一节台阶且整机的质心未越过第一节台阶时,逐渐放下关节摆臂,至摆臂第二节楼梯接触停,如图2(3);保持上述姿态爬梯直至引导轮越过第二节楼梯,调节关节角度至摆臂履带与主车体履带位于同一平面;保持图2(5)姿态爬梯直至摆臂越过最后一节楼梯的边缘,放下摆臂,如图2(7);机器人继续爬梯,并不断抬起摆臂直至整机完全脱离楼梯,此时恢复摆臂关节角度到水平位置。 06  电子机械工程 Electro-M echan i ca l Eng i n eer i n g 2006年第22卷第2期 2006.Vol.22No.2 3收稿日期:2005-11-04 基金项目:863机器人技术主题重大专项(2004AA420110)

全国3D大赛优秀作品---助老助残爬楼梯机器人说明书

团队编号:3DDSG429 团队编号 作品名称:助老助残爬楼梯机器人说明书参赛团队:旗舰队

目录 一背景及研发现状 二系统拆分及模具体现数控编程、有限元分析 数控编程有限元分析三原理分析、关键技术原理分析关键技术四应用领域及市场前景

一1、研发背景 研发背景 1 目前老龄化严重,给医护护理及子女带来了巨大压 力我需高智机务 力,我们急需一批高智能化机器人为人服务。 2 城市化加快,平房被楼房所代替,给老人及残疾人 带来了巨大挑战。 战 3 随着智能化、自动化、先进机构技术不断提高,给 智能化爬楼机器人研究带来了巨大挑战 楼

发展状 2、发展现状 目前爬楼机器人主要分为三类 1 轮式爬楼梯机器人:利用轮或轮传动达到行进和爬行目的的机器人。其主要为行星式机器人能实现重载且较平稳但自动化程度不高需借助于其主要为行星式机器人,能实现重载,且较平稳。但自动化程度不高,需借助于附加人力,在自动调节座椅水平方面存在很大缺陷。 2 履带式爬楼梯机器人:利用履带达到行进和爬行目的的机器人。其能适应不同规格的楼梯,但工作时噪音较大,能量损失较高,对楼梯破坏较重。 3 腿式爬楼梯机器人:利用类似于腿的结构达到行进和爬行目的的机器人。其能较好的适应不同规格的楼梯,创意新颖。但目前自动化程度较低,需器人其能较好的适应不同规格的楼梯创意新颖但目前自动化程度较低需借助于附加人力,且座椅不能保持水平状态。

、各爬楼方案总结 3、 轮式、履带式、腿式爬楼梯机器人虽能实现上下楼功能,但存在以下缺陷: 11 动化程度不高,需借助于附加人力。 2 座椅不能时刻保持水平状态,在上下楼过程中,使人 感到不舒服。 3 对楼梯破坏较重,噪音较大,能量损失较高。

爬杆机器人设计说明书

目录 一.方案构思---------------------------------------------1 二.机械部分---------------------------------------------3 三. 电控部分---------------------------------------------17 四.设计小结---------------------------------------------19

一方案构思 我们通过三个手臂来抓紧杆件再通过手臂上的电机来实现机器人的爬升和下降。原理上两个就能实现,但三个手臂是一作联结,二可起稳定作用。手臂上升下降是通过齿轮齿条来实现的。 二.机械部分 1.机器人的整体装配图如下: 图1 我们是通过三个手臂爬杆的,上手臂装在一个齿条的最上端,并且固

定,在具体设计时我们可以使上手臂有一定的上下和左右转动范围,具体的设计将在下面介绍。下手臂装在下杆C上齿条的下端,中间手臂固定在滑槽上,上手臂的上升和下降是通过装在滑槽上端的电动机带动齿轮啮合齿条来实现的.下手臂的上升和下降是通过装在滑槽下端的电动机带动齿轮啮合齿条来实现的,中间手臂的升降是通过上下两对齿轮齿条反转来实现的。 1 升降设备———液压剪叉升降 剪叉机构由两根中间用枢轴连接,可在平面内相互转动的剪杆组成,每根剪杆又可以认为由两段一端铰接和一端固接的梁单元连接而成。剪杆作为机构折叠变化的对象,铰点约束剪杆的变化,折叠过程既剪杆围绕铰点旋转,最后达到指定位置,从而完成一个折叠过程。剪叉式升降台主要由底座、剪叉机构和工作台三个部分组成,其中剪叉机构是剪叉式升降台的主体,也是主要承力构件。剪叉式升降台按驱动形式主要分为液压式和电机式驱动。其中,液压水平驱动剪叉式升降台具有结构紧凑、设计简单、压缩比大、噪声小、工作平稳可靠等突出优点,作为机器人的升降装置非常合适。 (1)升降装置的运动学分析 以单片剪叉式升降台为研究对象,如图1 所示,分析滑块B水平速度v1与升降平台CD 在垂直速度v 之间的关系。 该运动为平面运动,采用速度瞬心法进行求解。因为D点速度垂直向上,B 点速度水平向左,所以剪杆BD 运动瞬心为点C,令其瞬时角速度为ω,则D、B 点的速度为: V=W*R =W*Lcosα D

毕业设计之爬楼机器人传动设计

机电学院 CDIO 项目教学
一级项目期末报告书
(2012-2013 学年第一学期)
项目名称: 报 告 人: 专业班级: 指导教师: 报告日期:
爬楼梯机器人及机械手分析 冯江涛 10 级机制 4 班 周殿春 柴宝明 2012.1.12

绩:

一、项目简介: 1.项目内容:爬楼梯机器人。2.项目研究的意义:了解爬楼梯 机器人的结构及其运动原理;提升观察能力和动手能力;可以帮助进 一步理解“机械原理”课,使其真实可见。3.项目成果预期:真正弄 懂爬楼梯机器人的构造,做个模型,会画三维实体图,了解其动力系 统。 二、工作过程简述 1.认真完成老师分配的任务;2.结合所学课程研究爬楼机器人; 3.认真查阅机械手相关资料;4.业余时间学习画图软件,看画图书。 三、CDIO 工作成果 1.进一步分析爬楼梯机器人的结构; 2.对机械手进去结构功能分 析;3.初步了解液压;4.学习 PLC。5.了解现代机械设计理论与技术。
四、能力提升 结合课程教学,学习能力提升,设计能力提升,工程能力提高。 五、学期小结 1.学习要认真对待,一分耕耘,一分收获;2.机器人相关知识博 大精深,我们现在所学的知识冰山一角,需更加努力学习;3.今后首 先将三维画图工具学好,学会画实体图,装配和仿真;4.建议:小组 内讨论,多互动,互相学习,互相帮助。

一、关于爬楼机器人的进一步分析 爬楼机器人传动设计
1.轮组单元的传动设计及基本原理 如图 1 所示,轮组采用行星轮式结构,包括传动轴,过渡齿轮,中心齿轮, 小车轮和驱动齿轮轮组的机械原理:车体重量通过轴承间接承载在四个轮组上, 轮组中的所有齿轮都绕转臂上的小轴转动,当电机动力传到传动轴时,轴带动中 心齿轮转动,中心齿轮带动过渡齿轮转动,再传给驱动齿轮,由于小车轮与驱动 齿轮固连,机器人前进。当车轮组机构运行在平直的路面上时,受两个车轮同时 着地的约束限制, 转臂不能转动只能随车沿路面平动, 此时驱动轮系为定轴轮系, 实现机构在平直面上的快速行驶 ; 当小车遇上台阶时,由于台阶与车轮的摩擦 力,行星轮的齿轮系都被锁住,无法转动,这时整个行星轮板在中心齿轮的驱动 下,变成一个类轮机构转动,从而带动小车爬上台阶。
图 1 轮组机构示意图

爬楼梯机器人的设计构想与思路

爬楼梯机器人的设计构想与思路 一、目的: 检验机械设计者对机械原理、机械设计方法、机械传动控制原理、自动控制原理等多学科知识的综合运用和理解的深刻程度。 二、作品的功能: 个人理解认为,前期可以只作为一个试验模型或玩具,主要目的是考验设计者的设计能力,动手能力,以及创新思维能力。作品可以制作的较小,满足自身爬楼梯的功能即可,可作为一个寓教于乐的玩具。但根据该作品的思路和方法,作出一个具有实际使用价值的产品才因该是最终目的。正所谓科学技术是第一生产力的概念就是体现在这里。 三、具体设计思路要点: 只以用于模型、玩具的思路来设计该机器人,以下为主要设计思路和要点。 1.关于动力来源: 既然是模型,动力来源基本上局限在了电能上,综合考虑执行机构的形式和功率来看,使用电池即可满足一般要求,采用体积小,重量轻的锂离子电池应该是首选,也可考虑使用镍氢充电电池,当然这点主要是考虑了模型的可移动性。同时也可考虑使用外部供电的方式,实现长时间续航的要求。 2.关于执行机构的设计思路:

首先要充分考虑并理解该机的主要工况:具有一定高度和宽度的台阶,同时台阶又是相同的、连续的。因此设计时考虑如何攀爬上一个台阶,则剩下的就是考虑实现连续不断的重复该动作即可。 同时,该机还应该可以在楼梯间的平地行走,这点也是考虑的主要工况之一。 第三,不同的楼梯高度不同,宽度不同,级数也不同,该机要尽量适应大多数楼梯,当然了,绝大多数楼梯是在相关的建筑标准中规定了尺寸的,因而该机对若想适应不同的楼梯,其实面对的差异并不大。 综合上述工况及分析结果,基于连续性运动而考虑,仍然采用轮式结构作为执行机构。可适应连续行走,连续攀爬,重复性好。毋庸置疑,采用小型直流电动机驱动,由于电动机的速度较大,因此必须使用齿轮机构或皮带机构实现减速、增大扭矩。 光是轮胎,要想攀爬楼梯,则轮胎必须足够大,直径至少是台阶高度的十倍以上,否则根本无法跨越,显然与模型设计的理念不符。而且攀爬时运动不平稳,驱动扭矩相当大,自然不予考虑。 因此设计一种行星布置式轮系来作为行走执行机构,中间太阳轮作为输入机构,与电机连接,太阳轮可较小,太阳轮外围不知若干的行星轮。分析计算太阳轮直径可电机转速,决定是否需要使用减速机构降低电机速度。既然是行星轮,则一个、两个肯定是不行的,无法实现稳定、连续的运动,至少三个以上的行星轮,各行星轮用行星架固定,太阳轮旋转时与行星轮上的轮齿啮合,带动行星轮自转,平地

足式行走机器人课程设计

燕山大学 课程设计说明书题目:足式行走机器人课程设计 学院(系):机械工程学院 年级专业: 2013级机控二班 学生姓名:李旭军、刘鹤、 颜天喜、林银福 指导教师:刘劲军

燕山大学课程设计(论文)任务书

燕山大学课程设计评审意见表

目录 一、项目意义 (6) 二、设计要求 (6) 三、总体方案设计 (6) 四、元件选择与结构设计 (8) 4.1 气缸的选择 (8) 4.2 换向阀的选择 (8) 4.3 机械结构设计 (8) 4.4 传感器的选择 (9) 五、气动系统和电控系统的设计 (9) 5.1 气动回路的设计 (9) 5.2 电控系统的设计 (10) 六、PLC程序与控制 (14) 6.1 I/O地址分配表 (14) 6.2 PLC外部接线图 (15) 6.3 PLC梯形图 (15) 七、实物操作说明 (18) 7.1 实物图片 (18) 7.2 操作说明 (18) 八、总结 (19) 九、心得体会 (19)

一、项目意义 当今随着气动技术及机器人技术的发展,气动机器人的应用领域也越来越广泛。其工作可靠、体积小、动作灵活等优点使其在一些特殊的应用场合,如壁面爬行机器人的研究方面颇受欢迎,壁面爬行机器人要完成在与水平面成一定角度的各种壁面上移动,它主要完成两个任务:一是吸附,二是移动。本文设计的气动爬行机器人主要研究设计机器人的爬行功能,通过对其机械结构及控制系统设计,实现步距式爬行功能,同时可实现前进、倒退和转向等功能。 二、设计要求 1、机器人驱动系统为气动控制系统,将采用气源、电源拖线运行方式。气源压力5bar,电源电压24V。 2、利用手持有线控制器实现机器人的转向、前进、后退控制、地面步态行走。电气控制采用继电器控制方式。禁止采用轮式。 3、要求机器人能实现3kg负重状态下按预定轨迹行走要求。注:验收用预定轨迹转弯半径大于等于1m。 4、要求机器人整体平面尺寸不超过250mm*250mm。自行完成整机设计、选型、加工、集成及调试。 三、总体方案设计 根据设计要求,我们设计的方案是六足气动机器人,每一个足用两个缸控制,水平杆实现移动,垂直缸实现对身体的支撑,每三个缸一组,分别用一个阀控制,示意图如图1所示。

轮腿式爬梯机器人设计

轮腿式爬梯机器人设计 小组成员:

摘要:本设计涉及一种爬楼梯机械装置,包括前机身、后机身、机身连接部件、四个五星形轮腿、四个直流伺服电机和轮腿固定部件,其特点是:前机身和后机身通过机身连接部件连接为一体,四个五星形轮腿分别通过轮腿固定部件固定在前、后机身两侧上,且每个五星形轮腿与固定在机身上的直流伺服电机传动连接。每个五星形轮腿包括五个车轮杆,车轮杆之间的夹角相等且外伸长度可以调整,五星形轮腿转过一周,能够实现攀爬五个台阶的楼梯。本发明爬楼梯的效率高,同时能够较好的适应室外不平整地形,可以作为灾后搜救、野外搜索、环境探测移动机器人的平台。

轮腿式爬梯机器人设计 一、设计背景及意义 (4) 二、主要设计模板 (5) 三、关键位置受力分析 (9) 四、实现的功能 (10) 五、设计感想及任务分工 (11) 六、参考文献 (11)

一、设计背景及意义 移动机器人可以完成危险环境下的探查、侦察、巡逻、救灾和排爆等工作,其应用前景越来越广泛。楼梯是移动机器人在工作中最常见、最难跨越的障碍之一,所以攀爬楼梯是移动机器人适应非结构化环境所必备的功能之一。 国内外现有爬楼梯移动机器人按实现爬楼梯功能的原 理主要分为轮式、腿式、履带式、复合式(如轮腿式、关节履带式、轮履式等)。轮式爬楼梯移动机器人具有结构简单、效率高、重量轻和易于控制的优点,但其环境适应性较差,很难适应楼梯这类特殊的结构化环境。腿式爬楼梯移动机器人具有较强的环境适应能力,可通过调整腿部姿态来适应崎岖不平的地形,但这种机器人结构复杂、移动速度慢、效率低,难以实现稳定步态规划和稳定平衡的控制。履带式爬楼梯移动机器人具有良好的爬楼梯性能和一定的越障能力,但其灵活机动性较差,自身重量较大,爬越楼梯的速度较慢。复合式爬楼梯移动机器人具有很强的地形适应能力和较好 的机动性,但其结构和控制系统一般较复杂,需要进行复杂的轨迹规划和步态规划等。 针对上述问题,为了同时实现机器人高速、高效和稳定的爬楼梯功能,通过对不同类型爬楼梯移动机器人运动特性进行综合分析,我们设计并实现了一种新型轮腿式爬楼梯移动机器人。

一种新型爬杆机器人的结构设计与分析

2019.10科学技术创新-179--种新型爬杆机器人的结构设计与分析 邹佳航秦梦瑶王帅洋 (河南科技大学机电工程学院,河南洛阳471003) 摘要:随着科学的进步和时代的发展,高空工作的高度在逐步增加,人工作业也愈发困难;本文设计了一款爬杆机器人来解决现实生活中人工作业中遇到的问题。通过对目前国内外爬杆机器人的现状进行调查研究,我们提出了一种新型爬杆机器人的方案并进入实体设计阶段。本文对这种爬杆机器人的结构设计、力学分析,动力装置进行了介绍「 关键词:爬杆机器人;结构设计;力学分析 中图分类号:TP242文献标识码:A文章编号:2096-4390(2019)10-0179-02 1绪论 随着科技的进步.机器人技术的发展也在不断地提高,越来越多的高危性、高重复性工作被机器人取代,甚至一些人类无法完成的任务,在机器人看来却是轻而易举。无论是大城市或是乡村,我们都可以看到无数的电线杆、路灯杆等杆类,电线杆上的电气设备、路灯杆上的灯经过长时间的风吹日晒,极容易损坏,需要定期的维修和保养。由于目前仍是以人工作业为主,导致高空作业不仅效率低下.人工成本昂贵而且安全系数很低。为了解决这些难题我们设计了一种爬杆机器人,用于代替维修工人爬杆进行高空作业。 目前,虽然国内外已经设计出了多种爬杆机器人.但都具有各n的局限性例如采用气动蠕行式爬杆器来解决变直径杆的爬行,由气压控制其上升和下降,对气缸要求较高。导致更高的设备成本和维护成本;双手爪爬机器人具有较强的攀爬功能,但因为需要交替两爪攀爬,爬行速度较低;仿尺镀步态的爬杆机器人结构简单、成本低廉.由于采用了摩擦自锁,所以只能上升无法下降。 2结构方案设计 如果想实现机器人可以在杆上自由上下移动,必须要具备两种功能:贴附功能和移动功能。H前所了解的贴附方式有两种,分别为吸附式和夹持式,而运动方式有履带移动、轮式移动、爬行移动及蠕动移动四种根据这些不同的方式我们可以进行多种结合,来设计出功能多样的机器人。 本次方案设计主要采用轮式爬杆机器人的结构形式如图1所示,采用圆柱环抱式结构,三条手臂夹持,保证平稳性,且具有6个滚轮驱动,分上下两个独立的驱动体系,并通过气动弹簧将滚轮与杆体的表面夹紧,使机器人在杆上作业时受力相对更均匀、合理利用滚轮和杆体之间的摩擦力,再通过电机正反转带动滚轮转动,以达到机器人能在杆体表面上下移动的目的。轮式爬杆机器人具有结构简单、可操作性强、控制方便、移动速度快、接触面积小、电机驱动、成本低、效率高、精度高等优点。 3结构设计与分析 3.1爬杆机器人的手臂设计 此款机器人的单侧手臂设计如图2所示。为了爬行的稳定性,此款机器人设有三个夹紧臂,每只手臂由两个滚轮和两个气压弹簧组成.根据一般情况可知杆的直径范围为100mm~200m m,利用机械结构和气圧弹簧的巧妙结合,气压弹簧能够使此款机器人适应一定直径的杆,并且能够很好地贴附在杆上,电机带动与杆接触的轮子,使得整个爬杆机器人可以在杆上移动。考虑到与杆接触的材料所需的摩擦系数越大越好,所以我们选择硬橡胶材料作为滚轮的材料硬橡胶材料经济实惠、应用范围广,并且摩擦系貂艮高。同时为了增大摩擦.还要使滚轮与杆的接触面积达到最大,对滚轮的形状也有一定的要求 3.2机器人夹紧力的分析 机器人在杆上运动时,需要克服外力进行运动,外力包括自身的重力及负载的重力木次设计中,机器人的动力由6个电机提供,其中比较关键的是滚轮的摩擦系数卩和夹紧力R。 滚轮表面与杆表面的聚乙烯材料接触.我们取其静摩擦系数g).7,设机器人所加负载后的总质量m=10Kg。通过夹紧臂的夹紧力使滚轮对杆产生一定的斥力,从而产生有益的摩擦力,我们对其中一对滚轮进行分析可得: f=G.(1) $=1/3mg(2) f=叭⑶可得:F>mg/3//(4) 式中:f—滚轮与杆之间的静摩擦力:G,— —三对(转下页 )

相关文档
最新文档