hdmi信号测试原理及方法

信号完整性研发测试攻略2.0

信号完整性测试指导书 ——Ver 2.0 编写:黄如俭(sam Huang) 钱媛(Tracy Qian) 宋明全(Ivan Song) 康钦山(Scott Kang)

目录 1. CLK Test (3) 1.1 Differential Signal Test (3) 1.2 Single Signal Test (5) 2. LPC Test (7) 2.1 EC Side Test (7) 2.2 Control Sidse Test (8) 3. USB Test (11) 3.1 High Speed Test (11) 3.2 Low Speed Test (12) 3.3 Full Speed Test (12) 3.4 Drop/Droop Test (12) 4. VGA Test (14) 4.1 R、G、B Signal Test (14) 4.2 RGB Channel to Channel Skew Test (14) 4.3 VSYNC and HSYNC Test (15) 4.4 DDC_DA TA and DDC_CKL Test (15) 5. LVDS Test (17) 5.1 Differential data signals swing Test (17) 5.2 Checking Skew at receiver Test (18) 5.3 Checking the offset voltage Test (19) 5.4 Differential Input Voltage Test (20) 5.5 Common Mode Voltage Test (20) 5.6 Slew Rate Test (21) 5.7 Data to Clock Timing Test (23) 6. FSB Test (26) 7. Serial Data(SA TA/ESA TA, PCIE, DMI,FDI)Test (29) 8. HD Audio Test (30) 8.1 Measurement at The Controller (30) 8.2Measurement at The Codec (31) 9. DDR2 Test (34) 9.1 Clock (34) 9.2 Write (35) 9.3 Read (37) 10.Ethernet Test (39) 11.SMbus Signal Test (40) 12. HDMI Test (42) 13. DisplayPort Test (43)

电线电缆_试验方法

绪论 随着国民经济的发展,电气化、自动化日益发达,近年来我国,发电量、高等级、容量,输送距离都有巨大增长。各种特殊的用电要求不断提出,这不但对电线电缆的生产数量提出高的要求,而且对电线电缆的性能、品种也提出了多样化的要求。但有很多种类的电缆只能理论上设计出来,在实际生产中由于工艺、原材料的选择等存在问题使得生产出来的线缆达不到其性能的要求;还有一个重要的原因是:在敷设安装及长期的运行过程中也会出现一些不能满足性能要求的现象。为了能进一步普及和提高电线电缆的生产和运行水平,保证产品质量,保证电网的安全运行,满足经济发展对电线电缆提出更高更新的要求,无论是科研单位还是生产厂家必须对电线电缆进行性能的检测,及时发现缺陷,进一步减少经济损失。 对电线电缆的检测国外都有标准明确的规定:最具权威是国际电工委员会(IEC),国际标准委员会;不同的国家有不同的国标(GB)、行业标准(JB、MT、SH等)、地方标准。但实质是对电线电缆产品进行性能检验,生产出性能更好、更高运用到实际中。电线电缆性能的检测主要是通过试验的方法进行验证是否满足其性能的要求;试验包括:型式试验、例行试验和抽样试验。电线电缆的检测是一个世界性的课题,检测技术的发展经历了一个漫长的过程;在国外,六十年代末期英国首先研制出了世界上第一台电缆故障闪测仪。我国在七十年代初期由电子科技大学(原西北电讯工程学院)和供电局联合研制出了我国第一台贮存示波管式电缆故障检测仪DGC—711,后来又相继推出了改进型仪器。由于我国基础工业及电缆制造水平的滞后,使得电缆故障率普遍较高,反而促进了电缆测试技术在我国得到了较大的发展和突破。国检测方面处于领先地位的电缆研究所和高压研究所;电线电缆行业中对中低压电缆的性能检测方面相对较为完善,而在高压方面还存在不少空白,需要继续投入资金引进国外先进设备填充这一空白。展望未来,有许多工作等待我们去做,让我们携起手来,共同努力,为发展电线电缆性能检测做出贡献。 本论文主要论述35kV及以下塑力缆的性能检测,检测的试验项目包括:型式试验、例行试验和抽样试验。由于电压等级不同,故所做的试验及要求也不尽相同;本文采用对比论述,把35kV及以下塑力缆的性能检测分为:1~3kV,6kV~35kV两部分。论述的主要容包括下列几方面: 型式试验:试验所引用的标准、试验项目、试验条件、试验原理和试验结果的分析以及试验注意事项;侧重点在电气性能试验。 例行试验和抽样试验:试验所引用的标准、和验项目。

IDDQ测试原理及方法

电流测试 1 电流测试简介 功能测试是基于逻辑电平的故障检测,逻辑电平值通过测量原始输出的电压来 确定,因此功能测试实际上是电压测试。电压测试对于检测固定型故障特别是双极型工艺中的固定型故障是有效的,但对于检测CMOS 工艺中的其他类型故障则显得 有些不足,而这些故障类型在CMOS 电路测试中是常见的对于较大电路,电压测试 由于测试图形的生成相当复杂且较长,因而电流测试方法被提出来电流测试的测试集相当短,这种测试方式对于固定型故障也有效。 CMOS 电路具有低功耗的优点,静态条件下由泄漏电流引起的功耗可以忽略,仅 表示,Q 代表静态 在转换期间电路从电源消耗较大的电流。电源电压用V DD (quiescent) ,则IDDQ 可用来表示MOS电路静态时从电源获取的电流,对此电 流的测试称为IDDQ 测试,这是一种应用前景广泛的测试。 IDDQ 测试概念的提出时间并不很长,但自半导体器件问世以来,基于电流的测量一直是测试元器件的一种方法,这种方法即所谓的IDDQ 测试,用在常见的短接 故障检测中。自从Wanlsaa 于1961 年提出CMOS 概念, 1968 年RCA 制造出第一 块CMOS IC 和1974 年制造出第一块MOS 微处理器以来,科研人员一直研究CMOS 电路的测试,而静态电流测试则作为一项主要的参数测量1975 年Nelson 提出了IDDQ 测试的概念和报告,1981 年M.W Levi 首次发表了关于VLSI CMOS 的测试论文,这就是IDDQ 测试研究的开端。其后,IDDQ 测试用来检测分析各种DM0S 缺陷,包括桥接故障和固定型故障1988 年W.Maly 首次发表了关于电流测试的论文, Levi, Malaiya, C.Crapuchettes, M.Patyra , A .Welbers 和S.Roy 等也率先进 行了片内电流测试的研究开发工作,这些研究奠定了IDDQ 测试的基础、1981 年Philips semiconductor 开始在SRAM 产品测试中采用片内IDDQ 检测单元,其后 许多公司把片内IDDQ 检测单元用在ASIC产品中,但早期的IDDQ 测试基本上只为政府、军工资助的部门或项目所应用。 直到20 世纪80 年代后期,半导体厂商认识到IDDQ 测试是检测芯片物理缺陷 的有效方法,IDDQ 测试才被普遍应用, CAD 工具也开始集成此项功能。目前,IDDQ 测试也逐渐与其他DFT结构,例如扫描路径测试、内建自测试、存储器测试等,结合在一起应用。20 世纪80 年代,电流测量基本上是基于片外测量电路的,80 年代末片上电流传感器的理论和设计方法得以提出,随后这方面所开展的理论 和方法研究纷纷出现,IEEE Technical Committee on Test Technology 于1994 年成立一个称做QTAG ( Quality Test Action Group ) 的技术组织,其任务是研 究片上电流传感器的标准化问题,但该组织得出了电流传感器不经济的结论,因此,1996 年结束标准化研究工作,目前电流传感器的研究主要针对高速片外传感器。 IDDQ 测试是源于物理缺陷的测试,也是可靠性测试的一部分1996 年SRC (Semiconductor Research Corporation )认定IDDQ 测试是20 世纪90 年代到 21 世纪主要的测试方法之一。IDDQ 测试已成为IC 测试和CAD 工具中一个重要内容,许多Verilog/HDL 模拟工具包含IDDQ 测试生成和故障覆盖率分析的功能。 IDDQ 测试引起重视主要是测试成本非常低和能从根本上找出电路的问题(缺陷)所在。例如,在电压测试中,要把测试覆盖率从80%提高10% ,测试图形一般要

开关电源电气性能测试规范文档

1.0 目的: 统一定义本司电源产品的测试方法与标准,给电源的测试提供一个方法依据,从而使电源的测试能够正确、准确地进行。 2.0 适用范围: 适用于测试工程师、技术员和工程测试人员对本司所有电源类产品的测试验证. 3.0 定义 略 4.0 权责: 测试组:测试工程师、技术员对各阶段样机进行测试验证,并提供测试报告 研发组:针对测试组在测试过程中提出的问题点进行改善. 5.0 程序内容: 5.1 输入电流 5.1.1 测试条件 5.1.1.1 输入电压: 下限电压/上限电压/额定电压 5.1.1.2 负载: 满载条件 5.1.1.3 环境温度:室温 5.1.2 测试设备 5.1.2.1 可编程交流源 5.1.2.2 精密电子负载 5.1.2.3 电参数测试仪 5.1.3测试方法与步骤 5.1.3.1接线方法请参考下图 5.1.3.2 说明:当DC输入时,图中Power analyzer(电参数测试仪)用万用表替代测试电流 5.1.3.3 依照客户规格输入电压设定AC Source/DC Source的输出电压 5.1.3.4 依照客户规格的满载条件设定电子负载带载条件 5.1.3.5 开启AC Source 电源输出并确认EUT正常动作后,直接读取电参数测试仪的电流读 值或AC SOURCE上的电流读值即为输入电流值 5.1.3.6 DC输入时,用导线直接将DC Source与EUT连接,用钳流表量测其输入电流 5.1.4 判定标准 依照客户规格或开发样机规格书所定的标准判定,若规格无输入电流测试的判定标准,则此项测试仅供参考

5.1.5 注意事项 5.1.5.1 若客户对输入电流之量测条件有特别的要求,则测试标准条件的设定以客户规格为准 5.1.5.2 通常在外部环境为高温,EUT 规定的最低电压输入,EUT满载的条件下,所测得的电 流最大 5.1.5.3 电参数测试仪上显示的电流值的精确度要比AC Source 显示的电流值要高,建议用电 参数测试仪读取 5.2 启动冲击电流 5.2.1 测试条件 5.2.1.1 通常在高温环境、EUT允许最高的输入电压(AC输入的相位角建议为90℃或27 0℃)及满载条件下所测得的数值最大 5.2.1.2 如客户无特别要求,本司的测试要求在常温条件下测试 5.2.1.3 一般而言,客户所定的冲击电流规格时通常会分别规定热态及冷态时的最大值,故量 测时严格以客户要求为准 5.2.2 测试设备 5.2.2.1 可编程交流源 5.2.2.2 精密电子负载 5.2.2.3 数字示波器 5.2.2.4 电流探头 5.2.3 测试方法与步骤 5.2.3.1 依据下图将仪器和待测物接线. 5.2.3.2 依照客户规格输入电压之上下限设定AC Source之电压输出. 5.2.3.3 依照客户规格作业温度的高温设定外部环境(Chamber)温度. 5.2.3.4 依照客户规格的满载条件设定电子负载条件:满载. 5.2.3.5 连接电流探头与示波器,设置适当的档位,将示波器触发设定为Normal捕获冲击电流 波形. 5.2.3.6 开启AC Source/DC Source 电源瞬间,示波器所取得的电流波形并判读其最高点的读 值为冲击电流,存储该冲击电流波形 5.2.4 判定标准 依照客户规格或本司企业标准所定标准判定,若规格无Inrush current测试标准,则此测试仅供参考 5.2.5 注意事项

测试流程及测试理论方法

测试流程及测试理论方法 一、测试流程 1.软件开发流程: 需求分析—>概要设计—>详细设计—>编码开发—>测试—>维护 2.测试流程为: 单元测试/集成测试—>系统测试/自动化测试—>性能测试—>验收测试 3.目标: 3.1制定完整且具体的测试路线和流程,为快速、高效和高质量的 软件测试提供基础流程框架。 3.2最终目标是实现软件测试规范化、标准化、自动化。 4.测试流程说明: 5.测试需求分析 测试需求是整个测试过程的基础;确定测试对象以及测试工作的范围和作用。用来确定整个测试工作(如安排时间表、测试设计等)并作为测试覆盖的基础。而且被确定的测试需求项必须是可核实的。即,它们必须有一个可观察、可评测的结果。无法核实的需求不是测试需求。所以我现在的理解是测试需求是一个比较大的概念,它是在整个测试计划文档中体现出来的,不是类似的一个用例或者其他. ·测试需求是制订测试计划的基本依据,确定了测试需求能够为测试计划提供客观依据;

·测试需求是设计测试用例的指导,确定了要测什么、测哪些方面后才能有针对性的设计测试用例; ·测试需求是计算测试覆盖的分母,没有测试需求就无法有效地进行测试覆盖。 5.1测试方法与规范 5.1.1测试方法 随着软件技术发展,项目类型越来越多样化。根据项目类型应选用针对性强的测试方法,合适的测试方法可以让我们事半功倍。以下是针对目前项目工程可以参考的测试方法: ?β测试(beta测试)--非程序员、测试人员 β测试,英文是Betatesting。又称Beta测试,用户验收测试(UAT)。 β测试是的多个用户在一个或多个用户的实际使用环境下进行的测试。开发者通常不在测试现场,Beta测试不能由程序员或测试员完成。 当开发和测试根本完成时所做的测试,而最终的错误和问题需要在最终发行前找到。这种测试一般由最终用户或其他人员完成,不能由程序员或测试员完成。 ?α测试()--非程序员、测试人员 α测试,英文是Alphatesting。又称Alpha测试. Alpha测试是由一个用户在开发环境下进行的测试,也可以是公司内部的用户在模拟实际操作环境下进行的受控测试,Alpha测试不能由该系统的程序员或测试员完成。

安全标准和电气安全性能简易测试方法

编号:SM-ZD-82186 安全标准和电气安全性能 简易测试方法 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

安全标准和电气安全性能简易测试 方法 简介:该制度资料适用于公司或组织通过程序化、标准化的流程约定,达成上下级或不同的人员之间形成统一的行动方针,从而协调行动,增强主动性,减少盲目性,使工作有条不紊地进行。文档可直接下载或修改,使用时请详细阅读内容。 一、家用电器的分类 家用电器是指用于家庭和类似家庭使用条件的日常生活用电器。 家电一般按用途大致可划分以下9类产品: 1 空调器具:主要用于调节室内空气温度、湿度以及过滤空气之用,如电风扇、空调器、加湿器、空气清洁器等。 2 制冷器具:利用制冷装置产生低温以冷却和保存食物、饮料,如电冰箱、冰柜等。 3 清洁器具:用于清洁衣物或室内环境,如洗衣机、吸尘器等。 4 熨烫器具:用于熨烫衣服,如电熨斗等。 5 取暖器具:通过电热元件,使电能转换为

热能,供人们取暖,如电加热器、电热毯等。 6 保健器具:用于身体保健的家用小型器具,如电动按摩器、负离子发生器、周林频谱仪等。 7 整容器具:如电吹风、电动剃须刀等。 8 照明器具:如各种室内外照明灯具、整流器、启辉器等。 9 家用电子器具:是指家庭和个人用的电子产品。它不仅门类广,而且品种多。我国主要有以下几类:(1)音响产品,如收录机等;(2)视频产品,如黑白电视机、彩色电视机、录像机、VCD、DVD等;(3)计时产品,如电子手表、电子钟等;(4)计算产品,如计算器、家用计算机等; (5)娱乐产品,如电子玩具、电子乐器、电子游戏机等;(6)其他家用电子产品,如家用通讯产品、电子稳压器、红外遥控器、电子炊具等。 二、家用电器安全标准概述 家用电器产品安全标准,是为了保证人身安全和使用环境不受任何危害而制定的,是家用电器产品在设计、制造时必须遵照执行的标准文件,严格执行标准中的

电气原理图的绘制方法

电气原理图の绘制方法 为了表达生产机械电气控制系统の结构、原理等设计意图,便于电气系统の安装、调试、使用和维修,将电气控制系统中各电器元件及其连接线路用一定の图形表达出来,这就是电气控制系统图。用导线将电机、电器、仪表等元器件按一定の要求连接起来,并实现某种特定控制要求の电路。 画电气原理图の一般规律如下: 画主电路 绘制主电路时,应依规定の电气图形符号用粗实线画出主要控制、保护等用电设备,如断路器、熔断器、变频器、热继电器、电动机等,并依次标明相关の文字符号。 画控制电路 控制电路一般是由开关、按钮、信号指示、接触器、继电器の线圈和各种辅助触点构成,无论简单或复杂の控制电路,一般均是由各种典型电路(如延时电路、联锁电路、顺控电路等)组合而成,用以控制主电路中受控设备の“起动”、“运行”、“停止”使主电路中の设备按设计工艺の要求正常工作。对于简单の控制电路:只要依据主电路要实现の功能,结合生产工艺要求及设备动作の先、后顺序依次分析,仔细绘制。对于复杂の控制电路,要按各部分所完成の功能,分割成若干个局部控制电路,然后与典型电路相对照,找出相同之处,本着先简后繁、先易后难の原则逐个画出每个局部环节,再找到各环节の相互关系。 电气安装接线图规范 一般情况下,电气安装图和原理图需配合起来使用。 绘制电气安装图应遵循の主要原则如下: 1、必须遵循相关国家标准绘制电气安装接线图。 2、各电器元器件の位置、文字符号必须和电气原理图中の标注一致,同一个电器元件の各部件(如同一个接触器の触点、线圈等)必须画在一起,各电器元件の位置应与实际安装位置一致。 3、不在同一安装板或电气柜上の电器元件或信号の电气连接一般应通过端子排连接,并按照电气原理图中の接线编号连接。 4、走向相同、功能相同の多根导线可用单线或线束表示。画连接线时,应标明导线の规格、型号、颜色、根数和穿线管の尺寸。 电器元件布置图规范

信号完整性测试规范和工作流程V091

信号完整性测试规范和工作流程(Ver0.9x) 历史记录: 1.2003-4-22:初稿、起草。 2.2003-5-23: 一.主要目的: 信号完整性测试的思想是信号源输出,经过传输线到达信号末端(负载),信号本身的相对变化情况。主要目的是验证PCB设计是否保证了信号在传输过程中能否保证其完整性,以信号的相对测试为主旨,信号本身8的绝对测试为辅。信号比较的内容主要是信号的本征特性参数。同时也部分验证电路原理设计的合理性。也检验产品的性能符合国家有关标准的要求,比如3C、EMC、ESD等。从定性参数的角度保证PCB设计达到了电路设计的要求,同时也保证产品的可靠性、一致性。 信号完整性测试一般是在线测试,因此很多测试参数在不同的工作模式下会有较大的差别。一般情况下需要测试静态工作模式,但一些参数需要测试满负荷工作模式。另外测试点的选择,特别是接地点的位置会对测试结果有很大的影响。 二.基本要求: 要求测试准确、可靠、完善。并要求有完整的测试报告。这里的要求是一般通用性的要求,针对具体的产品、产品的不同阶段,可以提出不同的参数要求和具体的测试内容。由于测试是在PCB板上(或称“在线”)的测试,因此一些测试条件和测试参数的定义条件可能会出现不一致的情况,因此规定:测试的基本状态在没有任何说明的情况下,认为是静态工作模式或额定正常工作模式。如果在测试方法中有规定或说明的,以测试说明的条件为准。在类型和参数中列出了比较详细全面的参数,但在测试中可能没有要求,因此,具体产品如果需要测试请加以特别说明。一般规定:主要参数是必须测试的项目参数。 + 三.类型和参数: 3.1电源部分: 3.1.1电源类型分为LDO电源、DC/DC电源。 3.1.2主要参数有:幅度、纹波、噪声。 3.1.3状态分为:额定负载、空载、轻载、重载、超载。 3.1.4保护能力:输出电流保护、输出电压保护、输入电压保护、热保护。 3.1.5其它参数:输入电压适应性、静态电流、关机电流(漏电流)。 3.2时钟信号: 3.2.1时钟源分类:晶体时钟(正弦波时钟)、晶振时钟(方波时钟、钟振时钟)。 3.2.2时钟类型:系统时钟(源时钟)、(数据)同步时钟。 3.2.3主要参数:频率、占空比、过冲、上升沿、下降沿。 3.2.4其它参数:相位抖动、频率漂移、波形畸变。 3.3总线类信号: 3.3.1分类:数据类总线、地址类总线、混合类总线。 3.3.2主要参数:幅度、过冲。 3.3.3其它参数:抖动、上升沿、下降沿。 3.4端口信号: 3.4.1分类:数据信号、基带(调制)信号、二次调制信号、 3.4.2主要参数:幅度、过冲、上升沿、下降沿。 3.4.3其它参数:抖动、频谱、功率(谱)密度。 3.4.4使用到的几种埠:串口、网口、USB口、IF、RF。 3.5其它信号、器件、电路: 3.5.1主要的几个:复位信号、JTAG、无线、功耗、温度、音频振荡器。 3.5.2参数:

认识家用电器标准及电气安规性能和测试方法[1]

第二章:认识家用电器标准及电气安规性能和测试方法 家电一般按用途大致可划分以下9类产品: 一、家用电器的分类 家用电器是指用于家庭和类似家庭使用条件的日常生活用电器。 家电一般按用途大致可划分以下9类产品: 1. 空调器具:主要用于调节室内空气温度、湿度以及过滤空气之用,如电风扇、空调器、空气清洁器等。 2. 制冷器具:利用制冷装置产生低温以冷却和保存食物、饮料,如电冰箱、冰柜等。 3. 清洁器具:用于清洁衣物或室内环境,如洗衣机、吸尘器等。 4. 熨烫器具:用于熨烫衣服,如电熨斗等。 5. 取暖器具:通过电热组件,使电能转换为热能,供人们取暖,如电加热器、电热毯等。 6. 保健器具:用于身体保健的家用小型器具,如电动按摩器、负离子发生器、周林频谱仪等。 7. 整容器具:如电吹风、电动剃须刀等。 8. 照明器具:如各种室内外照明灯具、整流器、启动器等。 9.家用电子器具:是指家庭和个人用的电子产品。种类比较多,主要有以下几类: (1)音响产品:如组合音响、收录音机等 (2)视频产品:如黑白电视机、彩色电视机、录像机、VCD、DVD等 (3)计时产品:如电子手表、电子钟等 (4)计算产品:如计算器、家用计算机等 (5)娱乐产品:如电子玩具、电子乐器、电子游戏机等 (6)其它家用电子产品:如家用通讯产品、电子稳压器、红外遥控器、电子炊具等。 二、家用电器安规标准概述 家用电器产品安规标准,是为了保证人身安全和使用环境不受任何危害而制定的,是家用电器产品在设计、制造时必须遵照执行的标准文件,严格执行标准中的各项规定,家用电器的安全就有了可靠保证。贯彻实施这一系列国家标准,对提高产品质量及其安全性能将产生极大影响。 安全标准涉及的安全方面,分为对使用者和对环境两部分。 第一是防止人体触电 触电会严重危及人身安全,如果一个人身上较长时间流过大于自身的摆脱电流(IEC报告,60公斤体重成年男子为10mA,妇女为70%,儿童为40%)严重一点可能会造死亡。防触电是产品安全设计的重要内容,要求产品在结构上应保证用户无论在正常工作条件下,还是在故障条

电气原理图的绘制方法

电气原理图的绘制方法 为了表达生产机械电气控制系统的结构、原理等设计意图,便于电气系统的安装、调试、使用和维修,将电气控制系统中各电器元件及其连接线路用一定的图形表达出来,这就是电气控制系统图。用导线将电机、电器、仪表等元器件按一定的要求连接起来,并实现某种特定控制要求的电路。 画电气原理图的一般规律如下: 画主电路 绘制主电路时,应依规定的电气图形符号用粗实线画出主要控制、保护等用电设备,如断路器、熔断器、变频器、热继电器、电动机等,并依次标明相关的文字符号。 画控制电路 控制电路一般是由开关、按钮、信号指示、接触器、继电器的线圈和各种辅助触点构成,无论简单或复杂的控制电路,一般均是由各种典型电路(如延时电路、联锁电路、顺控电路等)组合而成,用以控制主电路中受控设备的“起动”、“运行”、“停止”使主电路中的设备按设计工艺的要求正常工作。对于简单的控制电路:只要依据主电路要实现的功能,结合生产工艺要求及设备动作的先、后顺序依次分析,仔细绘制。对于复杂的控制电路,要按各部分所完成的功能,分割成若干个局部控制电路,然后与典型电路相对照,找出相同之处,本着先简后繁、先易后难的原则逐个画出每个局部环节,再找到各环节的相互关系。 电气安装接线图规范 一般情况下,电气安装图和原理图需配合起来使用。 绘制电气安装图应遵循的主要原则如下: 1、必须遵循相关国家标准绘制电气安装接线图。 2、各电器元器件的位置、文字符号必须和电气原理图中的标注一致,同一个电器元件的各部件(如同一个接触器的触点、线圈等)必须画在一起,各电器元件的位置应与实际安装位置一致。 3、不在同一安装板或电气柜上的电器元件或信号的电气连接一般应通过端子排连接,并按照电气原理图中的接线编号连接。 4、走向相同、功能相同的多根导线可用单线或线束表示。画连接线时,应标明导线的

角度测量的原理及其方法

角度测量的原理及其方法 角度测量原理 一、水平角测量原理 地面上两条直线之间的夹角在水平面上的投影称为水平角。如图 3-1所示,A、B、O为地面上的任意点,通OA和OB直线各作一垂 直面,并把OA和OB分别投影到水平投影面上,其投影线Oa和Ob 的夹角∠aOb,就是∠AOB的水平角β。 如果在角顶O上安置一个带有水平刻度盘的测角仪器,其度盘 中心O′在通过测站O点的铅垂线上,设OA和OB两条方向线在水 平刻度盘上的投影读数为a1和b1,则水平角β为: β= b1 - a1(3-1) 二、竖直角测量原理 在同一竖直面内视线和水平线之间的夹角称为竖直角或称垂直 角。如图3-2所示,视线在水平线之上称为仰角,符号为正;视线在 水平线之下称为俯角,符号为负。

图3-1 水平角测量原理图图3-2 竖直角测 量原理图 如果在测站点O上安置一个带有竖直刻度盘的测角仪器,其竖盘中心通过水平视线,设照准目标点A时视线的读数为n,水平视线的读数为m,则竖直角α为: α= n - m (3-2) 光学经纬仪 一、DJ6级光学经纬仪的构造 它主要由照准部(包括望远镜、竖直度盘、水准器、读数设备)、水平度盘、基座三部分组成。现将各组成部分分别介绍如下:1.望远镜 望远镜的构造和水准仪望远镜构造基本相同,是用来照准远方目标。它和横轴固连在一起放在支架上,并要求望远镜视准轴垂直于横轴,当横轴水平时,望远镜绕横轴旋转的视准面是一个铅垂面。为了控制望远镜的俯仰程度,在照准部外壳上还设置有一套望远镜制动和

微动螺旋。在照准部外壳上还设置有一套水平制动和微动螺旋,以控制水平方向的转动。当拧紧望远镜或照准部的制动螺旋后,转动微动螺旋,望远镜或照准部才能作微小的转动。 2.水平度盘 水平度盘是用光学玻璃制成圆盘,在盘上按顺时针方向从0°到360°刻有等角度的分划线。相邻两刻划线的格值有1°或30′两种。度盘固定在轴套上,轴套套在轴座上。水平度盘和照准部两者之间的转动关系,由离合器扳手或度盘变换手轮控制。 3.读数设备 我国制造的DJ6型光学经纬仪采用分微尺读数设备,它把度盘和分微尺的影像,通过一系列透镜的放大和棱镜的折射,反映到读数显微镜内进行读数。在读数显微镜内就能看到水平度盘和分微尺影像,如图3-4所示。度盘上两分划线所对的圆心角,称为度盘分划值。 在读数显微镜内所见到的长刻划线和大号数字是度盘分划线及其注记,短刻划线和小号数字是分微尺的分划线及其注记。分微尺的长度等于度盘1°的分划长度,分微尺分成6大格,每大格又分成10,每小格格值为1′,可估读到0.1′。分微尺的0°分划线是其指标线,它所指度盘上的位置与度盘分划线所截的分微尺长度就是分微尺读数值。为了直接读出小数值,使分微尺注数增大方向与度盘注数方向相反。读数时,以在分微尺上的度盘分划线为准读取度数,而后读取该度盘分划线与分微尺指标线之间的分微尺读数的分数,并估读

电气原理图的绘制方法

电气原理图的绘制方法 导语: 在技术人员眼中,运用电气原理图的方法和技巧,对于分析电气线路,排除机床电路故障是十分有益的。当然,会看电气原理图就需要会画电气原理图。本文将介绍如何绘制电气原理图。 免费获取电气原理图软件软件:https://www.360docs.net/doc/9212463987.html,/circuit/ 电气原理图绘制软件 亿图电气原理图绘制软件是一款功能强大,绘图简单、易上手的设计软件。软件左侧是符号库,只需将所需的符号拖到设计图纸上,然后通过各种排列、组合、连接、参数设置,就可以轻松绘制出你所需要的电气原理图了。设计完成的电气原理图还可以分享给其他人、添加到邮件中、导出、打印等等。

用亿图绘制电气原理图的方法: 详细操作步骤: 1、新建“工程”,在右侧模板中选择“电路与逻辑”,双击进入编辑页面。(也可以在例子中打开相应的图例,进行快速编辑。) 2、在软件左侧的符号库中打开“基本电路符号”和“传输路径”的符号,如下图所示:

绘图前,应清楚电气元器件布置图的设计应遵循以下原则: ●必须遵循相关国家标准设计和绘制电气元件布置图。 ●相同类型的电气元件布置时,应把体积较大和较重的安装在控制柜或面板的 下方。 ●发热的元器件应该安装在控制柜或面板的上方或后方,但热继电气一般安装 在接触器的下面,以方便与电机和接触器的连接。 ●需要经常维护、整定和检修的电气元件、操作开关、监视仪器仪表,其安装 位置应高低适宜,以便工作人员操作。 ●强电、弱电应该分开走线,注意屏蔽层的连接,防止干扰的窜入。 ●电气元器件的布置应考虑安装间隙,并尽可能做到整齐、美观。 3、开始布置电气元件

技术贴:电缆测试方法及电气特性指标资料

信号电缆测试方法及电气特性指标 一、综合测试 各种信号电缆在敷设前应进行单盘测试,接续前、后应进行电气测试,电缆工程结束后应进行综合测试。各项测试应认真做好记录,并妥善保存,以作为竣工验收时重要的原始记录。各主要电气特性测试结果应符合表3-1的要求。 表3-1信号电缆主要电气特性 1、用兆欧表测试绝缘可按:R x=0.001×L×R m计算。

式中:L-电缆实际长度(m) R m-仪表测量值(MΩ) R x-换算到每千米电缆的实际绝缘电阻值(MΩ) 2、电缆如经暴晒后测量所得数据不得作为电缆电气特性的结论。 对于工程中所采用的特殊规格电缆,其电气特性应符合设计要求及其相关产品技术标准的规定。 二、普通信号电缆绝缘测试 信号电缆绝缘测试包括下列内容: 1、芯线间绝缘电阻测试 将电缆两端的芯线互相分开,测试端剥去约20㎜外皮。用500V兆欧表一线与芯线1连接,以每分钟120转的速度摇动手摇把,另一线依次与其他各芯线接触。与芯线2刚一接触时,兆欧表指针会向零偏转,但很快又回升,稳定在实际绝缘值处。指针稳定后,可读出芯线1与芯线2之间的绝缘电阻值。另一线离开芯线2与芯线3接触,测出芯线1与芯线3之间的绝缘电阻值。用同样方法测出芯线1与其他各芯线之间的绝缘电阻值。将兆欧表一线换成与芯线2连接,另一线依次与芯线3之后的各线相碰,可分别测出芯线2与其他各芯线之间的绝缘电阻值。并用依次测出其他芯线之间绝缘电阻值。 测试电缆芯线间绝缘电阻还有另一种方法:兆欧表一线于芯线1连接,其他各芯线并联后与另一线连接,只需摇动一次即可测出芯线1与其他各芯线之间的绝缘电阻值。测出芯线1的绝缘电阻值之后,从并联芯线中抽芯线2,同样方法测出其与其他各芯线间的绝缘电阻值。如测到某芯线与其他各芯线间绝缘电阻为零或低于标准时,再分开并联芯线逐一接触,以查明与其中的某一芯线绝缘不良。 2、芯线与地之间绝缘电阻测试 测试尚未敷入地下的电缆芯线与地之间绝缘时,兆欧表接地端子的表棒与电缆的铠装钢带连接(聚氯乙烯外护套型电缆需待敷设后方测试芯线对地绝缘),摇动摇把,线路端子另一表棒分别与每一芯线接触一次,即可测出芯线与地之间的绝缘。也可将全部

根据电气原理图绘制电气接线图

根据电气原理图绘制电气接线图 根据电气原理图绘制电气接线图 首先,我们要弄清楚什么叫做电气原理图,什么叫做电气接线图。 我们来看下图: 此图就是控制原理图。 接线图的第一个任务:绘制和标明接线端子的进线与出线关系 1)实现门板过渡和柜间过渡任务的接线端子 我们先来看电流测量和显示回路。 从图中我们看到柜内的各种开关电器,还有门板上的控制按钮、信号灯和多功能电力仪表。多功能电力仪表的电流信号线就来自于电流互感器。 图中我们看到了过渡接线端子,它的任务就是过渡柜内与门板上的开关电器之间的导线连接。 下图的上部是用于柜间连接的接线端子,用于控制线、控制电源小母线、信号线、接地线的连接。 2)远程控制线、信号线的进线和出线的接线端子 所谓远程控制线、信号线一般用于远程控制,也包括DCS的干接点测控线。 所谓干接点,指的是电源由测控装置提供,被测线路不提供电源。 接线图的第二个任务:标明某根线来自何处,去向何方

现在,我们再来看电流测量和显示回路图。不过,这里的图已经是准接线图和接线图了。如下: 我们已经知道,引自电流互感器的线必须上端子,然后再从端子接到电流表。 我们来看1TAa的接线: 电流互感器的二次回路有两个端子,分别标记为S1和S2。这两个端子与同名端有关,当电流互感器一次回路电流流入互感器穿心时,S1是同名端。 我们看到,从1TAa的S1端子引了一条线到XT接线端子的第一 个端子XT1。因此,这条线在电流互感器1TAa的S1侧标记为XT1, 而在XT1处则标记为1TAa:s1。可以看出,这条线的线头标记是以接到何处来标记的。 再看电流表侧:从XT1接到电流表PAa第1点的接线左右两侧分别标记为:PAa:1和XT1。注意看电流表PAb的2点,它引出两条线,一条接到PAa:2,另一条接到PAc:2。我们看到,从一个点只能引出 不超过2条线,并且每条线的头尾都明确无误,不可能接错。同时,整台开关柜内哪怕有几百条线,但所有的线都不会重复。所以,按接线图配置的线,又叫做工艺配线,它的特点就是准确,不重复。接线图适用于开关柜制造厂配线之用。 如何从控制原理图绘制接线图? 不用说,这都是开关柜制造厂制图人员的工作了。我们看到,从控制原理图绘制接线图是很麻烦的。绘制接线图一定要对开关电器实

信号完整性分析与测试

信号完整性分析与测试 信号完整性问题涉及的知识面比较广,我通过这个短期的学习,对信号完整性有了一个初步的认识,本文只是简单介绍和总结了几种常见现象,并对一些常用的测试手段做了相应总结。本文还有很多不足,欢迎各位帮助补充,谢谢! 梁全贵 2011年9月16日

目录 第1章什么是信号完整性------------------------------------------------------------------------------ 3第2章轨道塌陷 ----------------------------------------------------------------------------------------- 5第3章信号上升时间与带宽 --------------------------------------------------------------------------- 6第4章地弹----------------------------------------------------------------------------------------------- 8第5章阻抗与特性阻抗--------------------------------------------------------------------------------- 9 5.1 阻抗 ------------------------------------------------------------------------------------------ 9 5.2 特性阻抗------------------------------------------------------------------------------------- 9第6章反射----------------------------------------------------------------------------------------------11 6.1 反射的定义 ---------------------------------------------------------------------------------11 6.2 反射的测试方法--------------------------------------------------------------------------- 12 6.3 TDR曲线映射着传输线的各点 --------------------------------------------------------- 12 6.4 TDR探头选择 ----------------------------------------------------------------------------- 13 第7章振铃--------------------------------------------------------------------------------------------- 14 第8章串扰--------------------------------------------------------------------------------------------- 16 8.1 串扰的定义 -------------------------------------------------------------------------------- 16 8.2 观测串扰 ----------------------------------------------------------------------------------- 16 第9章信号质量 --------------------------------------------------------------------------------------- 18 9.1 常见的信号质量问题 --------------------------------------------------------------------- 18 第10章信号完整性测试 ----------------------------------------------------------------------------- 21 10.1 波形测试---------------------------------------------------------------------------------- 21 10.2 眼图测试---------------------------------------------------------------------------------- 21 10.3 抖动测试---------------------------------------------------------------------------------- 23 10.3.1 抖动的定义 ------------------------------------------------------------------------ 23 10.3.2 抖动的成因 ------------------------------------------------------------------------ 23 10.3.3 抖动测试 --------------------------------------------------------------------------- 23 10.3.4 典型的抖动测试工具: ---------------------------------------------------------- 24 10.4 TDR测试 --------------------------------------------------------------------------------- 24 10.5 频谱测试---------------------------------------------------------------------------------- 25 10.6 频域阻抗测试 ---------------------------------------------------------------------------- 25 10.7 误码测试---------------------------------------------------------------------------------- 25 10.8 示波器选择与使用要求: -------------------------------------------------------------- 26 10.9 探头选择与使用要求-------------------------------------------------------------------- 26 10.10 测试点的选择--------------------------------------------------------------------------- 27 10.11 数据、地址信号质量测试 ------------------------------------------------------------- 27 10.11.1 简述 ------------------------------------------------------------------------------- 27 10.11.2 测试方法-------------------------------------------------------------------------- 27

相关文档
最新文档