CL Chapter 02 Solutions 5th ed_EQUATIONS_UPDATED

CL Chapter 02 Solutions 5th ed_EQUATIONS_UPDATED
CL Chapter 02 Solutions 5th ed_EQUATIONS_UPDATED

Chapter 2: Probability

Section 2.2: Sample Spaces and the Algebra of Sets

2.2.1

S = {}(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,)s s s s s f s f s f s s s f f f s f f f s f f f

A = {}(,,),(,,)s f s f s s ;

B = {}(,,)f f f

2.2.2 Let (x, y, z ) denote a red x , a blue y , and a green z . Then A = {}(2,2,1),(2,1,2),(1,2,2),(1,1,3),(1,3,1),(3,1,1)

2.2.3 (1,3,4), (1,3,5), (1,3,6), (2,3,4), (2,3,5), (2,3,6)

2.2.4 There are 16 ways to get an ace and a 7, 16 ways to get a 2 and a 6, 16 ways to get a 3 and a 5,

and 6 ways to get two 4’s, giving 54 total.

2.2.5 The outcome sought is (4, 4). It is “harder” to obtain than the set {(5, 3), (3, 5), (6, 2), (2, 6)} of

other outcomes making a total of 8.

2.2.6 The set N of five card hands in hearts that are not flushes are called straight flushes . These are

five cards whose denominations are consecutive. Each one is characterized by the lowest value in the hand. The choices for the lowest value are A, 2, 3, …, 10. (Notice that an ace can be high or low). Thus, N has 10 elements.

2.2.7 P = {right triangles with sides (5, a , b ): a 2 + b 2 = 25}

2.2.8 A = {SSBBBB , SBSBBB , SBBSBB , SBBBSB , BSSBBB , BSBSBB , BSBBSB , BBSSBB , BBSBSB , BBBSSB }

2.2.9 (a) S = {(0, 0, 0, 0) (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1, ), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1, )} (b) A = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0, )} (c) 1 + k

2.2.10 (a) S = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (4, 1), (4, 2), (4, 4)} (b) {2, 3, 4, 5, 6, 8}

2.2.11 Let p 1 and p 2 denote the two perpetrators and i 1, i 2, and i 3, the three in the lineup who are

innocent.

Then S = {}11121321222312121323(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)p i p i p i p i p i p i p p i i i i i i . The event A contains every outcome in S except (p 1, p 2).

2.2.12 The quadratic equation will have complex roots—that is, the event A will occur—if b 2 ? 4ac < 0.

2 Chapter 2: Probability

2.2.13In order for the shooter to win with a point of 9, one of the following (countably infinite)

sequences of sums must be rolled: (9,9), (9, no 7 or no 9,9), (9, no 7 or no 9, no 7 or no 9,9), …

2.2.14 Let (x, y) denote the strategy of putting x white chips and y black chips in the first urn (which

results in 10 ?x white chips and 10 ?y black chips being in the second urn). Then

S = {}

(,):0,1,...,10,0,1,...,10, and 119

x y x y x y

==≤+≤. Intuitively, the optimal strategies are (1, 0) and (9, 10).

2.2.15 Let A k be the set of chips put in the urn at 1/2k minute until midnight. For example,

A1 = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}. Then the set of chips in the urn at midnight is

1({1}) k

k A k

∪∞

=

?+=?.

2.2.16

2.2.17 If x2 + 2x≤ 8, then (x + 4)(x? 2) ≤ 0 and A = {x: ?4 ≤x≤ 2}. Similarly, if x2 + x≤ 6, then

(x + 3)(x? 2) ≤ 0 and B = {x: ?3 ≤x≤ 2). Therefore, A∩B = {x: ?3 ≤x≤ 2} and

A∪B = {x: ?4 ≤x≤ 2}.

2.2.18A∩B∩C = {x: x = 2, 3, 4}

2.2.19The system fails if either the first pair fails or the second pair fails (or both pairs fail). For either

pair to fail, though, both of its components must fail. Therefore, A = (A11∩A21) ∪ (A12∩A22).

2.2.20 (a)(b) _____________________

?∞∞

(c)empty set (d)

2.2.21 40

2.2.22(a){E1, E2} (b) {S1, S2, T1, T2} (c) {A, I}

2.2.23(a) If s is a member of A∪ (B∩C) then s belongs to A or to B∩C. If it is a member of A or of

B∩C, then it belongs to A∪B and to A∪C. Thus, it is a member of (A∪B) ∩ (A∪C).

Conversely, choose s in (A∪B) ∩ (A∪C). If it belongs to A, then it belongs to

A∪ (B∩C). If it does not belong to A, then it must be a member of B∩C. In that case it

also is a member of A∪ (B∩C).

Section 2.2: Sample Spaces and the Algebra of Sets 3

(b) If s is a member of A ∩ (B ∪ C ) then s belongs to A and to B ∪ C . If it is a member of B ,

then it belongs to A ∩ B and, hence, (A ∩ B ) ∪ (A ∩ C ). Similarly, if it belongs to C , it is a member of (A ∩ B ) ∪ (A ∩ C ). Conversely, choose s in (A ∩ B ) ∪ (A ∩ C ). Then it belongs to A . If it is a member of A ∩ B then it belongs to A ∩ (B ∪ C ). Similarly, if it belongs to A ∩ C , then it must be a member of A ∩ (B ∪ C ).

2.2.24 Let B = A 1 ∪ A 2 ∪ … ∪ A k . Then 12...C C C

k A A A ∩∩∩ = (A 1 ∪ A 2 ∪ …∪ A k )C = B C . Then the

expression is simply B ∪ B C = S .

2.2.25 (a) Let s be a member of A ∪ (B ∪ C ). Then s belongs to either A or B ∪ C (or both). If s

belongs to A , it necessarily belongs to (A ∪ B ) ∪ C . If s belongs to B ∪ C , it belongs to B or C or both, so it must belong to (A ∪ B ) ∪ C . Now, suppose s belongs to (A ∪ B ) ∪ C . Then it belongs to either A ∪ B or C or both. If it belongs to C , it must belong to A ∪ (B ∪ C ). If it belongs to A ∪ B , it must belong to either A or B or both, so it must belong to A ∪ (B ∪ C ).

(b) Suppose s belongs to A ∩ (B ∩ C ), so it is a member of A and also B ∩ C . Then it is a

member of A and of B and C . That makes it a member of (A ∩ B ) ∩ C . Conversely, if s is a

member of (A ∩ B ) ∩ C , a similar argument shows it belongs to A ∩ (B ∩ C ).

2.2.26 (a) A C ∩ B C ∩ C C (b) A ∩ B ∩ C (c) A ∩ B C ∩ C C (d) (A ∩ B C ∩ C C ) ∪ (A C ∩ B ∩ C C ) ∪ (A C ∩ B C ∩ C ) (e) (A ∩ B ∩ C C ) ∪ (A ∩ B C ∩ C ) ∪ (A C ∩ B ∩ C )

2.2.27 A is a subset of B .

2.2.28 (a) {0} ∪ {x : 5 ≤ x ≤ 10} (b) {x : 3 ≤ x < 5} (c) {x : 0 < x ≤ 7}

(d) {x : 0 < x < 3} (e) {0}{:310}x x ∪≤≤

(f) {0}{:710}x x ∪<≤

2.2.29 (a) B and C (b) B is a subset of A .

2.2.30 (a) A 1 ∩ A 2 ∩ A 3 (b) A 1 ∪ A 2 ∪ A 3 The second protocol would be better if speed of approval matters. For very important issues, the

first protocol is superior.

2.2.31 Let A and B denote the students who saw the movie the first time and the second time,

respectively. Then N (a) = 850, N (b) = 690, and [()]C N A B ∪ = 4700

(implying that N (A ∪ B ) = 1300). Therefore, N (A ∩ B ) = number who saw movie twice = 850 + 690 ? 1300 = 240.

2.2.32 (a)

4 Chapter 2: Probability

(b)

2.2.33(a)

(b)

2.2.34 (a)

A∪ (B∪ C) (A∪B) ∪ C

(b)

A∩ (B∩ C) (A∩B) ∩C

2.2.35 A and B are subsets of A∪B.

2.2.36(a)

∩= A C∪B

()C C

A B

Section 2.3: The Probability Function 5

(b)

()C C B A B A B ∪∪=∪ (c)

()C C A A B A B ∩∩=∩

2.2.37 Let A be the set of those with MCAT scores ≥ 27 and B be the set of those with GPAs ≥

3.5. We

are given that N (a) = 1000, N (b) = 400, and N (A ∩ B ) = 300. Then

()C C N A B ∩ = [()]C N A B ∪= 1200 ? N (A ∪ B ) = 1200 ? [(N (a) + N (b) ? N (A ∩ B )] = 1200 ? [(1000 + 400 ? 300] = 100. The requested proportion is 100/1200.

2.2.38

N (A ∪ B ∪ C ) = N (a) + N (b) + N (c) ? N (A ∩ B ) ? N (A ∩ C ) ? N (B ∩ C ) + N (A ∩ B ∩ C )

2.2.39 Let A be the set of those saying “yes” to the first question and B be the set of those saying “yes”

to the second question. We are given that N (a) = 600, N (b) = 400, and N (A C ∩ B ) = 300. Then N (A ∩ B ) = N (b) ? ()C N A B ∩= 400 ? 300 = 100. ()C N A B ∩ = N (a) ? N (A ∩ B ) = 600 ? 100

= 500.

2.2.40 [()]C N A B ∩ = 120 ? N (A ∪ B ) = 120 ? [N (C A ∩ B ) + N (A ∩C B ) + N (A ∩ B )] = 120 ? [50 + 15 + 2] = 53

Section 2.3: The Probability Function

2.3.1 Let L and V denote the sets of programs with offensive language and too much violence,

respectively. Then P (L ) = 0.42, P (V ) = 0.27, and P (L ∩ V ) = 0.10. Therefore, P (program complies) = P ((L ∪ V )C ) = 1 ? [P (L ) + P (V ) ? P (L ∩ V )] = 0.41.

2.3.2 P (A or B but not both) = P (A ∪ B ) ? P (A ∩ B ) = P (a) + P (b) ? P (A ∩ B ) ? P (A ∩ B ) = 0.4 + 0.5 ? 0.1 ? 0.1 = 0.7

6 Chapter 2: Probability 2.3.3(a) 1 ?P(A∩B) (b)P(b) ?P(A∩B)

2.3.4P(A∪B) = P(a) + P(b) ?P(A∩B) = 0.3; P(a) ?P(A∩B) = 0.1. Therefore, P(b) = 0.2.

2.3.5 No. P(A1∪A2∪A3) = P(at least one “6” appears) = 1 ?P(no 6’s appear) = 1 ?

3

51 62??

??

??

.

The A i’s are not mutually exclusive, so P(A1∪A2∪A3) ≠P(A1) + P(A2) + P(A3).

2.3.6

P(A

or B but not both) = 0.5 – 0.2 = 0.3

2.3.7

By

inspection,

B = (B∩A1) ∪ (B∩A2) ∪ … ∪ (B∩A n).

2.3.8(a)(b)(b)

2.3.9P(odd man out) = 1 ?P(no odd man out) = 1 ?P(HHH or TTT) = 1 ?23 84 =

2.3.10A = {2, 4, 6, …, 24}; B = {3, 6, 9, …, 24); A∩B = {6, 12, 18, 24}.

Therefore,

P(A∪B) = P(a) + P(b) ?P(A∩B) = 128416 24242424

+?=.

2.3.11 Let A: State wins Saturday and B: State wins next Saturday. Then P(a) = 0.10, P(b) = 0.30, and

P(lose both) = 0.65 = 1 ?P(A∪B), which implies that P(A∪B) = 0.35. Therefore,

P(A∩B) = 0.10 + 0.30 ? 0.35 = 0.05, so P(State wins exactly once) = P(A∪B) ?P(A∩B) =

0.35 ? 0.05 = 0.30.

Section 2.4: Conditional Probability 7 2.3.12 Since A1 and A2 are mutually exclusive and cover the entire sample space, p1 + p2 = 1.

But

3p1?p2 = 1

2

, so p2 =

5

8

.

2.3.13 Let F: female is hired and T: minority is hired. Then P(f) = 0.60, P(T) = 0.30,

and

P(F C∩T C) = 0.25 = 1 ?P(F∪T). Since P(F∪T) = 0.75, P(F∩T)

= 0.60 + 0.30 ? 0.75 = 0.15.

2.3.14The smallest value of P[(A∪B∪C)C] occurs when P(A∪B∪C) is as large as possible. This, in

turn, occurs when A, B, and C are mutually disjoint. The largest value for P(A∪B∪C) is

P(a) + P(b) + P(c) = 0.2 + 0.1 + 0.3 = 0.6. Thus, the smallest value for P[(A∪B∪C)C] is 0.4.

2.3.15(a)X C∩Y = {(H, T, T, H), (T, H, H, T)}, so P(X C∩Y) = 2/16

(b)X∩Y C = {(H, T, T, T), (T, T, T, H), (T, H, H, H), (H, H, H, T)} so P(X∩Y C) = 4/16

2.3.16A = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}

A∩B C = {(1, 5), (3, 3), (5, 1)}, so P(A∩B C) = 3/36 = 1/12.

2.3.17A∩B, (A∩B) ∪ (A∩C), A, A∪B, S

2.3.18 Let A be the event of getting arrested for the first scam; B, for the second. We are given P(a) =

1/10, P(b) = 1/30, and P(A∩B) = 0.0025. Her chances of not getting arrested are P[(A∪B)C] =

1 ?P(A∪B) = 1 ? [P(a) + P(b) ?P(A∩B)] = 1 ? [1/10 + 1/30 ? 0.0025] = 0.869

Section 2.4: Conditional Probability

2.4.1P(sum = 10|sum exceeds 8) =

(sum10 and sum exceeds 8)

(sum exceeds 8)

P

P

=

=

(sum10)3363 (sum 9,10,11,or 12)43633623613610 P/

P////

=

== =+++

.

2.4.2P(A|B) + P(B|A) = 0.75 =

()()10()

5()

()()4

P A B P A B P A B

P A B

P B P A

∩∩∩

+=+∩, which implies that

P(A∩B) = 0.1.

2.4.3 If P(A|B) =

()

()

()

P A B

P A

P B

<, then P(A∩B) < P(a) ?P(b). It follows that

P(B|A) =

()()()

()()

P A B P A P B

P A P A

∩?

< = P(b).

2.4.4P(E|A∪B) =

(())()()()0.40.13 ()()()0.44 P E A B P E P A B P A B

P A B P A B P A B

∩∪∪?∩?

====∪∪∪

.

2.4.5The answer would remain the same. Distinguishing only three family types does not make them

equally likely; (girl, boy) families will occur twice as often as either (boy, boy) or (girl, girl)

families.

8 Chapter 2: Probability

2.4.6

P (A ∪ B ) = 0.8 and P (A ∪ B ) ? P (A ∩ B ) = 0.6, so P (A ∩ B ) = 0.2. Also, P (A |B ) = 0.6 = ()()P A B P B ∩, so P (b) =

0.210.63=and P (a) = 0.8 + 0.2 ? 12

33

=.

2.4.7 Let R i be the event that a red chip is selected on the i th draw, i = 1, 2.

Then P (both are red) = P (R 1 ∩ R 2) = P (R 2 | R 1)P (R 1) = 313

428

?=.

2.4.8 P (A |B ) = ()()()()()

()()P A B P A P B P A B a b P A B P B P B b

∩+?∪+?∪==.

But P (A ∪ B ) ≤ 1, so P (A |B ) ≥

1

a b b

+?.

2.4.9 Let

i W be the event that a white chip is selected on the i th draw, i = 1,2 . Then P (W 2|W 1) =

121()

()

P W W P W ∩. If both chips in the urn are white, P (W 1) = 1; if one is white and one is black, P (W 1) = 1

2

. Since each chip distribution is equally likely,

P (W 1) = 1 ? 11132224+?=. Similarly, P (W 1 ∩ W 2) = 1 ? 11152428+?=, so P (W 2|W 1) =

5/85

3/46

=.

2.4.10 P [(A ∩ B )| (A ∪ B )C

] = [()()]()0[()][()]

C C C

P A B A B P P A B P A B ∩∩∪?==∪∪

2.4.11 (a) P (A C ∩ B C ) = 1 ? P (A ∪ B ) = 1 ? [P (a) + P (b) ? P (A ∩ B )] = 1 ? [0.65 + 0.55 ? 0.25] = 0.05 (b) P [(A C ∩ B ) ∪ (A ∩ B C )] = P (A C ∩ B ) + P (A ∩ B C ) = [P (a) ? P (A ∩ B )] + [P (b) ? P (A ∩ B )] = [0.65 ? 0.25] + [0.55 ? 0.25] = 0.70 (c) P (A ∪ B ) = 0.95 (d) P [(A ∩ B )C ] = 1 ? P (A ∩ B ) = 1 ? 0.25 = 0.75

(e) P {[(A C ∩ B ) ∪ (A ∩ B C

)]| A ∪ B } = [()()]()

C C P A B A B P A B ∩∪∩∪ = 0.70/0.95 = 70/95

(f) P (A ∩ B )| A ∪ B ) = P (A ∩ B )/P (A ∪ B ) = 0.25/0.95 = 25/95 (g) P (B |A C ) = P (A C ∩ B )/P (A C ) ] = [P (b) ? P (A ∩ B )]/[1 ? P (a)] = [0.55 ? 0.25]/[1 ? 0.65] = 30/35

2.4.12 P (No. of heads ≥ 2| No. of heads ≤ 2)

= P (No. of heads ≥ 2 and No. of heads ≤ 2)/P (No. of heads ≤ 2) = P (No. of heads = 2)/P (No. of heads ≤ 2) = (3/8)/(7/8) = 3/7

Section 2.4: Conditional Probability 9

2.4.13 P (first die ≥ 4|sum = 8) = P (first die ≥ 4 and sum = 8)/P (sum = 8) = P ({(4, 4), (5, 3), (6, 2)}/P ({(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}) = 3/5

2.4.14 There are 4 ways to choose three aces (count which one is left out). There are 48 ways to choose

the card that is not an ace, so there are 4 × 48 = 192 sets of cards where exactly three are aces. That gives 193 sets where there are at least three aces. The conditional probability is (1/270,725)/(193/270,725) = 1/193.

2.4.15 F irst note that P (A ∪ B ) = 1 ? P [(A ∪ B )C ] = 1 ? 0.2 = 0.8. Then P (b) = P (A ∪ B ) ? P (A ∩ B C ) ? P (A ∩ B ) = 0.8 ? 0.3 ? 0.1 = 0.5. Finally P (A |B ) = P (A ∩ B )/P (b) = 0.1/0.5 = 1/5

2.4.16 P (A |B ) = 0.5 implies P (A ∩ B ) = 0.5P (b). P (B |A ) = 0.4 implies P (A ∩ B ) = (0.4)P (a). Thus, 0.5P (b) = 0.4P (a) or P (b) = 0.8P (a). Then, 0.9 = P (a) + P (b) = P (a) + 0.8P (a) or P (a) = 0.9/1.8 = 0.5.

2.4.17 P [(A ∩ B )C ] = P [(A ∪ B )C ] + P (A ∩ B C ) + P (A C ∩ B ) = 0.2 + 0.1 + 0.3 = 0.6 P (A ∪ B |(A ∩ B )C ) = P [(A ∩ B C ) ∪ (A C ∩ B )]/P ((A ∩ B )C ) = [0.1 + 0.3]/0.6 = 2/3

2.4.18 P (sum ≥ 8|at least one die shows 5) = P (sum ≥ 8 and at least one die shows 5)/P (at least one die shows 5) = P ({(5, 3), (5, 4), (5, 6), (3, 5), (4, 5), (6, 5), (5, 5)})/(11/36) = 7/11

2.4.19 P (Outandout wins|Australian Doll and Dusty Stake don’t win) = P (Outandout wins and Australian Doll and Dusty Stake don’t win)/P (Australian Doll and Dusty

Stake don’t win) = 0.20/0.55 = 20/55

2.4.20 Suppose the guard will randomly choose to name Bob or Charley if they are the two to go free.

Then the probability the guard will name Bob, for example, is

P (Andy, Bob) + (1/2)P (Bob, Charley) = 1/3 + (1/2)(1/3) = 1/2. The probability Andy will go free given the guard names Bob is P (Andy, Bob)/P (Guard names

Bob) = (1/3)/(1/2) = 2/3. A similar argument holds for the guard naming Charley. Andy’s concern is not justified.

2.4.21 P (BBRWW ) = P (b)P (B |B )P (R |BB )P (W |BBR )P (W |BBRW ) = 3565

1514131211

4????

=.0050. P (2, 6, 4, 9, 13) = 111111

1514131211360,360

????=.

2.4.22 Let K i be the event that the i th key tried opens the door, i = 1, 2, …, n . Then P (door opens first

time with 3rd key) = 123121312()()()()C C C C C C C

P K K K P K P K K P K K K ∩∩=??∩=

1211

12n n n n n n

????=??.

2.4.23 (1/52)(1/51)(1/50)(1/49) = 1/6,497,400

2.4.24 (1/2)(1/2)(1/2)(2/3)(3/4) = 1/16

10 Chapter 2: Probability

2.4.25 Let A i be the event “Bearing came from supplier i ”, i = 1, 2,

3. Let B be the event “Bearing in toy

manufacturer’s inventory is defective.”

Then P (A 1) = 0.5, P (A 2) = 0.3, P (A 3 ) = 0.2 and P (B |A 1) = 0.02, P (B |A 2) = 0.03, P (B |A 3) = 0.04 Combining these probabilities according to Theorem 2.4.1 gives P (b) = (0.02)(0.5) + (0.03)(0.3) + (0.04)(0.2) = 0.027 meaning that the manufacturer can expect 2.7% of her ball-bearing stock to be defective.

2.4.26 Let B be the event that the face (or sum of faces) equals 6. Let A 1 be the event that a Head comes up and A 2, the event that a Tail comes up. Then P (b) = P (B |A 1)P (A 1) + P (B |A 2)P (A 2)

=

1151

62362

?+? = 0.15.

2.4.27 Let B be the event that the countries go to war. Let A be the event that terrorism increases. Then P (b) = P (B |A )P (a) + P (B |A C )P (A C ) = (0.65)(0.30) + (0.05)(0.70) = 0.2

3.

2.4.28 Let B be the event that a donation is received; let A 1, A 2, and A 3 denote the events that the call is

placed to Belle Meade, Oak Hill, and Antioch, respectively.

Then P (b) = 3

1

100010002000

()()(0.60)(0.55)(0.35)0.46400040004000i i i P B A P A ==?+?+?=∑

.

2.4.29 Let B denote the event that the person interviewed answers truthfully, and let A be the event that

the person interviewed is a man.

Then P (b) = P (B |A )P (a) + P (B |A C )P (A C ) = (0.78)(0.47) + (0.63)(0.53) = 0.70.

2.4.30 Let B be the event that a red chip is ultimately drawn from Urn I. Let A RW , for example, denote

the event that a red is transferred from Urn I and a white is transferred from Urn II. Then

P (b) = P (B |A RR )P (A RR ) + P (B |A RW )P (A RW ) + P (B |A WR )P (A WR ) + P (B |A WW )P (A WW )

= 3322321231211

14444444444416

?????????+?+?+?=????????????????.

2.4.31 Let B denote the event that someone will test positive, and let A denote the event that someone is

infected. Then P (b) = P (B |A )P (a) + P (B |A C )P (A C ) = (0.999)(0.0001) + (0.0001)(0.9999)

= 0.00019989.

2.4.32 The optimal allocation has 1 white chip in one urn and the other 19 chips (9 white and 10 black)

in the other urn. Then P (white is drawn) = 1 ? 191

2192

+? = 0.74.

2.4.33 If B is the event that Backwater wins and A is the event that their first-string quarterback plays,

then P (b) = P (B |A )P (a) + P (B |A C )P (A C ) = (0.75)(0.70) + (0.40)(0.30) = 0.645.

2.4.34 Since the identities of the six chips drawn are not known, their selection does not affect any

probability associated with the seventh chip. Therefore,

P (seventh chip drawn is red) = P(first chip drawn is red) = 40100

.

Section 2.4: Conditional Probability 11

2.4.35 No. Let B denote the event that the person calling the toss is correct. Let A H be the event that the

coin comes up Heads and let A T be the event that the coin comes up Tails.

Then P (b) = P (B |A H )P (A H ) + P (B |A T )P (A T ) = (0.7)12?????? + (0.3) 12??

???? = 12

.

2.4.36 Let B be the event of a guilty verdict; let A be the event that the defense can discredit the police.

Then P (b) = P (B |A )P (a) + P (B |A C )P (A C ) = 0.15(0.70) + 0.80(0.30) = 0.345

2.4.37 Let A 1 be the event of a

3.5-

4.0 GPA; A 2, of a 3.0-3.5 GPA; and A 3, of a GPA less than 3.0. If B is

the event of getting into medical school, then

P (b) = P (B |A 1)P (A 1) + P (B |A 2)P (A 2) + P (B |A 3)P (A 3) = (0.8)(0.25) + (0.5)(0.35) + (0.1)(0.40) = 0.415

2.4.38 Let B be the event of early release; let A be the event that the prisoner is related to someone on

the governor’s staff.

Then P (b) = P (B |A )P (a) + P (B |A C )P (A C ) = (0.90)(0.40) + (0.01)(0.60) = 0.366

2.4.39 Let A 1 be the event of being a Humanities major; A 2, of being a Natural Science major; A 3, of

being a History major; and A 4, of being a Social Science major. If B is the event of a male student, then P (b) = P (B |A 1)P (A 1) + P (B |A 2)P (A 2) + P (B |A 3)P (A 3) + P (B |A 4)P (A 4)

= (0.40)(0.4) + (0.85)(0.1) + (0.55)(0.3) + (0.25)(0.2) = 0.46

2.4.40 Let B denote the event that the chip drawn from Urn II is red; let A R and A W denote the events that

the chips transferred are red and white, respectively.

Then (|)()(2/4)(2/3)4

(|)(|)()(|)()(3/4)(1/3)(2/4)(2/3)7

W W W R R W W P B A P A P A B P B A P A P B A P A ===++

2.4.41 Let A i be the event that Urn i is chosen, i = I, II, III. Then, P (A i ) = 1/3, i = I, II, III. Suppose B is

the event a red chip is drawn. Note that P (B |A 1) = 3/8, P (B |A 2) = 1/2 and P (B |A 3) = 5/8.

333112233(|)()

(|) = (|)()(|)()(|)()

P B A P A P A B

P B A P A P B A P A P B A P A ++

= (5/8)(1/3)

(3/8)(1/3)(1/2)(1/3)(5/8)(1/3)

++ = 5/12.

2.4.42 If B is the event that the warning light flashes and A is the event that the oil pressure is low, then

P (A |B ) =

(|)()(|)()(|)()C C P B A P A P B A P A P B A P A += (0.99)(0.10)

(0.99)(0.10)(0.02)(0.90)

+ = 0.85

2.4.43 Let B be the event that the basement leaks, and let A T , A W , and A H denote the events that the house

was built by Tara, Westview, and Hearthstone, respectively. Then P (B |A T ) = 0.60, P (B |A W ) = 0.50, and P (B |A H ) = 0.40. Also, P (A T ) = 2/11, P (A W ) = 3/11, and P (A H ) = 6/11. Applying Bayes’ rule to each of the builders shows that P (A T |B ) = 0.24, P (A W |B ) = 0.29, and P (A H |B ) = 0.47, implying that Hearthstone is the most likely contractor.

12 Chapter 2: Probability

2.4.44 Let B denote the event that Francesca passed, and let A X and A Y denote the events that she was

enrolled in Professor X ’s section and Professor Y ’s section, respectively. Since P (B |A X ) = 0.85, P (B |A Y ) = 0.60, P (A X ) = 0.4, and P (A Y ) = 0.6,

P (A X |B ) =

(0.85)(0.4)

(0.85)(0.4)(0.60)(0.6)

+ = 0.486

2.4.45 Let B denote the event that a check bounces, and let A be the event that a customer wears

sunglasses. Then P (B |A ) = 0.50, P (B |A C ) = 1 ? 0.98 = 0.02, and P (a) = 0.10, so

P (A |B ) =

(0.50)(0.10)

(0.50)(0.10)(0.02)(0.90)

+ = 0.74

2.4.46 Let B be the event that Basil dies, and define A 1, A 2, and A 3 to be the events that he ordered

cherries flambe, chocolate mousse, or no dessert, respectively. Then P (B |A 1) = 0.60, P (B |A 2) = 0.90, P (B |A 3) = 0, P (A 1) = 0.50, P (A 2) = 0.40, and P (A 3) = 0.10. Comparing P (A 1|B ) and P (A 2|B ) suggests that Margo should be considered the prime suspect:

P (A 1|B ) = (0.60)(0.50)

(0.60)(0.50)(0.90)(0.40)(0)(0.10)

++ = 0.45

P (A 2|B ) = (0.90)(0.40)

(0.60)(0.50)(0.90)(0.40)(0)(0.10)

++ = 0.55

2.4.47 Define B to be the event that Josh answers a randomly selected question correctly, and let A 1 and

A 2 denote the events that he was 1) unprepared for the question and 2) prepared for the question, respectively. Then P (

B |A 1) = 0.20, P (B |A 2) = 1, P (A 2) = p , P (A 1) = 1 ? p , and

P (A 2|B ) = 0.92 = 221122(|)()1(|)()(|)()(0.20)(1)(1)

P B A P A p

P B A P A P B A P A p p ?=

+?+? which implies that p = 0.70 (meaning that Josh was prepared for (0.70)(20) = 14 of the

questions).

2.4.48 Let B denote the event that the program diagnoses the child as abused, and let A be the event that

the child is abused. Then P (a) = 1/90, P (B |A ) = 0.90, and P (B |A C ) = 0.03, so

P (A |B ) = (0.90)(1/90)

(0.90)(1/90)(0.03)(89/90)

+= 0.25

If P (a) = 1/1000, P (A |B ) = 0.029; if P (a) = 1/50, P (A |B ) = 0.38.

2.4.49 Let A 1 be the event of being a Humanities major; A 2, of being a History and Culture major; and

A 3, of being a Science major. If

B is the event of being a woman, then

P (A 2|B ) =

(0.45)(0.5)

(0.75)(0.3)(0.45)(0.5)(0.30)(0.2)

++ = 225/510

Section 2.5: Independence 13

2.4.50 Let B be the event that a 1 is received. Let A be the event that a 1 was sent. Then

P (A C |B ) =

(0.10)(0.3)

(0.95)(0.7)(0.10)(0.3)

+ = 30/695

2.4.51 Let B be the event that Zach’s girlfriend responds promptly. Let A be the event that Zach sent an

e-mail, so A C is the event of leaving a message. Then

P (A |B ) =

(0.8)(2/3)

(0.8)(2/3)(0.9)(1/3)

+ = 16/25

2.4.52 Let A be the event that the shipment came from Warehouse A with events B and C defined

similarly. Let D be the event of a complaint.

P (C |D ) = (|)()

(|)()(|)()(|)()

P D C P C P D A P A P D B P B P D C P C ++

= (0.02)(0.5)

(0.03)(0.3)(0.05)(0.2)(0.02)(0.5)

++ = 10/29

2.4.53 Let A i be the event that Drawer i is chosen, i , = 1, 2,

3. If B is the event a silver coin is selected,

then P (A 3|B ) =

(0.5)(1/3)

(0)(1/3)(1)(1/3)(0.5)(1/3)

++ = 1/3

Section 2.5: Independence

2.5.1 (a) No, because P (A ∩ B ) > 0. (b) No, because P (A ∩ B ) = 0.2 ≠ P (a) ? P (b) = (0.6)(0.5) = 0.3 (c) P (A C ∪ B C ) = P ((A ∩ B )C ) = 1 ? P (A ∩ B ) = 1 ? 0.2 = 0.8.

2.5.2 Let C and M be the events that Spike passes chemistry and mathematics, respectively. Since P (C ∩ M ) = 0.12 ≠ P (c) ? P (M ) = (0.35)(0.40) = 0.14, C and M are not independent. P (Spike fails both) = 1 ? P (Spike passes at least one) = 1 ? P (C ∪ M ) = 1 ? [P (c) + P (M ) ? P (C ∩ M )] = 0.37.

2.5.3 P (one face is twice the other face) = P ((1, 2), (2, 1), (2, 4), (4, 2), (3, 6), (6, 3)) = 6

36

.

2.5.4 Let R i , B i , and W i be the events that red, black, and white chips are drawn from urn i , i = 1, 2.

Then P (both chips drawn are same color) = P ((R 1 ∩ R 2) ∪ (B 1 ∩ B 2) ∪ (W 1 ∩ W 2))

= P (R 1) ? P (R 2) + P (B 1) ? P (B 2) + P (W 1) ? P (W 2) [because the intersections are mutually exclusive and the individual draws are independent]. But P (R 1) ? P (R 2) + P (B 1) ? P (B 2) + P (W 1) ? P (W 2)

= 322453109109109????????????

++???????????????????????? = 0.32.

2.5.5 P (Dana wins at least 1 game out of 2) = 0.3, which implies that P (Dana loses 2 games out of 2) =

0.7. Therefore, P (Dana wins at least 1 game out of 4) = 1 ? P (Dana loses all 4 games)

= 1 ? P (Dana loses first 2 games and Dana loses second 2 games) = 1 ? (0.7)(0.7) = 0.51.

14 Chapter 2: Probability

2.5.6Six equally-likely orderings are possible for any set of three distinct random numbers:

x1 < x2 < x3, x1 < x3 < x2, x2 < x1 < x3, x2 < x3 < x1, x3 < x1 < x2, and x3 < x2 < x1. By inspection,

P(a) = 2

6

, and P(b) =

1

6

, so P(A∩B) = P(a) ?P(b) =

1

18

.

2.5.7(a) 1. P(A ∪B) = P(a) + P(b) ?P(A∩B) = 1/4 + 1/8 + 0 = 3/8

2.

P(A∪B) = P(a) + P(b) ?P(a)P(b) = 1/4 + 1/8 ? (1/4)(1/8) = 11/32

(b) 1. P(A|B) =

()0

0 ()()

P A B

P B P B

==

2.

P(A|B) =

()()()

()1/4 ()()

P A B P A P B

P A

P B P B

===

2.5.8(a)P(A∪B∪C) = P(a) + P(b) + P(c) ?P(a)P(b) ?P(a)P(c) ?P(b)P(c) + P(a)P(b)P(c)

(b)P(A∪B∪C) = 1 ?P[(A∪B∪C)C] = 1 ?P(A C∩B C∩C C) = 1 ?P(A C)P(B C)P(C C)

2.5.9 Let A i be the event of i heads in the first two tosses, i = 0, 1, 2. Let B i be the event of i heads in the

last two tosses, i = 0, 1, 2. The A’s and B’s are independent. The event of interest is

(A0∩B0) ∪ (A1∩B1) ∪ (A2∩B2) and P[(A0∩B0) ∪ (A1∩B1) ∪ (A2∩B2)]

=

P(A0)P(B0) + P(A1)P(B1) + P(A2)P(B2) = (1/4)(1/4) + (1/2)(1/2) + (1/4)(1/4) = 6/16

2.5.10A and B are disjoint, so they cannot be independent.

2.5.11 Equation 2.5.3: P(A∩B∩C) = P({1, 3)}) = 1/36 = (2/6)(3/6)(6/36) = P(a)P(b)P(c)

Equation

2.5.4:

P(B∩C) = P({1, 3), (5,6)}) = 2/36 ≠ (3/6)(6/36) = P(b)P(c)

2.5.12Equation 2.5 3: P(A∩B∩C) = P({2, 4, 10, 12)}) = 4/36 ≠ (1/2)(1/2)(1/2) = P(a)P(b)P(c)

Equation

2.5.4:

P(A∩B) = P({2, 4, 10, 12, 24, 26, 32, 34, 36)}) = 9/36 = 1/4 = (1/2)(1/2)

=

P(a)P(b)

P(A∩C) = P({1, 2, 3, 4, 5, 10, 11, 12, 13)}) = 9/36 = 1/4 = (1/2)(1/2) = P(a)P(c)

P(B∩C) = P({2, 4, 6, 8, 10, 12, 14, 16, 18)}) = 9/36 = 1/4 = (1/2)(1/2) = P(a)P(c)

2.5.1311 [= 6 verifications of the form P(A i∩A j) = P(A i) ?P(A j) + 4 verifications of the form

P(A i∩A j∩A k) = P(A i) ?P(A j) ?P(A k) + 1 verification that P(A1∩A2∩A3∩A4)

= P(A1) ?P(A2) ?P(A3) ?P(A4)].

2.5.14P(a) = 3

6

, P(b) =

2

6

, P(c) =

6

36

, P(A∩B) =

6

36

, P(A∩C) =

3

36

, P(B∩C) =

2

36

, and

P(A∩B∩C) = 1

36

. It follows that A, B, and C are mutually independent because

P(A∩B∩C) = 1

36

= P(a) ?P(b) ?P(c) =

326

6636

??, P(A∩B) =

6

36

= P(a) ?P(b) =

32

66

?, P(A

∩C) = 3

36 = P(a) ?P(c) =

36

636

?, and P(B∩C) =

2

36

= P(b) ?P(c) =

26

636

?.

Section 2.5: Independence 15

2.5.15 P (A ∩ B ∩ C ) = 0 (since the sum of two odd numbers is necessarily even) ≠ P (a) ? P (b) ? P (c)

> 0, so A , B , and C are not mutually independent. However, P (A ∩ B ) = 9

36

= P (a) ? P (b) = 3366?, P (A ∩ C ) = 936 = P (a) ? P (c) = 318636?, and P (B ∩ C ) = 9

36

= P (b) ? P (c) =

318

636

?, so A , B , and C are pairwise independent.

2.5.16 Let R i and G i be the events that the i th light is red and green, respectively, i = 1, 2, 3, 4. Then

P (R 1) = P (R 2) = 13 and P (R 3) = P (R 4) = 1

2

. Because of the considerable distance between the

intersections, what happens from light to light can be considered independent events. P (driver stops at least 3 times) = P (driver stops exactly 3 times) + P (driver stops all 4 times)

= P ((R 1 ∩ R 2 ∩ R 3 ∩ G 4) ∪ (R 1 ∩ R 2 ∩ G 3 ∩ R 4) ∪ (R 1 ∩ G 2 ∩ R 3 ∩ R 4)

∪ (G 1 ∩ R 2 ∩ R 3 ∩ R 4) ∪ (R 1 ∩ R 2 ∩ R 3 ∩ R 4)) = 1111111133223322????????????????

+????????????????????????????????

+121121111111733223322332236

????????????????????????++=????????????????????????????????????????????????.

2.5.17 Let M , L , and G be the events that a student passes the mathematics, language, and general

knowledge tests, respectively. Then P (M ) =

61759500, P (L ) = 76009500, and P (g) = 8075

9500

. P (student fails to qualify) = P (student fails at least one exam) = 1 ? P (student passes all three exams) = 1 ? P (M ∩ L ∩ G ) = 1 ? P (M ) ? P (L ) ? P (g) = 0.56.

2.5.18 Let A i denote the event that switch A i closes, i = 1, 2, 3, 4. Since the A i ’s are independent events,

P (circuit is completed) = P ((A 1 ∩ A 2) ∪ (A 3 ∩ A 4)) = P (A 1 ∩ A 2) + P (A 3 ∩ A 4)

? P ((A 1 ∩ A 2) ∩ (A 3 ∩ A 4)) = 2p 2 ? p 4.

2.5.19 Let p be the probability of having a winning game card. Then 0.32 = P (winning at least once in 5 tries) = 1 ? P (not winning in 5 tries) = 1 ? (1 ? p )5, so p = 0.074

2.5.20 Let A H , A T , B H , B T , C H , and C T denote the events that players A , B , and C throw heads and tails on

individual tosses. Then P (A throws first head) = P (A H ∪ (A T ∩ B T ∩ C T ∩ A H ) ∪ ???)

= 2

1111111

422828211/87 ??????+++==?????????????. Similarly, P (B throws first head)

= P ((A T ∩ B H ) ∪ (A T ∩ B T ∩ C T ∩ A T ∩ B H ) ∪ …) = 2

1111111

2...44848411/87

??????+++==?????????????.

P (C throws first head) = 1 ?

421

777

?=.

2.5.21 P (at least one child becomes adult) = 1 ? P (no child becomes adult) = 10.2n ?.

Then 120.75n ?≥ implies ln 0.25

ln 0.2

n ≥

or 0.86n ≥, so take 1n =.

16 Chapter 2: Probability

2.5.22 P (at least one viewer can name actor) = 1 ? P (no viewer can name actor) = 1 ? (0.85)10 = 0.80. P (exactly one viewer can name actor) = 10 (0.15) (0.85)9 = 0.347.

2.5.23 Let B be the event that no heads appear, and let A i be the event that i coins are tossed, i = 1, 2, …,

6. Then P (b) = 26

6

1

11111163

(|)()...262626384i i i P B A P A =??????????=+++=????????????????????∑

.

2.5.24 P (at least one red chip is drawn from at least one urn) = 1 ? P (all chips drawn are white)

= 1 ? 444417777r r r rm ????????

?=?????????????????

.

2.5.25 P (at least one double six in n throws) = 1 ? P (no double sixes in n throws) = 1 ? 3536n

??

????

. By trial

and error, the smallest n for which P (at least one double six in n throws) exceeds 0.50 is 25

24

35[136???????= 0.49; 1 ? 25

3536??

????

= 0.51].

2.5.26 Let A be the event that a sum of 8 appears before a sum of 7. Let B be the event that a sum of 8

appears on a given roll and let C be the event that the sum appearing on a given roll is neither 7

nor 8. Then P (b) = 536, P (c) =

25

36

, and P (a) = P (b) + P (c)P (b) + P (c)P (c)P (b) + ??? = 252552555363636363636 ??+++=????02551

53636125/3611

k

k ∞=????==?????????∑

.

2.5.27 Let W , B , and R denote the events of getting a white, black and red chip, respectively, on a given

draw. Then P (white appears before red) = P (W ∪ (B ∩ W ) ∪ (B ∩ B ∩ W ) ∪ ???)

= 2

w b w b w w b r w b r w b r w b r w b r

??

+?+?+????++++++++++ = 11/()w w

w b r b w b r w r

???=??++?+++??.

2.5.28 P (B |A 1) = 1 ? P (all m I-teams fail) = 1 ? (1 ? r )m ; similarly, P (B |A 2) = 1 ? (1 ? r )n ?m . From

Theorem 2.4.1, P (b) = [1 ? (1 ? r )m ]p + [1 ? (1 ? r )n ?m ](1 ? p ). Treating m as a continuous variable and differentiating P (b) gives

()dP B dm = ?p (1 ? r )m ?ln(1 ? r ) + (1 ? p )(1 ? r )n ?m ?ln(1 ? r ). Setting ()

dP B dm = 0 implies that m = ln[(1)/]

22ln(1)

n p p r ?+?.

2.5.29 P (at least one four) = 1 ? P (no fours) = 1 ? (0.9)n . 1 ? (0.9)n ≥ 0.7 implies n = 12

Section 2.6: Combinatorics 17

2.5.30 Let B be the event that all n tosses come up heads. Let 1A be the event that the coin has two

heads, and let 2A be the event the coin is fair. Then 2(1/2)(8/9)8(1/2)(|)1(1/9)(1/2)(8/9)18(1/2)n n

n n

P A B ==

++ By inspection, the limit of 2(|)P A B as n goes to infinity is 0.

Section 2.6: Combinatorics

2.6.1 2 ? 3 ? 2 ? 2 = 24

2.6.2 20 ? 9 ? 6 ? 20 = 21,600

2.6.3 3 ? 3 ? 5 = 45. Included will be aeu and cdx.

2.6.4 (a) 262 ? 104 = 6,760,000 (b) 262 ? 10 ? 9 ? 8 ? 7 = 3,407,040 (c) The total number of plates with four zeros is 26 ? 26, so the total number not having four zeros must be 262 ? 104 ? 262 = 6,759,324.

2.6.5 There are 9 choices for the first digit (1 through 9), 9 choices for the second digit (0 + whichever

eight digits are not appearing in the hundreds place), and 8 choices for the last digit. The number of admissible integers, then, is 9 ? 9 ? 8 = 648. For the integer to be odd, the last digit must be either 1, 3, 5, 7, or 9. That leaves 8 choices for the first digit and 8 choices for the second digit, making a total of 320 (= 8 ? 8 ? 5) odd integers.

2.6.6 For each topping, the customer has 2 choices: “add” or “do not add.” The eight available

toppings, then, can produce a total of 28 = 256 different hamburgers.

2.6.7 The bases can be occupied in any of 27 ways (each of the seven can be either “empty” or

“occupied”). Moreover, the batter can come to the plate facing any of five possible “out” situations (0 through 4). It follows that the number of base-out configurations is 5 ? 27, or 640.

2.6.8 With 4 choices for the first digit, 1 for the third digit, 5 for the last digit, and 10 for each of the

remaining six digits, the total number of admissible zip codes is 20,000,000(= 4 ? 106 ? 1 ? 5).

2.6.9 4 ? 14 ? 6 + 4 ? 6 ? 5 + 14 ? 6 ? 5 + 4 ? 14 ? 5 = 1156

2.6.10 There are two mutually exclusive sets of ways for the black and white keys to alternate—the

black keys can be 1st , 3rd , 5th , and 7th notes in the melody, or the 2nd , 4th 6th , and 8th . Since there are 5 black keys and 7 white keys, there are 57575757??????? variations in the first set and 75757575??????? in the second set. The total number of alternating melodies is the sum 44445775+ = 3,001,250.

2.6.11 The number of usable garage codes is 28 ? 1 = 255, because the “combination” where none of the

buttons is pushed is inadmissible (recall Example 2.6.3). Five additional families can be added before the eight-button system becomes inadequate.

18 Chapter 2: Probability

2.6.12 4, because 21 + 22 + 23 < 26 but 21 + 22 + 23 + 24 ≥ 26.

2.6.13 In order to exceed 256, the binary sequence of coins must have a head in the ninth position and at

least one head somewhere in the first eight tosses. The number of sequences satisfying those conditions is 28 ? 1, or 255. (The “1” corresponds to the sequences TTTTTTTTH, whose value would not exceed 256.)

2.6.14 There are 3 choices for the vowel and 4 choices for the consonant, so there are 3 ? 4 = 12 choices,

if order doesn’t matter. If we are taking ordered arrangements, then there are 24 ways, since each unordered selection can be written vowel first or consonant first.

2.6.15 There are 1 ? 3 ways if the ace of clubs is the first card and 12 ? 4 ways if it is not. The total is then 3 + 12 ? 4 = 51

2.6.16 Monica has 3 ? 5 ? 2 = 30 routes from Nashville to Anchorage, so there are 30 ? 30 = 900 choices

of round trips.

2.6.17 6P 3 = 6 ? 5 ? 4 = 120

2.6.18 4P 4 = 4! = 24; 2P 2 ? 2P 2 = 4

2.6.19 log 10(30!) log 101302??

++????

log 10(30) ? 30log 10e = 32.42246, which implies that 30!

1032.42246 = 2.645 × 1032.

2.6.20 9P 9 = 9! = 362,880

2.6.21 There are 2 choices for the first digit, 6 choices for the middle digit, and 5 choices for the last

digit, so the number of admissible integers that can be formed from the digits 1 through 7 is 60

(= 2 ? 6 ? 5).

2.6.22 (a) 8P 8 = 8! = 40,320 (b) The men can be arranged in, say, the odd-numbered chairs in 4P 4 ways; for each of those permutations, the women can be seated in the even-numbered chairs in 4P 4 ways. But the men could also be in the even-numbered chairs. It follows that the total number of alternating seating arrangements is 4P 4 ? 4P 4 + 4P 4 ? 4P 4 = 1152.

2.6.23 There are 4 different sets of three semesters in which the electives could be taken. For each of

those sets, the electives can be selected and arranged in 10P 3 ways, which means that the number of possible schedules is 4 ? 10P 3, or 2880.

2.6.24 6P 6 = 720; 6P 6 ? 6P 6 = 518,400; 6!6!26 is the number of ways six male/female cheerleading teams

can be positioned along a sideline if each team has the option of putting the male in front or the female in front; 6!6!26212 is the number of arrangements subject to the conditions of the previous answer but with the additional option that each cheerleader can face either forwards or backwards.

Section 2.6: Combinatorics 19

2.6.25 The number of playing sequences where at least one side is out of order = total number of playing

sequences ? number of correct playing sequences = 6P 6 ? 1 = 719.

2.6.26 Within each of the n families, members can be lined up in m P m = m ! ways. Since the n families

can be permuted in n P n = n ! ways, the total number of admissible ways to arrange the nm people is n ! ? (m !)n .

2.6.27 There are 2P 2 = 2 ways for you and a friend to be arranged, 8P 8 ways for the other eight to be

permuted, and six ways for you and a friend to be in consecutive positions in line. By the multiplication rule, the number of admissible arrangements is 2P 2 ? 8P 8 ? 6 = 483,840.

2.6.28 By inspection, n P 1 = n . Assume that n P k = n (n ? 1) ??? (n ? k + 1) is the number of ways to arrange

k distinct objects without repetition. Notice that n ? k options would be available for a (k + 1)st object added to the sequences. By the multiplication rule, the number of sequences of length

k + 1 must be n (n ? 1) ??? (n ? k + 1)(n ? k ). But the latter is the formula for n P k +1.

2.6.29 (13!)4

2.6.30 By definition, (n + 1)! = (n + 1) ? n !; let n = 0.

2.6.31 9241 P C ? = 288

2.6.32 Two people between them: 4 ? 2 ? 5! = 960 Three people between them: 3 ? 2 ? 5! = 720 Four people between them: 2 ? 2 ? 5! = 480 Five people between them: 1 ? 2 ? 5! = 240 Total number of ways: 2400

2.6.33 (a) (4!)(5!) = 2880 (b) 6(4!)(5!) = 17, 280

(c) (4!)(5!) = 2880 (d) 94??

????

(2)(5!) = 30, 240

2.6.34 TENNESSEE can be permuted in

9!

4!2!2!1!

= 3780 ways; FLORIDA can be permuted in 7! = 5040 ways.

2.6.35 If the first digit is a 4, the remaining six digits can be arranged in 3

!

3!(1!)6 = 120 ways; if the first digit is a 5, the remaining six digits can be arranged in 2

!

2!2!(1!)

6 = 180 ways. The total number of admissible numbers, then, is 120 + 180 = 300.

2.6.36 (a) 8!/3!3!2! = 560 (b) 8! = 40,320 (c) 8!/3!(1!)5 = 6720

2.6.37 (a) 4! ? 3! ? 3! = 864 (b) 3! ? 4!3!3! = 5184 (each of the 3! permutations of the three nationalities can generate 4!3!3! arrangements of the ten people in line)

20 Chapter 2: Probability

(c) 10! = 3,628,800 (d) 10!/4!3!3! = 4200

2.6.38 Altogether, the letters in S L U M G U L L I O N can be permuted in

6

11!

3!2!(1!)

ways. The seven consonants can be arranged in 7!/3!(1!)4 ways, of which 4! have the property that the three L ’s come first. By the reasoning used in Example 2.6.13, it follows that the number of admissible

arrangements is 4!/(7!/3!) ? 11!

3!2!

, or 95,040.

2.6.39 Imagine a field of 4 entrants (A , B , C , D ) assigned to positions 1 through 4, where positions 1 and

2 correspond to the opponents for game 1 and positions

3 and

4 correspond to the opponents for game 2. Although the four players can be assigned to the four positions in 4! ways, not all of

those permutations yield different tournaments. For example,

1234B C A D and 1234

A D

B C

produce the same set of games, as do 1234B C A D and 1234

C B A D

. In general, n games can be arranged in n !

ways, and the two players in each game can be permuted in 2! ways. Given a field of 2n entrants, then, the number of distinct pairings is (2n )!/n !(2!)n , or 1 ? 3 ? 5 ??? (2n ? 1).

2.6.40 Since x 12 can be the result of the factors x 6 ? x 6 ? 1 ??? 1 or x 3 ? x 3 ? x 3 ? x 3 ? 1 ??? 1 or x 6 ? x 3 ? x 3 ? 1 ??? 1, the analysis described in Example 2.6.16 implies that the coefficient of x 12 is

18!18!18!

2!16!4!14!1!2!15!

++

= 5661.

2.6.41 The letters in E L E E M O S Y N A R Y minus the pair S Y can be permuted in 10!/3! ways.

Since S Y can be positioned in front of, within, or behind those ten letters in 11 ways, the number of admissible arrangements is 11 ? 10!/3! = 6,652,800.

2.6.42 Each admissible spelling of ABRACADABRA can be viewed as a path consisting of 10 steps,

five to the right (R) and five to the left (L). Thus, each spelling corresponds to a permutation of

the five R’s and five L’s. There are 10!

5!5!

= 252 such permutations.

2.6.43 Six, because the first four pitches must include two balls and two strikes, which can occur in

4!/2!2! = 6 ways.

2.6.44 9!/2!3!1!3! = 5040 (recall Example 2.6.16)

2.6.45 Think of the six points being numbered 1 through 6. Any permutation of three A ’s and three

B ’s—for example,

123456

A A

B B A B

—corresponds to the three vertices chosen for triangle A and the three for triangle B . It follows that 6!/3!3! = 20 different sets of two triangles can be drawn.

2.6.46 Consider k ! objects categorized into (k ? 1)! groups, each group being of size k . By Theorem

2.6.2, the number of ways to arrange the k ! objects is (k !)!/(k !)(k ? 1)!, but the latter must be an integer.

安全社区创建档案模版(详细版)

安全社区创建档案模板 说明:将两年来街道创建委员会、各工作小组、有关部门单位的创建工作档案按照安全社区评定指标(试行)十二项标准分类归档,形成迎查档案材料。 一、安全社区创建机构与职责 1.1关于成立创建安全社区促进委员会的文件;(城管) (成立仪式图片资料) 1.2创建安全社区促进委员会成员名单;(城管) 1.3创建安全社区促进委员会办公室成员名单。(城管) 2.1交通安全工作组成员名单;(城管) 2.2消防安全工作组成员名单;(安监) 2.3工作场所安全工作组成员名单;(安监) 2.4家居安全工作组成员名单;(城管) 2.5老年人安全工作组成员名单;(社会事务) 2.6儿童安全工作组成员名单;(社会事务) 2.7学校安全工作组成员名单;(团委) 2.8公共场所安全工作组成员名单;(城管) 2.9体育运动安全工作组成员名单;(社会事务) 2.10涉水安全工作组成员名单;(城管) 2.11社会治安工作组成员名单;(城管)

2.12防灾减灾与环境安全工作组成员名单;(卫生) 2.13数据统计工作组成员名单。(城管) 3.1创建安全社区促进委员会工作职责; 3.2、创建安全社区促进委员会办公室工作职责;3.3交通安全工作组工作职责; 3.4消防安全工作组工作职责; 3.5工作场所安全工作组工作职责; 3.6家居安全工作组工作职责; 3.7老年人安全工作组工作职责; 3.8儿童安全工作组工作职责; 3.9学校安全工作组工作职责; 3.10公共场所安全工作组工作职责; 3.11体育运动安全工作组工作职责; 3.12涉水安全工作组工作职责; 3.13社会治安工作组工作职责; 3.14防灾减灾与环境安全工作组工作职责; 3.15数据统计工作组工作职责。 4.1交通安全安全管理制度; 4.2消防安全管理制度; 4.3生产经营单位安全管理制度; 4.4家居安全管理制度; 4.5老年人安全管理制度;

2020年社会治安重点地区消防安全专项整治工作实施方案

2020年社会治安重点地区消防安全专项整治工作实施方案按照省市区综治委的部署要求,街道办事处结合辖区特点,将于xx年4月20日至6月30日以办事处和社区以及公安派出所为主,开展为期二个月的“六小场所”消防安全专项整治,为确保专项整治工作的顺利开展,特制定本方案。 一、组织机构 为确保此次专项整治活动顺利开展并取得实效,成立黑林铺街道办事处“六小场所”消防安全专项整治工作领导小组。 组长: 副组长: 成员: 领导小组办公室设在办事处综治维稳中心,由李华同志兼任办公室主任,负责“六小场所”消防安全整治的日常工作。 二、指导思想

以安全生产“一岗双责”责任制为指导,提高认识,统一思想,明确任务,落实责任,充分认识搞好“六小场所”消防安全专项整治工作的重要意义,切实加强组织领导,认真落实整治工作目标责任制。通过集中整治,消除“六小场所”存在的火灾隐患,规范消防安全管理,杜绝各类火灾事故的发生,使“六小场所”的消防安全环境得到明显改善。 三、整治的重点和工作步骤 此次专项整治,重点对辖区“六小场所”的消防设施、消防通道等情况进行检查。通过检查督促整改火灾隐患,杜绝火灾事故的发生,督促各业主加强对员工的消防安全宣传教育,提高员工的自防自救能力和消防安全意识。 此次专项整治工作分四个阶段进行,时间从xx年4月20日至6月30日结束。 第一阶段(4月20日至4月23日):各社区要按照本方案的要求制定具体的实施方案,组织本管辖区内的“六小场所”业主召开动员大会,贯彻落实此次专项整治工作的要求。在召开动员会的基础上对辖区的“六小场所”进行摸底,掌握其经营场所的消防安全情况,确定整治范围和重点,为专项整治工作打好基础。

函数连续性

第四章 函数的连续性 §1 连续性概念 Ⅰ. 教学目的与要求 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. Ⅱ. 教学重点与难点: 重点: 函数连续性的概念. 难点: 函数连续性的概念. Ⅲ. 讲授内容 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说,连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我 们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数 的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一 函数在一点的连续性 定义1 设函数f 在某U ()0x 内有定义.若()x f x x 0 lim →=()0x f , 则称f 在点0x 连续. 例如,函数连续()x f 12+=x 在点2=x 连续,因为 2lim →x ()x f =2 lim →x ()()2512f x ==+ 又如,函数()x f ???=0 ,00,1sin =≠x x x x ,在点0=x 连续,因为 ()()001sin lim lim 00f x x x f x x ===→→ 为引入函数()x f y =在点0x 连续的另一种表述,记0x x x -=?,称为自变量x (在点 0x )的增量或改变量.设()00x f y =,相应的函数y (在点0x )的增量记为: ()()()()0000y y x f x x f x f x f y -=-?+=-=? 注 自变量的增量x ?或函数的增量y ?可以是正数,也可以是0或负数.引进了增 量的概念之后,易见“函数()x f y =在点0x 连续”等价于0lim 0 =?→?y x . 由于函数在一点的连续性是通过极限来定义的,因而也可直接用δε-方式来叙述, 即:若对任给的0>ε,存在0>δ,使得当δ<-0x x 时有 ()()ε<-0x f x f (2) 则称函数f 在点0x 连续.

函数的连续性极其性质

了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 无穷大量和无穷小量 无穷大量 我们先来看一个例子: 已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为此我 们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当 时,成立,则称函数当时为无穷大量。 记为:(表示为无穷大量,实际它是没有极限的) 同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函 数当x→∞时是无穷大量,记为:。 无穷小量 以零为极限的变量称为无穷小量。 定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量. 记作:(或) 注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.。 关于无穷小量的两个定理 定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。 定理二:无穷小量的有利运算定理 a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量. 无穷小量的比较 通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

社区严打及社会治安整治工作总结精选

社区严打及社会治安整治工作总结 XX社区20××年“严打”及社会治安专项整治工作在XX镇党委政府的领导下,XX镇整治维稳中心的指导下,从维护社区政治社会稳定的大局出发,坚持“打防结合,预防为主”的方针,深入开展“严打”整治斗争,及时排查化解社会矛盾纠纷,大力推进平安创建活动,成立领导小组,制定工作计划,拟定职责,实施方案,现将一年来XX严打及社会治安专项整治工作总结来工作总结如下: 一、坚持落实责任制责任制,确保维护辖区稳定稳定 1、为确保社区政治安定、社会稳定,社区采取各种措施狠抓落实。 2、落实维护社会稳定和社会治安综合治理领导责任制,把做好综治工作作为维护社会稳定,促进社区经济发展的头等大事来抓。 3、针对不同情况,把维护社会稳定和社会治安综合治理各项工作任务切实落到实处。 4、认真落实社会治安综合治理各项措施,打造“平安XX”为社区经济发展创造一个和谐稳定的社会环境。 二、认真开展突出问题的整治和专项治理 1、针对各种犯罪多发实际,采取有力措施,加大工作力度,全力推进专项治理。

2、积极开展“扫黄”、“打非”专项治理行动。把“扫黄”、“打非”工作列为社会治安综合治理和精神文明建设之中。 3、积极开展校园及周边治安秩序整治专项行动。 4、积极开展房屋租赁清理整顿专项行动。 三、继续深入开展“严打”斗争,不断深化防控体系建设 坚持“严打”斗争,强化打击力度,遏制治安问题上升势头。继续严厉打击各种等邪教组织的违法犯罪活动。从而形成比较规范的长效防控组织和工作机制,为平安稳定创建活动打下了良好的基础。 四、夯实基础,提升平安创建水准 坚持以夯实基础,筑牢防线为理念,加强矛盾纠纷排查调处机制,加大了矛盾纠纷排查调处工作力度。 五、不断探索,精心指导 大力推进和谐XX建设,从而推动了社区综治工作的发展和进步,为明年年终综治工作再上新台阶奠定了坚实的基础,辖区综治成员单位认真履行职责,依法搞好治理,积极做好维护全区社会稳定的各项工作。

浅析函数连续与一致连续性的判定论文

学科分类号:___________ 学院 本科学生毕业设计 题目名称:浅析函数连续与一致连续性的判定学生姓名:学号: 系部:数学与应用数学系 专业年级:应用数学专业 指导教师: 2008年5 月9 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1前言 (2) 2函数 (2) 2.1 函数连续性的定义 (2) 2.2 函数在区间上的连续性判定 (3) 2.3 判断函数的连续性常用方法 (4) 2.4 初等函数的连续性 (6) 3 函数的一致连续性 (7) 3.1 函数一致连续性定义 (7) 3.2 函数在任意区间上的一致连续性的判定 (8) 3.3 两种常用的判别方法 (9) 3.4 函数一致连续性的几个条件 (11) 4 函数连续与一致连续性的关系 (14) 5 总结 (16) 参考文献: (17) 致谢 (17)

浅析函数连续与一致连续性的判定 摘要:本文首先从连续函数的定义和连续性定理出发,给出了各种区间上函数连续的条件,并且总结了判断函数连续性的常用方法。然后给出了一致连续函数的定义及相关定理。从G﹒康托尔定理出发,给出了两个关于一致连续性的十分重要的判别方法,并说明了使用一致连续性的充要条件来讨论函数在区间上的一致连续性的方法。最后我们从两者的概念出发,深刻地揭示了它们之间的内在联系,更加深入地理解和掌握函数的连续性与一致连续性。 关键词:初等函数;区间;连续;一致连续;非一致连续 Simply analyze the judgment of function’ continuity and consistent continuity Abstract:Firstly, this article is proceed from the definition of conditions of continuous function and continuity theorem, providing with kinds of function continuously in intervals, and also it summarized the conventional methods of judge function continuity. Then it gives out the definition and some relevant theorems of consistent function. With the G.. cantor theorem, it gives two vital important discriminate methods with were concerned with consistent continuity and it illustrated abundant conditions of using consistent continuity functions in interval. Finally, starting from these two conceptions, it reveals their inner relation profoundly and it makes us understand master continuity and consistent continuity of function more penetrate. Key words: elementary function; interval; continuous; consistent continuous; no consistent continuous

社会治安论文:构建和谐社区保障居民平安

社会治安论文:构建和谐社区保障居民平安摘要作为群众最关注的问题之一,社会治安与和谐社会建设息息相关。可以说和谐莱钢、和谐社区的构建,稳定是基础,平安是保证。自2010年以来,金鼎公司围绕创建“平安社区、平安小区”的活动主题,积极开展各项活动,倡导“小区是我家,我要爱护她”的团队意识,并充分依靠广大职工的智慧和力量,调动一切积极因素,利用一切可以利用的条件,认真做好治安综合治理工作,通过召开座谈会、现场调查、个别走访等形式,比较全面、深入地了解了现阶段莱钢社区社会治安防范机制方面的情况。 关键词社会治安和谐社会平安社区 一、莱钢社区基本情况 莱钢本部共有6个社区、27个小区,常驻人口7万余人。其中,全封闭的小区有20个,未封闭、半封闭的小区有7个;安装视频监控系统的小区有10个;安装门禁系统的小区有3个。各小区共有大小门口44个。最大的小区为金鼎花园(北区),常驻户2216户,居住人口8000余人。最小的小区是黄羊山小区,住户290户,居住人口800余人。 二、目前我们在治安防范上所做的工作 (一)充分发挥人防的根本性作用,完善了专业防范、群防群治防范机制

一是在社区、小区等各基层成立了相应的社会治安综治领导小组,从而在组织上保证了综治工作的运行,确保了管理文件、案件通报及基层情况的下传上达及时到位。二是居住生活区和社区警务室联合,各派出所与社区、公司保卫部及时通报各种情况,加强了管段警与群众的联系。三是充分发挥百户治保员和门卫的作用,在社区形成了以社区管委会为主导,以辖区居民共联防的群防群治体系。在工作中严格按要求进行管理,认真对照“标准住宅小区”创建标准,做好小区的各项工作,在各小区实施了“全天候”机动巡逻,要求门卫、百户治保员看好门户,严禁闲杂人员进出园区,看到可疑人员随时进行观察、盘问,每天晚上0点—5点,各小区安排治保员进行夜间巡逻,和警务室巡逻人员一起加强了对主要街道、重点部位和易发案小区的巡逻密度,小区也通过宣传栏、走家窜户、温馨提示等向居民宣传防范知识,提醒居民做好安全防范工作,提高居民的警惕性,形成了“五位一体”的管理模式,从而保证了社区内居民财产与人身的安全,进一步提高了小区居民的安全感。 (二)不断巩固物防的基础性作用,增加了社区居民楼宇监控设施 一是按照“能联则联,能封则封”的原则,采取小区封闭、半封闭式管理。通过完善、增加照明设施,合理调配照

社会治安重点地区排查整治工作方案

社会治安重点地区排查整治工作方 (五)加强舆论宣传。要充分发挥新闻媒体的导向作用,动员广大人民群众积极支持和参与排查整治活动,提供案件线索,踊跃揭发违法犯罪人员,与违法犯罪行为作斗争。对排查整治工作先进典型,及时进行宣传推广。 (六)建立长效机制。这次集中排查整治结束后,要继续重视中央、省、市、县、镇综治委文件的贯彻落实,认真总结排查整治的成功经验,进一步完善相关制度和工作机制,推动社会治安重点地区排查整治的制度化、经常化。 (七)加强督导检查。我村委要对各村民组开展集中排查整治活动进行督导。包片指导,跟踪督查,定期进行调度,及时掌握工作进度,协调解决影响社会和谐稳定的重大矛盾纠纷和突出治安问题。我村委要建立健全台帐,及时分流处理有关排查信息,督促有关单位及时解决突出问题。活动结束后,要于12

月15 日前上报工作总结。 篇四:社会治安重点地区排查整治工作方案 为认真贯彻落实新平县综治维稳办《关于印发的通知》(新综治维稳委〔20XX 〕1 号)的要求,切实加强对水塘镇社会治安重点地区的综合整治,加强对高危人群的管理,确保全镇社会大局稳定。经水塘镇研究决定,从20XX 年2 月5 日至3 月31 日,在全镇范围内深入开展社会治安重点地区排查整治专项行动。为确保该项工作取得实效,特制定如下方案: 一、指导思想以党的十七大精神和“三个代表”重要思想为指导,深入贯彻落实科学发展观,紧紧围绕建设“平安水塘”的奋斗目标,全面落实社会治安综合治理各项措施,充分整合各方力量,按照“属地管理、分级负责”和“谁主管谁负责”原则,集中排查和解决影响社会和谐稳定的突出矛盾和治安问题,为春节期间各项庆祝活动的顺利举行和各级两会”的顺利召开创造和谐稳定的社会环境。

省级安全社区建设复评工作发言稿---唐文中

观音桥镇省级安全社区建设复评工作汇报中共观音桥镇委员会观音桥镇人民政府 (2017年9月) 尊敬的徐组长、各位专家、各位领导: 大家好! 首先,我代表观音桥镇党委、政府,热烈欢迎各位专家、领导莅临观音桥镇检查指导省级安全社区建设!衷心感谢各位领导、专家对我镇省级安全社区建设工作进行现场复评!下面,将我镇三年来开展安全社区建设工作作一简要汇报,敬请各位专家、领导批评指正。 一、基本情况 近年来,我镇牢固树立“安全、健康、和谐”理念,在各级领导和专家的关怀指导下,在县级各部门、社会团体的大力支持下,全镇干部群众积极参与,省级安全社区建设持续推进,辖区内工作场所、消防、道路交通、居家、老年人、学校、食品安全、社会治安、涉水、防灾减灾及环境等行业领域安全状况持续改善,“小社区、大安全”观念深入人心,安全、健康、和谐的社区环境逐步形成,省级安全社区建设持续改进工作取得了显著成效:一是安全生产形势持续稳定好转,各类安全事故大幅下降。道路交通事故从2015年的5起减少到2017年的3起,下降40%;工作场所事故从2015年的15起减少到2017年的8起,下降46%;消防事故从2015年的1起下降到2017年的0起,下降100%;学校安全事故从2015年至今,未发生一起事故;溺水事故从2015

年1起减少到2017年的0起,下降100%,我镇已连续5年实现了安全生产事故死亡零指标。 二是全民安全意识普遍增强,安全自救互救能力不断提升。通过多种方式宣传上级安全社区建设精神,加强安全教育,省级安全社区建设知晓率达96.5%。开展“百日安全活动”、“安全生产月”、“百日攻坚”、应急演练等活动,提高居民的积极性和参与度,群众安全生产意识普遍增强。 三是社会民生不断推进,群众幸福指数大幅提升。坚持把民生工作作为“民心工程、德政工程”来抓,切实抓好扶贫解困、社会保障、百姓安居等民生工程,建成公办幼儿园1所、社区互助幸福院1个、日间照料中心1个等,实现了学有所教,劳有所得,病有所医,老有所养,住有所居,群众幸福指数大幅上升。 四是信访维稳、社会治安形势大幅好转,社会治理成效明显。坚持把保一方平安、促一方和谐作为第一责任,认真排查调处矛盾纠纷,主动下访、耐心接访。三年以来,成功处理信访问题58件次、调解各类矛盾纠纷200余起,调解成功率达100%,全镇无一起非法进京到省上访、无一例越级上访、集访事件发生。建立健全全民参与、整体联动、群防群治的治安防控体系,层层签订责任书,落实治安防范人防、技防、物防措施,加强对流动人口、学校周边环境和重点区域的管理和整治,加大对“黄、毒、赌”、“法轮功、门徒会”的打击力度,社会治安形势持续好转,社会治理成效明显。 二、工作开展情况 镇党委政府高度重视省级安全社区建设工作,将此项工作纳

社会治安重点地区排查整治工作方案

社会治安重点地区排查整治工作方 案 (五)加强舆论宣传。要充分发挥新闻媒体的导向作用,动员广大人民群众积极支持和参与排查整治活动,提供案件线索,踊跃揭发违法犯罪人员,与违法犯罪行为作斗争。对排查整治工作先进典型,及时进行宣传推广。 (六)建立长效机制。这次集中排查整治结束后,要继续重视中央、省、市、县、镇综治委文件的贯彻落实,认真总结排查整治的成功经验,进一步完善相关制度和工作机制,推动社会治安重点地区排查整治的制度化、经常化。 (七)加强督导检查。我村委要对各村民组开展集中排查整治活动进行督导。包片指导,跟踪督查,定期进行调度,及时掌握工作进度,协调解决影响社会和谐稳定的重大矛盾纠纷和突出治安问题。我村委要建立健全台帐,及时

分流处理有关排查信息,督促有关单位及时解决突出问题。活动结束后,要于12月15日前上报工作总结。 篇四:社会治安重点地区排查整治工作方案 为认真贯彻落实新平县综治维稳办《关于印发的通知》(新综治维稳委〔20XX〕1号)的要求,切实加强对水塘镇社会治安重点地区的综合整治,加强对高危人群的管理,确保全镇社会大局稳定。经水塘镇研究决定,从20XX 年2月5日至3月31日,在全镇范围内深入开展社会治安重点地区排查整治专项行动。为确保该项工作取得实效,特制定如下方案: 一、指导思想 以党的十七大精神和“三个代表”重要思想为指导,深入贯彻落实科学发展观,紧紧围绕建设“平安水塘”的奋斗目标,全面落实社会治安综合治理各项措施,充分整合各方力量,按照“属地管理、分级负责”和“谁主管谁负责”原则,

集中排查和解决影响社会和谐稳定的突出矛盾和治安问题,为春节期间各项庆祝活动的顺利举行和各级“两会”的顺利召开创造和谐稳定的社会环境。 二、目标任务 通过对社会治安重点地区的深入摸排,有效整治治安混乱地区和突出治安问题,化解各类矛盾纠纷,全面落实社会治安综合治理各项措施,使社会治安面貌得到较大改观,刑事案件发案得到有效遏止,命案侦防工作有新的突破,群众的安全感和对社会治安的满意度有新的提高。 三、工作重点及措施 (一)深入开展突出治安问题和各类矛盾纠纷大排查工作 这次排查工作的重点:一是刑释解教人员、社区矫正对象、监外执行罪犯落实管控措施情况;二是集镇内娱乐场所、网吧、涉爆涉枪以及关系民生的油、电、水、气行业和区域等部位;三是镇村结合部、治安复杂的村委会、交通沿

社区治安重点地区排查整治工作总结

广场社区治安重点地区排查整治工作总结 2011年上级部门的领导下,我社区开展社会治安重点地区排查整治工作,党支部加强组织领导,周密部署,各部门通力协作,广大群众积极参与,掀起了全社区重点地区新一轮排查整治高潮。 一、提高认识,加强组织领导 社会治安稳定,群众生活安定,是推动社会经济各项事业全面发展的前提,对切实开展好我社区治安重点地区排查整治工作,社区党支部非常重视,将此项工作作为2011年工作重点来抓:一是成立了由社区书记张俊红任组长,社区主任沙吾列和社区片警张伟任副组长,负责工作抓落实,各职能部门负责人为成员,负责具体组织实施的工作领导小组。二是落实工作经费,抽调资金作为专项工作经费,专款专用,确保了工作得以顺利开展。三是落实了责任,由社区综治办组织督促检查,严格考核,年终纳入考核项目。 二、加强宣传动员,掀起良好整治氛围。 在广场社区召开了重点整治工作动员会后,利用各种宣传工具,各种宣传方式,宣传横幅,散发宣传资料,书写标语等方式,加强了对在辖区范围内开展社会治安重点地区排查整治工作的宣传动员,在整治过程中形成好的经验和好的方法加强了及时报道,由于宣传到位,动员广泛,群众积极参与,全辖区掀起了新一轮开展重点地区排查整治工作高

潮。 三、平房二区。 在2011年4、6、8、10月,社区组织三组整治小队,每四人一组,整治工作队共12人,对责任区包片,进行环境卫生整治。针对平房二区(环境卫生整治),根据问题产生的原因明确责任,明确整改时限。对平房二区环境卫生进行检查,对平房二区周围的居民进行宣传环境卫生教育。 四、存在的问题与打算。 目前存在的问题主要是经费紧缺,宣传力量和队伍力量有待加强,今后如何在投入上和形成长效机制方面抓好抓落实是工作的重心。 广场社区 2011年12月

7.4 贤洲社区残疾人安全促进项目

7.4残疾人安全促进项目 7.4.1创建背景 关心残疾人,是社会文明进步的重要标志,积极而为,开拓进取。把残疾人残有所助、学有所教、劳有所得、病有所医、老有所养、住有所居,作为全面建设小康社会、构建和谐社会的一项重要任务来抓,促进残疾人事业加快发展。 贤洲社区位于新会区会城街道西南,辖区面积约16平方公里,总户数8126户,共25535人,有户籍户5132户,人口13950人;无户籍户2989,人口11585人;辖区内设有6个社区居委小组。2010年街道辖区内的残疾人弱势群体有293人,其中86人已办残疾证,46人为肢体残疾人员,14人为智力残疾人员,11人为精神残疾人员,11人为视力残疾人员,4人为听力语言残疾人员,其中有两个是多重残疾的。残疾人是弱势群体中的“弱势”,需要全社会加倍关心和爱护。 2010年残疾人类别比例图 7.4.2问题分析 (一)社区开展的直接康复服务主要服务对象是肢体残疾人,我街肢体残疾人的比例较大,残疾人及其家属对直接康复计划的认识不肢体残疾 视力残疾 智力残疾 精神残疾 听力语言残疾

深,使得社区康复服务的开展有一定的难度。 (二)辖内盲人道存在破损、占道、指引有误等情况,加大了残疾人的出行难度。 (三)由于残疾人的功能障碍有特异性,各自家居环境存在差异,常规的家居设置未能满足他们的日常生活需求,阻碍了残疾人的自理活动。 (四)辖内残疾人的就业率较低,多为低保、低收入户,由于受到经济收入的影响,往往拖慢了康复治疗的进度,错过了治疗的最佳时期。 7.4.3促进目标和计划 提高社区弱势群体的安全意识,改善容易造成残疾人出行的危险环境,减少社区弱势群体受伤害的发生,减轻社区弱势群体的经济负担,提高残疾人直接康复服务的参与率,实现弱势群体“人人享有康复服务”,提高生活质量。计划主要通过以下几项工作来实现:一是建立残疾人档案。完善现有残疾人资料的基础上做好社区新增残疾人的资料健全工作。 二是加强扶贫工作。落实最低生活保障制度,对辖区内符合低保条件的残疾人应保尽保,社区根据残疾人家庭经济情况,为辖区内有康复需求的残疾人提供免费上门康复训练与服务。 三是加强就业工作。通过各种渠道,在辖区内企事业单位安置有劳动能力的残疾人就业,增强他们生活和工作的信心,鼓励他们自主、自强,自主创业。 四是积极开展文体宣传。定期举办文化娱乐活动,培养残疾人积极向上的生活志向,丰富残疾人文化生活。 7.4.4组建跨部门项目小组 为保证残疾人各项干预措施的顺利开展,专门成立了由街道办事处民政科、社区各居委专职、社区卫生服务中心、社区志愿者共同参

函数的连续性的例题与习题集

函数的连续性的例题与习题 函数连续性这个内容所涉及到的练习与考试题目,大致有3大类。第一类是计算或证明连续性;第二类是对间断点(或区间)的判断,包括间断点的类型;第三类是利用闭区间上的连续函数的几个性质(最值性质,零点存在性质),进行理论分析。 下面就这三大类问题,提供若干例题和习题。还是那句老话:看到题目不要看解答,而是先思考先试着做!这是与看文学小说的最大区别。 要提醒的是,例题里有不少是《函数连续性(一)(二)》中没有给出解答的例题,你事先独立做了吗?如果没有做,是不会做好是根本不想做,还是没有时间? 一.函数的连续 例1.1(例1.20(一),这个序号值的是《函数连续性(一)中的例题号,请对照) 设()f x 满足()()()f x y f x f y +=+,且()f x 在0x =连续。证明:()f x 在任意点x 处连续。 分析:证明题是我们很多同学的软肋,不知道从何下手。其实,如果你的基本概念比较清晰,证明题要比计算题号做,因为它有明确的方向,不像计算题,不知道正确的答案是什么 在本题里,要证的是“()f x 在任意点x 处连续”,那么我们就先固定一个点x ,用函数连续的定义来证明在x 处连续。你可能要问:函数连续的定义有好几个,用哪一个? 这要看已知条件,哪个容易用,就用那一个。在本题中,提供了条件()()()f x y f x f y +=+,也就是()()()f x y f x f y +-=,你的脑海里就要想到,如果设y x =?,那么就有 ()()()y f x x f x f x ?=+?-=?;这个时候,你应该立即“闪过”,要用题目给的第二个条件了:()f x 在0x =连续!它意味着:0 lim (0)(0)x f x f ?→+?=。 证明的思路就此产生! 证明:因为 ()()()f x y f x f y +=+,取0y =,则有 ()()(0)f x f x f =+,所以(0)0f =。 (#) 对于固定的x (任意的!),若取y x =?,有 ()()()y f x x f x f x ?=+?-=?, (+) 在(+)式两边取0x ?→的极限,那么

社会治安重点地区整治工作总结

中江县石泉乡综治办 2010年社会治安重点地区整治 工作总结 根据县综治委《关于印发<关于在全县开展社会治安重点地区排查整治工作的实施方案>的通知》(江综治委[2010]3号)和全国、省、市、县政法工作会议精神,我乡高度重视,强化措施,加大排查整治力度,着力形成“公安为主、部门配合、上下联动、群众参与、强化排查、重点整治”工作机制。现将我乡开展社会治安重点地区大排查大整治工作情况总结如下: 一、工作开展情况 自开展大排查、大整治活动以来,按照“乡不漏村(居)、村(居)不漏组、组不漏户”的要求,成立排查整治工作组9个,发动干部开展排查20余次,发动干部45人次,发动群众245人次,通过对全乡9个村(居、社区)和各行业开展拉网式、地毯式的片区排查、行业排查和重点排查普查,至2010年5月25日止,共排查出社会治安问题17起,(重点村3个),已全部进行整治。 (一)领导重视,将排查整治纳入全年综治中心工作 一是安排部署。接到江综治委[2010]3号文件后。乡党委、政法召开各单位负责人及各村(居)委会参加的大排查大整治工作会议,明确了大排查、大整治工作的目标任务、工作要求和工作重点。二是成立机构。及时成立以乡党委书记张体先为组长,乡长蒋中平及分管领导向世米为副组长,综治成员单位负责人为成员的乡社会治安重点地区大排查大整治工作领导小组。设立专门办公室,综治办副主任分别兼任办公室主任、副主任,并与其它单位协作,负责整治办的日常工作,各乡镇、各成员单位也相应成立组织机构,形成上下联动、齐抓共管、协作配合的大排查大整治工作格局。三是加大投入。1、落实社区专职管理人员,采取“居家委”管理模式。2、落实村级综治维稳专职信息员。负责做好村内矛盾纠纷的排查调处、上报和村级便民利民党务政务服务站的日常工作。 (二)制定方案,落实责任,确保排查整治顺利推进 一是制定方案。为加强排查整治工作力度,乡综治办制定下发了《中江县石泉乡综治办社会治安重点地区大排查大整治工作实施方案》,将大排查大整治工作分为排查摸底、整治、集中打击处理、建章立制和总结回查4个阶段,对城乡结合部、场镇以及重点村寨、西眉酒厂所开展重点排查整治。二是落实责任。1、落实副科级以上领导干部联系村工作责任。在去年实行科级领导干部维护社会稳定工作联系村责任制的基础上,进一步加强对副科级以上领导联系村排查化解矛盾纠纷的督查力度,严格实行每月至少到联系村开展工作一次以上,并写出工作情况报县综治办。2、落实值班守护工作责任。加强对城区机关、企事业单位值班人员到岗、上岗情况的不定期抽查,对不落实值班守护制度的单位责令限期整改。3、落实综治办工作责任。进一步细化工作责任分解,严格实行领导干部实绩档案制度。4、落实政法机关执法工作责任。加强与纪委、组织等部门在政法各部门党员干部监督管理工作中的协作配合。三是强化督查。为推动大排查大整治工作取得实效,不走过场,分别由正科级领导带队,组成督查工作组,每月开展不少于1次的不定期暗查暗访,对工作不力、排查不细、整治不深的,进行通报、挂牌直至实行一票否决。

函数一致连续的若干方法

函数一致连续的若干方法 学生姓名:钱建英 学号:20115031297 数学与信息科学学院 数学与应用数学专业 指导教师:段光爽 职称:讲师 摘 要 函数在区间上的一致连续性是学习数学分析课程中的重要理论之一,本 文主要讲述了函数在有限区间与无线区间上一直连续的若干方法并举例说明 关键词 函数;一致连续;极限; Several methods of uniformly continuous function Abstract The function uniform in interval is one of the most of important theories in the mathematics analysis course .this paper describes several methods function on a finite interval with a wireless range has been continuous and illustrated. Key words : function consistent-continuity limit. 0 前言 一致连续是在数学分析中频繁用到的概念,是数学分析中经常涉及的问题,并且一致连续性问题是数学分析中的主要理论,函数一致连续与处处连续有着本质的区别:处处连续是局部概念而一致连续是函数和区间共同决定的,是整体的概念.目前数学分析课本上的判别法大多是利用函数一致连续的定义,没有提出一些直观的判别法.对于初等函数一致连续的问题并没有系统的总结,函数非一致连续也是利用定义,没有直观判别. 函数一致连续性的判定是学习数学分析的重点和难点,因此寻找函数一致连续性的较为直观的判定方法非常重要,对于今后的学习以及数学分析教学有帮助,学习函数一致连续性时有更加直观的感觉,建立感性认识,将一致连续与其他知识联系起来,开阔分析问题的思路,为其他问题的解决奠定基础,本文给出了一些判定方法. 1有限区间上函数一致连续 1.1 一致连续性定义 设f 为定义在区间I 上的函数.若对任给的0>ε,存在()0>=εδδ,使的对任何的I x x ∈''',,只要δ<''-'x x ,就有 ()()ε<''-'x f x f . 则称函数f 在区间I 上一致连续. f 在I 上一致连续意味着:任意的两点x x ''',,不论这两点在I 中处于什么位置,只要它们的距离小于δ,就可得到()()ε<''-'x f x f .

安全社区建设满意度调查表

单位:;调查人: 安全社区建设村(居)民满意度调查表 A基本信息日期:年月职业:学生群众机关干部企业职工 B [满意度及安全意识调查] :你好,请你根据你的了解认真填写,谢谢! 1.你对道路交通干预子项目:()满意()基本满意()不满意。 2.你对涉水安全干预子项目:()满意()基本满意()不满意。 3.你对消防安全干预子项目:()满意()基本满意()不满意。 4.你对家居安全干预子项目:()满意()基本满意()不满意。 5.你对社会治安干预子项目:()满意()基本满意()不满意。 6.你对工作场所安全干预子项目:()满意()基本满意()不满意。 7.你对学校安全干预子项目:()满意()基本满意()不满意。 8.你对防灾减灾安全干预子项目:()满意()基本满意()不满意。 9.你对食品药品安全干预子项目:()满意()基本满意()不满意。 C [安全意识调查] ●交通安全 1.您乘坐过非法营运的面包车、两轮三轮摩托车吗?()1、是 2、偶尔 3、没有 2.您驾驶或乘坐摩托车会戴安全头盔吗?()1、会 2、偶尔会 3、不会 ●农药安全 3.您使用农药是否按使用说明书操作使用?()1、是 2、否 4.您使用农药时,是否佩戴口罩等防护?()1、是 2、否 5.您把购买回家的农药存放什么地方?()1、隐蔽的地方 2、随便放 ●消防及森林防火安全 6.您家有灭火器等灭火器材吗?()1、有 2、没有 7.您是否会使用灭火器?()1、会 2、不会 8.发生火灾,您知道怎样逃生吗?()1、知道 2、不知道 9.您在林区周边是否进行烧灰积肥?()1、没有 2、偶尔会 3、不会 10.上坟时,您是否将周边可燃物清理干净,待纸钱燃完才走?()1、会 2、不会 ●社会治安 11.您对所在村(社区)的治安情况满意度是:() 1、非常满意 2、比较满意 3、一般 4、不太满意 5、很不满意 ●居家安全 12.您家的用电器是否按要求接地?()1、全是 2、部分是 3、没有 13.家里是否安装漏电保护器?()1、有 2、没有 15.被狗猫等抓咬伤或被锈铁刮伤后应:()1.立即用清水冲洗伤口后在到医院处理 2、酒精等消毒后进行包扎 3、立即包扎后到医院处理 ●防灾减灾 16.地震时如何顺利逃生?()1、知道 2、不知道 17遇山洪灾害等自然灾害时该怎么办?()1、知道 2、不知道 ●食品安全 18.您知道农村集体用餐10桌以上需要申报吗?()1、知道 2、不知道 19.您是否做到用于切生菜和熟食品的刀、菜(门)板要严格分开,不能生熟混用()1、是2、否120.您是否做到隔夜菜回锅加热?()1、是 2、否 D [持续改进建议]21.您认为在建设“安全社区”工作中我们应改进的内容有哪些?

连续函数性质

§ 连续函数的性质 ? 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值0()f x 。从而,根据函数极限的性质能推断出函数f 在0()U x 的性态。 定理1(局部有界性) 若函数f 在点0x 连续,,则f 在某0()U x 内有界。 定理2(局部保号性) 若函数f 在点0x 连续,且0()0f x >(或0<),则对任何正数0()r f x < (或0()r f x <-),存在某0()U x ,使得对一切 0()x U x ∈有()f x r >(或()f x r <-)。 注: 在具体应用局部保号性时,常取01 ()2 r f x =, 则当0()0f x >时,存在某0()U x ,使在其内有01 ()()2 f x f x > 。 定理3(四则运算) 若函数f 和g 在点0x 连续,则,, f f g f g g ±?(这里0()0g x ≠)也都在点0x 连续。 关于复合函数的连续性,有如下定理: 定理4 若函数f 在点0x 连续,g 在点0u 连续,00()u f x =,则复合 函数g f 在点0x 连续。 证明:由于g 在点0u 连续,10,0εδ?>?>,使得当01||u u δ-<时有 0|()()|g u g u ε-<。 (1)

又由00()u f x =及()u f x =f 在点0x 连续,故对上述1δ,存在0δ>, 使得当0||x x δ-<时有001|||()()|u u f x f x δ-=-<,联系(1)式得:对任 给的0ε>,存在0δ>,使得当0||x x δ-<时有 0|(())(())|g f x g f x ε -<。 这就证明了g f 在点0x 连续。 注:根据连续必的定义,上述定理的结论可表为 0lim (())(lim ())(())x x x x g f x g f x g f x →→== 定理 5 ()x f x x 0 lim →存在的充要条件是()() 0lim 00 0+=+→x f x f x x 与 ()()0lim 00 0-=-→x f x f x x 存在并且相等. 证明:必要性显然,仅须证充分性.设()A x f x x =+→0 0lim ()x f x x 00 lim -→=,从 而对任给的0>ε,存在01>δ和02 >δ,当 100δ<-=δδδ 时,当δ<-<00x x 时,则 δ <-<00x x 和 00<-<-x x δ 二者必居其一,从而满足①或②,所以 ()ε<-A x f . 定理 6 函数()x f 在0x 点连续的充要条件是()x f 左连续且右连续. 证明:()x f 在0x 点连续即为()()00 lim x f x f x x =→.注意左连续即为()()000x f x f =-,右连续即为()()000x f x f =+,用定理5即可证. 此外,在讨论函数的极限时往往必须把连续变量离散化,下面我们来讨论这方面的问题.

关于进一步加强三路居村社会治安重点地区排查整治的工作实施方案

关于进一步加强三路居村社会治安重点地区排查整治的工作实施方案 为认真贯彻落实《关于进一步加强卢沟桥乡社会治安重点地区排查整治的工作实施方案》精神和工作部署,深入推进平安丰台建设,给“城南行动计划”顺利实施创造良好的发展条件,就进一步加强全村社会治安重点地区排查整治工作制定本方案。 一、充分认识进一步加强社会治安重点地区排查整治工作的重要性和必要性。 在总支、村委会的坚强领导下,各单位要深入贯彻落实《关于进一步加强卢沟桥乡社会治安重点地区排查整治的工作实施方案》精神,加大社会治安问题的排查整治工作力度,维护全村社会治安大局的安全稳定。 各单位要高度重视此次治安整治排查工作,迅速组织开展本单位辖区内社会治安重点排查整治专项工作,有效消除各类治安和安全隐患,有效落实常态化管理制度,有效完善长效化工作机制。确保我村不发生影响首都社会政治稳定的重大案(事)件发生。 二、深入细致地开展社会治安重点地区排查工作 各单位要紧紧围绕影响社会和谐稳定的源头性、根本性、基础性问题,按照“村不漏院户、院户不漏人”的要求,大力组织开展辖区治安重点地区和突出治安问题的集中排

查。重点地区包括二公司(孟家桥地区)、三公司(十堰宾馆)、七公司、市场(生活区)、小区(地下室)、联办(刘坚国)以上重点地区加强对社会治安、消防和食品、药品等重点行业进行排查,另外对洗浴按摩、发廊、足疗等重点场所进行排查。容易造成现实危险的刑释解教人员、社区矫正人员、对社会严重不满人员、吸毒人员和社会闲散人员,以及案件多发地区及场所要进行全方位重点摸排,坚决不留死角和空白。通过排查,真正把问题底数摸清、摸全、摸透并认真核实情况,逐一进行登记造册和备案,建立台账;按照各单位工作职责任务,确保各项工作责任、措施落实到位。 三、进一步明确整治重点,集中力量组织开展社会治安重点地区专项整治工作 对于流动人口聚集区域要重点排查违法犯罪线索,严厉打击带有地域特点、行业特点的违法犯罪活动,重点排查整治违法建设出租房屋,坚决遏制宅基地上新建违法建设;重点排查整治私搭乱建房屋,坚决拆除侵街占道违法建设;重点排查整治出租房屋各类安全隐患,要建立各类重点人员和安全隐患基础台账,流动人口和出租房屋信息采集登记率要达到95%以上。 对出租房屋、地下空间不符合居住安全条件、存在严重安全隐患的,坚决予以停租;重点排查整治各类违法房屋出租行为,坚决依法予以处罚;重点排查整治食品卫生、非法

相关文档
最新文档